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Abstract

Linear Gaussian State-Space Models are widely used and a Bayesian treatment
of parameters is therefore of considerable interest. The approximate Variational
Bayesian method applied to these models is an attractive approach, used success-
fully in applications ranging from acoustics to bioinformatics. The most challeng-
ing aspect of implementing the method is in performing inference on the hidden
state sequence of the model. We show how to convert the inference problem so
that standard and stable Kalman Filtering/Smoothing recursions from the litera-
ture may be applied. This is in contrast to previously published approaches based
on Belief Propagation. Our framework both simplifies and unifies the inference
problem, so that future applications may be easily developed. We demonstrate
the elegance of the approach on Bayesian temporal ICA, with an application to
finding independent components in noisy EEG signals.

1 Linear Gaussian State-Space Models

Linear Gaussian State-Space Models (LGSSMs)1 are fundamental in time-series analysis [1, 2, 3].
In these models the observationsv1:T

2 are generated from an underlying dynamical system onh1:T

according to

vt = Bht + ηv
t , ηv

t ∼ N (0V , ΣV ); ht = Aht−1 + ηh
t , ηh

t ∼ N (0H , ΣH) ,

whereN (µ, Σ) denotes a Gaussian with meanµ and covarianceΣ, and 0X denotes anX-
dimensional zero vector. The observationvt has dimensionV and the hidden stateht dimension
H . Probabilistically, the LGSSM is defined by:

p(v1:T , h1:T |Θ) = p(v1|h1)p(h1)
T∏

t=2

p(vt|ht)p(ht|ht−1) ,

with p(vt|ht) = N (Bht, ΣV ), p(ht|ht−1) = N (Aht−1, ΣH), p(h1) = N (µ, Σ) and where
Θ = {A, B, ΣH , ΣV , µ, Σ} denotes the model parameters. Because of the widespread useof these
models, a Bayesian treatment of parameters is of considerable interest [4, 5, 6, 7, 8].

An exact implementation of the Bayesian LGSSM is formally intractable [8], and recently a Varia-
tional Bayesian (VB) approximation has been studied [4, 5, 6, 7, 9]. The most challenging part of
implementing the VB method is performing inference overh1:T , and previous authors have devel-
oped their own specialized routines, based on Belief Propagation, since standard LGSSM inference
routines appear, at first sight, not to be applicable.

1Also called Kalman Filters/Smoothers, Linear Dynamical Systems.
2v1:T denotesv1, . . . , vT .



A key contribution of this paper is to show how the Variational Bayesian treatment of the
LGSSM canbe implemented using standard inference routines. Based onthe insight we provide,
any standard inference method may be applied, including those specifically addressed to improve
numerical stability [10, 11, 2]. In this article, we decidedto describe the standard predictor-corrector
and Rauch-Tung-Striebel recursions [2], and also suggest asmall modification that reduces compu-
tational cost.

The Bayesian LGSSM is particularly of interest when strong prior constraints are needed to find
adequate solutions. One such case is in EEG signal analysis,whereby we wish to extract sources
that evolve independently through time. Since EEG is particularly noisy [12], a prior that encourages
sources to have preferential spectral properties is advantageous in recovering meaningful sources.
This application is discussed in Section 4, and demonstrates the ease of applying our VB framework.

2 Bayesian Linear Gaussian State-Space Models

In the Bayesian treatment of the LGSSM, instead of considering the model parametersΘ as fixed,
we define a prior distributionp(Θ|Θ̂), whereΘ̂ is a set of hyperparameters. Then:

p(v1:T |Θ̂) =

∫

Θ

p(v1:T |Θ̂, Θ)p(Θ|Θ̂) . (1)

In a full Bayesian treatment we would define additional priordistributions over the hyperparameters
Θ̂. Here we take instead the ML-II (‘evidence’) framework, in which the optimal set of hyperpa-
rameters is found by maximizingp(v1:T |Θ̂) with respect tôΘ [6, 7, 9].

For the parameter priors, we define Gaussians on the columns of A andB:

p(A|α, ΣH) ∝
H∏

j=1

e−
αj
2 (Aj−Âj)

T
Σ−1

H (Aj−Âj), p(B|β, ΣV ) ∝
H∏

j=1

e−
βj
2 (Bj−B̂j)

T
Σ−1

V (Bj−B̂j) ,

which has the effect of biasing the transition and emission matrices to desired formŝA and B̂.
The conjugate priors for the covariancesΣH andΣV are Inverse Wishart distributions [7]3. In the
simpler and more common case of assuming diagonal covariances these become Inverse Gamma
distributions [7, 5]. The hyperparameters are thenΘ̂ = {α, β}4.

Variational Bayes

Optimizing Eq. (1) with respect tôΘ is difficult due to the intractability of the integrals. Instead, in
VB, one considers the lower bound [6, 7, 9]5:

L = log p(v1:T |Θ̂) ≥ Hq(Θ, h1:T ) +
〈

log p(Θ|Θ̂)
〉

q(Θ)
+

〈

E(h1:T , Θ|Θ̂)
〉

q(Θ,h1:T )
≡ F ,

where

E(h1:T , Θ|Θ̂) ≡ log p(v1:T , h1:T |Θ, Θ̂).

The notationHd(x) signifies the entropy of the distributiond(x), and〈·〉d(x) denotes the expectation
operator.

The key approximation in VB isq(Θ, h1:T ) ≡ q(Θ)q(h1:T ), from which one may show that, for
optimality ofF ,

q(h1:T ) ∝ e
〈E(h1:T ,Θ|Θ̂)〉

q(Θ) , q(Θ) ∝ p(Θ)e
〈E(h1:T ,Θ|Θ̂)〉

q(h1:T ) .

These coupled equations need to be iterated to convergence.The updates for the parametersq(Θ)
are straightforward and are given in Appendices A and B. Onceconverged, the hyperparameters are
updated by maximizingF with respect tôΘ, which lead to simple update formulae [7].

Our main concern is with the update forq(h1:T ), for which this paper makes a departure from
treatments previously presented.

3For expositional simplicity, we do not put priors onµ andΣ.
4For simplicity, we keep the parameters of the Inverse Wishart priors fixed.
5Strictly we should write throughoutq(·|v1:T ). We omit the dependence onv1:T for notational convenience.



3 Unified Inference onq(h1:T )

Optimallyq(h1:T ) is Gaussian since
〈

E(h1:T , Θ|Θ̂)
〉

q(Θ)
is quadratic inh1:T , being namely6

−
1

2

T∑

t=1

[
〈
(vt−Bht)

TΣ−1
V (vt−Bht)

〉

q(B,ΣV )
+

〈

(ht−Aht−1)
T
Σ−1

H (ht−Aht−1)
〉

q(A,ΣH )

]

.

(2)

Optimally, q(A|ΣH) andq(B|ΣV ) are Gaussians (see Appendix A), so we can easily carry out
the averages. The further averages overq(ΣH) andq(ΣV ) are also easy due to conjugacy. Whilst
this defines the distributionq(h1:T ), quantities such asq(ht), which are required for the parame-
ter updates (see the Appendices), need to be inferred from this distribution. Clearly, in the non-
Bayesian case, the averages over the parameters are not present, and the above simply represents
an LGSSM whose visible variables have been clamped into their evidential states. In that case, in-
ference can be performed using any standard method. Our aim,therefore, is to try to represent the
averagedEq. (2) directly as an LGSSM̃q(h1:T |ṽ1:T ), for some suitable parameter settings.

Mean + Fluctuation Decomposition

A useful decomposition is to write
〈
(vt −Bht)

TΣ−1
V (vt −Bht)

〉

q(B,ΣV )
= (vt − 〈B〉 ht)

T 〈
Σ−1

V

〉
(vt − 〈B〉 ht)

︸ ︷︷ ︸

mean

+ hT
t SBht

︸ ︷︷ ︸

fluctuation

,

and similarly
〈
(ht−Aht−1)

TΣ−1
H (ht−Aht−1)

〉

q(A,ΣH )
= (ht−〈A〉ht−1)

T 〈
Σ−1

H

〉
(ht−〈A〉ht−1)

︸ ︷︷ ︸

mean

+hT
t−1SAht−1

︸ ︷︷ ︸

fluctuation

,

where the parameter covariances areSB = V H−1
B andSA = HH−1

A (see Appendix A). The
mean terms simply represent a clamped LGSSM with averaged parameters. However, the extra
contributions from the fluctuations mean that Eq. (2) cannotbe written as a clamped LGSSM with
averaged parameters. In order to deal with these extra terms, our idea is to treat the fluctuations as
arising from an augmented visible variable, for which Eq. (2) can then be considered as a clamped
LGSSM.

Inference Using an Augmented LGSSM

To represent Eq. (2) as a LGSSM̃q(h1:T |ṽ1:T ), we augmentvt andB as7:

ṽt = vert(vt, 0H , 0H), B̃ = vert(〈B〉 , UA, UB),

whereUA is the Cholesky decomposition ofSA, so thatUT
AUA = SA. Similarly,UB is the Cholesky

decomposition ofSB. The equivalent LGSSM̃q(h1:T |ṽ1:T ) is then completed by specifying8

Ã ≡ 〈A〉 , Σ̃H ≡
〈
Σ−1

H

〉−1
, Σ̃V ≡ diag(

〈
Σ−1

V

〉−1
, IH , IH), µ̃ ≡ µ, Σ̃ ≡ Σ.

The validity of this parameter assignment can be checked by showing that, up to negligible constants,
the exponent of this augmented LGSSM has the same form as Eq. (2). Now that this has been written
as an LGSSM̃q(h1:T |ṽ1:T ), standard inference routines in the literature may be applied to compute
q(ht) = q̃(ht|ṽ1:T ) [1, 11, 2]9.

For completeness, we decided to describe the standard predictor-corrector form of a Kalman filter,
together with the Rauch-Tung-Striebel recursions [2] for performing inference in an LGSSM. These

6For simplicity of exposition, we ignore the first time-pointhere.
7The notationvert(x1, . . . , xn) stands for vertically concatenating the argumentsx1, . . . , xn.
8Strictly, we need a time-dependent emissionB̃t = B̃, for t = 1, . . . , T − 1. For timeT , B̃T has the

Cholesky factorUA replaced by0H,H .
9Note that, since the augmented LGSSMq̃(h1:T |ṽ1:T ) is designed to match thefully clamped distribution

q(h1:T ), filtering q̃(h1:T |ṽ1:T ) does not correspond to filteringq(h1:T ).



Algorithm 1 LGSSM: Forward and backward recursive updates. The smoothed posteriorp(ht|v1:T )

is returned in the mean̂hT
t and covariancePT

t .
procedure FORWARD

1a:P ← Σ
1b: P ← DΣ, whereD ≡ I − ΣUAB

(
I + UT

ABΣUAB

)−1
UT

AB

2a: ĥ0
1 ← µ

2b: ĥ0
1 ← Dµ

3: K ← PBT(BPBT + ΣV )−1, P 1
1 ← (I −KB)P , ĥ1

1 ← ĥ0
1 + K(vt −Bĥ0

1)
for t← 2, T do

4: P t−1
t ← AP t−1

t−1 AT + ΣH

5a:P ← P t−1
t

5b: P ← DtP
t−1
t , whereDt ≡ I − P t−1

t UAB

(
I + UT

ABP t−1
t UAB

)−1
UT

AB

6a: ĥt−1
t ← Aĥt−1

t−1

6b: ĥt−1
t ← DtAĥt−1

t−1

7: K ← PBT(BPBT + ΣV )−1, P t
t ← (I −KB)P , ĥt

t ← ĥt−1
t + K(vt −Bĥt−1

t )
end for

end procedure
procedure BACKWARD

for t← T − 1, 1 do
←−
At ← P t

t AT(P t
t+1)

−1

PT
t ← P t

t +
←−
At(P

T
t+1 − P t

t+1)
←−
At

T

ĥT
t ← ĥt

t +
←−
At(ĥ

T
t+1 −Aĥt

t)
end for

end procedure

are given in Algorithm 1. To computẽq(ht|ṽ1:T ), we then call the FORWARD and BACKWARD
procedures.

We present two variants of the FORWARD pass. Either we may call procedure FORWARD in
Algorithm 1 with parameters̃A, B̃, Σ̃H , Σ̃V , µ̃, Σ̃ and the augmented visible variablesṽt in which
we use steps 1a, 2a, 5a and 6a. This is exactly the predictor-corrector form of a Kalman filter [2].
Otherwise, in order to reduce the computational cost, we maycall procedure FORWARD with the

parameters〈A〉 , 〈B〉 ,
〈
Σ−1

H

〉−1
,
〈
Σ−1

V

〉−1
, µ, Σ and the original visible variablevt in which we

use steps 1b (whereUT
ABUAB ≡ SA + SB), 2b, 5b and 6b. The two algorithms are mathematically

equivalent. Computingq(ht) = q̃(ht|ṽ1:T ) is then completed by calling the common BACKWARD
pass10.

The important point here is that the reader may supply any standard Kalman Filtering/Smoothing
routine, and simply call it with the appropriate parameters. In some parameter regimes, or in very
long time series, numerical stability may be a serious concern, for which several stabilized algo-
rithms have been developed over the years, for example the square-root forms [10, 11, 2]. By
converting the problem to a standard form, we have thereforeunified and simplified inference, so
that future applications may be more readily developed.

10The cross-moment required for learning in Section 4 can be easily computed using:

D

ht−1h
T
t

E

p(ht−1:t|v1:T )
=
←−
A t−1P

T
t + ĥ

T
t−1(ĥ

T
t )T

.

This is much simpler than formulae surprisingly continued in the literature [3, 13].



3.1 Relation to Previous Approaches

An alternative approach to the one above, and taken in [7, 5],is to recognize that the posterior is

log q(h1:T ) =
T∑

t=2

φt(ht−1, ht) + const.

for suitably defined quadratic formsφt(ht−1, ht). Here the potentialsφt(ht−1, ht) encode the av-
eraging over the parametersA, B, ΣH , ΣV . The approach taken in [7] is to recognize this as a
pairwise Markov chain, for which the Belief Propagation recursions may be applied. The backward
pass from Belief Propagation makes use of the observationsv1:T , so that any approximate online
treatment would be difficult. The approach in [5] is based on aKullback-Leibler minimization of the
posterior with a chain structure, which is algorithmicallyequivalent to Belief Propagation. Whilst
mathematically valid procedures, the resulting algorithms do not correspond to any of the standard
forms in the Kalman Filtering/Smoothing literature, whoseproperties have been well studied [14].

A stated aim in [7] is to find a sequential form for smoothing, since this has potential advantages
in online situations, whereby high-dimensional observations can be discarded once they have been
filtered. Our algorithm provides exactly this sequential form for smoothing.

4 An Application to Bayesian ICA

Figure 1: The structure of
the LGSSM for ICA.

A particular case for which the Bayesian LGSSM is of interestis in
extracting independent source signals underlying a multivariate time-
series [15, 5]. This will demonstrate how the approach developed in
Section 3 makes VB easily to apply. The sourcessi are modeled as
independent in the following sense:

p(si
1:T , s

j
1:T ) = p(si

1:T )p(sj
1:T ), for i 6= j, i, j = 1, . . . , C.

Independence implies block diagonal transition and state noise matri-
cesA, ΣH andΣ, where each blockc has dimensionHc. A one di-
mensional sourcesc

t for each independent dynamical subsystem is then
formed fromsc

t = 1T
chc

t , where1c is a unit vector andhc
t is the state of

dynamical systemc. Combining the sources, we can writest = Pht,
whereP = diag(1T

1 , . . . , 1T
C), ht = vert(h1

t , . . . , h
C
t ). The resulting

emission matrix is constrained to be of the formB = WP , where
W is the V × C mixing matrix. This means that the observations
are formed from linearly mixing the sources,vt = Wst + ηv

t . The
graphical structure of this model is presented in Fig 1. To encourage
redundant components to be removed, we place a zero mean Gaussian
prior onW . In this case, we do not define a prior for the parameters

ΣH andΣV which are instead considered as hyperparameters. More details of the model are given
in [15]. The constraintB = WP requires a minor modification from Section 3, as we discuss below.

Inference onq(h1:T )

A small modification of the mean + fluctuation decomposition for B occurs, namely:
〈
(vt −Bht)

TΣ−1
V (vt −Bht)

〉

q(W )
= (vt − 〈B〉ht)

TΣ−1
V (vt − 〈B〉ht) + hT

t P
TSW Pht ,

where〈B〉 ≡ 〈W 〉P andSW = V H−1
W . The quantities〈W 〉 andHW are obtained as in Appendix

A.1 with the replacementht ← Pht. To represent the above as a LGSSM, we augmentvt andB as

ṽt = vert(vt, 0H , 0C), B̃ = vert(〈B〉 , UA, UW P ),

whereUW is the Cholesky decomposition ofSW . The equivalent LGSSM is then completed by
specifyingÃ ≡ 〈A〉, Σ̃H ≡ ΣH , Σ̃V ≡ diag(ΣV , IH , IC), µ̃ ≡ µ, Σ̃ ≡ Σ, and inference for
q(h1:T ) performed using Algorithm 1. This demonstrates the elegance and unity of the approach in
Section 3, since no new algorithm needs to be developed to perform inference, even in this special
constrained parameter case.
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Figure 2: (a) Original sourcesst. (b) Observations resulting from mixing the original sources,
vt = Wst + ηv

t , ηv
t ∼ N (0, I). (c) Recovered sources using the Bayesian LGSSM. (d) Sources

found with MAP LGSSM.

4.1 Demonstration

As a simple demonstration, we used a LGSSM to generate 3 sourcessc
t with random5×5 transition

matricesAc, µ = 0H and Σ ≡ ΣH ≡ IH . The sources were mixed into three observations
vt = Wst + ηv

t , for W chosen with elements from a zero mean unit variance Gaussiandistribution,
andΣV = IV . We then trained a Bayesian LGSSM with 5 sources and7× 7 transition matricesAc.
To bias the model to find the simplest sources, we usedÂc ≡ 0Hc,Hc

for all sources. In Fig2a and Fig
2b we see the original sources and the noisy observations respectively. In Fig2c we see the estimated
sources from our method after convergence of the hyperparameter updates. Two of the 5 sources
have been removed, and the remaining three are a reasonable estimation of the original sources.
Another possible approach for introducing prior knowledgeis to use a Maximum a Posteriori (MAP)
procedure by adding a prior term to the original log-likelihoodlog p(v1:T |A, W, Θ) + log p(A|α) +
log p(W |β). However, it is not clear how to reliably find the hyperparametersα andβ in this case.
One solution is to estimate them by optimizing the new objective function jointly with respect to
the parameters and hyperparameters (this is the so-called joint map estimation – see for example
[16]). A typical result of using this joint MAP approach on the artificial data is presented in Fig2d.
The joint MAP does not estimate the hyperparameters well, and the incorrect number of sources is
identified.

4.2 Application to EEG Analysis

In Fig 3a we plot three seconds of EEG data recorded from 4 channels (located in the right hemi-
sphere) while a subject is performing imagined movement of the right hand. As is typical in EEG,
each channel shows drift terms below 1 Hz which correspond toartifacts of the instrumentation,
together with the presence of 50 Hz mains contamination and masks the rhythmical activity related
to the mental task, mainly centered at 10 and 20 Hz [17]. We would therefore like a method which
enables us to extract components in these information-rich10 and20 Hz frequency bands. Stan-
dard ICA methods such as FastICA do not find satisfactory sources based on raw ‘noisy’ data, and
preprocessing with band-pass filters is usually required. Additionally, in EEG research, flexibility
in the number of recovered sources is important since there may be many independent oscillators
of interest underlying the observations and we would like some way to automatically determine
their effective number. To preferentially find sources at particular frequencies, we specified a block
diagonal matrixÂc for each sourcec, where each block is a2 × 2 rotation matrix at the desired
frequency. We defined the following 16 groups of frequencies: [0.5], [0.5], [0.5], [0.5]; [10,11],
[10,11], [10,11], [10,11]; [20,21], [20,21], [20,21], [20,21]; [50], [50], [50], [50]. The temporal evo-
lution of the sources obtained after training the Bayesian LGSSM is given in Fig3(b,c,d,e) (grouped
by frequency range). The Bayes LGSSM removed 4 unnecessary sources from the mixing matrix
W , that is one [10,11] Hz and three [20,21] Hz sources. The first4 sources contain dominant low
frequency drift, source 5, 6 and 8 contain [10,11] Hz, while source 10 contains [20,21] Hz centered
activity. Of the 4 sources initialized to 50 Hz, only 2 retained 50 Hz activity, while theAc of the
other two have changed to model other frequencies present inthe EEG. This method demonstrates
the usefulness and applicability of the VB method in a real-world situation.
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Figure 3: (a) Original raw EEG recordings from 4 channels. (b-e) 16 sourcesst estimated by the
Bayesian LGSSM.

5 Conclusion

We considered the application of Variational Bayesian learning to Linear Gaussian State-Space Mod-
els. This is an important class of models with widespread application, and finding a simple way to
implement this approximate Bayesian procedure is of considerable interest. The most demand-
ing part of the procedure is inference of the hidden states ofthe model. Previously, this has been
achieved using Belief Propagation, which differs from inference in the Kalman Filtering/Smoothing
literature, for which highly efficient and stabilized procedures exist. A central contribution of this
paper is to show how inferencecanbe written using the standard Kalman Filtering/Smoothing recur-
sions by augmenting the original model. Additionally, a minor modification to the standard Kalman
Filtering routine may be applied for computational efficiency. We demonstrated the elegance and
unity of our approach by showing how to easily apply a Variational Bayes analysis of temporal ICA.
Specifically, our Bayes ICA approach successfully extractsindependent processes underlying EEG
signals, biased towards preferred frequency ranges. We hope that this simple and unifying inter-
pretation of Variational Bayesian LGSSMs may therefore facilitate the further application to related
models.

A Parameter Updates forA and B

A.1 Determining q(B|ΣV )

By examiningF , the contribution ofq(B|ΣV ) can be interpreted as the negative KL divergence
betweenq(B|ΣV ) and a Gaussian. Hence, optimally,q(B|ΣV ) is a Gaussian. The covariance
[ΣB]ij,kl ≡

〈(
Bij − 〈Bij〉

)(
Bkl − 〈Bkl〉

)〉
(averages wrtq(B|ΣV )) is given by:

[ΣB]ij,kl = [H−1
B ]jl [ΣV ]ik

where

[HB]jl ≡
T∑

t=1

〈

h
j
th

l
t

〉

q(ht)
+ βjδjl.

The mean is given by〈B〉 = NBH−T
B , where[NB]ij ≡

∑

t

〈

h
j
t

〉

vi
t + βjB̂ij .

Determining q(A|ΣH)

Optimally,q(A|ΣH) is a Gaussian with covariance

[ΣA]ij,kl = [H−T
A ]jl [ΣH ]ik

where

[HA]jl ≡
T−1∑

t=1

〈

h
j
th

l
t

〉

q(ht)
+ αjδjl.

The mean is given by〈A〉 = NAH−1
A , where[NA]ij ≡

∑T

t=2

〈

h
j
t−1h

i
t

〉

+ αjÂij .



B Covariance Updates

By specifying an Inverse Wishart prior for the covariances,conjugate update formulae are possible.
In practice, it is more common to specify diagonal covariances, for which the corresponding priors
are simply Inverse Gamma distributions [7, 5]. For this simple diagonal case, the explicit updates
are given below.

Determining q(ΣV )

For the constraint,(ΣV )−1 = diag(ρ) where each diagonal element follows a Gamma prior
Ga(b1, b2) [7], q(ρ) factorizes and the optimal updates are

q(ρi) = Ga
(

b1 + T
2 , b2 + 1

2

(
∑

t(v
i
t)

2 − [GB]i,i +
∑

j βjB̂
2
ij

))

,

whereGB ≡ NBH−1
B NT

B.

Determining q(ΣH )

Analogously, for(ΣH)−1 = diag(τ) with prior Ga(a1, a2) [5], the updates are

q(τi) = Ga
(

a1 + T−1
2 , a2 + 1

2

(
∑T

t=2

〈
(hi

t)
2
〉
− [GA]i,i +

∑

j αjÂ
2
ij

))

,

whereGA ≡ NAH−1
A NT

A.
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