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Abstract

We introduce a method for approximate smoothed inference in a class of switching linear
dynamical systems, based on a novel form of Gaussian Sum smoother. This class includes
the switching Kalman ‘Filter’ and the more general case of switch transitions dependent
on the continuous latent state. The method improves on the standard Kim smoothing
approach by dispensing with one of the key approximations, thus making fuller use of the
available future information. Whilst the central assumption required is projection to a
mixture of Gaussians, we show that an additional conditional independence assumption
results in a simpler but accurate alternative. Our method consists of a single Forward
and Backward Pass and is reminiscent of the standard smoothing ‘correction’ recursions
in the simpler linear dynamical system. The method is numerically stable and compares
favourably against alternative approximations, both in cases where a single mixture com-
ponent provides a good posterior approximation, and where a multimodal approximation
is required.

Keywords: Gaussian Sum Smoother, Switching Kalman Filter, Switching Linear Dy-
namical System, Expectation Propagation, Expectation Correction.

1. Switching Linear Dynamical System

The Linear Dynamical System (LDS) (Bar-Shalom and Li, 1998; West and Harrison, 1999)
is a key temporal model in which a latent linear process generates the observed time-series.
For more complex time-series which are not well described globally by a single LDS, we
may break the time-series into segments, each modeled by a potentially different LDS. This
is the basis for the Switching LDS (SLDS) where, for each time-step t, a switch variable
st ∈ 1, . . . , S describes which of the LDSs is to be used1. The observation (or ‘visible’
variable) vt ∈ RV is linearly related to the hidden state ht ∈ RH by

vt = B(st)ht + ηv(st), ηv(st) ∼ N (v̄(st),Σ
v(st)) (1)

1. These systems also go under the names Jump Markov model/process, switching Kalman Filter, Switching
Linear Gaussian State-Space model, Conditional Linear Gaussian Model.
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Figure 1: The independence structure of the aSLDS. Square nodes denote discrete variables,
round nodes continuous variables. In the SLDS links from h to s are not normally
considered.

where N (µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ. The tran-
sition dynamics of the continuous hidden state ht is linear

ht = A(st)ht−1 + ηh(st), ηh(st) ∼ N
(

h̄(st),Σ
h(st)

)

(2)

The dynamics of the switch variables is Markovian, with transition p(st|st−1). The SLDS is
used in many disciplines, from econometrics to machine learning (Bar-Shalom and Li, 1998;
Ghahramani and Hinton, 1998; Lerner et al., 2000; Kitagawa, 1994; Kim and Nelson, 1999;
Pavlovic et al., 2001). See Lerner (2002) and Zoeter (2005) for recent reviews of work.

Augmented Switching Linear Dynamical System

In this article, we will consider the more general model in which the switch st is dependent
on both the previous st−1 and ht−1. We call this an augmented Switching Linear Dynam-
ical System2 (aSLDS), in keeping with the terminology in Lerner (2002). An equivalent
probabilistic model is, as depicted in Figure (1),

p(v1:T , h1:T , s1:T ) = p(v1|h1, s1)p(h1|s1)p(s1)

T∏

t=2

p(vt|ht, st)p(ht|ht−1, st)p(st|ht−1, st−1)

The notation x1:T is shorthand for x1, . . . , xT . The distributions are parameterized as

p(vt|ht, st) = N (v̄(st) + B(st)ht,Σ
v(st)) , p(ht|ht−1, st) = N

(

h̄(st) + A(st)ht−1,Σ
h(st)

)

where p(h1|s1) = N (µ(s1),Σ(s1)). The aSLDS has been used, for example, in state-duration
modeling in acoustics (Cemgil et al., 2006) and econometrics (Chib and Dueker, 2004).

Inference

The aim of this article is to address how to perform inference in both the SLDS and aSLDS.
In particular we desire the so-called filtered estimate p(ht, st|v1:t) and the smoothed estimate
p(ht, st|v1:T ), for any t, 1 ≤ t ≤ T . Both exact filtered and smoothed inference in the SLDS is

2. These models are closely related to Threshold Regression Models (Tong, 1990).
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intractable, scaling exponentially with time (Lerner, 2002). To see this informally, consider
the filtered posterior, which may be recursively computed using

p(st, ht|v1:t) =
∑

st−1

∫

ht−1

p(st, ht|st−1, ht−1, vt)p(st−1, ht−1|v1:t−1) (3)

At timestep 1, p(s1, h1|v1) = p(h1|s1, v1)p(s1|v1) is an indexed set of Gaussians. At time-
step 2, due to the summation over the states s1, p(s2, h2|v1:2) will be an indexed set of
S Gaussians; similarly at time-step 3, it will be S2 and, in general, gives rise to St−1

Gaussians. More formally, in Lauritzen and Jensen (2001), a general exact method is
presented for performing stable inference in such hybrid discrete models with conditional
Gaussian potentials. The method requires finding a strong junction tree which, in the SLDS
case, means that the discrete variables are placed in a single cluster, resulting in exponential
complexity.

The key issue in the (a)SLDS, therefore, is how to perform approximate inference in a
numerically stable manner. Our own interest in the SLDS stems primarily from acoustic
modeling, in which the time-series consists of many thousands of time-steps (Mesot and
Barber, 2006; Cemgil et al., 2006). For this, we require a stable and computationally
feasible approximate inference, which is also able to deal with state-spaces of high hidden
dimension, H.

2. Expectation Correction

Our approach to approximate p(ht, st|v1:T ) ≈ p̃(ht, st|v1:T ) mirrors the Rauch-Tung-Striebel
(RTS) ‘correction’ smoother for the LDS (Rauch et al., 1965; Bar-Shalom and Li, 1998).
Readers unfamiliar with this approach will find a short explanation in Appendix (A), which
defines the important functions LDSFORWARD and LDSBACKWARD, which we shall make
use of for inference in the aSLDS. Our correction approach consists of a single Forward Pass
to recursively find the filtered posterior p̃(ht, st|v1:t), followed by a single Backward Pass to
correct this into a smoothed posterior p̃(ht, st|v1:T ). The Forward Pass we use is equivalent
to Assumed Density Filtering (Alspach and Sorenson, 1972; Boyen and Koller, 1998; Minka,
2001). The main contribution of this paper is a novel form of Backward Pass, based on
collapsing the smoothed posterior to a mixture of Gaussians.

Unless stated otherwise, all quantities should be considered as approximations to their
exact counterparts, and we will therefore usually omit the tildes˜throughout the article.

2.1 Forward Pass (Filtering)

Readers familiar with Assumed Density Filtering (ADF) may wish to continue directly to
Section (2.2). The basic idea is to represent the (intractable) posterior using a simpler
distribution. This is then propagated forwards through time, conditioned on the new obser-
vation, and subsequently collapsed back to the tractable distribution representation – see
Figure (2). Our aim is to form a recursion for p(st, ht|v1:t), based on a Gaussian mixture
approximation of p(ht|st, v1:t). Without loss of generality, we may decompose the filtered
posterior as

p(ht, st|v1:t) = p(ht|st, v1:t)p(st|v1:t) (4)
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We will first form a recursion for p(ht|st, v1:t), and discuss the switch recursion p(st|v1:t)
later. The full procedure for computing the filtered posterior is presented in Algorithm (1).

The exact representation of p(ht|st, v1:t) is a mixture with O(St) components. We there-
fore approximate this with a smaller It-component mixture

p(ht|st, v1:t) ≈ p̃(ht|st, v1:t) ≡
It∑

it=1

p̃(ht|it, st, v1:t)p̃(it|st, v1:t)

where p̃(ht|it, st, v1:t) is a Gaussian parameterized with mean3 f(it, st) and covariance
F (it, st). The Gaussian mixture weights are given by p̃(it|st, v1:t). In the above, p̃ rep-
resent approximations to the corresponding exact p distributions. To find a recursion for
these parameters, consider

p̃(ht+1|st+1, v1:t+1) =
∑

st,it

p̃(ht+1, st, it|st+1, v1:t+1)

=
∑

st,it

p̃(ht+1|it, st, st+1, v1:t+1)p̃(st, it|st+1, v1:t+1) (5)

where each of the factors can be recursively computed on the basis of the previous filtered
results (see below). However, this recursion suffers from an exponential increase in mixture
components. To deal with this, we will later collapse p̃(ht+1|st+1, v1:t+1) back to a smaller
mixture. For the remainder, we drop the p̃ notation, and concentrate on computing the
r.h.s of Equation (5).

Evaluating p(ht+1|st, it, st+1, v1:t+1)

We find p(ht+1|st, it, st+1, v1:t+1) from the joint distribution p(ht+1, vt+1|st, it, st+1, v1:t),
which is a Gaussian with covariance and mean elements4

Σhh = A(st+1)F (it, st)A
T(st+1) + Σh(st+1), Σvv = B(st+1)ΣhhBT(st+1) + Σv(st+1)

Σvh = B(st+1)F (it, st), µv = B(st+1)A(st+1)f(it, st), µh = A(st+1)f(it, st) (6)

These results are obtained from integrating the forward dynamics, Equations (1,2) over ht,
using the results in Appendix (B). To find p(ht+1|st, it, st+1, v1:t+1) we may then condition
p(ht+1, vt+1|st, it, st+1, v1:t) on vt+1 using the results in Appendix (C) – see also Algorithm
(4).

Evaluating p(st, it|st+1, v1:t+1)

Up to a trivial normalization constant the mixture weight in Equation (5) can be found
from the decomposition

p(st, it|st+1, v1:t+1) ∝ p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t) (7)

3. Strictly speaking, we should use the notation ft(it, st) since, for each time t, we have a set of means
indexed by it, st. This mild abuse of notation is used elsewhere in the paper.

4. We derive this for h̄t+1, v̄t+1 ≡ 0, to ease notation.
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Figure 2: Structure of the mixture representation of the Forward Pass. Essentially, the
Forward Pass defines a ‘prior’ distribution at time t which contains all the infor-
mation from the variables v1:t. This prior is propagated forwards through time
using the exact dynamics, conditioned on the observation, and then collapsed
back to form a new prior approximation at time t + 1.

The first factor in Equation (7), p(vt+1|it, st, st+1, v1:t), is a Gaussian with mean µv and
covariance Σvv, as given in Equation (6). The last two factors p(it|st, v1:t) and p(st|v1:t) are
given from the previous iteration. Finally, p(st+1|it, st, v1:t) is found from

p(st+1|it, st, v1:t) = 〈p(st+1|ht, st)〉p(ht|it,st,v1:t)
(8)

where 〈·〉p denotes expectation with respect to p. In the standard SLDS, Equation (8)
is replaced by the Markov transition p(st+1|st). In the aSLDS, however, Equation (8) will
generally need to be computed numerically. A simple approximation is to evaluate Equation
(8) at the mean value of the distribution p(ht|it, st, v1:t). To take covariance information
into account an alternative would be to draw samples from the Gaussian p(ht|it, st, v1:t) and
thus approximate the average of p(st+1|ht, st) by sampling5.

Closing the recursion

We are now in a position to calculate Equation (5). For each setting of the variable st+1,
we have a mixture of It × S Gaussians. In order to avoid an exponential explosion in the
number of mixture components, we numerically collapse this back to It+1 Gaussians to form

p(ht+1|st+1, v1:t+1) ≈
It+1∑

it+1=1

p(ht+1|it+1, st+1, v1:t+1)p(it+1|st+1, v1:t+1)

Hence the Gaussian components and corresponding mixture weights p(it+1|st+1, v1:t+1) are
defined implicitly through a numerical (Gaussian-Mixture to smaller Gaussian-Mixture)
collapse procedure, for which any method of choice may be supplied. A straightforward

5. Whilst we suggest sampling as part of the aSLDS update procedure, this does not render the Forward
Pass as a form of sequential sampling procedure, such as Particle Filtering. The sampling here is a
form of exact sampling, for which no convergence issues arise, being used only to numerically evaluate
Equation (8).
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Algorithm 1 aSLDS Forward Pass. Approximate the filtered posterior p(st|v1:t) ≡
ρt, p(ht|st, v1:t) ≡

∑

it
wt(it, st)N (ft(it, st), Ft(it, st)). Also we return the approximate

log-likelihood log p(v1:T ). We require I1 = 1, I2 ≤ S, It ≤ S × It−1. θt(s) =
A(s), B(s),Σh(s),Σv(s), h̄(s), v̄(s) for t > 1. θ1(s) = A(s), B(s),Σ(s),Σv(s), µ(s), v̄(s)

for s1 ← 1 to S do
{f1(1, s1), F1(1, s1), p̂} = LDSFORWARD(0, 0, v1; θ(s1))
ρ1 ← p(s1)p̂

end for

for t← 2 to T do
for st ← 1 to S do

for i← 1 to It−1, and s← 1 to S do
{µx|y(i, s),Σx|y(i, s), p̂} = LDSFORWARD(ft−1(i, s), Ft−1(i, s), vt; θt(st))
p∗(st|i, s) ≡ 〈p(st|ht−1, st−1 = s)〉p(ht−1|it−1=i,st−1=s,v1:t−1)

p′(st, i, s)← wt−1(i, s)p
∗(st|i, s)ρt−1(s)p̂

end for
Collapse the It−1 × S mixture of Gaussians defined by µx|y,Σx|y, and weights
p(i, s|st) ∝ p′(st, i, s) to a Gaussian with It components, p(ht|st, v1:t) ≈∑It

it=1 p(it|st, v1:t)p(ht|st, it, v1:t). This defines the new means ft(it, st), co-
variances Ft(it, st) and mixture weights wt(it, st) ≡ p(it|st, v1:t).
Compute ρt(st) ∝

∑

i,s p′(st, i, s)
end for
normalize ρt ≡ p(st|v1:t)
L← L + log

∑

st,i,s
p′(st, i, s)

end for

approach that we use in our code is based on repeatedly merging low-weight components,
as explained in Appendix (D).

A Recursion for the Switch Variables

A recursion for the switch variables can be found by considering

p(st+1|v1:t+1) ∝
∑

it,st

p(it, st, st+1, vt+1, v1:t)

The r.h.s. of the above equation is proportional to
∑

st,it

p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)

where all terms have been computed during the recursion for p(ht+1|st+1, v1:t+1).

The Likelihood p(v1:T )

The likelihood p(v1:T ) may be found by recursing p(v1:t+1) = p(vt+1|v1:t)p(v1:t), where

p(vt+1|v1:t) =
∑

it,st,st+1

p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)
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In the above expression, all terms have been computed in forming the recursion for the
filtered posterior p(ht+1, st+1|v1:t+1).

2.2 Backward Pass (Smoothing)

The main contribution of this paper is to find a suitable way to ‘correct’ the filtered posterior
p(st, ht|v1:t) obtained from the Forward Pass into a smoothed posterior p(st, ht|v1:T ). We
initially derive this for the case of a single Gaussian representation – the extension to the
mixture case is straightforward and given in Section (2.3). Our derivation holds for both the
SLDS and aSLDS. We approximate the smoothed posterior p(ht|st, v1:T ) by a Gaussian with
mean g(st) and covariance G(st), and our aim is to find a recursion for these parameters.
A useful starting point is the exact relation:

p(ht, st|v1:T ) =
∑

st+1

p(st+1|v1:T )p(ht|st, st+1, v1:T )p(st|st+1, v1:T )

The term p(ht|st, st+1, v1:T ) may be computed as

p(ht|st, st+1, v1:T ) =

∫

ht+1

p(ht, ht+1|st, st+1, v1:T )

=

∫

ht+1

p(ht|ht+1, st, st+1, v1:T )p(ht+1|st, st+1, v1:T )

=

∫

ht+1

p(ht|ht+1, st, st+1, v1:t)p(ht+1|st, st+1, v1:T ) (9)

which is in the form of a recursion. This recursion therefore requires p(ht+1|st, st+1, v1:T ),
which we can write as

p(ht+1|st, st+1, v1:T ) ∝ p(ht+1|st+1, v1:T )p(st|st+1, ht+1, v1:t) (10)

The above recursions represent the exact computation of the smoothed posterior. In our
approximate treatment, we replace all quantities p with their corresponding approxima-
tions p̃. A difficulty is that the functional form of p̃(st|st+1, ht+1, v1:t) in the approxi-
mation of Equation (10) is not squared exponential in ht+1, so that p̃(ht+1|st, st+1, v1:T )
will not be a mixture of Gaussians6. One possibility would be to approximate the non-
Gaussian p(ht+1|st, st+1, v1:T ) (dropping the p̃ notation) by a Gaussian (mixture) by min-
imizing the Kullback-Leilbler divergence between the two, or performing moment match-
ing in the case of a single Gaussian. A simpler alternative is to make the assumption
p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), see Figure (3). This is a considerable simplifica-
tion since p(ht+1|st+1, v1:T ) is already known from the previous backward recursion. Under
this assumption, the recursion becomes

p(ht, st|v1:T ) ≈
∑

st+1

p(st+1|v1:T )p(st|st+1, v1:T ) 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (11)

6. In the exact calculation, p(ht+1|st, st+1, v1:T ) is a mixture of Gaussians since p(st|st+1, ht+1, v1:t) =
p(st, st+1, ht+1, v1:T )/p(st+1, ht+1, v1:T ) so that the mixture of Gaussians denominator p(st+1, ht+1, v1:T )
cancels with the first term in Equation (10), leaving a mixture of Gaussians. However, since in Equa-
tion (10) the two terms p(ht+1|st+1, v1:T ) and p(st|st+1, ht+1, v1:t) are replaced by approximations, this
cancelation is not guaranteed.
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st−1 st st+1 st+2

ht−1 ht ht+1 ht+2

vt−1 vt vt+1 vt+2

Figure 3: Our Backward Pass approximates p(ht+1|st+1, st, v1:T ) by p(ht+1|st+1, v1:T ). Mo-
tivation for this is that st only influences ht+1 through ht. However, ht will most
likely be heavily influenced by v1:t, so that not knowing the state of st is likely
to be of secondary importance. The darker shaded node is the variable we wish
to find the posterior state of. The lighter shaded nodes are variables in known
states, and the hashed node a variable whose state is indeed known but assumed
unknown for the approximation.

We call the procedure based on Equation (11) Expectation Correction (EC) since it ‘cor-
rects’ the filtered results which themselves are formed from propagating expectations. In
Appendix (E) we show how EC is equivalent to a partial Discrete-Continuous factorized
approximation.

Equation (11) forms the basis of the the EC Backward Pass. However, similar to the
ADF Forward Pass, the number of mixture components needed to represent the posterior in
this recursion grows exponentially as we go backwards in time. The strategy we take to deal
with this is a form of Assumed Density Smoothing, in which Equation (11) is interpreted as
a propagated dynamics reversal, which will subsequently be collapsed back to an assumed
family of distributions – see Figure (4). How we implement the recursion for the continuous
and discrete factors is detailed below7.

Evaluating 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T )

〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) is a Gaussian in ht, whose statistics we will now com-
pute. First we find p(ht|ht+1, st, st+1, v1:t) which may be obtained from the joint distribution

p(ht, ht+1|st, st+1, v1:t) = p(ht+1|ht, st+1)p(ht|st, v1:t) (12)

which itself can be found using the forward dynamics from the filtered estimate p(ht|st, v1:t).
The statistics for the marginal p(ht|st, st+1, v1:t) are simply those of p(ht|st, v1:t), since st+1

carries no extra information about ht
8. The remaining statistics are the mean of ht+1, the

7. Equation (11) has the pleasing form of an RTS Backward Pass for the continuous part (analogous to
LDS case), and a discrete smoother (analogous to a smoother recursion for the HMM). In the Forward-
Backward algorithm for the HMM (Rabiner, 1989), the posterior γt ≡ p(st|v1:T ) is formed from the
product of αt ≡ p(st|v1:t) and βt ≡ p(vt+1:T |st). This approach is also analogous to EP (Heskes and
Zoeter, 2002). In the correction approach, a direct recursion for γt in terms of γt+1 and αt is formed,
without explicitly defining βt. The two approaches to inference are known as α−β and α−γ recursions.

8. Integrating over ht+1 means that the information from st+1 passing through ht+1 via the term
p(ht+1|st+1, ht) vanishes. Also, since st is known, no information from st+1 passes through st to ht.

8



st st+1

it jt+1

ht ht+1

vt vt+1

Figure 4: Structure of the Backward Pass for mixtures. Given the smoothed information
at time-step t + 1, we need to work backwards to ‘correct’ the filtered estimate
at time t.

covariance of ht+1 and cross-variance between ht and ht+1,

〈ht+1〉 = A(st+1)ft(st)

Σt+1,t+1 = A(st+1)Ft(st)A
T(st+1) + Σh(st+1), Σt+1,t = A(st+1)Ft(st)

Given the statistics of Equation (12), we may now condition on ht+1 to find
p(ht|ht+1, st, st+1, v1:t). Doing so effectively constitutes a reversal of the dynamics,

ht =
←−
A (st, st+1)ht+1 +←−η (st, st+1)

where
←−
A (st, st+1) and ←−η (st, st+1) ∼ N (←−m(st, st+1),

←−
Σ(st, st+1)) are easily found using the

conditioned Gaussian results in Appendix (C) – see also Algorithm (5). Averaging the
reversed dynamics we obtain a Gaussian in ht for 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T )

with statistics

µt =
←−
A (st, st+1)g(st+1)+

←−m(st, st+1), Σt,t =
←−
A (st, st+1)G(st+1)

←−
AT(st, st+1)+

←−
Σ(st, st+1)

These equations directly mirror the RTS Backward Pass, see Algorithm (5).

Evaluating p(st|st+1, v1:T )

The main departure of EC from previous methods is in treating the term

p(st|st+1, v1:T ) = 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (13)

The term p(st|ht+1, st+1, v1:t) is given by

p(st|ht+1, st+1, v1:t) =
p(ht+1|st, st+1, v1:t)p(st, st+1|v1:t)

∑

s′
t

p(ht+1|s′t, st+1, v1:t)p(s′t, st+1|v1:t)
(14)

Here p(st, st+1|v1:t) = p(st+1|st, v1:t)p(st|v1:t), where p(st+1|st, v1:t) occurs in the Forward
Pass, Equation (8). In Equation (14), p(ht+1|st+1, st, v1:t) is found by marginalizing Equa-
tion (12).

Performing the average over p(ht+1|st+1, v1:T ) in Equation (13) may be achieved by any
numerical integration method desired. Below we outline a crude approximation that is fast
and often performs surprisingly well.
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Mean Approximation

A simple approximation of Equation (13) is to evaluate the integrand at the mean value of
the averaging distribution. Replacing ht+1 in Equation (14) by its mean gives the simple
approximation

〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) ≈
1

Z

e−
1

2
zT

t+1
(st,st+1)Σ−1(st,st+1|v1:t)zt+1(st,st+1)

√

detΣ(st, st+1|v1:t)
p(st|st+1, v1:t)

where zt+1(st, st+1) ≡ 〈ht+1|st+1, v1:T 〉 − 〈ht+1|st, st+1, v1:t〉 and Z ensures normalization
over st. This result comes simply from the fact that in Equation (13) we have a Gaussian
with a mean 〈ht+1|st, st+1, v1:t〉 and covariance Σ(st, st+1|v1:t), being the filtered covariance
of ht+1 given st, st+1 and the observations v1:t, which may be taken from Σhh in Equation
(6). Then evaluating this Gaussian at the specific point 〈ht+1|st+1, v1:T 〉, we arrive at the
above expression. An alternative to this simple mean approximation is to sample from the
Gaussian p(ht+1|st+1, v1:T ), which has the potential advantage that covariance information
is used9. Other methods such as variational approximations to this average (Jaakkola and
Jordan, 1996) or the unscented transform (Julier and Uhlmann, 1997) may be employed if
desired.

Closing the Recursion

We have now computed both the continuous and discrete factors in Equation (11), which we
wish to use to write the smoothed estimate in the form p(ht, st|v1:T ) = p(st|v1:T )p(ht|st, v1:T ).
The distribution p(ht|st, v1:T ) is readily obtained from the joint Equation (11) by condition-
ing on st to form the mixture

p(ht|st, v1:T ) =
∑

st+1

p(st+1|st, v1:T )p(ht|st, st+1, v1:T )

which may be collapsed to a single Gaussian (or mixture if desired). As in the Forward
Pass, this collapse implicitly defines the Gaussian mean g(st) and covariance G(st). The
smoothed posterior p(st|v1:T ) is given by

p(st|v1:T ) =
∑

st+1

p(st+1|v1:T )p(st|st+1, v1:T )

=
∑

st+1

p(st+1|v1:T ) 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) . (15)

The algorithm for the single Gaussian case is presented in Algorithm (2).

Numerical Stability

Numerical stability is a concern even in the LDS, and the same is to be expected for
the aSLDS. Since the LDS recursions LDSFORWARD and LDSBACKWARD are embedded
within the EC algorithm, we may immediately take advantage of the large body of work
on stabilizing the LDS recursions, such as the Joseph form (Grewal and Andrews, 1993), or
the square root forms (Park and Kailath, 1996; Verhaegen and Van Dooren, 1986).

9. This is a form of exact sampling since drawing samples from a Gaussian is easy. This should not be
confused with meaning that this use of sampling renders EC a sequential Monte-Carlo sampling scheme.
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Algorithm 2 aSLDS: EC Backward Pass (Single Gaussian case I = J = 1). Approxi-
mates p(st|v1:T ) and p(ht|st, v1:T ) ≡ N (gt(st), Gt(st)). This routine needs the results from
Algorithm (1) for I = 1.

GT ← FT , gT ← fT ,
for t← T − 1 to 1 do

for s← 1 to S, s′ ← 1 to S do,
(µ,Σ)(s, s′) = LDSBACKWARD(gt+1(s

′), Gt+1(s
′), ft(s), Ft(s), θt+1(s

′))
p(s|s′) = 〈p(st = s|ht+1, st+1 = s′, v1:t)〉p(ht+1|st+1=s′,v1:T )

p(s, s′|v1:T )← p(st+1 = s′|v1:T )p(s|s′)
end for
for st ← 1 to S do

Collapse the mixture defined by weights p(st+1 = s′|st, v1:T ) ∝ p(st, s
′|v1:T ),

means µ(st, s
′) and covariances Σ(st, s

′) to a single Gaussian. This defines the
new means gt(st), covariances Gt(st).
p(st|v1:T )←∑

s′ p(st, s
′|v1:T )

end for
end for

Relaxing EC

The conditional independence assumption p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ) is not
strictly necessary in EC. We motivate it by computational simplicity, since finding an appro-
priate moment matching approximation of p(ht+1|st, st+1, v1:T ) in Equation (10) requires a
relatively expensive non-Gaussian integration. If we therefore did treat p(ht+1|st, st+1, v1:T )
more correctly, the central assumption in this relaxed version of EC would be a collapse to
a mixture of Gaussians (the additional computation of Equation (13) may usually be nu-
merically evaluated to high precision). Whilst we did not do so, implementing this should
not give rise to numerical instabilities since no potential divisions are required, merely the
estimation of moments. In the experiments presented here, we did not pursue this option,
since we believe that the effect of this conditional independence assumption is relatively
weak.

Inconsistencies in the approximation

The recursion Equation (9), upon which EC depends, makes use of the Forward Pass re-
sults, and a subtle issue arises about possible inconsistencies in the Forward and Backward
approximations. For example, under the conditional independence assumption in the Back-
ward Pass, p(hT |sT−1, sT , v1:T ) ≈ p(hT |sT , v1:T ), which is in contradiction to Equation (6)
which states that the approximation to p(hT |sT−1, sT , v1:T ) will depend on sT−1. Similar
contradictions occur also for the relaxed version of EC. Such potential inconsistencies arise
because of the approximations made, and should not be considered as separate approxima-
tions in themselves. Furthermore, these inconsistencies will most likely be strongest at the
end of the chain, t ≈ T , since only then is Equation (9) in direct contradiction to Equation
(6). Such potential inconsistencies arise since EC is not founded on a consistency criterion,
unlike EP – see Section (3) – but rather an approximation of the exact recursions. Our
experience is that compared to EP, which attempts to ensure consistency based on multiple
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Algorithm 3 aSLDS: EC Backward Pass. Approximates p(st|v1:T ) and p(ht|st, v1:T ) ≡
∑Jt

jt=1 ut(jt, st)N (gt(jt, st), Gt(jt, st)) using a mixture of Gaussians. JT = IT , Jt ≤ S × It ×
Jt+1. This routine needs the results from Algorithm (1).

GT ← FT , gT ← fT , uT ← wT (*)
for t← T − 1 to 1 do

for s← 1 to S, s′ ← 1 to S, i← 1 to It, j′ ← 1 to Jt+1 do
(µ,Σ)(i, s, j′, s′) = LDSBACKWARD(gt+1(j

′, s′), Gt+1(j
′, s′), ft(i, s), Ft(i, s), θt+1(s

′))
p(i, s|j′, s′) = 〈p(st = s, it = i|ht+1, st+1 = s′, jt+1 = j′, v1:t)〉p(ht+1|st+1=s′,jt+1=j′,v1:T )

p(i, s, j′, s′|v1:T )← p(st+1 = s′|v1:T )ut+1(j
′, s′)p(i, s|j′, s′)

end for
for st ← 1 to S do

Collapse the mixture defined by weights p(it = i, st+1 = s′, jt+1 = j′|st, v1:T ) ∝
p(i, st, j

′, s′|v1:T ), means µ(it, st, j
′, s′) and covariances Σ(it, st, j

′, s′) to a mix-
ture with Jt components. This defines the new means gt(jt, st), covariances
Gt(jt, st) and mixture weights ut(jt, st).
p(st|v1:T )←∑

it,j′,s′
p(it, st, j

′, s′|v1:T )
end for

end for

(*) If JT < IT then the initialization is formed by collapsing the Forward Pass results at
time T to JT components.

sweeps through the graph, such inconsistencies are a small price to pay compared to the
numerical stability advantages of EC.

2.3 Using Mixtures in the Backward Pass

The extension to the mixture case is straightforward, based on the representation

p(ht|st, v1:T ) ≈
Jt∑

jt=1

p(ht|st, jt, v1:T )p(jt|st, v1:T ).

Analogously to the case with a single component,

p(ht, st|v1:T ) =
∑

it,jt+1,st+1

p(st+1|v1:T )p(jt+1|st+1, v1:T )p(ht|jt+1, st+1, it, st, v1:T )

· 〈p(it, st|ht+1, jt+1, st+1, v1:t)〉p(ht+1|jt+1,st+1,v1:T )

The average in the last line of the above equation can be tackled using the same techniques as
outlined in the single Gaussian case. To approximate p(ht|jt+1, st+1, it, st, v1:T ) we consider
this as the marginal of the joint distribution

p(ht, ht+1|it, st, jt+1, st+1, v1:T ) = p(ht|ht+1, it, st, jt+1, st+1, v1:t)p(ht+1|it, st, jt+1, st+1, v1:T )

As in the case of a single mixture, the problematic term is p(ht+1|it, st, jt+1, st+1, v1:T ).
Analogously to before, we may make the assumption

p(ht+1|it, st, jt+1, st+1, v1:T ) ≈ p(ht+1|jt+1, st+1, v1:T )
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meaning that information about the current switch state st, it is ignored10. We can then
form

p(ht|st, v1:T ) =
∑

it,jt+1,st+1

p(it, jt+1, st+1|st, v1:T )p(ht|it, st, jt+1, st+1, v1:T )

This mixture can then be collapsed to smaller mixture using any method of choice, to give

p(ht|st, v1:T ) ≈
Jt∑

jt=1

p(ht|jt, st, v1:T )p(jt|st, v1:T )

The collapse procedure implicitly defines the means g(jt, st) and covariances G(jt, st) of
the smoothed approximation. A recursion for the switches follows analogously to the single
component Backward Pass. The resulting algorithm is presented in Algorithm (3), which
includes using mixtures in both Forward and Backward Passes. Note that if JT < IT , an
extra initial collapse is required of the IT component Forward Pass Gaussian mixture at
time T to JT components.

EC has time complexity O(S2IJK) where S are the number of switch states, I and J
are the number of Gaussians used in the Forward and Backward passes, and K is the time
to compute the exact Kalman smoother for the system with a single switch state.

3. Relation to other methods

Approximate inference in the SLDS is a long-standing research topic, generating an exten-
sive literature. See Lerner (2002) and Zoeter (2005) for reviews of previous work. A brief
summary of some of the major existing approaches follows.

Assumed Density Filtering Since the exact filtered estimate p(ht|st, v1:t) is an (exponen-
tially large) mixture of Gaussians, a useful remedy is to project at each stage of the
recursion Equation (3) back to a limited set of K Gaussians. This is a Gaussian
Sum Approximation (Alspach and Sorenson, 1972), and is a form of Assumed Density
Filtering (ADF) (Minka, 2001). Similarly, Generalized Pseudo Bayes2 (GPB2) (Bar-
Shalom and Li, 1998) also performs filtering by collapsing to a mixture of Gaussians.
This approach to filtering is also taken in Lerner et al. (2000) which performs the
collapse by removing spatially similar Gaussians, thereby retaining diversity.

Several smoothing approaches directly use the results from ADF. The most popular is
Kim’s method, which updates the filtered posterior weights to form the smoother (Kim,
1994; Kim and Nelson, 1999). In both EC and Kim’s method, the approximation
p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), is used to form a numerically simple Back-
ward Pass. The other approximation in EC is to numerically compute the average
in Equation (15). In Kim’s method, however, an update for the discrete variables is
formed by replacing the required term in Equation (15) by

〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) ≈ p(st|st+1, v1:t) (16)

10. As in the single component case, in principle, this assumption may be relaxed and a moment matching
approximation be performed instead.
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EC Relaxed EC EP Kim

Mixture Collapsing to Single x

Mixture Collapsing to Mixture x x x

Cond. Indep. p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ) x x

Approx. of p(st|st+1, v1:T ), average Equation (13) x x

Kim’s Backward Pass x

Mixture approx. of p(ht+1|st, st+1, v1:T ), Equation (10) x

Table 1: Relation between methods. In the EC methods, the mean approximation may be
replaced by an essentially exact Monte Carlo approximation to Equation (13). EP
refers to the Single Gaussian approximation in Heskes and Zoeter (2002). In the
case of using Relaxed EC with collapse to a single Gaussian, EC and EP are not
equivalent, since the underlying recursions on which the two methods are based
are fundamentally different.

This approximation11 decouples the discrete Backward Pass in Kim’s method from
the continuous dynamics, since p(st|st+1, v1:t) ∝ p(st+1|st)p(st|v1:t)/p(st+1|v1:t) can
be computed simply from the filtered results alone (the continuous Backward Pass in
Kim’s method, however, does depend on the discrete Backward Pass). The funda-
mental difference between EC and Kim’s method is that the approximation (16) is not
required by EC. The EC Backward Pass therefore makes fuller use of the future infor-
mation, resulting in a recursion which intimately couples the continuous and discrete
variables. The resulting effect on the quality of the approximation can be profound,
as we will see in the experiments.

Kim’s smoother corresponds to a potentially severe loss of future information and, in
general, cannot be expected to improve much on the filtered results from ADF. The
more recent work of Lerner et al. (2000) is similar in spirit to Kim’s method, whereby
the contribution from the continuous variables is ignored in forming an approximate
recursion for the smoothed p(st|v1:T ). The main difference is that for the discrete vari-
ables, Kim’s method is based on a correction smoother (Rauch et al., 1965), whereas
Lerner’s method uses a Belief Propagation style Backward Pass (Jordan, 1998). Nei-
ther method correctly integrates information from the continuous variables. How
to form a recursion for a mixture approximation which does not ignore information
coming through the continuous hidden variables is a central contribution of our work.

Kitagawa (1994) used a two-filter method in which the dynamics of the chain are
reversed. Essentially, this corresponds to a Belief Propagation method which defines a
Gaussian sum approximation for p(vt+1:T |ht, st). However, since this is not a density
in ht, st, but rather a conditional likelihood, formally one cannot treat this using
density propagation methods. In Kitagawa (1994), the singularities resulting from
incorrectly treating p(vt+1:T |ht, st) as a density are heuristically finessed.

11. In the HMM this is exact, but in the SLDS the future observations carry information about st.
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Expectation Propagation EP (Minka, 2001), as applied to the SLDS, corresponds to an ap-
proximate implementation of Belief Propagation12 (Jordan, 1998; Heskes and Zoeter,
2002). EP is the most sophisticated rival to Kim’s method and EC, since it makes the
least assumptions. For this reason, we’ll explain briefly how EP works. Unlike EC,
which is based on an approximation of the exact filtering and smoothing recursions,
EP is based on a consistency criterion.

First, let’s simplify the notation, and write the distribution as p =
∏

t φ (xt−1, vt−1, xt, vt),
where xt ≡ ht ⊗ st, and φ (xt−1, vt−1, xt, vt) ≡ p(xt|xt−1)p(vt|xt). EP defines ‘mes-
sages’ ρ, λ13 which contain information from past and future observations respec-
tively14. Explicitly, we define ρt(xt) ∝ p(xt|v1:t) to represent knowledge about xt

given all information from time 1 to t. Similarly, λt(xt) represents knowledge about
state xt given all observations from time T to time t + 1. In the sequel, we drop the
time suffix for notational clarity. We define λ(xt) implicitly through the requirement
that the marginal smoothed inference is given by

p(xt|v1:T ) ∝ ρ (xt) λ (xt) (17)

Hence λ (xt) ∝ p(vt+1:T |xt, v1:t) = p(vt+1:T |xt) and represents all future knowledge
about p(xt|v1:T ). From this

p(xt−1, xt|v1:T ) ∝ ρ (xt−1) φ (xt−1, vt−1, xt, vt)λ (xt) (18)

Taking the above equation as a starting point, we have

p(xt|v1:T ) ∝
∫

xt−1

ρ (xt−1) φ (xt−1, vt−1, xt, vt) λ (xt)

Consistency with Equation (17) requires (neglecting irrelevant scalings)

ρ (xt)λ (xt) ∝
∫

xt−1

ρ (xt−1)φ (xt−1, vt−1, xt, vt) λ (xt) (19)

Similarly, we can integrate Equation (18) over xt to get the marginal at time xt−1

which, by consistency, should be proportional to ρ (xt−1)λ (xt−1). Hence

ρ (xt) ∝
∫

xt−1
ρ (xt−1)φ (xt−1, xt)λ (xt)

λ (xt)
, λ (xt−1) ∝

∫

xt
ρ (xt−1) φ (xt−1, xt)λ (xt)

ρ (xt−1)
(20)

where the divisions can be interpreted as preventing over-counting of messages. In an
exact implementation, the common factors in the numerator and denominator can-
cel. EP addresses the fact that λ(xt) is not a distribution by using Equation (20) to

12. Non-parametric belief propagation (Sudderth et al., 2003), which performs approximate inference in
general continuous distributions, is also related to EP applied to the aSLDS, in the sense that the
messages cannot be represented easily, and are approximated by mixtures of Gaussians.

13. These correspond to the α and β messages in the Hidden Markov Model framework (Rabiner, 1989).
14. In this Belief Propagation/EP viewpoint, the backward messages, traditionally labeled as β, correspond

to conditional likelihoods, and not distributions. In contrast, in the EC approach, which is effectively a
so-called α − γ recursion, the backward γ messages correspond to posterior distributions.
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form the projection (or ‘collapse’). In the numerator,
∫

xt−1
ρ (xt−1) φ (xt−1, xt) λ (xt)

and
∫

xt
ρ (xt−1)φ (xt−1, xt)λ (xt) represent p(xt|v1:T ) and p(xt−1|v1:T ). Since these

are distributions (an indexed mixture of Gaussians in the SLDS), they may be pro-
jected/collapsed to a single indexed Gaussian. The update for the ρ message is then
found from division by the λ potential, and vice versa. In EP the explicit division
of potentials only makes sense for members of the exponential family. More complex
methods could be envisaged in which, rather than an explicit division, the new mes-
sages are defined by minimizing some measure of divergence between ρ(xt)λ(xt) and
∫

xt−1
ρ (xt−1)φ (xt−1, xt)λ (xt), such as the Kullback-Leibler divergence. In this way,

non-exponential family approximations (such as mixtures of Gaussians) may be con-
sidered. Whilst this is certainly feasible, it is somewhat unattractive computationally
since this would require for each time-step an expensive minimization.

For the single Gaussian case, in order to perform the division, the potentials in the
numerator and denominator are converted to their canonical representations. To form
the ρ update, the result of the division is then reconverted back to a moment represen-
tation. The resulting recursions, due to the approximation, are no longer independent
and Heskes and Zoeter (2002) show that using more than a single Forward and Back-
ward sweep often improves on the quality of the approximation. This coupling is a
departure from the exact recursions, which should remain independent.

Applied to the SLDS, EP suffers from severe numerical instabilities (Heskes and
Zoeter, 2002) and finding a way to minimize the corresponding EP free energy in
an efficient, robust and guaranteed way remains an open problem. Our experience is
that current implementations of EP are unsuitable for large scale time-series appli-
cations. Damping the parameter updates is one suggested approach to heuristically
improve convergence. The source of these numerical instabilities is not well understood
since, even in cases when the posterior appears uni-modal, the method is problematic.
The frequent conversions between moment and canonical parameterizations of Gaus-
sians are most likely at the root of the difficulties. An interesting comparison here is
between Lauritzen’s original method for exact computation on conditional Gaussian
distributions (for which the SLDS is a special case) Lauritzen (1992), which is numer-
ically unstable due to conversion between moment and canonical representations, and
Lauritzen and Jensen (2001), which improves stability by avoiding using canonical
parameterizations.

Variational Methods Ghahramani and Hinton (1998) used a variational method which ap-
proximates the joint distribution p(h1:T , s1:T |v1:T ) rather than the marginal p(ht, st|v1:T )
– related work is presented in Lee et al. (2004). This is a disadvantage when compared
to other methods that directly approximate the marginal. The variational methods
are nevertheless potentially attractive since they are able to exploit structural prop-
erties of the distribution, such as a factored discrete state-transition. In this article,
we concentrate on the case of a small number of states S and hence will not consider
variational methods further here15.

15. Lerner (2002) discusses an approach in the case of a large structured discrete state transition. Related
ideas could also be used in EC.
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Figure 5: SLDS: Throughout, S = 2, V = 1 (scalar observations), T = 100, with zero
output bias. A(s) = 0.9999 ∗ orth(randn(H,H)), B(s) = randn(V,H), v̄t ≡ 0,
h̄1 = 10∗randn(H, 1), h̄t>1 = 0, Σh

1 = IH , p1 = uniform. The figures show typical
examples for each of the two problems: (a) Easy problem. H = 3, Σh(s) = IH ,
Σv(s) = 0.1IV , p(st+1|st) ∝ 1S×S + IS . (b) Hard problem. H = 30, Σv(s) =
30IV ,Σh(s) = 0.01IH , p(st+1|st) ∝ 1S×S .

Sequential Monte Carlo (Particle Filtering) These methods form an approximate imple-
mentation of Equation (3), using a sum of delta functions to represent the posterior –
see, for example, Doucet et al. (2001). Whilst potentially powerful, these non-analytic
methods typically suffer in high-dimensional hidden spaces since they are often based
on naive importance sampling, which restricts their practical use. ADF is generally
preferential to Particle Filtering, since in ADF the approximation is a mixture of
non-trivial distributions, which is better at capturing the variability of the posterior.
Rao-Blackwellized Particle Filters (Doucet et al., 2000) are an attempt to alleviate
the difficulty of sampling in high-dimensional state spaces by explicitly integrating
over the continuous state.

Non-Sequential Monte Carlo

For fixed switches s1:T , p(v1:T |s1:T ) is easily computable since this is just the likelihood
of an LDS. This observation raises the possibility of sampling from the posterior
p(s1:T |v1:T ) ∝ p(v1:T |s1:T )p(s1:T ) directly. Many possible sampling methods could be
applied in this case, and the most immediate is Gibbs sampling, in which a sample
for each t is drawn from p(st|s\t, v1:T ) – see Neal (1993) for a general reference and
Carter and Kohn (1996) for an application to the SLDS. This procedure may work
well in practice provided that the initial setting of s1:T is in a region of high probability
mass – otherwise, sampling by such individual coordinate updates may be extremely
inefficient.

4. Experiments

Our experiments examine the stability and accuracy of EC against several other methods
on long time-series. In addition, we will compare the absolute accuracy of EC as a function
of the number of mixture components on a short time-series, where exact inference may be
explicitly evaluated.
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Figure 6: SLDS ‘Easy’ problem: The number of errors in estimating a binary switch
p(st|v1:T ) over a time series of length T = 100. Hence 50 errors corresponds
to random guessing. Plotted are histograms of the errors over 1000 experiments.
The histograms have been cutoff at 20 errors in order to improve visualization.
(PF) Particle Filter. (RBPF) Rao-Blackwellized PF. (EP) Expectation Propaga-
tion. (ADFS) Assumed Density Filtering using a Single Gaussian. (KimS) Kim’s
smoother using the results from ADFS. (ECS) Expectation Correction using a
Single Gaussian (I = J = 1). (ADFM) ADF using a multiple of I = 4 Gaussians.
(KimM) Kim’s smoother using the results from ADFM. (ECM) Expectation Cor-
rection using a mixture with I = J = 4 components. In Gibbs sampling, we use
the initialization from ADFM.
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Figure 7: SLDS ‘Hard’ problem: The number of errors in estimating a binary switch
p(st|v1:T ) over a time series of length T = 100. Hence 50 errors corresponds
to random guessing. Plotted are histograms of the errors over 1000 experiments.

Testing EC in a problem with a reasonably long temporal sequence, T , is important
since numerical stabilities may not be apparent in time-series of just a few time-steps.
To do this, we sequentially generate hidden states ht, st and observations vt from a given
model. Then, given only the parameters of the model and the observations (but not any
of the hidden states), the task is to infer p(ht|st, v1:T ) and p(st|v1:T ). Since the exact
computation is exponential in T , a formally exact evaluation of the method is infeasible. A
simple alternative is to assume that the original sample states s1:T are the ‘correct’ inferred
states, and compare our most probable posterior smoothed estimates arg maxst

p(st|v1:T )
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with the assumed correct sample st
16. We look at two sets of experiments, one for the SLDS

and one for the aSLDS. In both cases, scalar observations are used so that the complexity
of the inference problem can be visually assessed.

SLDS experiments

We chose experimental conditions that, from the viewpoint of classical signal processing,
are difficult, with changes in the switches occurring at a much higher rate than the typical
frequencies in the signal. We consider two different toy SLDS experiments : The ‘easy’
problem corresponds to a low hidden dimension, H = 3, with low observation noise; The
‘hard’ problem corresponds to a high hidden dimension, H = 30, and high observation
noise. See Figure (5) for details of the experimental setup.

We compared methods using a single Gaussian, and methods using multiple Gaussians,
see Figure (6) and Figure (7). For EC we use the mean approximation for the numerical
integration of Equation (13). For the Particle Filter 1000 particles were used, with Kitagawa
re-sampling (Kitagawa, 1996). For the Rao-Blackwellized Particle Filter (Doucet et al.,
2000), 500 particles were used, with Kitagawa re-sampling. We included the Particle Filter
merely for a point of comparison with ADF, since they are not designed to approximate the
smoothed estimate.

An alternative MCMC procedure is to perform Gibbs sampling of p(s1:T |v1:T ) using
p(st|s\t, v1:T ) ∝ p(v1:T |s1:T )p(s1:T ), where p(v1:T |s1:T ) is simply the likelihood of an LDS –
see for example Carter and Kohn (1996)17. We initialize the state s1:T by using the most
likely states st from the filtered results using a Gaussian mixture (ADFM), and then swept
forwards in time, sampling from the state p(st|s\t, v1:T ) until the end of the chain. We
then reversed direction, sampling from time T back to time 1, and continued repeating
this procedure 100 times, with the mean over the last 80 sweeps used as the posterior
mean approximation. This procedure is expensive since each sample requires computing
the likelihood of an LDS defined on the whole time-series. The procedure therefore scales
with GT 2 where G is the number of sweeps over the time series. Despite using a reasonable
initialization, Gibbs sampling struggles to improve on the filtered results.

We found that EP was numerically unstable and often struggled to converge. To encour-
age convergence, we used the damping method in Heskes and Zoeter (2002), performing 20
iterations with a damping factor of 0.5. The disappointing performance of EP is most likely
due to conflicts resulting from numerical instabilities introduced by the frequent conversions
between moment and canonical representations.

The various algorithms differ widely in performance, see Figures (6,7). Not surprisingly,
the best filtered results are given using ADF, since this is better able to represent the
variance in the filtered posterior than the sampling methods. Unlike Kim’s method, EC

16. We could also consider performance measures on the accuracy of p(ht|st, v1:T ). However, we prefer to
look at approximating arg maxst

p(st|v1:T ) since the sampled discrete states are likely to correspond to
the exact arg maxst

p(st|v1:T ). In addition, if the posterior switch distribution is dominated by a single
state s∗1:T , then provided they are correctly estimated, the model reduces to an LDS, for which inference
of the continuous hidden state is trivial.

17. Carter and Kohn (1996) proposed an overly complex procedure for computing the likelihood p(v1:T |s1:T ).
This is simply the likelihood of an LDS (since s1:T are assumed known), and is readily computable using
any of the standard procedures in the literature.
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Figure 8: aSLDS: Histogram of the number of errors in estimating a binary switch p(st|v1:T )
over a time series of length T = 100. Hence 50 errors corresponds to random
guessing. Plotted are histograms of the errors over 1000 experiments. Augmented
SLDS results. ADFM used I = 4 Gaussians, and ECM used I = J = 4 Gaussians.
We used 1000 samples to approximate Equation (13).
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Figure 9: (a) The multi-path problem. The particle starts from (0, 0) at time t = 1. Sub-
sequently, at each time-point, either the vector (10, 10) (corresponding to states
s = 1 and s = 3) or (−10, 10) (corresponding to states s = 2 and s = 4), is added
to the hidden dynamics, perturbed by a small amount of noise, Σh = 0.1. The
observations are v = h + ηv(s). For states s = 1, 2 the observation noise is small,
Σv = 0.1I, but for s = 3, 4 the noise in the horizontal direction has variance
1000. The visible observations are given by the x’. The true hidden states are
given by ‘+’. (b) The exact smoothed state posteriors pexact(st|v1:T ) computed
by enumerating all paths (given by the dashed lines).

makes good use of the future information to clean up the filtered results considerably. One
should bear in mind that both EC, Kim’s method and the Gibbs initialization use the same
ADF results. These results show that EC may dramatically improve on Kim’s method, so
that the small amount of extra work in making a numerical approximation of p(st|st+1, v1:T ),
Equation (13), may bring significant benefits.
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I 1 4 4 16 16 64 64 256 256
J 1 1 4 1 16 1 64 1 256

error 0.0989 0.0624 0.0365 0.0440 0.0130 0.0440 4.75e-4 0.0440 3.40e-8

Table 2: Errors in approximating the states for the multi-path problem, see Figure (9). The
mean absolute deviation |pec(st|v1:T ) − pexact(st|v1:T )| averaged over the S = 4
states of st and over the times t = 1, . . . , 5, computed for different numbers of
mixture components in EC. The mean approximation of Equation (13) is used.
The exact computation uses ST−1 = 256 mixtures.

Augmented SLDS Experiments

In Figure (8), we chose a simple two state S = 2 transition distribution p(st+1 = 1|st, ht) =
σ

(
hT

t w(st)
)
, where σ(x) ≡ 1/(1+e−x). Some care needs to be taken to make a model so for

which even exact inference would produce posterior switches close to the sampled switches.
If the switch variables st+1 changes wildly (which is possible given the above formula since
the hidden state h may have a large projected change if the hidden state changes) essentially
no information is left in the signal for any inference method to produce reasonable results.
We therefore set w(st) to a zero vector except for the first two components, which are
independently sampled from a zero mean Gaussian with standard deviation 5. For each
of the two switch states, s, we have a transition matrix A(s), which we set to be block
diagonal. The first 2× 2 block is set to 0.9999Rθ , where Rθ is a 2× 2 rotation matrix with
angle θ chosen uniformly from 0 to 1 radians. This means that st+1 is dependent on the first
two components of ht which are rotating at a restricted rate. The remaining H − 2×H − 2
block of A(s) is chosen as (using MATLAB notation) 0.9999 ∗ orth(rand(H− 2)), which
means a scaled randomly chosen orthogonal matrix. Throughout, S = 2, V = 1, H = 30,
T = 100, with zero output bias. Using partly MATLAB notation, B(s) = randn(V,H),
v̄t ≡ 0, h̄1 = 10 ∗ randn(H, 1), h̄t>1 = 0, Σh

1 = IH , p1 = uniform. Σv = 30IV , Σh = 0.1IH .

We compare EC only against Particle Filters using 1000 particles, since other methods
would require specialized and novel implementations. In ADFM, I = 4 Gaussians were
used, and for ECM, I = J = 4 Gaussians were used. Looking at the results in Figure (8),
we see that EC performs well, with some improvement in using the mixture representation
I, J = 4 over a single Gaussian I = J = 1. The Particle Filter most likely failed since the
hidden dimension is too high to be explored well with only 1000 particles.

Effect of using mixtures

Our claim is that EC should cope in situations where the smoothed posterior p(ht|st, v1:T )
is multi-modal and, consequently, cannot be well represented by a single Gaussian18. We
therefore constructed an SLDS which exhibits multi-modality to see the effect of using EC
with both I and J greater than 1. The ‘multi-path’ scenario is described in Figure (9),
where a particle traces a path through a two dimensional space. A small number of time-
steps was chosen so that the exact p(st|v1:T ) can be computed by direct enumeration. The
observation of the particle is at times extremely noisy in the horizontal direction. This

18. This should not be confused with the multi-modality of p(ht|v1:T ) =
∑

st
p(ht|st, v1:T )p(st|v1:T ).
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induces multi-modality of p(ht|st, v1:T ) since there are several paths that might plausibly
have been taken to give rise to the observations. The accuracy with which EC predicts the
exact smoothed posterior is given in Table (2). For this problem we see that both the number
of Forward (I) and Backward components (J) affects the accuracy of the approximation,
generally with improved accuracy as the number of mixture components increases. For a
‘perfect’ approximation method, one would expect that when I = J = ST−1 = 256, then
the approximation should become exact. The small error for this case in Table (2) may
arise for several reasons: the extra independence assumption used in EC, or the simple
mean approximation used to compute Equation (13), or numerical roundoff. However, at
least in this case, the effect of these assumptions on the performance is very small.

5. Discussion

Expectation Correction is a novel form of Backward Pass which makes less approximations
than the widely used approach from Kim (1994). In Kim’s method, potentially important fu-
ture information channeled through the continuous hidden variables is lost. EC, along with
Kim’s method, makes the additional assumption p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ).
However, our experience is that this assumption is rather mild, since the state of ht+1 will
be most heavily influenced by its immediate parent st+1.

Our approximation is based on the idea that, although exact inference will consist of
an exponentially large number of mixture components, due to the forgetting which com-
monly occurs in Markovian models, a finite number of mixture components may provide
a reasonable approximation. In tracking situations where the visible information is (tem-
porarily) not enough to specify accurately the hidden state, then representing the posterior
p(ht|st, v1:T ) using a mixture of Gaussians may improve results significantly. Clearly, in
systems with very long correlation times our method may require too many mixture com-
ponents to produce a satisfactory result, although we are unaware of other techniques that
would be able to cope well in that case.

We hope that the straightforward ideas presented here may help facilitate the practical
application of dynamic hybrid networks to machine learning and related areas. Whilst mod-
els with Gaussian emission distributions such as the SLDS are widespread, the extension of
this method to non-Gaussian emissions p(vt|ht, st) would clearly be of considerable interest.

Software for Expectation Correction for this augmented class of Switching Linear Gaus-
sian models is available from www.idiap.ch/∼barber.
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Algorithm 4 LDS Forward Pass. Compute the filtered posteriors p(ht|v1:t) ≡ N (ft, Ft)
for a LDS with parameters θt = A,B,Σh,Σv, h̄, v̄, for t > 1. At time t = 1, we use
parameters θ1 = A,B,Σ,Σv, µ, v̄, where Σ and µ are the prior covariance and mean of h.
The log-likelihood L = log p(v1:T ) is also returned.

F0 ← 0, f0 ← 0, L← 0
for t← 1, T do
{ft, Ft, pt} = LDSFORWARD(ft−1, Ft−1, vt; θt)
L← L + log pt

end for
function ldsforward(f, F, v; θ)

Compute joint p(ht, vt|v1:t−1):
µh ← Af + h̄, µv ← Bµh + v̄
Σhh ← AFAT + Σh, Σvv ← BΣhhBT + Σv, Σvh ← BΣhh

Find p(ht|v1:t) by conditioning:
f ′ ← µh + ΣT

vh
Σ−1

vv
(v − µv), F ′ ← Σhh − ΣT

vh
Σ−1

vv
Σvh

Compute p(vt|v1:t−1):

p′ ← exp
(

− 1

2
(v − µv)

T
Σ−1

vv (v − µv)
)

/
√

det 2πΣvv

return f ′, F ′, p′

end function

Appendix A. Inference in the LDS

The LDS is defined by Equations (1,2) in the case of a single switch S = 1. The LDS Forward
and Backward passes define the important functions LDSFORWARD and LDSBACKWARD,
which we shall make use of for inference in the aSLDS.

Forward Pass (Filtering)

The filtered posterior p(ht|v1:t) is a Gaussian which we parameterize with mean ft and co-
variance Ft. These parameters can be updated recursively using p(ht|v1:t) ∝ p(ht, vt|v1:t−1),
where the joint distribution p(ht, vt|v1:t−1) has statistics (see Appendix (B))

µh = Aft−1 + h̄, µv = Bµh + v̄

Σhh = AFt−1A
T + Σh, Σvv = BΣhhBT + Σv, Σvh = BΣhh

We may then find p(ht|v1:t) by conditioning p(ht, vt|v1:t−1) on vt, see Appendix (C). This
gives rise to Algorithm (4).

Backward Pass

The smoothed posterior p(ht|v1:T ) ≡ N (gt, Gt) can be computed recursively using:

p(ht|v1:T ) =

∫

ht+1

p(ht|ht+1, v1:T )p(ht+1|v1:T ) =

∫

ht+1

p(ht|ht+1, v1:t)p(ht+1|v1:T )

where p(ht|ht+1, v1:t) may be obtained from the joint distribution

p(ht, ht+1|v1:t) = p(ht+1|ht)p(ht|v1:t) (21)
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Algorithm 5 LDS Backward Pass. Compute the smoothed posteriors p(ht|v1:T ). This
requires the filtered results from Algorithm (4).

GT ← FT , gT ← fT

for t← T − 1, 1 do
{gt, Gt} = LDSBACKWARD(gt+1, Gt+1, ft, Ft; θt+1)

end for
function ldsbackward(g,G, f, F ; θ)

µh ← Af + h̄, Σh′h′ ← AFAT + Σh, Σh′h ← AF←−
Σ ← Ft − ΣT

h′hΣ−1
h′h′Σh′h,

←−
A ← ΣT

h′hΣ−1
h′h′ ,

←−m ← f −←−Aµh

g′ ←←−Ag +←−m, G′ ←←−AG
←−
AT +

←−
Σ

return g′, G′

end function

which itself can be obtained by forward propagation from p(ht|v1:t). Conditioning Equation
(21) to find p(ht|ht+1, v1:t) effectively reverses the dynamics,

ht =
←−
Atht+1 +←−ηt

where
←−
At and←−η t ∼ N (←−mt,

←−
Σt) are found using the conditioned Gaussian results in Appendix

(C) – these are explicitly given in Algorithm (5). Then averaging the reversed dynamics
over p(ht+1|v1:T ) we find that p(ht|v1:T ) is a Gaussian with statistics

gt =
←−
Atgt+1 +←−mt, Gt =

←−
AtGt+1

←−
At

T +
←−
Σt

This Backward Pass is given in Algorithm (5). For parameter learning of the A matrix,
the smoothed statistic

〈
hth

T
t+1

〉
is required. Using the above formulation, this is given by

←−
AtGt+1 +〈ht〉

〈
hT

t+1

〉
. This is much simpler than the standard expressions cited in Shumway

and Stoffer (2000) and Roweis and Ghahramani (1999).

Appendix B. Gaussian Propagation

Let y be linearly related to x through y = Mx+η, where η ∼ N (µ,Σ), and x ∼ N (µx,Σx).
Then p(y) =

∫

x
p(y|x)p(x) is a Gaussian with mean Mµx + µ and covariance MΣxMT + Σ.

Appendix C. Gaussian Conditioning

For a joint Gaussian distribution over the vectors x and y with means µx, µy and covariance
elements Σxx,Σxy,Σyy, the conditional p(x|y) is a Gaussian with mean µx+ΣxyΣ

−1
yy (y − µy)

and covariance Σxx − ΣxyΣ
−1
yy Σyx.

Appendix D. Collapsing Gaussians

The user may provide any algorithm of their choice for collapsing a set of Gaussians to a
smaller set of Gaussians (Titterington et al., 1985). Here, to be explicit, we present a simple
one which is fast, but has the disadvantage that no spatial information about the mixture
is used.
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First, we describe how to collapse a mixture to a single Gaussian: We may collapse a
mixture of Gaussians p(x) =

∑

i piN (x|µi,Σi) to a single Gaussian with mean
∑

i piµi and
covariance

∑

i pi

(
Σi + µiµ

T

i

)
− µµT.

To collapse a mixture to a K-component mixture we retain the K − 1 Gaussians with
the largest mixture weights – the remaining N −K Gaussians are simply merged to a single
Gaussian using the above method. The alternative of recursively merging the two Gaussians
with the lowest mixture weights gave similar experimental performance.

More sophisticated methods which retain some spatial information would clearly be
potentially useful. The method presented in Lerner et al. (2000) is a suitable approach
which considers removing Gaussians which are spatially similar (and not just low-weight
components), thereby retaining diversity over the possible solutions.

Appendix E. The Discrete-Continuous Factorization Viewpoint

An alternative viewpoint is to proceed analogously to the Rauch-Tung-Striebel correction
method for the LDS (Grewal and Andrews, 1993):

p(ht, st|v1:T ) =
∑

st+1

∫

ht+1

p(st, ht, ht+1, st+1|v1:T )

=
∑

st+1

p(st+1|v1:T )

∫

ht+1

p(ht, st|ht+1, st+1, v1:t)p(ht+1|st+1, v1:T )

=
∑

st+1

p(st+1|v1:T ) 〈p(ht|ht+1, st+1, st, v1:t)p(st|ht+1, st+1, v1:t)〉

≈
∑

st+1

p(st+1|v1:T ) 〈p(ht|ht+1, st+1, st, v1:t)〉 〈p(st|ht+1, st+1, v1:t)〉
︸ ︷︷ ︸

p(st|st+1,v1:T )

(22)

where angled brackets 〈·〉 denote averages with respect to p(ht+1|st+1, v1:T ). Whilst the fac-
torized approximation in Equation (22) may seem severe, by comparing Equations (22) and
(11) we see that it is equivalent to the apparently milder assumption p(ht+1|st, st+1, v1:T ) ≈
p(ht+1|st+1, v1:T ). Hence this factorized approximation is equivalent to the ‘standard’ EC
approach in which the dependency on st is dropped.
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