
Noisy Pattern Search using Hidden Markov Models

David Barber
University College London

March 13, 2012

1 String search

We have a pattern string david that we wish to search for in an observation string, say fgidavidjj. More
generally, we might have a dictionary of patterns

david

anton

fred

jim

barry

and wish to check where they may appear in the observation string. There are classical fast algorithms that
can do this, for example the Aho-Corasick algorithm [1]. The complexity of the Aho-Corasick algorithm is
linear in the length of the observation string and linear in the total length of the dictionary.

2 Noisy pattern search

When the observation string is potentially corrupted with noise, we cannot apply the standard Aho-Corasick
algorithm. One approach in this case is to use a Hidden Markov Model (HMM) which defines a distribution
over a set of observations v1, . . . , vT (or v1:T for short) and corresponding hidden variables h1:T :

p(v1:T , h1:T) = p(h1)p(v1|h1)
T∏
t=2

p(vt|ht)p(ht|ht−1) (1)

whose structure as a belief network is represented in figure(1). In this case the hidden variables h1:T represent
the ‘clean’ sequence and the variables v1:T the observed sequence. The ‘emission’ matrix

p(vt = i|ht = j) ≡ Bij ,
∑
i

Bij = 1

describes the probability that the clean state j gets corrupted to the observed state i. The ‘transition’
matrix

p(ht = i|ht−1 = j) ≡ Aij ,
∑
i

Aij = 1

describes the transition of the latent variables. Finally

p(h1 = i) = πi

describes the starting state probability.
The HMM is a generative model which means that we can understand the model by how it generates

data. In this case we would sample a hidden state from the distribution p(h1), for example state 3, and
then draw a sample from the distribution p(v1|h = 3) by drawing from the distribution represented by B:,3.
Then we may draw h2 from A:,3 and continue in this manner until we’ve draw a set of states h1:T and v1:T .

Whilst the HMM is best understood in the generative sense we can use it to find out something about
the hidden states that gave rise to an observation sequence. That is given the sequence v1:T we wish to infer
something about the hidden variables. In particular we often wish to infer:

1

h1 h2 h3 h4

v1 v2 v3 v4

Figure 1: A Hidden Markov Model for 4 timesteps with observations v1, . . . , v4 and hidden variables
h1, . . . , h4.

Most probable explanation What is the most likely hidden sequence that gave rise to the observations?

h∗1:T ≡ arg max
h1:T

p(h1:T |v1:T)

This is also called the Viterbi sequence and has corresponding probability

p(h∗1:T |v1:T)

In practice may wish to list the set of L most probable explanations and their corresponding proba-
bilities.

Most probable marginal explanation For an individual ‘time’ t, what is the distribution over possible
explanations:

p(ht|v1:T)

Using this we may for example find the most likely marginal explanation arg maxht p(ht|v1:T). Note
that this not necessarily the same as the h∗t .

For an H×H transition matrix A and V ×H emission matrix B, the computational complexity of finding
the (single) most likely explanation and the most probable marginal explanation are both O

(
TV H2

)
. The

classical algorithms are described for example in [2].

2.1 Looking for a single pattern

When searching for a pattern there are some computational simplifications. For example let’s imagine that
we wish to search for the single pattern ACGT in the observation GTTAGGTC. To do this we first describe the
generating mechanism for observing noisy versions of the pattern. Here we will use H = 6 hidden states
and show below their corresponding meaning:

h = 1 A

h = 2 C

h = 3 G

h = 4 T

h = 5 notstart we have not yet reached the pattern
h = 6 end we have finished the pattern

We then define the transition matrix

A =

[1] [2] [3] [4] [5] [6]
[1] 0 0 0 0 0.5 0
[2] 1 0 0 0 0 0
[3] 0 1 0 0 0 0
[4] 0 0 1 0 0 0
[5] 0 0 0 0 0.5 0
[6] 0 0 0 1 0 1

where [i] indicates state i of the hidden variable. This transition means that if we are in the notstart

state, we remain in the start state with probability 0.5 or move to the first letter in the pattern. When

2

A

C

G

T

5

6

1

1 1

1

0.5

0.5

1

Figure 2: State transition diagram for hidden variable ht−1 → ht for the ACGT pattern.

h is in a pattern letter it deterministically moves to the next letter in the pattern until when it reaches
the last letter, after which it deterministically transitions to the end state and remains there. This can be
represented graphically using a state transition diagram, as in figure(2).

To represent the emission model we can use

B =

[1] [2] [3] [4] [5] [6]
{1} 0.7 0.1 0.1 0.1 0.25 0.25
{2} 0.1 0.7 0.1 0.1 0.25 0.25
{3} 0.1 0.1 0.7 0.1 0.25 0.25
{4} 0.1 0.1 0.1 0.7 0.25 0.25

which says that if we are in the notstart state we emit any of A,C,G,T with equal probability, and similarly
for the end state. When we are in a pattern state, we emit the clean pattern with probability 0.7 and one
of the other patterns with equal probability 0.1. Here we used the notation {i} to indicate state i of the
observation variable.

Setting

π =



0
0
0
0
1
0


States that with probability 1, the first hidden state is the notstart state.

Calling the HMMviterbi routine with these settings for the observation GTTAGGTC, which corresponds to
v = [3 4 4 1 3 3 4 2], we get the most likely explanation is

h∗ = [5 5 5 1 2 3 4 6]

which has log probability −10.9972. For p(ht|v1:T) we have the matrix

0.0000 0.0108 0.0377 0.9245 0.0013 0.0017 0.0147 0.0026

0.0000 0.0000 0.0108 0.0377 0.9245 0.0013 0.0017 0.0147

0.0000 0.0000 0.0000 0.0108 0.0377 0.9245 0.0013 0.0017

0.0000 0.0000 0.0000 0.0000 0.0108 0.0377 0.9245 0.0013

1.0000 0.9892 0.9515 0.0270 0.0256 0.0240 0.0092 0.0066

0.0000 0.0000 0.0000 0.0000 0.0000 0.0108 0.0485 0.9730

in which the tth column represents the probability p(ht|v1:8). Each column represents the distribution over
the explanations for time corresponding to that column. In this case, the most likely marginal explanation
across time is

h̄∗ = [5 5 5 1 2 3 4 6]

3

[1] (1) [2]

0.5

0.5 1

Figure 3: State transition diagram for hidden variable ht−1 → ht for the pattern state (1) – ACGT and two
general states [1] – notstart, and [2] – end.

which matches the most likely joint explanation h∗ in this case, though this will not generally be so. See
demoACGT.m for example code.

2.2 General and Pattern States

We can represent the above example more compactly by defining one pattern and two general states. For
(1) ACGT

[1] notstart we have not yet reached the pattern
[2] end we have finished the pattern

where (i) denotes the ith pattern-state. We then define the generalised transition matrix

Ã =

(1) [1] [2]
(1) 0 0.5 0
[1] 0 0.5 0
[2] 1 0 1

This transition means that if we are in the notstart state, we remain in the start state with probability
0.5 or move to the first letter in the pattern. When h is in a pattern letter it deterministically moves to the
next letter in the pattern until when it reaches the last letter, after which it deterministically transitions to
the end state and remains there. This can be represented graphically using the generalised state transition
diagram, as in figure(3).

To represent the emission model we first specify the emission for the generalstates:

Bgeneral =

[1] [2]
{1} 0.25 0.25
{2} 0.25 0.25
{3} 0.25 0.25
{4} 0.25 0.25

A simple way to complete the emission for the patterns is to specify a corruption matrix, for example

Bpattern =

A C G T
A 0.7 0 0.2 0.1
C 0.1 0.9 0 0.1
G 0.1 0.1 0.7 0
T 0.1 0 0.1 0.8

A more complex but more powerful alternative is to specify for example

Bpattern{1,4}=ones(4,1)/4;

which would say that for pattern 1, the 4th position of the pattern has uniform emission distribution.
This allows for full flexibility meaning that the emission distribution can be pattern dependent. This
requires creating a cell array with entries Bpattern{pattern,patternposition} that are probability
vectors describing the emission distribution for each of the patterns and the position in that pattern.

If the routine patternsearchsetup.m is called with Bpattern as a matrix, it recognises this as a
corruption probability matrix; otherwise it assumes Bpattern is a cell array of probability vectors. See
demoFirstname.m for an example of both approaches.

4

2.2.1 Standard states

The software converts the pattern and general states transition Ã to a full (sparse) transition A based
on the following. Beginning with patternstate(1) it defines L1 states to this pattern, and then moves to
patternstate(2), defining states L1 + 1, . . . , L1 + L2, etc. until all patterns have been considered. Then the
generalstates are appended, making a total of

H =
∑
i

Li +G

standard hidden states.
The routine patternsearchsetup.m returns the standard states and the standard transition A, emission

B and prior π.

[A,B,standardprior,startpatternIDX,endpatternIDX,generalstateIDX]...

=patternsearchsetup(pattern,patternstate,generalstate,Atilde,Bpattern,Bgeneral,prior);

Conversely,

[patternstate generalstate]=getpattern(standardstate,startpatternIDX,generalstateIDX);

returns the index of the patternstate or generalstate that the standardstate corresponds to. See below and
demoFirstname.m for an example.

2.3 A dictionary of patterns

We can use the idea of pattern and general states to do more complex things. If we have a dictionary of
patterns we can assign a pattern state to each:

(1) david

(2) anton

(3) fred

(4) jim

(5) barry

[1] notstart we have not yet reached a pattern
[2] end we have finished all patterns

Running demoFirstname.m an example output is

observed sequence: barezwztrq

Viterbi sequence corresponds to

observation: [patternstate generalstate]

b: [0 1]

a: [3 0] fred

r: [3 0] fred

e: [3 0] fred

z: [3 0] fred

w: [0 2]

z: [0 2]

t: [0 2]

r: [0 2]

q: [0 2]

This says that the most likely explanation is that pattern 3 fred starts at position 2. In the above printout,
the generalstate being 0 indicates that a pattern state is more probable, and vice versa.

In demoFirstname.m this is achieved by defining the generalised transition Ã.
The emission distribution for the gth generalstate is specified using Bgeneral(:,g).

There are two alternatives described for the Bpattern emission. The simplest defines a corruption
matrix that states that with 90% probability the correct letter is emitted, otherwise another letter is emitted

5

[1]

(1)

(2)

(3)

(4)

(5)

[2]

0.5

0.1

0.1

0.1

0.1

0.1

(a)

[1]

(1)

(2)

(3)

(4)

(5)

[2]

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

(b)

Figure 4: State transition diagram for hidden variable ht−1 → ht for a set of 5 pattern states and two
general states notstart, end. For deterministic transition (probability 1), no probability is marked. (a)
Only a single pattern from the dictionary will be matched once. (b) Possibly more than one pattern will be
matched.

uniformly at random. The more complex construction is to use Bpattern{pt,l} which contains the emission
distribution

p(v|h = {pattern is pt and we are in the position l in the pattern})

This allows one to have different emission probabilities depending on the position in the pattern. For
example, it might be that for the pattern fred we wish to have a different emission distribution p(v|f)
than for p(v|d). This allows some flexibility in defining the emission and follows the encoding scheme in
section(2.2.1).

The prior is defined one of either
prior contains the distribution over all H states.
prior.patternstate contains the distribution over which patternstates one should begin in.
prior.generalstate contains the distribution over which generalstates one should begin in.

This allows for some flexibility in defining the prior.
If we wish to search for the occurrence of more than one pattern in the observation sequence, we can add

a link back to the general notstart state, see figure(4b). In this case we can find search for the existence
of patterns (possibly recurring) in a observation sequence. For the emission matrix B, we can define for
example a 26 × 26 matrix that is diagonally dominant in that the probability of emitting state i when the
hidden state is i is higher than emitting any other probability.

2.4 More complex search

Consider two dictionaries, one containing first names as above and the other surnames

barber

ilsung

fox

chain

fitzwilliam

quinceadams

grafvonunterhosen

6

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

p(
in

 s
am

e
st

ar
t s

ta
te

)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 5: The probability of remaining in the same
state pt for t timesteps, where p is the probability
of remaining in the same state for a single timestep.
This probability decreases exponentially (geometri-
cally) with time so that, for example, for p = 0.5,
the probability that we remain in the same state after
4 timesteps is about 6%.

and that we wish to search for patterns of the form firstname∗surname where ∗ represents any length≥ 1
sequence. One way to do this is to consider

(1) david

(2) anton

(3) fred

(4) jim

(5) barry

(6) barber

(7) ilsung

(8) fox

(9) chain

(10) fitzwilliam

(11) quinceadams

(12) grafvonunterhosen

[1] notstartfirstname we have not yet reached a firstname
[2] notstartsurname we have finished a firstname but not started surname
[3] end we have finished all patterns

and define appropriate transition probabilities, see demoFirstnameSurname.m. For example from p([2]→
[2]) = 0.5 and p([2] → {(6− 12)}) = 1/7 would represent remaining in the notstartsurname with prob-
ability 0.5 or transitioning to a surname with probability 0.5. Note that this means that the number of
observations between the end of the firstname and the start of the surname is geometric distribution, so
that the generating mechanism would place very low probability to long after firstname – before surname
periods. See the discussion also below.

2.5 Self-transition probability

Consider a two state Markov chain with probability of remaining in the same state given by p. Then in t
timesteps, the probability that we are still in the same state is pt which decays exponentially quickly with t,
see figure(5). One can address this by using an explicit duration model in which we define a set of duration
patterns, each of different length and define transitioning into a duration pattern with probability pi. In
this way, at the expense of additional states, one can define durations between states of any length and
probability.

2.6 Computational Complexity

For a length K pattern, this can be represented by a single pattern state, which itself corresponds to K
actual states. The fact that these actual states transition deterministically to the next internal pattern
state means that the computational expense of inference in the HMM is reduced. For a set of G general
patternstates , V observation states and dictionary of P patterns with pattern i of length Li, the complexity
of inferring the most likely explanation or the marginal explanation is order

TV

(
G2 +GP +

P∑
i=1

Li

)

7

In practice, typically the transition matrix will be even sparser, so that this is an upper bound on the order
of complexity. More generally, the computational complexity is of order

T

∑
ij

I [Bij 6= 0] +
∑
ij

I [Aij 6= 0]


2.6.1 Speeding things up

Inference in the HMM corresponds to passing non-negative messages along a chain [2]. A simple approxima-
tion is to only retain messages that have a numerical value above some threshold. This makes the messages
sparse, at the potential cost of not computing the inference exactly.

References

[1] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic search. Communications
of the ACM, 18(6):333–340, 1975.

[2] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

8

	String search
	Noisy pattern search
	Looking for a single pattern
	General and Pattern States
	Standard states

	A dictionary of patterns
	More complex search
	Self-transition probability
	Computational Complexity
	Speeding things up

