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Abstract

Linear Gaussian State-Space Models are widely used and esBaytreatment
of parameters is therefore of considerable interest. Tipeoagmate Variational
Bayesian method applied to these models is an attractiv@agip, used success-
fully in applications ranging from acoustics to bioinfortiea. The most challeng-
ing aspect of implementing the method is in performing iefexe on the hidden
state sequence of the model. We show how to convert the inderproblem so
that standard and stable Kalman Filtering/Smoothing tons from the litera-
ture may be applied. This is in contrast to previously pitgéapproaches based
on Belief Propagation. Our framework both simplifies andienithe inference
problem, so that future applications may be easily develop&e demonstrate
the elegance of the approach on Bayesian temporal ICA, withpgplication to
finding independent components in noisy EEG signals.

1 Linear Gaussian State-Space Models

Linear Gaussian State-Space Models (LGSSMs» fundamental in time-series analysis [1, 2, 3].
In these models the observatiansy? are generated from an underlying dynamical systemon
according to

vg = Bhy + 07, 1) ~ N(Oy,Ey); he = Ahy—1 + 07, np ~N (Om,2n) ,

where V' (1, X) denotes a Gaussian with meanand covarianceZ, and Ox denotes anX-
dimensional zero vector. The observatignhas dimensior’/ and the hidden statk; dimension
H. Probabilistically, the LGSSM is defined by:

T
p(vir, hir|©) = p(vi|h1)p(ha) HP(Ut|ht)p(ht|ht—1) )

with p(ve|he) = N (Bhe, Zv), p(helhi—1) = N (Ah1,Xn), p(h1) = N(p,X) and where
0 ={A,B,Xy, %y, u, X} denotes the model parameters. Because of the widespreafithese
models, a Bayesian treatment of parameters is of consigdrdabrest [4, 5, 6, 7, 8].

An exact implementation of the Bayesian LGSSM is formallyantable [8], and recently a Varia-
tional Bayesian (VB) approximation has been studied [4, 5, ®]. The most challenging part of
implementing the VB method is performing inference oker, and previous authors have devel-
oped their own specialized routines, based on Belief Prafiay since standard LGSSM inference
routines appear, at first sight, not to be applicable.

Also called Kalman Filters/Smoothers, Linear Dynamicast8yns.
2p1.7 denotesn, . . ., vr.



A key contribution of this paper is to show how the VariatibiBayesian treatment of the
LGSSM canbe implemented using standard inference routines. Baseldeoinsight we provide,
any standard inference method may be applied, includingetispecifically addressed to improve
numerical stability [10, 11, 2]. In this article, we decidedlescribe the standard predictor-corrector
and Rauch-Tung-Striebel recursions [2], and also suggasiadl modification that reduces compu-
tational cost.

The Bayesian LGSSM is particularly of interest when stronigrpconstraints are needed to find
adequate solutions. One such case is in EEG signal analyisiseby we wish to extract sources
that evolve independently through time. Since EEG is paldity noisy [12], a prior that encourages
sources to have preferential spectral properties is adganus in recovering meaningful sources.
This application is discussed in Section 4, and demonstthgease of applying our VB framework.

2 Bayesian Linear Gaussian State-Space Models

In the Bayesian treatment of the LGSSM, instead of considehie model paramete€s as fixed,
we define a prior distributiop(©|©), where® is a set of hyperparameters. Then:

p(v1.7]0) = /@ p(v1.7]6, ©)p(0]6). 1)

In a full Bayesian treatment we would define additional pdistributions over the hyperparameters
O. Here we take instead the ML-II (‘evidence’) framework, imish the optimal set of hyperpa-
rameters is found by maximizingv:.7|©) with respect t® [6, 7, 9].

For the parameter priors, we define Gaussians on the columtsind B:
H H 8. A~ _ ~
p(Ala, Zar) o [[ e F =A™ (=) (|, 5y o [[ e # (B85 (5-5))
j=1 Jj=1

which has the effect of biasing the transition and emissiatrices to desired formd and B.
The conjugate priors for the covarianceég andXy are Inverse Wishart distributions f7]in the
simpler and more common case of assuming diagonal covasahese become Inverse Gamma

distributions [7, 5]. The hyperparameters are thes {«, 5}°.

Variational Bayes

Optimizing Eq. (1) with respect t6 is difficult due to the intractability of the integrals. lesid, in
VB, one considers the lower bound [6, 7°9]

£ =logp(vr.716) > Hy(0, huir) + (logp(©]6))

n <E(h1;T,@|(:))> F,

(©) q(©,h1.1)

where
E(hl:T7 @|é) = logp(UI:T7 hl:Tl(—)a é)

The notationt,(z) signifies the entropy of the distributiaitz), and(-) ., denotes the expectation
operator.

The key approximation in VB ig(0, h1.7) = ¢(©)gq(hi.7), from which one may show that, for
optimality of F,

E(h1.7,0(0)) E(h1.7,0]0))

alhir) o e o, @) o p(@)e!
These coupled equations need to be iterated to convergéheeupdates for the parameteif®)
are straightforward and are given in Appendices A and B. @oogerged, the hyperparameters are
updated by maximizing™ with respect t®, which lead to simple update formulae [7].

a(hi.r) |

Our main concern is with the update fofthi.7), for which this paper makes a departure from
treatments previously presented.

3For expositional simplicity, we do not put priors prands.
4For simplicity, we keep the parameters of the Inverse Wigtraors fixed.
®Strictly we should write throughout(- |v1.7). We omit the dependence on~ for notational convenience.



3 Unified Inference ong(h;.1)

Optimally ¢(h1.7) is Gaussian sincéE(hlzT, 6|é)> © is quadratic inh1.7, being namel§
q

N |

T
; [((vtBht)Tz;l(vtBht»q(Mv) + <(ht*Aht71>T pIpe (htAht1)>q(A,zH>] '

)

Optimally, ¢(A|Xy) andq¢(B|Xy) are Gaussians (see Appendix A), so we can easily carry out
the averages. The further averages aM&ty) andq(Xy ) are also easy due to conjugacy. Whilst
this defines the distribution(h,.7), quantities such ag(h:), which are required for the parame-
ter updates (see the Appendices), need to be inferred frandigtribution. Clearly, in the non-
Bayesian case, the averages over the parameters are nentpeasd the above simply represents
an LGSSM whose visible variables have been clamped into ¢véential states. In that case, in-
ference can be performed using any standard method. Outlaéngfore, is to try to represent the
averagedEq. (2) directly as an LGSSM|(h;.7|91.7), for some suitable parameter settings.

Mean + Fluctuation Decomposition
A useful decomposition is to write

<(Ut — Bht)TZ‘;l(’Ut — Bht)>q(B,Zv): (Ut — <B> ht)T <E‘;1> (’Ut — <B> ht) + h-trSBht 5

mean fluctuation

and similarly
{(he—Ahy_1) "S5 (he— Ahy_1)) (he—(A) hye—1) T (S5") (e —(A) hy—1) +h{_Sahs_1,

mean fluctuation

q(ASH) "

where the parameter covariances &g = VH,;1 andS, = HH;1 (see Appendix A). The
mean terms simply represent a clamped LGSSM with averagedngders. However, the extra
contributions from the fluctuations mean that Eq. (2) cateoivritten as a clamped LGSSM with
averaged parameters. In order to deal with these extra tewmgdea is to treat the fluctuations as
arising from an augmented visible variable, for which EQ.d&n then be considered as a clamped
LGSSM.

Inference Using an Augmented LGSSM
To represent Eq. (2) as a LGSSNh1.7|91.7), we augment, andB as’:

0¢ = vert(vt, Om, Onr), B = vert((B),U4,Up),
wherelU 4 is the Cholesky decomposition §f;, so thatUIlUA = S 4. Similarly, Up is the Cholesky
decomposition o6 5. The equivalent LGSSM(hy.7|01.7) is then completed by specifyifig

A= (A), EHE<EI__11>7, f}vzdiag(<2‘71>71,IH,IH), p=p =3

The validity of this parameter assignment can be checketidyisg that, up to negligible constants,
the exponent of this augmented LGSSM has the same form a2 EdNdw that this has been written
as an LGSSMj(hy.7|01.7), standard inference routines in the literature may be egpt compute
Q(ht) = (j(ht|ﬁ1:T) [1! 111 ZP

For completeness, we decided to describe the standardcfmedorrector form of a Kalman filter,
together with the Rauch-Tung-Striebel recursions [2] ferfprming inference in an LGSSM. These

1

SFor simplicity of exposition, we ignore the first time-polmre.

"The notatiorvert(z1, . . ., z,) stands for vertically concatenating the arguments . ., z.,.

8Strictly, we need a time-dependent emissisn= B, fort = 1,...,T — 1. For timeT, By has the
Cholesky factolU4 replaced by0w, 1.

®Note that, since the augmented LGSGlk,.7|71.7) is designed to match tHally clamped distribution
q(h1.7), filtering §(h1.7|91.7) does not correspond to filteringhi.7).



Algorithm 1 LGSSM: Forward and backward recursive updates. The smdegibsteriop(h|vi.r)
is returned in the meah! and covarianc&/ .
procedure FORWARD
la:P — % B
1b: P — DX, whereD = I — XUap (I + U} zXUag) " Uy
2a: ﬁ? —
2b: hY «— Du
3:K « PBT(BPBT + %y)~!, Pl « (I — KB)P, h! « h9 + K (v; — BLY)
fort — 2,T do
4: PI7t  APITAT + 2y
5a:P « P/ !
5b: P D,P!~', whereD, = I — P! Uap (I + ULz Pl Uag) Ul
6a:h!~t — Ahl~!
6b: ht~! — D, ARt~}
7: K «— PBT(BPBT +Sy) !, Pt — (I — KB)P, ht — ht™' + K (v; — Bh!™)
end for
end procedure

procedure BACKWARD
fort— T —1,1do

E — PttAT(Ptt+1)_1
— —
Pl — P} +(i1t(Pt7-;-1 - Ptt+1)AtT
hT « ht + Ay(hT,, — ARY)
end for
end procedure

are given in Algorithm 1. To comput@ h;|v1.7), we then call the FORWARD and BACKWARD
procedures.

We present two variants of the FORWARD pass. Either we malypratedure FORWARD in
Algorithm 1 with parametersl, B, ¥4, Xy, i1, 2 and the augmented visible variablgsin which
we use steps 1a, 2a, 5a and 6a. This is exactly the predicteretor form of a Kalman filter [2].

Otherwise, in order to reduce the computational cost, we cadlyprocedure FORWARD with the
parametergA) , (B) , <E,‘{1>71 , <2‘71>71 , 11, > and the original visible variable; in which we
use steps 1b (whel€] ;Uap = Sa + Sg), 2b, 5b and 6b. The two algorithms are mathematically

equivalent. Computing(h:) = ¢(h¢|01.7) is then completed by calling the common BACKWARD
passC.

The important point here is that the reader may supply amdstal Kalman Filtering/Smoothing
routine, and simply call it with the appropriate parameténssome parameter regimes, or in very
long time series, numerical stability may be a serious conder which several stabilized algo-
rithms have been developed over the years, for example tharesgoot forms [10, 11, 2]. By
converting the problem to a standard form, we have therefoified and simplified inference, so
that future applications may be more readily developed.

%The cross-moment required for learning in Section 4 can biéyezomputed using:
— . .
<ht—1htT> = APl + A (BT
p(he—1:¢lviT)

This is much simpler than formulae surprisingly continuedhie literature [3, 13].



3.1 Relation to Previous Approaches

An alternative approach to the one above, and taken in [Ts &),recognize that the posterior is

T
log g(h1.7) = Z b¢(ht—1, he) + const.

t=2

for suitably defined quadratic forms (h:—1, h:). Here the potentialg;(h;_1, ht) encode the av-
eraging over the parameters B, Xy, Y. The approach taken in [7] is to recognize this as a
pairwise Markov chain, for which the Belief Propagationuestons may be applied. The backward
pass from Belief Propagation makes use of the observatipns so that any approximate online
treatment would be difficult. The approach in [5] is based &ubback-Leibler minimization of the
posterior with a chain structure, which is algorithmicadiguivalent to Belief Propagation. Whilst
mathematically valid procedures, the resulting algorghdo not correspond to any of the standard
forms in the Kalman Filtering/Smoothing literature, wh@seperties have been well studied [14].

A stated aim in [7] is to find a sequential form for smoothingce this has potential advantages
in online situations, whereby high-dimensional obseoratican be discarded once they have been
filtered. Our algorithm provides exactly this sequentiahidor smoothing.

4 An Application to Bayesian ICA

A particular case for which the Bayesian LGSSM is of inteigsh

extracting independent source signals underlying a naultite time-
@ series [15, 5]. This will demonstrate how the approach aged in

Section 3 makes VB easily to apply. The sourgeare modeled as
independent in the following sense:

@ P(st.ps s1.7) = P(sLr)P(s1.7), forizj, dj=1...,C.
Independence implies block diagonal transition and staigermatri-
cesA, Yy andX, where each block has dimensiorf.. A one di-
mensional source for each independent dynamical subsystem is then
formed froms¢ = 17 h¢, wherel.. is a unit vector and is the state of
e dynamical system. Combining the sources, we can write= Ph;,
whereP = diag(1],...,1%), hy = vert(h},...,hS). The resulting
emission matrix is constrained to be of the folsn= W P, where
Q G @ W is theV x C mixing matrix. This means that the observations
are formed from linearly mixing the sources, = Ws; + n{. The
Figure 1: The structure Ofgraphical structure of this model is presented in Fig 1. Teoernage
the LGSSM for ICA. redundant components to be removed, we plac_e a zero measi&@aus
prior onW. In this case, we do not define a prior for the parameters
Yy andXy which are instead considered as hyperparameters. Morisdetthe model are given
in [15]. The constrainB = W P requires a minor modification from Section 3, as we discuksibe

Inference ong(hy.7)

A small modification of the mean + fluctuation decomposition/8 occurs, namely:
((ve = Bho)TSy! (0 = Bh)) ) = (00 = (B) he) TSy (v — (B) hy) + h{ PTSw Phy,

where(B) = (W) P andSy = V Hy,'. The quantities¥) and Hy, are obtained as in Appendix
A.1 with the replacemerit, < Ph;. To represent the above as a LGSSM, we augmeand B as

0 = vert(vt,0m,00), B =vert((B),Ua, Uy P),
whereUyy is the Cholesky decomposition 6f;. The equivalent LGSSM is then completed by
specifyingA = (A), ¥y = g, Yy = diagEv, In, Ic), i = u, ¥ = X, and inference for
q(hy1.7) performed using Algorithm 1. This demonstrates the elegamd unity of the approach in
Section 3, since no new algorithm needs to be developed forpeinference, even in this special
constrained parameter case.
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Figure 2: (a) Original sources.. (b) Observations resulting from mixing the original sasc
= Wst + ¢, ny ~ N(0,I). (c) Recovered sources using the Bayesian LGSSM. (d) Seurce
found with MAP LGSSM.

4.1 Demonstration

As a simple demonstration, we used a LGSSM to generate 3esxjraith random5 x 5 transition
matricesA¢, u = Oy and¥X = Xy = Iy. The sources were mixed into three observations
vy = Wsy +n7, for W chosen with elements from a zero mean unit variance Gaudstibution,
andXy = Iy. We then trained a Bayesian LGSSM with 5 sources@anrd transition matricesi®.

To bias the model to find the simplest sources, we ukes Og,,u, for all sources. In Fig2a and Fig
2b we see the original sources and the noisy observatiopsatgely. In Fig2c we see the estimated
sources from our method after convergence of the hypergaesrapdates. Two of the 5 sources
have been removed, and the remaining three are a reasoséibiateon of the original sources.
Another possible approach for introducing prior knowletge use a Maximum a Posteriori (MAP)
procedure by adding a prior term to the original log-likelitulog p(vi.7| A, W, ©) + log p(A|«) +
log p(W|3). However, it is not clear how to reliably find the hyperparéengn andj in this case.
One solution is to estimate them by optimizing the new objedunction jointly with respect to
the parameters and hyperparameters (this is the so-call@dnap estimation — see for example
[16]). A typical result of using this joint MAP approach orethrtificial data is presented in Fig 2d.
The joint MAP does not estimate the hyperparameters wall tla@ incorrect number of sources is
identified.

4.2 Application to EEG Analysis

In Fig 3a we plot three seconds of EEG data recorded from 4nelarflocated in the right hemi-
sphere) while a subject is performing imagined movementefright hand. As is typical in EEG,
each channel shows drift terms below 1 Hz which corresporattitacts of the instrumentation,
together with the presence of 50 Hz mains contamination aakethe rhythmical activity related
to the mental task, mainly centered at 10 and 20 Hz [17]. Welavihwerefore like a method which
enables us to extract components in these informationiichnd 20 Hz frequency bands. Stan-
dard ICA methods such as FastICA do not find satisfactorycesupased on raw ‘noisy’ data, and
preprocessing with band-pass filters is usually requireddi#onally, in EEG research, flexibility
in the number of recovered sources is important since theyebe many independent oscillators
of interest underlying the observations and we would likmsavay to automatically determine
their effective number. To preferentially find sources atipalar frequencies, we specified a block

diagonal matrixA© for each source, where each block is @ x 2 rotation matrix at the desired
frequency. We defined the following 16 groups of frequenc[@s5], [0.5], [0.5], [0.5]; [10,11],
[10,11],[10,11],[10,11]; [20,21], [20,21], [20,21], [221]; [50], [50], [50], [50]. The temporal evo-
lution of the sources obtained after training the Bayesi@$EM is given in Fig3(b,c,d,e) (grouped
by frequency range). The Bayes LGSSM removed 4 unnecessarges from the mixing matrix
W, that is one [10,11] Hz and three [20,21] Hz sources. The4iturces contain dominant low
frequency drift, source 5, 6 and 8 contain [10,11] Hz, whidarse 10 contains [20,21] Hz centered
activity. Of the 4 sources initialized to 50 Hz, only 2 re&ih50 Hz activity, while thed¢ of the
other two have changed to model other frequencies preséim¢ iBEG. This method demonstrates
the usefulness and applicability of the VB method in a realtevsituation.
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Figure 3: (a) Original raw EEG recordings from 4 channelse)i6 sources; estimated by the
Bayesian LGSSM.

5 Conclusion

We considered the application of Variational Bayesiamgeyto Linear Gaussian State-Space Mod-
els. This is an important class of models with widespreadiegipon, and finding a simple way to
implement this approximate Bayesian procedure is of cenalile interest. The most demand-
ing part of the procedure is inference of the hidden stateaheomodel. Previously, this has been
achieved using Belief Propagation, which differs from nefece in the Kalman Filtering/Smoothing
literature, for which highly efficient and stabilized proleees exist. A central contribution of this
paper is to show how inferencanbe written using the standard Kalman Filtering/Smootheayr-
sions by augmenting the original model. Additionally, a orimodification to the standard Kalman
Filtering routine may be applied for computational effidgnWe demonstrated the elegance and
unity of our approach by showing how to easily apply a Vaoiadil Bayes analysis of temporal ICA.
Specifically, our Bayes ICA approach successfully extraxtependent processes underlying EEG
signals, biased towards preferred frequency ranges. We tia this simple and unifying inter-
pretation of Variational Bayesian LGSSMs may therefordifate the further application to related
models.

A Parameter Updates forA and B

A.1 Determining ¢(B|Xv)

By examiningF, the contribution ofy(B|Xy) can be interpreted as the negative KL divergence
betweeng(B|Xy) and a Gaussian. Hence, optimalfy,B|Xy ) is a Gaussian. The covariance

(2B = ((Bij — (Bij) ) (Bri — (Bi) ) ) (averages wrg(B|Sy)) is given by:
[ZB]ij,kl = [Hgl]jl [Zv]ik

where
T

[Hplji=> <h¥hi>q(ht) + B0,

t=1

The mean is given byB) = NgpHy', where[Ng];; = 3, <h{> vi + B;Bi;.

Determining ¢(A|X#)
Optimally, ¢(A|X ) is a Gaussian with covariance
[ZA]ij,kl = [HZT]J’Z [EH]ik

where
T—1

[HA]jl = Z <h%hé> h) + aj5jl.

t=1 a

The mean is given byA) = N4 H ', where[Nal;; = 31, <h{71h§> + aj Ajj.



B Covariance Updates

By specifying an Inverse Wishart prior for the covariancesjugate update formulae are possible.
In practice, it is more common to specify diagonal covarémdor which the corresponding priors

are simply Inverse Gamma distributions [7, 5]. For this demgiagonal case, the explicit updates
are given below.

Determining ¢(Zv)

For the constraint(Xy)~! = diag(p) where each diagonal element follows a Gamma prior
Ga(by,b2) [7], q(p) factorizes and the optimal updates are

alpi) = Ga (b + 5,62 + % (Su(0d)? = (Gulia + 32, 583 )

whereGp = NgHy'NJ.

Determining ¢(Xx)

Analogously, for(X )=t = diag(r) with prior Ga(a1, a2) [5], the updates are
q(r;) = Ga (al + s+ 4 (Zf:z ((h$)?) = [Galii + 2, O‘]'Azzj))’
whereG4 = NaH ' NJ.
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