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Probability

Why Probability?

Probability is a logical calculus of uncertainty.

Natural framework to use in models of physical systems, such as the Ising
Model (1920) and in AI applications, such as the HMM (Baum 1966,
Stratonovich 1960).

The need for structure

We often want to make a probabilistic description of many objects (electron
spins, neurons, customers, etc. ).

Typically the representational and computational cost of probabilistic models
grows exponentially with the number of objects represented.

Without introducing strong structural limitations about how these objects can
interact, probability is a non-starter.

For this reason, computationally ‘simpler’ alternatives (such as fuzzy logic)
were introduced to try to avoid some of these difficulties – however, these are
typically frowed on by purists.
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Graphical Models

We can use graphs to represent how objects can probabilistically interact with
each other.

Graphical Models and then a marriage between Graph and Probability theory.

Many of the quantities that we would like to compute in a probability
distribution can then be related to operations on the graph.

The computational complexity of operations can often be related to the
structure of the graph.

Graphical Models are now used as a standard framework in Engineering,
Statistics and Computer Science.
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Rules of probability
p(x = x) : the probability of variable x being in state x.

p(x = x) =

{
1 we are certain x is in state x
0 we are certain x is not in state x

Values between 0 and 1 represent the degree of certainty of state occupancy.

domain
dom(x) denotes the states x can take. For example, dom(c) = {heads, tails}.
When summing over a variable

∑
x f(x), the interpretation is that all states of x

are included, i.e.
∑
x f(x) ≡

∑
s∈dom(x) f(x = s).

distribution
Given a variable, x, its domain dom(x) and a full specification of the probability
values for each of the variable states, p(x), we have a distribution for x.

normalisation
The summation of the probability over all the states is 1:∑

x∈dom(x)

p(x = x) = 1

We will usually more conveniently write
∑
x p(x) = 1.
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Operations

AND
Use the shorthand p(x, y) ≡ p(x ∩ y) for p(x and y). Note that p(y, x) = p(x, y).

marginalisation
Given a joint distr. p(x, y) the marginal distr. of x is defined by

p(x) =
∑
y

p(x, y)

More generally,

p(x1, . . . , xi−1, xi+1, . . . , xn) =
∑
xi

p(x1, . . . , xn)
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Conditional Probability and Bayes’ Rule

The probability of event x conditioned on knowing event y (or more shortly, the
probability of x given y) is defined as

p(x|y) ≡ p(x, y)

p(y)
=
p(y|x)p(x)

p(y)
(Bayes’ rule)

Throwing darts

p(region 5|not region 20) =
p(region 5, not region 20)

p(not region 20)

=
p(region 5)

p(not region 20)
=

1/20

19/20
=

1

19

Interpretation
p(A = a|B = b) should not be interpreted as ‘Given the event B = b has occurred,
p(A = a|B = b) is the probability of the event A = a occurring’. The correct
interpretation should be ‘p(A = a|B = b) is the probability of A being in state a
under the constraint that B is in state b’.
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Battleships

Assume there are 2 ships, 1 vertical (ship 1) and 1 horizontal (ship 2), of 5
pixels each.

Can be placed anywhere on the 10×10 grid, but cannot overlap.

Let s1 is the origin of ship 1 and s2 the origin of ship 2

Data D is a collection of query ‘hit’ or ‘miss’ responses.

p(s1, s2|D) =
p(D|s1, s2)p(s1, s2)

p(D)
Let X be the matrix of pixel occupancy

p(X|D) =
∑
s1,s2

p(X, s1, s2|D) =
∑
s1,s2

p(X|s1, s2)p(s1, s2|D)

demoBattleships.m
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Probability tables

The a priori probability that a randomly selected Great British person would live in
England, Scotland or Wales, is 0.88, 0.08 and 0.04 respectively.

We can write this as a vector (or probability table) : p(Cnt = E)
p(Cnt = S)
p(Cnt = W)

 =

 0.88
0.08
0.04


whose component values sum to 1.

The ordering of the components in this vector is arbitrary, as long as it is
consistently applied.
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Probability tables

We assume that only three Mother Tongue languages exist : English (Eng),
Scottish (Scot) and Welsh (Wel), with conditional probabilities given the country
of residence, England (E), Scotland (S) and Wales (W). Using the state ordering:

MT = [Eng,Scot,Wel]; Cnt = [E,S,W]

we write a (fictitious) conditional probability table

p(MT |Cnt) =

 0.95 0.7 0.6
0.04 0.3 0.0
0.01 0.0 0.4


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Probability tables

The distribution p(Cnt,MT ) = p(MT |Cnt)p(Cnt) can be written as a 3× 3
matrix with (say) rows indexed by country and columns indexed by Mother Tongue: 0.95× 0.88 0.7× 0.08 0.6× 0.04

0.04× 0.88 0.3× 0.08 0.0× 0.04
0.01× 0.88 0.0× 0.08 0.4× 0.04

 =

 0.836 0.056 0.024
0.0352 0.024 0
0.0088 0 0.016


By summing a column, we have the marginal

p(Cnt) =

 0.88
0.08
0.04


Summing the rows gives the marginal

p(MT ) =

 0.916
0.0592
0.0248


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Independence

Variables x and y are independent if knowing one event gives no extra information
about the other event. Mathematically, this is expressed by

p(x, y) = p(x)p(y)

Independence of x and y is equivalent to

p(x|y) = p(x)⇔ p(y|x) = p(y)

If p(x|y) = p(x) for all states of x and y, then the variables x and y are said to be
independent.
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Belief Networks (Bayesian Networks)

A belief network is a directed acyclic graph in which each node has associated the
conditional probability of the node given its parents.

The joint distribution is obtained by taking the product of the conditional
probabilities:

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|C)p(E|B,C)

p(E|B,C)

A B

C

D
E
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Example – Part I
Sally’s burglar Alarm is sounding. Has she been Burgled, or was the alarm
triggered by an Earthquake? She turns the car Radio on for news of earthquakes.

Choosing an ordering
Without loss of generality, we can write

p(A,R,E,B) = p(A|R,E,B)p(R,E,B)

= p(A|R,E,B)p(R|E,B)p(E,B)

= p(A|R,E,B)p(R|E,B)p(E|B)p(B)

Assumptions:

The alarm is not directly influenced by any report on the radio,
p(A|R,E,B) = p(A|E,B)
The radio broadcast is not directly influenced by the burglar variable,
p(R|E,B) = p(R|E)
Burglaries don’t directly ‘cause’ earthquakes, p(E|B) = p(E)

Therefore

p(A,R,E,B) = p(A|E,B)p(R|E)p(E)p(B)
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Example – Part II: Specifying the Tables

B

A

E

R

p(A|B,E)

Alarm = 1 Burglar Earthquake
0.9999 1 1

0.99 1 0
0.99 0 1

0.0001 0 0

p(R|E)

Radio = 1 Earthquake
1 1
0 0

The remaining tables are p(B = 1) = 0.01 and p(E = 1) = 0.000001. The tables
and graphical structure fully specify the distribution.
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Example Part III: Inference

Initial Evidence: The alarm is sounding

p(B = 1|A = 1) =

∑
E,R p(B = 1, E,A = 1, R)∑
B,E,R p(B,E,A = 1, R)

=

∑
E,R p(A = 1|B = 1, E)p(B = 1)p(E)p(R|E)∑

B,E,R p(A = 1|B,E)p(B)p(E)p(R|E)
≈ 0.99

Additional Evidence: The radio broadcasts an earthquake warning:

A similar calculation gives p(B = 1|A = 1, R = 1) ≈ 0.01.

Initially, because the alarm sounds, Sally thinks that she’s been burgled.
However, this probability drops dramatically when she hears that there has
been an earthquake.
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Learning: maximum likelihood

In modelling, we have a data model with some unknown parameters θ.

p(data|θ)

We can then learn θ by finding the process that would most likely have
generated the observed data

θoptimal = argmax
θ
p(data|θ)

This is an optimisation problem.

For example, a coin has probability θ of coming up heads (H) and 1− θ of
coming up tails (T). Given data H,T,H:

p(H,T,H|θ) = θ (1− θ) θ = θ2(1− θ)

If maximise this we find θoptimal = 2/3.

For models in which not all variables are directly observable, a common
algorithm is the ‘EM’ algorithm.
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Time-Series

A time-series is an ordered sequence:

xa:b = {xa, xa+1, . . . , xb}

So that one can consider the ‘past’ and ‘future’ in the sequence. The x can be
either discrete or continuous.

Biology
Gene sequences. Emphasis is on understanding sequences, filling in missing values,
clustering sequences, detecting patterns. Hidden Markov Models are one of the key
tools in this area.

Finance
Price movement prediction.

Planning
Forecasting – eg how many newspaper to deliver to retailers.
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Markov Models

For timeseries data v1, . . . , vT , we need a model p(v1:T ). For causal consistency, it
is meaningful to consider the decomposition

p(v1:T ) =

T∏
t=1

p(vt|v1:t−1)

with the convention p(vt|v1:t−1) = p(v1) for t = 1.

v1 v2 v3 v4

Independence assumptions
It is often natural to assume that the influence of the immediate past is more
relevant than the remote past and in Markov models only a limited number of
previous observations are required to predict the future.
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Markov Chain

Only the recent past is relevant:

p(vt|v1, . . . , vt−1) = p(vt|vt−L, . . . , vt−1)

where L ≥ 1 is the order of the Markov chain

p(v1:T ) = p(v1)p(v2|v1)p(v3|v2) . . . p(vT |vT−1)

For a stationary Markov chain the transitions p(vt = s′|vt−1 = s) = f(s′, s) are
time-independent (‘homogeneous’).

v1 v2 v3 v4

(a)

v1 v2 v3 v4

(b)

Figure: (a): First order Markov chain. (b): Second order Markov chain.
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Fitting Markov models (discrete variables)

Single series

Fitting a first-order stationary Markov chain by Maximum Likelihood
corresponds to setting the transitions by counting the number of observed
transitions in the sequence:

p(vτ = i|vτ−1 = j) ∝
T∑
t=2

I [vt = i, vt−1 = j]

The Maximum Likelihood setting for the initial first timestep distribution is
p(v1 = i) ∝

∑
n I [vn1 = i].

Multiple series
For a set of timeseries, vn1:Tn , n = 1, . . . , N , the transition is given by counting all
transitions across time and datapoints.
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Rock Paper Scissors

Two people game: each player plays either Rock, Paper or Scissors.

Paper beats Rock, Scissors beats Paper, Rock beats Scissors.

Let’s use the encoding Rock = 1, Scissors = 2, Paper = 3.

First Order Markov Model

ot ∈ {1, 2, 3} : human opponent play at time t.

ct ∈ {1, 2, 3} : human opponent play at time t.

The computer assumes the human moves based on what the human did on
the last move.

o1 o2 o3 o4

demoRockPaperScissorsMarkovHuman.m
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Rock Paper Scissors

First Order Markov Model with Computer past move

The computer assumes the human moves based on what the human did on
the last move and also on what the computer did on the last move.

It is an exercise in the afternoon to program this.

o1 o2 o3 o4

c1 c2 c3
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Markov Chains

v1 v2 v3 v4

p(v1, . . . , vT ) = p(v1)︸ ︷︷ ︸
initial

T∏
t=2

p(vt|vt−1)︸ ︷︷ ︸
Transition

State transition diagram
Nodes represent states of the variable v and arcs non-zero elements of the
transition p(vt|vt−1)

1 2

34

56

7

8 9
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Most probable and shortest paths

1 2

34

56

7

8 9

The shortest (unweighted) path from state 1 to state 7 is 1− 2− 7.

The most probable path from state 1 to state 7 is 1− 8− 9− 7 (assuming
uniform transition probabilities). The latter path is longer but more probable
since for the path 1− 2− 7, the probability of exiting state 2 into state 7 is
1/5.
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Equilibrium distribution

It is interesting to know how the marginal p(xt) evolves through time:

p(xt = i) =
∑
j

p(xt = i|xt−1 = j)︸ ︷︷ ︸
Mij

p(xt−1 = j)

p(xt = i) is the frequency that we visit state i at time t, given we started
from p(x1) and randomly drew samples from the transition p(xτ |xτ−1).
As we repeatedly sample a new state from the chain, the distribution at time
t, for an initial distribution p1(i) is

pt = Mt−1p1

If, for t→∞, p∞ is independent of the initial distribution p1, then p∞ is
called the equilibrium distribution of the chain:

p∞ = Mp∞

The equil. distribution is proportional to the eigenvector with unit eigenvalue
of the transition matrix.
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PageRank

Define the matrix

Aij =

{
1 if website j has a hyperlink to website i
0 otherwise

From this we can define a Markov transition matrix with elements

Mij =
Aij∑
i′ Ai′j

If we jump from website to website, the equilibrium distribution component
p∞(i) is the relative number of times we will visit website i. This has a
natural interpretation as the ‘importance’ of website i.

For each website i a list of words associated with that website is collected.
After doing this for all websites, one can make an ‘inverse’ list of which
websites contain word w. When a user searches for word w, the list of
websites that contain word is then returned, ranked according to the
importance of the site.
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Gene Clustering

Consider the 20 fictitious gene sequences below presented in an arbitrarily
chosen order.

Each sequence consists of 20 symbols from the set {A,C,G, T}.
The task is to try to cluster these sequences into two groups, based on the
(perhaps biologically unrealistic) assumption that gene sequences in the same
cluster follow a stationary Markov chain.

CATAGGCATTCTATGTGCTG CCAGTTACGGACGCCGAAAG TGGAACCTTAAAAAAAAAAA GTCTCCTGCCCTCTCTGAAC
GTGCCTGGACCTGAAAAGCC CGGCCGCGCCTCCGGGAACG AAAGTGCTCTGAAAACTCAC ACATGAACTACATAGTATAA
GTTGGTCAGCACACGGACTG CCTCCCCTCCCCTTTCCTGC CACTACGGCTACCTGGGCAA CGGTCCGTCCGAGGCACTC
TAAGTGTCCTCTGCTCCTAA CACCATCACCCTTGCTAAGG AAAGAACTCCCCTCCCTGCC CAAATGCCTCACGCGTCTCA
GCCAAGCAGGGTCTCAACTT CATGGACTGCTCCACAAAGG AAAAAAACGAAAAACCTAAG GCGTAAAAAAAGTCCTGGGT

31



Mixture of Markov models

h

v1 v2 v3 v4

The discrete hidden variable dom(h) = {1, . . . ,H} indexes the Markov chain∏
t

p(vt|vt−1, h)

Such models can be useful as simple sequence clustering tools.
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Mixture of Markov models

Given a set of sequences V = {vn1:T , n = 1, . . . , N}, how might we cluster them?

We can define a mixture model for a single sequence v1:T .

Here we assume each component model is first order Markov

p(v1:T ) =

H∑
h=1

p(h)p(v1:T |h) =
H∑
h=1

p(h)

T∏
t=1

p(vt|vt−1, h)

Clustering can then be achieved by finding the maximum likelihood
parameters p(h), p(vt|vt−1, h) and subsequently assigning the clusters
according to p(h|vn1:T ).
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Clustering Genes

After running the EM maximum likelihood algorithm, we can then assign each
of the sequences by examining p(h = 1|vn1:T ).
If this posterior probability is greater than 0.5, we assign it to cluster 1,
otherwise to cluster 2.

Using this procedure, we find the following clusters:
CATAGGCATTCTATGTGCTG TGGAACCTTAAAAAAAAAAA
CCAGTTACGGACGCCGAAAG GTCTCCTGCCCTCTCTGAAC
CGGCCGCGCCTCCGGGAACG GTGCCTGGACCTGAAAAGCC
ACATGAACTACATAGTATAA AAAGTGCTCTGAAAACTCAC
GTTGGTCAGCACACGGACTG CCTCCCCTCCCCTTTCCTGC
CACTACGGCTACCTGGGCAA TAAGTGTCCTCTGCTCCTAA
CGGTCCGTCCGAGGCACTCG AAAGAACTCCCCTCCCTGCC
CACCATCACCCTTGCTAAGG AAAAAAACGAAAAACCTAAG
CAAATGCCTCACGCGTCTCA GCGTAAAAAAAGTCCTGGGT
GCCAAGCAGGGTCTCAACTT
CATGGACTGCTCCACAAAGG

where sequences in the first column are assigned to cluster 1, and sequences in the
second column to cluster 2.
demoMixMarkov.m
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Hidden Markov Models

The HMM defines a Markov chain on hidden variables h1:T . The observed
variables depend on the hidden variables through an emission p(vt|ht). This
defines a joint distribution

p(h1:T , v1:T ) = p(v1|h1)p(h1)
T∏
t=2

p(vt|ht)p(ht|ht−1)

p(ht|ht−1) and p(vt|ht) are constant through time.

v1 v2 v3 v4

h1 h2 h3 h4 Figure: A first order hidden Markov model
with ‘hidden’ variables
dom(ht) = {1, . . . , H}, t = 1 : T . The
‘visible’ variables vt can be either discrete or
continuous.

Probably the most common timeseries model in all of engineering/biology/physical
science.
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HMM parameters

Transition Distribution
For a stationary HMM the transition distribution p(ht+1|ht) is defined by the
H ×H transition matrix

Ai′,i = p(ht+1 = i′|ht = i)

and an initial distribution

ai = p(h1 = i).

Emission Distribution
For a stationary HMM and emission distribution p(vt|ht) with discrete states
vt ∈ {1, . . . , V }, we define a V ×H emission matrix

Bi,j = p(vt = i|ht = j)

For continuous outputs, ht selects one of H possible output distributions p(vt|ht),
ht ∈ {1, . . . ,H}.
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The classical inference problems
Filtering (Inferring the present) p(ht|v1:t)
Prediction (Inferring the future) p(ht|v1:s) t > s
Smoothing (Inferring the past) p(ht|v1:u) t < u
Likelihood p(v1:T )
Most likely path (Viterbi alignment) argmax

h1:T

p(h1:T |v1:T )

For prediction, one is also often interested in p(vt|v1:s) for t > s.

Uses of the HMM

Biology: gene sequence analysis

Computer Vision: tracking of people in videos

Signal Processing: cleaning up noise corrupted music signals

Speech Recognition (dominant approach until recently)

Engineering: the famous ‘Kalman Filter’ is a special case of a HMM (with
continuous variables)

Weather Forecasting

Financial prediction, product purchase prediction, modelling the economy

Military: tracking ballistic objects

... and many more ...
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Filtering p(ht|v1:t)

p(ht, v1:t) =
∑
ht−1

p(ht, ht−1, v1:t−1, vt) (1)

=
∑
ht−1

p(vt|���v1:t−1, ht,�
��ht−1)p(ht|���v1:t−1, ht−1)p(v1:t−1, ht−1) (2)

=
∑
ht−1

p(vt|ht)p(ht|ht−1)p(ht−1, v1:t−1) (3)

Hence if we define α(ht) ≡ p(ht, v1:t) (3) above gives the α-recursion

α(ht) = p(vt|ht)︸ ︷︷ ︸
corrector

∑
ht−1

p(ht|ht−1)α(ht−1)︸ ︷︷ ︸
predictor

, t > 1

p(ht|v1:t) =
α(ht)∑
ht
α(ht)

Similar recursions do smoothing and Viterbi in O(T ) time.
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Prediction

Predicting the future hidden variable

p(ht+1|v1:t) =
∑
ht

p(ht+1|ht) p(ht|v1:t)︸ ︷︷ ︸
filtering

Predicting the future observation
The one-step ahead predictive distribution is given by

p(vt+1|v1:t) =
∑

ht,ht+1

p(vt+1|ht+1)p(ht+1|ht)p(ht|v1:t)
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Localisation example – Part I
Problem: You’re asleep upstairs in your house and awoken by a burglar on the
ground floor. You want to figure out where the burglar might be based on a
sequence of noise information.

You mentally partition the ground floor into a 5× 5 grid. For each grid position

you know the probability
that if someone is in that
position the floorboard will
creak

you know the probability
that if someone is in that
position he will bump into
something in the dark

you assume that the burglar
can move only into a
neighbor grid square with
uniform probability

Prob. of creak Prob. of bump
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Localisation example – Part II

We can represent the scenario using a HMM
where

· · · ht−1 ht ht+1 · · ·

vt−1 vt vt+1

The hidden variable ht represents the position of the burglar in the
grid at time t

ht ∈ {1, . . . , 25}

The visible variable vt represents creak/bump at time t

v=1: no creak, no bump

v=2: creak, no bump

v=3: no creak, bump

v=4: creak, bump
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Localisation example – Part III

(top) Observed creaks and bumps for 10 time-steps

(below top) Filtering p(ht|v1:t)
(middle) Smoothing p(ht|v1:10)

(above bottom) Most likely sequence argmax
h1:T

p(h1:T |v1:T )

(bottom) True Burglar position
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Natural Language Model Example – Part I

Problem: A ‘stubby finger’ typist has the tendency to hit either the correct key or
a neighbouring key. Given a typed sequence you want to infer what is the most
likely word that this corresponds to.

The hidden variable ht represents the intended letter at time t

The visible variable vt represents the letter that was actually typed at time t

We assume that there are 27 keys: lower case a to lower case z and the space bar.
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Natural Language Model Example – Part II

Given the typed sequence kezrninh what is the most likely word that this
corresponds to?

Listing the 200 most likely hidden sequences (using a form of Viterbi)

Discard those that are not in a standard English dictionary

Take the most likely proper English word as the intended typed word

. . . and the answer is . . .
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Speech Recognition: raw signal
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‘Spectogram’representation

10 20 30 40 50 60 70 80

5

10

15

20

25

Horizontal axis is time. Vertical axis is frequency.
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Speech Recognition

pho1 pho2 pho3 pho4

aud1 aud2 aud3 aud4

pho: phoneme (letter)
aud: audio signal (neural representation)
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Rock Paper Scissors, again!

Let’s assume there are four kinds of play

1. Play randomly
2. Do what you did last time
3. Do what the computer did last time
4. Play a different move to either your own or the computer’s last time.

We can use an index ht ∈ {1, 2, 3, 4} to denote the strategy

Let’s assume that the strategy doesn’t change very often, so the strategy ht is
most likely to to be the same as ht−1.

h1 h2 h3 h4

o1 o2 o3 o4

c1 c2 c3
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Rock Paper Scissors, again!

h1 h2 h3 h4

o1 o2 o3 o4

c1 c2 c3

demoHMMRockPaperScissors.m

As we gather information about the plays the human and computer makes, we
can calculate the filtered distribution p(ht|o1:t−1, c1:t−1) of the likely strategy
that the human is currently playing.

We can use this to then predict what move the human is likely to make at the
next timestep.

An exercise this afternoon is to extend the demo of this to include another
strategies.
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Auto-Regressive Models

The timeseries value vt is modelled by a weighted sum of previous values:

vt ≈
L∑
l=1

alvt−l

where the al are called the ‘AR coefficients’.

We can view this then as a form of regression, and find the AR cofficients by
minimising the squared loss

∑
t

(
vt −

L∑
l=1

alvt−l

)2

This is a simple quadratic function of the AR coefficients and easy to optimise.
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Auto-Regressive Models: The Belief Network

vt =

L∑
l=1

alvt−l + ηt, ηt ∼ N
(
ηt µ, σ

2
)

where a = (a1, . . . , aL)
T are called the AR coefficients and σ2 is called the

innovation noise. The model predicts the future based on a linear combination of
the previous L observations. This is an Lth order Markov model:

p(v1:T ) =

T∏
t=1

p(vt|vt−1, . . . , vt−L), with vi = ∅ for i ≤ 0

with

p(vt|vt−1, . . . , vt−L) = N

(
vt

L∑
l=1

alvt−l, σ
2

)
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Fitting a trend

0 20 40 60 80 100 120 140
−50

0

50

100

150

200

Figure: Fitting an order 3 AR model to the training points. The x axis represents time,
and the y axis the value of the timeseries. The solid line is the mean prediction and the
dashed lines ± one standard deviation around the mean predi.
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Uses of AR models

AR models are heavily used in financial time-series prediction, being able to
capture simple trends in the data.

They are probably the most common continuous variable timeseries model.

Another common application area is in speech processing whereby for a
one-dimensional speech signal partitioned into windows of length T , the AR
coefficients best able to describe the signal in each window are found.

These AR coefficients then form a compressed representation of the signal and
subsequently transmitted for each window, rather than the original signal
itself.

The signal can then be approximately reconstructed based on the AR
coefficients.

Such a representation is used for example in mobile phone and known as a
linear predictive vocoder.
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Discrete Fourier Transform

For a sequence x0:N−1 the DFT f0:N−1 is defined as

fk =

N−1∑
n=0

xne
− 2πi
N kn, k = 0, . . . , N − 1

fk is a (complex) representation as to how much frequency k is present in the
sequence x0:N−1. The power of component k is defined as the absolute length of
the complex fk.

Spectrogram

Given a timeseries x1:T the spectrogram at time t is a representation of the
frequencies present in a window localised around t.

For each window one computes the Discrete Fourier Transform, from which
we obtain a vector of log power in each frequency. The window is then moved
(usually) one step forward and the DFT recomputed.
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Nightingale

(a)

(b)

(c)

(d)

(e)

Figure: (a): The raw recording of 5 seconds of a nightingale song (with additional
background birdsong). (b): Spectrogram of (a) up to 20,000 Hz. (c): Clustering of the
results in panel (b) using an 8 component Gaussian mixture model. The index (from 1 to
8) of the component most probably responsible for the observation is indicated vertically
in black. (d): The 20 AR coefficients learned using σ2

v = 0.001, σ2
h = 0.001. (e):

Clustering the results in panel (d) using a Gaussian mixture model with 8 components.
The AR components group roughly according to the different song regimes.
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Resources

You can download a free book on modelling and timeseries from
http://www.cs.ucl.ac.uk/staff/d.barber/brml

This includes also software (Matlab and Julia).
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