
Deep Learning: Autodiff, Parameter Tying and Backprop
Through Time∗

David Barber
Department of Computer Science

University College London

February 9, 2015

Abstract

How to do parameter tying and how this relates to Backprop through time.

1 Introduction

A common question when learning about Neural Nets (Deep Learning) is how to deal with
parameter tying when calculating the gradient of the objective function. In particular,
how does this relate to Backprop Through Time [3]? Whilst there is a large literature
available on this, the explanations often seen (to my mind) rather over complicated. Below
we explain how to deal with parameter tying in general (not just for Neural Nets).

2 Parameter Tying

Consider a simple objective such as

E(θ) = [y − f(θg(xθ))]2 (1)

One can think of this as a Neural Net squared loss objective corresponding to a single
training input-output (x, y) with a scalar input x, single hidden layer h = g(xθ), with
weight from input to hidden layer given by θ and output f(θh), with weight θ from the
hidden layer to the output layer. As a network diagram, this would look something like
this x→

θ
h→

θ
y in which the parameters from the input to hidden layer and hidden layer

to output are tied.

We can calculate the gradient directly using the usual chain rule of calculus:

∂E

∂θ
= −2 [y − f(θg(xθ))] f ′(θg(xθ))

(
θg′(xθ)x+ g(xθ)

)
(2)

where f ′ and g′ denote the derivatives of f and g respectively.

Another way to do this is to consider

F (θ1, θ2) = [y − f(θ1g(xθ2))]
2 (3)

which is a Network with unconstrained parameters, x→
θ1
h→
θ2
y. Then

∂F

∂θ
=
∂F

∂θ1

∂θ1
∂θ

+
∂F

∂θ2

∂θ2
∂θ

(4)

∗UCL Department of Computer Science Technical Note

1



Backprop Through Time

x1 x2 x3

h1 h2 h3

y1 y2 y3

A A A

C C C

B B

(a)

x1 x2 x3

h1 h2 h3

y1 y2 y3

A1 A2 A3

C1 C2 C3

B1 B2

(b)

Figure 1: (a): A recurrent Neural Net here written for only 3 timesteps. (b): Unconstrained
version of (a) used to derive BPTT.

If we now constrain θ1 = θ2 = θ, we obtain

∂E

∂θ
=
∂F (θ, θ)

∂θ
=
∂F (θ1, θ2)

∂θ1

∣∣∣∣
θ1=θ2=θ

+
∂F (θ1, θ2)

∂θ2

∣∣∣∣
θ1=θ2=θ

(5)

where |θ1=θ2=θ means that we evaluate the resulting expression (after calculating the par-
tial derivative) at the constrained values.

We can verify that this works:

∂F (θ1, θ2)

∂θ1
= −2 [y − f(θ1g(xθ2))] f

′(θ1g(xθ2))g(xθ2) (6)

and

∂F (θ1, θ2)

∂θ2
= −2 [y − f(θ1g(xθ2))] f

′(θ1g(xθ2))θ1xg
′(xθ2) (7)

Summing equation (6) and equation (7) and evaluating at θ1 = θ2 = θ, we obtain equation
(2).

The conclusion is that we can deal with parameter tying in any objective by the following
procedure:

1. Treat all parameters as independent and calculate the gradient with respect to each
independent parameter.

2. Sum all the resulting independent gradients together.
3. Evaluate the expression by setting all the independent parameters to the same value.

Note that this is a general result and can be used to deal with parameter tying in any
objective, not just Deep Learning and Neural Nets.

3 Backprop Through Time

A recurrent network can be thought of as a deterministic temporal model with inputs xt,
hidden values ht and outputs yt. All inputs, hidden values and outputs may be vectors.
For a squared loss, we would have an objective of the form

E(A,B,C) =
∑
t

(yt − f(ht;C))2, ht = g(xt, ht−1;A,B) (8)

which means that the output of the network at time t is some function f (parameterised
by a matrix C) of the hidden state ht. Similarly, the hidden value at time t is some
function g (parameterised by input to hidden weights A and hidden to hidden weights B)
of the input xt and previous hidden value ht−1, see fig(1a).



AutoDiff

To train a recurrent network we need to calculate the gradient with respect to A, B, C.
There are several ways to do this with varying storage and time performances, see [4] for
a detailed comparison. Perhaps the most obvious approach is to directly calculate the
gradient by a forward-propagation algorithm (RTRL) which is also the same technique
discussed in [1] and extends recurrent networks to probabilistic models.

A more common approach is Backprop Through Time (BPTT) [3]. We assume that the
reader is familiar with the standard backprop algorithm (see for example [2]). Given our
understanding about parameter tying, we see that we can calculate the gradient of the
recurrent NN objective by first treating all parameters as independent, and then running
standard backprop on the resulting architecture, see fig(1b). Finally, we simply sum all the
corresponding gradients (for example with respect to the matrices A1, A2, A3 to calculate
the gradient with respect to A) and subsequently set the parameters to be equal. This
is an efficient exact algorithm which, in contrast to RTRL, runs backwards in time. In
practice, to save on storage, backprop is typically run over a fixed window (rather than
going back to time 1) which results in an approximation to the true gradient.

3.1 Conclusion

One can deal with parameter tying simply by treating parameters as if they are indepen-
dent, and then summing all the corresponding gradients. This is particularly useful for
objectives such as Neural Nets since one can then make use of standard (and efficient)
backprop routines to calculate the unconstrained gradients.

4 AutoDiff

A more general viewpoint on backprop and parameter tying can be established through
Automatic Differentiation. AutoDiff takes a function f(x) and returns an exact value (up
to machine accuracy) for the gradient

gi(x) ≡ ∂

∂xi
f

∣∣∣∣
x

(9)

Note that this is not the same as a numerical approximation (such as central differences)
for the gradient. One can show that, if done efficiently, one can always calculate the
gradient in less than 5 times the time it takes to compute f(x). This is also not the same
as symbolic differentiation.

In Symbolic Differentiation, given a function f(x) = sin(x), symbolic differentiation re-
turns an algebraic expression for the derivative. This is not necessarily efficient since it
may contain a great number of terms. As an (overly!) simple example, consider

f(x1, x2) =
(
x21 + x22

)2
(10)

∂f

∂x1
= 2

(
x21 + x22

)
2x1,

∂f

∂x2
= 2

(
x21 + x22

)
2x2 (11)

The algebraic expression is not computationally efficient. However, by defining

y = 4(x21 + x22) (12)

then

∂f

∂x1
= yx1,

∂f

∂x2
= yx2 (13)

Which is a more efficient computational expression. Also, more generally, we want to con-
sider computational subroutines that contain loops and conditional if statements; these



AutoDiff

do not correspond to simple closed algebraic expressions. We want to find a corresponding
subroutine that can return the exact derivative efficiently for such subroutines. There are
two main flavours of AutoDiff, namely Forward and Reverse mode.

Forward
• This is (usually) easy to implement
• However, it is not (generally) computationally efficient.
• It cannot easily handle conditional statements or loops.

Reverse
• This is exact and computationally efficient.
• It is, however, harder to code and requires a parse tree of the subroutine.
• If possible, one should always attempt to do reverse differentiation.
• As we will discuss, the famous backprop algorithm is just a special case of

reverse differentiation.
• Reverse differentiation is also important since, with it, one can understand (for

example) how to deal easily with calculating the derivative of a function subject
to parameter tying.

4.1 Forward Differentiation

Consider f(x) = x2 and that we wish to compute the derivative of this.

4.1.1 Central Differences

The most well known approach to approximating a derivative is to use

f ′(x) ≈ f(x+ ε)− f(x− ε)
2ε

=
x2 + 2εx+ ε2 − x2 + 2εx− ε2

2ε
(14)

which in this case gives the exact result. More generally, the approximation is accurate
up to order ε3. Whilst this can be useful, in addition to it only being an approximation,
it is also potentially slow since, for vector x, the calculation has to be repeated for each
component of the vector.

4.1.2 Complex arithmetic

f(x+ iε) = (x+ iε)2 = x2 − ε2 + 2iεx (15)

Hence

f ′(x) = lim
ε→0

1

ε
Im (f(x+ iε)) (16)

This also holds for any smooth function (one that an be expressed as a Taylor series). For
finite ε this gives an approximation only. More accurate approximation than standard
finite differences since we do not subtract two small quantities and divide by a small
quantity – the complex arithmetic approach is more numerically stable. To implement,
we need to overload all functions so that they can deal with complex arithmetic.

4.1.3 Dual arithmetic

Consider f(x) = x2. Define an idempotent variable, ε such that ε2 = 0.

f(x+ ε) = (x+ ε)2 = x2 + 2xε (17)

Hence

f ′(x) = DualPartf(x+ ε) (18)

This holds for any smooth function f(x) and non-zero value of ε. To implement this we
need to overload every function in the subroutine to work in dual arithmetic. Also note
that this is not an approximation – it is an exact numerical computation of the derivative
(up to machine accuracy). Whilst exact, this is, however, not necessarily efficient.



AutoDiff

4.2 Reverse Differentiation

A useful graphical representation is that the total derivative of f with respect to x is given
by the sum over all path values from x to f , where each path value is the product of the
partial derivatives of the functions on the edges:

df

dx
=
∂f

∂x
+
∂f

∂g

dg

dx

x

f

g∂f
∂x

dg
dx

∂f
∂g

Example 1

For f(x) = x2 + xgh, where g = x2 and
h = xg2

x

f

gh2x+ gh

2x

xh

2gx

xg

g2

f ′(x) = (2x+ gh) + (g2xg) + (2x2gxxg) + (2xxh) = 2x+ 8x7 (19)

Example 2

Consider

f(x1, x2) = cos (sin(x1x2)) (20)

We can represent this computationally using an Abstract Syntax Tree (AST), also known
as the Computation Tree:

x1 x2

f1

f2

f3

f1(x1, x2) = x1x2

f2(x) = sin(x)

f3(x) = cos(x)

Given values for x1, x2, we first run forwards through the tree so that we can associate
each node with an actual function value.

df3
dx1

=
∂f3
∂f2

df2
dx1

=
∂f3
∂f2

df2
df1︸ ︷︷ ︸

df3
df1

df1
dx1

(21)

Similarly,

df3
dx2

=
∂f3
∂f2

df2
df1︸ ︷︷ ︸

df3
df1

df1
dx2

(22)

The two derivatives share the same computation branch and we want to exploit this.



AutoDiff

x1 x2

f1

f2

f3

∂f1
∂x1

= x2
∂f1
∂x2

= x1

∂f2
∂f1

= cos(f1)

∂f3
∂f2

= − sin(f2)

4.3 The AutoDiff Algorithm

1. Find the reverse ancestral (backwards) schedule of nodes (In example 2 above, this
would be f3, f2, f1, x1, x2).

2. Start with the first node n1 in the reverse schedule and define tn1 = 1.
3. For the next node n in the reverse schedule, find the child nodes ch (n). Then define

tn =
∑

c∈ch(n)

∂fc
∂fn

tc

4. The total derivatives of f with respect to the root nodes of the tree (here x1 and
x2) are given by the values of t at those nodes.

This is a general procedure that can be used to automatically define a subroutine to
efficiently compute the gradient. It is efficient because information is collected at nodes
in the tree and split between parents only when required.

4.3.1 Dealing with loops

f=function(x)

f=0

for i=1:10

f=f+cos(f*x^i)

end

df=function(x)

f=0

df=0

for i=1:10

f=f+cos(f*x^i)

df=df-sin(f*x^i)*f*i*x^{i-1}+df*x^i

end
In the above example, we expanded the derivative of the cos term symbolically. In Au-

toDiff, unless the derivatives of such standard functions are given, we would need to
replace this step with the computations on the AST and include these computations in
the AutoDiff procedure.

4.4 Notes

Reverse AutoDiff generalises (and predates) Backprop since it holds for any computation
tree. Another viewpoint of parameter tying is to write down the computation tree and
carry out AutoDiff. In equation (1) the computation tree can be written as:



REFERENCES REFERENCES

y x θ

g

f

E

so that parameter tying can be seen as simply linking the same parameter to different
nodes in the tree. One then carries out AutoDiff using the standard algorithm, which will
have the same effect as we noted in section(2) – making two copies of θ, namely θ1 and
θ2 and summing over them is equivalent to simply summing over the two child paths of θ
in the computation tree.

References

[1] D. Barber. Dynamic Bayesian Networks with Deterministic Tables. In Advances in
Neural Information Processing Systems (NIPS), 2003.

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Inc., New York, NY, USA, 1995.

[3] P. J. Werbos. Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE, 78(10):1550–1560, Oct 1990.

[4] R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent net-
works and their computational complexity. In Y. Chauvin and D. E. Rumelhart,
editors, Back-propagation: Theory, Architectures and Applications, chapter 13, pages
433–486. Hillsdale, NJ: Erlbaum, 1995.


	Introduction
	Parameter Tying
	Backprop Through Time
	Conclusion

	AutoDiff
	Forward Differentiation
	Central Differences
	Complex arithmetic
	Dual arithmetic

	Reverse Differentiation
	The AutoDiff Algorithm
	Dealing with loops

	Notes


