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CHAPTER 1

Introduction

This document is in draft form and far from an exhaustive discussion of the package.

This document describes the main features of the BRML software package, in particular the object oriented
version. There are various routines in the package for both probabilistic potential manipulation and infer-
ence, in addition to classical data analysis routines. Hopefully the data analysis routines should be largely
self-explanatory and may be considered as somewhat stand-alone. The potential manipulation parts of the
package interact more and are the focus of this short tutorial.

The package makes use of the package feature of Matlab (rather than being a toolbox). This means that the
routines are not on the path and either need to be imported explicitly using the import function or called
explicitly. See the Matlab Object Oriented Documentation for a description of packages and OO concepts.

There are a couple of benefits of using the package structure: it makes using code from different sources more
straightforward, particularly for functions with conflicting names; overloading operators makes for a natural
way to produce generic potential-independent inference routines. To extend the package then requires only
the creation of a class for the new potential and basic operations in the class. The drawback is that not all
these features are yet implemented in Octave (the free Matlab clone)1.

Once the package has been downloaded and unzipped, simply type setup at the Matlab command prompt
to set the paths and import the package into the workspace2. Typing what brml gives a listing of the
package m-files and classes. Similarly, help brml lists the m-files and a one-line description of each m-file.

1For this reason at some point it would be great to have a Python version of the code.
2Note that one still needs to import the package within a function.
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CHAPTER 2

Potential Classes

The package comes with a small number of potential classes namely @potential, @array, @logconst,
@const, @logarray, @GaussianMoment, @GaussianCanonical.

2.1 @potential

The potential class itself contains only two properties: variables and table. All other potentials are subclasses
of the potential class. Which methods are defined for each class can be obtained using the methods command.
For example

>> methods array

Methods for class brml.array:

array emppot log mrdivide reshape size

brml.logarray evalpot logscalar mtimes sample sum

delta exp max permute setpot

disptable exppot maxN plus setstate

2.2 @array

The array potential class deals with manipulating discrete probability tables. The interaction with other
classes can be found by typing help array and a description of the constructor is given from help array.array.

One can create an instance of the array by typing

>> p=array

p =

brml.array

Package: brml

Properties:

variables: []

table: []

Methods, Superclasses

To specify the variables we can write
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@array

p.variables=[1 2];

which states that the variables of the potential are 1 and 2 (in that order). To specify the table itself we
can write for example

p.table=[0.05 0.3; 0.45 0.2];

p is now a brml.array instance with fully specified variables and table.

Equivalently we can just write

p=array([1 2],[0.05 0.3; 0.45 0.2])

The number of states of the variable is given by the size of the table. So for example

p=array([1 2],rand(2,3))

defines a potential on variables 1 and 2 with variable 1 having 2 discrete states and variable 2 having 3
discrete states.

The main manipulations we will require are marginalisation and multiplication. For marginalisation we use
the sumpot command. For example

q=sumpot(p,1)

gives a new array potential q defined on variable 2. The sumpot function calls the overloaded sum operation
so that sum(p,1) is also defined.

Let’s define a simple belief network

p(x1, x2, x3) = p1(x1|x2)p2(x2, x3)

p1=array([1 2],condp(rand(2,3)));

p2=array([2 3],condp(rand(3,4),[1 2]));

p=multpots({p1 p2});

This defines p1 as a distribution1 over variable 1 conditioned on variable 2 (the condp command by default
normalises over the first dimension, otherwise over all dimensions specified in the second argument). p2 is
a distribution over variables 2 and 3. p is now a distribution over variables 1,2,3 with dimensions 2, 3, 4
respectively. Naturally, we need the dimensions of the tables to match (here the number of states of variable
2 must be the same in p1 and p2) for the multiplication to work. The multpots command multiples any
number of potentials given in the argument cell.

The * operator is overloaded for brml.array, so that we can equivalently write

p=p1*p2;

for the above2.

In addition the binary operators + and / are defined, so that one could write, for example

p=p1+p2; p=p1/p2;

1condp(rand(2,2),[1 2]) is a handy way to specify a random table that sums to 1.
2The prod operation is not currently overloaded since the builtin prod command is frequently called in potential methods.
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@logarray

2.2.1 A note on cells versus arrays

We can also write q=[p1 p2] which defines a 1 × 2 brml.array. If p1 and p2 are not in the same class,
Matlab seeks to convert [p1 p2] to 1 × 2 potential of the dominant class. Note that for an overloaded
operator f(·), then for an m × n potential p, f(p) returns an m × n potential in which the function f is
applied to each potential element.

Alternatively we can write a cell r={p1 p2}; in this case Matlab does not perform conversion and the cell
entries can remain polymorphic. The brml package generally assumes that cells are used since this can avoid
defining converters if no subsequent interaction between the elements of the cell is required. For example if
we simply want to draw the belief network of set of potentials, we don’t need to convert them. In this sense
working with cells of potentials is more flexible than working with arrays of potentials.

Note that

log([p1 p2])

is defined since the log operator is overloaded for the array class. This returns a 1 × 2 array potential.
However

log({p1 p2})

is not defined since Matlab does not distribute operators over cell elements. However, the potential method
(i.e. not subclass specific) logpot is defined and returns a cell. In this case

logpot({p1 p2})

and

logpot([p1 p2])

both return cells.

2.3 @logarray

A @logarray potential is the same as an @array except that the entries are stored and manipulated in log
form. This can be defined in the same way as @array. We can also convert an @array object to a @logarray

object. For example

p=array([1 2],rand(2,3)); logp=logarray(p)

This defines logp to be an @logarray object. Note that this is not the same as

logpp=log(p)

which would define an @array object simply with the table entries the log of the entries of p.

The operations of the @array class are also defined for the @logarray class. For example

p=array(1,exp(1)); logp=logarray(p)

This defines a potential on variable 1 (which contains only a single state), with

logp =

brml.logarray

Package: brml

Properties:

variables: 1

table: 1
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@const

Then

logpp=logp*logp

logpp =

brml.logarray

Package: brml

Properties:

variables: 1

table: 2

This means that the elements of the logp table are not multiplied (which would give a table of 1) – rather
they are added (which gives a table of 2). The @logarray operations are equivalent to first exponentiating
the log table entries, then carrying out the operation as for the @array class, and then returning the log
of the result. The usefulness of the @logarray class is that it can help avoid numerical over/underflow
for example when running inference routines such as the sum-product algorithm on a large factor graph.
The benefit of using classes is that we can simply reuse any existing algorithm defined for the @array class
and covert to this to the @logarray class, and the result will be returned in log form, without requiring
modification of the algorithm.

2.3.1 No change to high-level algorithms

For example demoSumProdLogMess.m demonstrates how we can call the standard sumprodFG.m code and
get the results returned in log form, without requiring any modification of sumprodFG.m.

Similarly, we can call the junction tree code without modification and the results will be returned in log
form.

2.3.2 Superiority

The @logarray is superior to the @array class since this will generally help improve numerical stability.
This means that for our example above q=[p logp] returns a 1 × 2 @logarray in which p is converted to
@logarray.

2.4 @const

>> c=const(2)

c =

brml.const

Package: brml

Properties:

variables: []

table: 2

The @const defines a table with empty variables. It is inferior to the @array class so that for our example
above p*c returns an @array on variable 1 with table value 2 exp(1). In general for a potential φ(X ) on a
collection of variables X , and constant potential c, then cφ(X ) returns a potential on variables X with value
cφ(X ).
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@GaussianMoment

2.5 @logconst

This behaves similarly to @const except that the operations are carried out in log space, in a similar manner
to @logarray.

2.6 @GaussianMoment

In general the @GaussianMoment considers potentials of the form

φ(x1,x2, . . . ,xN ) = ec
1√

det (2πΣ)
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
where

x =


x1

x2

...
xN


It’s probably easiest to explain this with an example.

a=1; b=2; dim(a)=3; dim(b)=2; totaldim=sum(dim);

p=GaussianMoment;

p.variables=[a b];

p.table.mean=randn(totaldim,1);

tmp=randn(totaldim,totaldim); p.table.covariance=tmp*tmp’;

p.table.dim=dim;

p.table.logprefactor=0;

This defines a Gaussian potential p on two variables a and b. The variable a has 3 dimensions and variable
b has 2 dimensions. The above then defined a joint Gaussian potential with 5 = 3 + 2 dimensional mean
and covariance matrix:

p =

brml.GaussianMoment

Package: brml

Properties:

variables: [1 2]

table: [1x1 struct]

Summing this potential over variable b gives a Gaussian potential with 3 dimensional mean and covariance:

>> pa=sumpot(p,b)

pa =

brml.GaussianMoment

Package: brml

Properties:

variables: 1

table: [1x1 struct]

where the table is given by
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@GaussianCanonical

>> pa.table

ans =

mean: [3x1 double]

covariance: [3x3 double]

dim: 3

logprefactor: 0

See demoSumprodGaussMoment.m which demonstrates how no change is required to the standard sumprodFG.m

algorithm – since it knows how to sum and multiply @GaussianMoment potentials.

This class enables one to perform inference with linear-Gaussian systems at ease.

2.7 @GaussianCanonical

This class defines a Gaussian in canonical form

φ(x1,x2, . . . ,xN ) = ed exp

(
−1

2
xTAx + xTb

)
where again the stacked vector is given by

x =


x1

x2

...
xN


and A is called the ‘precision’ and plays the role of the inverse covariance, and b is called the ‘inverse mean’.
Formally, the translation between the moment and canonical representations is given by

Σ = A−1, µ = A−1b, c = d− 1

2
bTµ− 1

2
log det (2πA)

The convertors are defined between the two representations so that we can write for example

>> pc=GaussianCanonical(p)

pc =

brml.GaussianCanonical

Package: brml

Properties:

variables: [1 2]

table: [1x1 struct]

Methods, Superclasses

>>

>> pc.table

ans =

invcovariance: [5x5 double]

invmean: [5x1 double]

logprefactor: -7.3079

dim: [3 2]
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Extending the set of potential classes

demoSumprodGaussCanonLDS.m gives an example of inference in the Linear Dynamical System using the
Canonical Gaussian representation, calling the standard sumprodFG.m algorithm, comparing the results
given by for example the RTS algorithm.

2.8 Extending the set of potential classes

For a potential type that is closed under marginalisation and multiplication it is straightforward to write
a new class. See for example the directory +brml\@GaussianMoment. Along with the class definition and
constructor (and possibly any convertors), the necessary methods are:

mtimes.m The ‘*’ multiplication operator and specifies how to multiply two potentials φ1∗φ2 from the class.
This should be in the form newpot = mtimes(pot1,pot2)

size.m Returns the dimensions of the continuous variables in the potential or the number of states for a
discrete variable). This should be in the form nstates = size(pot)

sum.m Marginalises the potential φ(X ) over a subset of variables S ⊂ X . This should be in the form newpot

= sum(pot,vars)
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