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2 2 ONE-DIMENSIONAL MINIMIZATION

(a) cosz (b) 2% cosx

Figure 1: (a) The function cosz. This has infinitely many local minima, each of which is also a global
minimum. (b) The function f(z) = 22 cosz also has infinitely many local minima, but no global minimum.

1 Introduction

The problem of optimization can be easily stated. You are given a function f : R® — R and you want to find
those x € R” where f takes on a maximum of minimum value, and evaluate f at those points. As maximizing
f is equivalent to minimizing — f, we shall just consider minimization.

The techniques that we use find local minima; there is little known about how to find global minima, although
it is clear that stochastic methods do help. Note that in general, simply evaluating f' and finding a zero of
this function is a bad idea: lots of critical points aren’t minima, and how would we know?

For minimization in one dimension, we can choose between methods that require derivatives of f and those
that just use function values. The former are more powerful in general, but not necessarily more effective: they
will tend to converge faster, but may fail to converge where slower methods succeed. This is effectively because
derivative based methods are constructing higher order interpolating polynomials to find the minimum.

In multi-dimensional search spaces, methods that use derivative information can be very useful to explore the
geometry of the function. From a given point, there are infinitely many directions to search in: a single dot
product Vf.v determines whether moving in the direction v is uphill or downhill. This dot product involves
just O(n) operations. In one dimension, there are just two directions to move in, so evaluating f is as good
as evaluating f’.

2 One-dimensional minimization

One-dimensional optimization is important as it is a component of the multivariate minimization methods
we will discuss later. These methods are iterative and rely on a line-search to find a minimum along a given
search direction v.

We shall first review some sufficient conditions for a point z* to be a local minimum, and use these to obtain
a rough estimate of the accuracy which can be attained when carrying out one-dimensional minimization nu-
merically. We then turn to numerical optimization techniques. These can be divided into dissection methods
(e.g. Golden section) and fitted polynomial methods (e.g. Quadratic interpolation and Brent’s method).

2.1 Sufficient conditions for a minimum

For z* to be a local minimum of the univariate function f(z), we require that

f(&") < f(=)

for all z which are sufficiently close to z*. More precisely, for z* to be a local minimum, there must exist a
positive constant A such that the above inequality holds for all z satisfying |z — z*| < A. Further, x* is a
global minimum if the inequality holds for all z, i.e. one can choose A = 0.

Example 1 The function f(z) = cosz has infinitely many local minima, each of them is also a global
minimum. The function f(z) = z? cosz also has infinitely many local minima, but no global minimum, see

fig(1)



2.2 Numerical Precision 3

foy  TOCHD)

X X+h

Figure 2: The precision to which we can find a minimum depends on how “flat” the function is around the
miniumum. Even though we may be able to calculate function values to machine precision, we can typically
only evaluate the minimum point z* to about the square root of machine precision.

Now assume that f(x) can be differentiated three times at some point 2*. Then we have the Taylor expansion:

Ft + 1) = @) + £t T o) (1)

Choosing a small positive € and setting h = — f'(z*)e we get f(z*+h) ~ f(z*)— f'(z*)?€ and thus f(z*+h) <
f(z*) unless f'(z*) = 0. Consequently z* can only be a local minimum if f'(z*) = 0.

Let us assume that f'(z*) = 0 and that further f”(z*) is greater than zero. Then for small values of h the
Taylor expansion yields,

fat + 1)~ fa) + T @)

and thus f(z* + h) > f(z*). So in this case z* is a local minimum of f. In case that also f"(z*) = 0, one
has to take into account the behaviour of the higher order term O(h3).
To summarize, f'(z*) = 0, f”(z*) > 0 is a sufficient condition for z* to be a local minimum.

2.2 Numerical Precision

Let z* be a minimum satisfying f'(z*) =0, f""(z*) > 0, and rewrite (equation (2)) as

f"(=z")
2f(2*)

We consider a situation where we are carrying out some numerical search procedure for z* and let us assume
our current best approximation of z* is * + h. Is there any point in trying to obtain a better approximation?
Note that the numerical computations are not entirely accurate, and let € be the relative machine precision.
This means that two numbers a, b may numerically seem the same, if |a/b — 1| < e. So numerically we may
not be able to see any difference between f(z* 4+ h) and f(z*) once
1 ;U* .
€~ f ( *) hZ’
207 (@")]

and there is no point in trying to obtain a better approximation than z* + A to the location of the minimum.
So we will have to stop the search procedure, once

h| ~ Vev/2|f(@*)/ £ (*)]

The true value of * and thus of A is unknown, but typically the search algorithm is going to yield a sequence
xy, of increasingly accurate approximations to z*. So if the computations were perfectly accurate, we would
have limy_, o, £x = £*. Due to numerical imprecision, however, it is sensible to stop the search, when

[ +h)/fz) -1~ h?.

ki1 — zk] & Ve 2 f (a%)/ " (z*)]

One might consider estimating the unknown ratio f(z*)/f"(z*) using f(zx)/f"(zx). Normally, however, one
just assumes that 2|f(z*)/f"(z*)| is approximately 1 and stops when |zx1 — 2| < /€.
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a b C

Figure 3: A bracket is a triple {a,b,c} of real numbers, such that a < b < ¢ and f(a) > f(b) < f(c). This
means that there must exist a minimum somewhere in the interval [a, cl.

Example 2 Set g(z) = Af(z). Then z* is also a local minimum of g and g(z*)/g¢" (z*) = f(z*)/f" (z*). So
this ratio is independent of the magnitude of the function.

While these considerations show, that the precision in finding the location z* of the minimum will only be
V€, the value of the function f(z*) is nevertheless estimated with a precision of e.

For single precision computations on the Suns, /€ is about 3 x 10~%, and for double precision it is about
1078,

2.3 Rate of convergence

In the sequel we shall consider algorithms which compute a sequence of improving approximation z, to z*. So,
numerical considerations aside, limg_, o, zr = z*. One way of comparing different algorithms, is to consider
the rate of convergence p of the sequence z. The rate of convergence p is defined to be the largest number
for which it is possible to find a bound C}, so that the following inequality holds for all &:

|Tk+1 — 2|
|z — z*|P

<Cp

Example 3 The sequence z; = 2~ * has rate of convergence p = 1. Obviously z* = 0 and

|$k+1 _ JU*| _ 2—k—1

— — 2—k—1+kp — 2—12k(p—1)
|zp — z*|P 2—kp

So for p =1 we can use C; = 2! whereas 2¢(P—1) diverges for p > 1.
g

Example 4 The sequence z; = 2-(2") has rate of convergence p = 2.

2.4 Brackets

A bracket for minimizing a function f, is a triple {a, b, ¢} of real numbers, such that a < b < ¢ and

fla) = f(b) < f(e) -

Since the value of f on the interior point b is smaller or equal to the value on the boundary points a and
¢, one will expect that there is a local minimum somewhere inside the interval [a,c]. The next proposition
shows that that is indeed the case if f is continuous.

Example 5 The points {0, 7,27} are a bracket for minimizing f(z) = sinz and z* = 37/2 is a local
minimum.

Proposition If {a,b,c} is a bracket for minimizing the continuous function f, then f has a local minimum
z* with a < z* <ec.

Proof:. From Real Analysis we know that the continuous function f must attain a smallest value on the
closed interval [a, c]; i.e. there is a point # with

a<i<c and f(%)< f(z)forallz€a,c].
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Ifa < Z < ¢, weset £* = & and have found our local minimum. Otherwise a = Z or ¢ = Z. In both cases this
means that f(b) < f(Z) since {a,b, c} is a bracket. However, since by construction f(%) is the smallest value
we also have f(b) > f(z). Thus f(b) = f(&) and z* = b is a local minimum of f.

So having a bracket is important since it gives us an indication in which range we have to hunt for a local
minimum. But just given a function f, how are we going to obtain a bracket in the first place? We just pick
any initial point z and a step size s > 0. Let us assume that f(z) > f(z + s). We then evaluate f on the
sequence z; = z + is, starting with ¢ = 0, until we find the first ¢ such that f(z;) < f(zi41). If we find such
an 1 the triple {zo, ;, z;11} is a bracket. Of course it might be that there is no such ¢, that is f(z;) > f(zit+1)
forall i =0,... ,00. In this case we are at least finding points on which f attains smaller and smaller values.
We have assumed f(z) > f(z+s), and so still have to consider the case that f(z) < f(z+s). In this case we
can scan the sequence z; = z + (1 — @)s, starting with ¢ = 0, until we find the first ¢ with f(z;) < f(zi41). If
we are successful, {z;11,%;, o} is a bracket.

While this demonstrates the principles (and limitations) of methods for finding a bracket, using a fixed step
size s is not always the best strategy. It can be useful to exponentially increase the step size by using a
sequence like z; = 2z + 2%s.

A bracket {a,b,c} for minimizing f provides a rough approximation for the location of a local minimum, it
must lie somewhere between a and ¢. Once we have bracket, it is quite straightforward to obtain a better
approximation, by picking a point x # b in the interval (a,c) and comparing f(z) to f(b).

Assume we pick z such that a < < b, then

either f(x) > f(b), so {z,b,c} is a new bracket,
or f(z) < f(b), so {a,z,b} is a new bracket.

In the first case, it is obvious that {z,b,c} is a bracket. For the second case, f(z) < f(b), note that
f(a) > f(b), since {a,b,c} is a bracket. So f(a) > f(z) and {a,z,b} is indeed a bracket.
In the case that we choose to pick z such that b < x < ¢ the rules are:

Either f(z) > f(b), so {a,b,z} is a new bracket,
or f(z) < f(b), so{b,x,c} is a new bracket.

So, by choosing an interior point z in the current bracket and obtaining a new bracket as described above,
we arrive at better and better approximations to the location of the minimum. In next two section, we shall
consider clever strategies for picking .

2.5 Golden Section Search

One approach to choosing z, is to try and make the length of the new bracket a small as possible. Assume
that we pick z in the interval (a, b), then the new bracket is going to be {z,b, ¢}, with length ¢— =z, or {a, z, b},
with length b — a. Since we don’t know the outcome before having done the hard work of evaluating f(z),
we want to hedge our bets and choose x so that lengths of the two possible new brackets are the same, i.e.
¢—x = b—a. In the case that z is in the interval (b, ¢), the same reasoning yields the equation x —a = c¢—b.
Both equations for = have the same solution

z=a+c—b, (3)

so0 it doesn’t matter which of the two assumptions, z € (a,b) or = € (b,c), holds. The above prescription for
choosing x, however, has the problem that it yields = b, if b lies right in the middle between a and c¢. Of
course we must evaluate f at a new point x # b and for numerical reason we should also beware of choosing
a value for z which is close to b.

The following reasoning yields a close to optimal and safe way of choosing . Let A be the ratio of the length
of the smaller of the two intervals to the length of the entire bracket.i.e.

A:min{b_a,c_b} .
c—a'c—a

Note that brackets with a value of A close zero are undesirable since this means that b is close to one of the
endpoints. But values of A close to % are bad as well, because they yield z close to b on application of (3).
We now calculate a safe intermediate value for A, which reproduces itself when (3) is applied. Let us assume

that the first interval is smaller, b — a < ¢ — b then using (3) will yield an z € (b, c). Thus the new bracket is
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going to be either {a,b,z} or {b,z,c}. Let us assume the latter and further assume that z —b < ¢ — z. Then
the value of A for the new bracket {b,z, c} is

x—b
Anew = — .
c—b
Using (3) and that A = (b —a)/c—a), 1 — XA = (¢ —b)/(c — a) one calculates
N a—l—c—b—b: c—b—(b—a) :l_b—azl_b—ac—a
c—b c—b c—b c—ac—b
1 1-2)
= AT T4 @

We would like Apew = A and this yields the quadratic equation A = (1 — 2X)/(1 — A). One of its solutions is
greater than % and useless, the other one is:

A= ~ (.38197 .

3-V5
2

This value is the golden mean, a quantity that was studied by Pythagoras (who lived around 570-490 B.C.).
It was supposed by the ancient Greeks to be the most aesthetic proportion in which to divide a line: echoes
of its use can be found in Leonardo da Vinci (and other painter/geometers of the Italian Renaissance), Dali,
and Mondrian, amongst many other artists.

The derivation assumed that the new bracket is {b,z,c}, but analysing the case {a,b,z} yields the same
result for A. So, if b —a < ¢ — b in Golden Section Search the new point x is chosen as

z=b+ Ac—0b).
If b— a > ¢ — b the prescription is:

z=b+Na-0).

In both cases the next point to be evaluated is that which is a fraction 0.38197 into the larger of the two
intervals (measuring from the central point).
The rate of convergence of Golden Section Search is linear. (Algorithm can be found on pp. 400-402 of NR).

Exercise 1 (10 marks) Analytically find the minimum of the function
flz) =1-z%"".

Sketch (or plot) a graph of this function. Verify that for the triple a = 1,b = 1.5,¢ = 3, f(b) < f(c) and
f(b) < f(a). Apply Golden section search to find the minimum; carry out enough iterations of the procedure
to locate the minimum to within £0.1.

You may do this question either by hand or by programming in MATLAB.

2.6 Polynomial Interpolation and Brent’s Algorithm

A second approach is to try and choose z so that is a good approximation to the true minimum z. This is
done by fitting a polynomial to the curve and analytically calculating the local minimum of the polynomial.
The simplest case is to use a parabola. Given a bracket {a,b,c} for minimizing f Lagrange’s formula

(z —b)(x—¢) (z —a)(z -0 (z —a)(z—b)
W= =C UL 7Y ey 2 D279
R e A ([ R P e R
yields a quadratic function with P(a) = f(a), P(b) = f(b) and P(c) = f(c¢). P has a unique minimum x
except in the singular case f(a) = f(b) = f(c). Since {a, b, c} is also a bracket for minimizing P, this value
of £ must lie inside the bracket. Solving P'(z) = 0 gives the formula for the new point z:

pep_ LO=a)?[f(0) - (O] = (b—)*[f(b) — f(a)]

2 (b—a)[f(0) = f(o)] = (b—c) [f(b) — f(a)]
Although for a smooth function f quadratic interpolation has asymptotic superlinear convergence (p ~ 1.324),
it can be very slow when outside of the asymptotic regime. For example, if b is already at or near the minimum
of the interpolating parabola, then the new point will be close to b. This causes slow convergence if b is not
close to the local minimum of f. By contrast, the linear convergence of the Golden section method is
guaranteed from the outset. It can therefore be useful to use a hybrid algorithm which tries to combine the
best features of both methods in order to minimize the number of function evaluations required. Brent’s
algorithm (NR 404-5) is an example of such a hybrid algorithm. Safeguards are included to prevent iterates
from being too close.

P(z) =




3 Multivariate Calculus

3.1 Matrix Algebra

For an [ by n matrix A and an n by m matrix B, the product AB is the [ by m matrix C' with the following
components

C’ik:(AB)z'jZZAz’ijk; izl,...,l k=1,...,m.
j=1

Note that even if BA is defined as well, that is if ] = n, except in very special cases BA is not equal to AB.
One often thinks of a n dimensional vector x as being an n by 1 matrix.

a1 a2 T _ [ a1171 + a1222
a1 G2 T2 a21T2 + A22T2

The transpose BT of the n by m matrix B is the m by n matrix D with components

Example 6

ij:(BT)kaBjk; k:l,...,m jzl,...,’I’L.

Example 7

(123)T_ ;g
45 6 36

Transposing B twice, again yields B, (BT)" = B. Further (AB)T = BT AT since
(BT)kj(AT)ji = (BTA ki -

n n
=1

((AB)")ki = (AB)y = ZAiijk = Z(AT)jz'(BT)kj =

J=1 J

If the shapes of the matrices A,B and C are such that it makes sense to calculate the product ABC, then
also (ABC)T = CTBT AT,
A square matrix A, i.e. [ = n, is symmetric if A7 = A.

Example 8

1 2) . e (1 2 i not
2 4 1S Ssymmetric; 3 4 1S not.

A real number a can be thought of as a symmetric 1 by 1 matrix, so a’ = a. The inner product of two

n-dimensional vectors x and y can be written as x”y and this is a real number. In particular
T
xTy = x"y)" =y"(x") =y"x.

If A is a symmetric n by n matrix, the expression x? Ay yields a kind of generalized inner product. In
particular, since x” Ay is a scalar, we again have

T

xl Ay = (xTAy)T = yTAT(xT) =ylAx .

In the sequel we shall often deal with multivariate quadratic functions. We will write these in the form
f(x) = £xTAx — bTx + ¢, where A is a symmetric n by n matrix, x and b are n-dimensional vectors, and ¢
is a real constant. It is important to be able to convert between vector and coordinate notation:

Example 9

T
1 1
_xT@ g)x—<§> X +6 =t + 5303 + 20105 — 431 — 52> + 6.
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In the case b = 0 and ¢ = 0 the conversion is:

. . Y1 A1y [
fx)= EXTAX = ixT : =3 ZZmiAija:j

n o i=1 j=1
Ej:l Anjz;

Does f(x) = 1x” Ax have a global minimum? Assume we can find a vector v , such that f(v) < 0. For any
scalar A we have f(\v) = A\2f(v), and by choosing large values for A, we can make f(\v) as small as we like.
So in this case f does not have a global minimum.

A symmetric matrix A, with the property that x Ax > 0 for any vector x is called nonnegative definite.
For such a matrix, the point x = 0 is a global minimum of f.

A symmetric matrix A, with the property that x” Ax > 0 for any vector x # 0 is called positive definite.
For such a matrix, the point x = 0 is the unique global minimum of f.

1 1
4=(13)
is positive definite. x Ax = 22 + 2z122 + 323 = (21 + 22)? — 25 + 323 = (71 + 22)? + 223, So xTAx > 0;
and xTAx = 0 implies 1 + 22 =0 and 22 = 0, i.e. x = 0.

Example 10 The matrix

Note that a positive definite matrix has full rank and is thus invertible: If A does not have full rank we can
find a v # 0 with Av = 0. But then also vI Av = 0, and A is not positive definite.

Exercise 2 (5 marks) Show that f(x) = (31, :)? can be written as f(x) = 1xT Ax for a suitable

symmetric matriz A. Is A positive definite for some value of n? Does f have a local minimum or only global
minima? What is the global minimum value and where is it?

3.2 Partial derivatives

Consider a function of n variables, f(z1,%2,...,%,) or f(x). The partial derivative of f wrt z; at x* is
defined as the following limit (when it exists)

| _ . f@i+ b a) - FOC)
0Ty | yr h—O h

The gradient vector of f will be denoted by Vf or g
of

of
Oxn

Example 11 The gradient of f(x) = z2 cos(z1 — z2) is

V() = ( o — 2 sin(z1 — ) )

T1 — Tz) + Ta sin(xy — T2)

3.3 Higher derivatives

The “first derivative” of a function of n variables is an n-vector; the “second-derivative” of an n-variable
function is defined by the n? partial derivatives of the n first partial derivatives wrt the n variables

o (0f . .
6_;[,'1<6—:);']> z—l,...,n, j—l,...,n

o’ f
8mi 8xj ’

which is usually written

. >f .
i 7 L i=j

8$i2 ’
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If the partial derivatives 0f/0z;, 0f/0x; and 8% f/0x;0z; are continuous, then 8°f/0z;0z; exists and
0%f|0z;0z; = 0* f |0z ;0; .

These n? second partial derivatives are usually represented by a square, symmetric matrix called the Hessian
matrix of f(x).

o F _o%f
8zx12 Tt 8z10zn
Hy(x) = : :
2 f %f
810z, " 8z ,2

Example 12 The Hessian of f(x) = x5 cos(x; — x2) is

Hy(x) = —zy cos(x; — x2) —sin(zy — ©2) + T2 cos(x1 — T2)
f T\ —sin(x; — 22) + zacos(zy — x2)  2sin(x; — T2) — T2 cos(zy — X2)

3.4 Chain Rule

Consider f(x1,...,2z,). Now let each z; be parameterized by u1,... ,up, i.e. ; = 2;(u1,... ,up). What is

Of | Oua?

Sz (5:171,...,xn—l—émn)—f(xl,...,wn)

n

- Z (5:1:] + higher order terms

m

dz; = Z i 6ua + higher order terms

So

n m
= g Z B—f g— « 1 higher order terms
Therefore
of amJ
Bua Z 0.77] Ouy
or in vector notation

o
Oug

0x(u)
Oug

(x(u)) = V7 (x(w))

3.5 Directional derivatives

Assume f is differentiable. We want to define the directional derivative (Dy f)(x*) of f in a direction v at a
point x*. Let x = x* + hv, i.e. z; = 2} + hv;. Then

(D) (x") = - F(x* + )

h=0
Example 13 The directional derivative of f(x) = x5 cos(x; — ) in the direction v = (1,1)7T:
f(x* + hv) = (x5 + h) cos(z] + h — (x5 + h)) = f(X*) + hcos(x] — x3).
0 (Dv f)(x*) = cos(z} — z3).

By the chain rule we obtain

J x=x*+hv
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-7 \
-7 1
X1 ISR /;
- - e ’
- 7’
e i 4
- Jd - L .
. - JPRt ® ,
’ PR Aaits . ’
e . e L
. . RSPt IR -’
. . . -
4 LA -
, - L
’ et .
7 PPt -
L e
1 -7
‘ - Vf
NPT (x)

Figure 4: Interpreting the gradient. The ellipses are contours of constant function value, f = const. At any
point x, the gradient vector Vf(x) points along the direction of maximal increase of the function.

0
D)= St
j e

= VfTV

Example 14 The directional derivative of f(x) = z2 cos(x; — z2) in the direction v = (1,1)7:

D) = (o Y (1) = et ).

cos(z} — x3) + x5 sin(xf — 5

Example 15 The directional derivative of the linear function f(x) = bTx. We have f(x* + hv) = f(x) +
hbTv, so (Dy f)(x*) = bTv. Comparing to the general formula (Dy f)(x*) = Vf*v we obtain

V(x) = b.

» Exercise 3 (10 marks) Rosenbrock’s function is given by
f(x) =100(z2 — 27) + (1 — 21)°

Find expressions for all of the first and second derivatives of this function of 2 variables. Verify that x* =
(1,1)T satisfies g* = 0 and that H* is positive definite.
Show that H(x) is singular iff x satisfies the condition (xo — x?) = 0.005.

Calculate the directional derivative of the function in the direction v = (==

T
V2' V2
x' = (-1,0)T.

evaluated ot the point

» Exercise 4 (5 marks) Calculate the directional derivative of f(x) = 22(z1 + x2)%(z1 + 72 + x3)? at a point
x in the direction p = (1,—1,0)T.

3.6 Interpreting the Gradient Vf(x)

The gradient points along the direction in which the function increases most rapidly. Why?

Consider a direction p (a unit legnth vector). Then a displacement, ¢ units along this direction changes the
function value to

f(x+6p) ~ f(x) +0Vf(x) - P
The direction p for which the function has the largest change is that which maximises the overlap
Vi (x) - p = [Vf(x)|[p| cosf = |Vf (x)| cos

where 6 is the angle between p and Vf(x). The overlap is maximised when 6 = 0, giving p = Vf(x)/|Vf (x)|-
Hence, the direction along which the function changes the most rapidly is along Vf(x).
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3.7 Taylor’s theorem

Recall Taylor’s theorem for univariate functions

hr—l
(r—1)

2
LS S Fr-U(2) + O(") ,

F(z +h) = F(z) + hF'(z) 5

assuming F'(z) € C".
Set F'(h) = f(x* + hv) for some vector v. Then

f(x* + hv) = F(h) = F(0) + hF'(0) + h;F"(O) +O(h®) .

Of course F(0) = f(x*) and

F'(h) = —fx+h Zv]

x=x*+hv
So
d
F'(0) = (x*+hv)|  =(Duf)(x*) =V (x")v
dh h=0
Further
1
F( dh Z JB.Z'J
x=x*+hv
- Z th a
*+hv
o 0
= Z Vj Z V; p) . %
J ¢ x=x*+hv
Thus
(92f
F'0)=") v =oTHp(x*)v
Z 7 0z;0; !

Inserting yields:

2
f(x* +hv) = f(x*)+hVTv + %vTva +O0(h®)

Example 16 For a quadratic function f(x) = %XTAX —bTx + ¢, with symmetric A, one finds:

1
fx+hv) = §(x+hv)TA(x+hv) b (x+hv)+c
= %XTAX + %thAx + %thAv + %hQVTAv —b"x —hbTv +¢
= %XTAX —bTx+c+ h(%vTAx + %XTAV —bTv) + %hQVTAv

2
= f(x)+hxTAv -bTv) + %VTAV

2
= f(x)+h(Ax —b)Tv + %VTAV

Comparing to Taylor’s formula above now yields that for a quadratic function:

Vf(x) = Ax —b and Hy(x) = A.
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3.8 Critical points

When all first-order partial derivatives at a point are zero (i.e. Vf = 0) then the point is said to be a
stationary or critical point. Can be a minimum, maximum or saddle point.

e Necessary first-order condition for a minimum.
There is a minimum of f at x* if f(x*) < f(x) for all x sufficiently close to x*. Let x = x* 4+ hv for small h
and some direction v. Then by a Taylor expansion, for small A,

f(x* 4+ hv) = f(x*) + bV v + O(h?)
and thus for a minimum
RV v +0(h?) >0
Choosing v to be —Vf the condition becomes
—hNFTNF + O(h®) > 0

and is violated for small positive h unless |Vf|> = VfTVf = 0. So x* can only be a local minimum if
|VF(x*)| =0, i.e if Vf(x*) = 0.

e Necessary second-order condition for a minimum.
At a stationary point Vf = 0. Hence the Taylor expansion is given by

Fx* +hv) = f(x*) + W>vTHpv + O(h?)

Thus the minimum condition requires that v' H v >0, i.e. the Hessian is non-negative definite.
Sufficient conditions for a minimum at x* are (i) Vf(x*) = 0 and (ii) H¢(x*) is positive definite.

Example 17 2} + 22 has a minimum at x* = (0,0)7, but H is not positive definite.

Example 18 For a quadratic function f(x) = x” Ax —b”x + ¢, with symmetric A the necessary condition
Vf (x*) = 0 reads:

Ax* —b =0

If A is invertible this equation has the unique solution x* = A~'b. If A is positive definite, x* is a minimum.

4 Multivariate Minimization 1: Gradient Descent

Almost all of the search techniques that we consider are iterative, i.e. we proceed towards the minimum x*
by a sequence of steps. On the kth step we take a step of length ay, in the direction py,

Xg4+1 = Xk + QkPk (5)

The length of the step can either be chosen using prior knowledge, or by carrying out a line search in the
direction pg. It is the way that py is chosen that tends to distinguish the different methods of multivariate
optimization that we will discuss.

We shall assume that we can analytically evaluate the gradient of f and will often use the shorthand notation

gr = Vf(xx) .

Typically we will want to choose py using only gradient information; for large problems it can be very
expensive to compute the Hessian, and this can also require a large amount of storage.

4.1 Exact Line Search Condition

At the k-th step, we chose ay to minimize f(xy + arpx). So setting F'(A) = f(xx + Apg), at this step we solve
the one-dimensional minimization problem for F(A). Thus our choice of ap = A* will satisfy F'(ay) = 0.



4.2 Gradient descent 13

Now

d
—F(ar + h)|h—o

=

0

z
I

dh
d
= T (xx + Pk + hPr)|h=0
= %f(’%—i—l + hPk)|h=0
= (Dp, f)(Xk41)
= VfT(Xk+1)pk -

So F'(ay) = 0 means the the directional derivative in the search direction must vanish at the new point and
this gives the Exact Line Search Condition:

0= gl{-i—lpk - (6)
For a quadratic function f(x) = %XTAX—bTX-i- ¢, with symmetric A, we can use the condition to analytically
calculate ay. Since Vf(xg+1) = Axp + arApr — b = Vf(xx) + o Apy we find
_ Pigk
P} Api

A =

4.2 Gradient descent

Perhaps the simplest choice for py is to set it equal to —gg. If we find that g = 0 we can stop. Otherwise
we can guarantee that f(xg+1) < f(Xx), as long as ay is positive and small enough. To see this, expand f
around x, using Taylor’s theorem:

f(xk + axpr) = f(xk) + akgE Pk -

With pg = —gj, and for small positive ay, we see a guaranteed reduction:

Fxk + arpr) ~ f(xk) — axllgrll-
The algorithm for gradient descent can be written

Ocm
input xg, gtol
k=0
while ||gk|| > gtol
Pk = —8Bk
compute a to minimize f(xg + arPpx)
Xk+1 = Xg + O Pk
k:=k+1
end

In general the compute a4 step is carried out using a one dimensional minimization method, e.g. Golden
Section. For a quadratic function, «aj can be computed with the formula in the preceding section. For a
quadratic function the rate of convergence will only be linear, unless we happen to start off with x; lying on
one of the principal axes, in which case we will find the minimum in one step.

This slow rate of convergence is unacceptable; for a quadratic function it should be possible to obtain quadratic
termination, which is that the minimum is found in a finite number of steps. After all, we could explicitly
calculate the minimum using x* = A~ 'b.

Let us consider the following 2-dimensional example to understand the drawbacks of gradient descent. Assume
f is the negative (since we are minimizing) life expectancy of a 30-year old who weighs z; pounds and has
height of z- feet, and we use gradient descent to find the optimal value starting from some initial point x;.
Now instead of measuring in pounds and feet, we might just as well use kilos and meters. Let ¢ be the
function that converts from metric to imperial

d(81,22) = (A1d1, Aada) ,

then f(X) = f(4(%k)) gives the negative life expectancy if we use metric units in %. If in metric units our
initial choice for weight and height %; is the same as in the imperial case, ¢(X1) = x1, then one would hope
that also

Bd(X2) = x2
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when using gradient descent.
The following calculation shows that unfortunately this is not the case. For the i-th coordinate of x; we have:

9f(x)
81‘,’

Xo; = X1; + Q1

X=X1

and for %» :

X2; = Xi1;ton

*=%;

X=X1

SO, using (ﬁ(fq) =x; and (ﬁ()A()z = /\i)A(i, we find:

9f(x)
6.’L‘i

B(%a)i = x1; + Q1 A7

X=X1

Consequently, to achieve ¢(X2) = x2, would require a; = a3 A7 for i = 1,2. But, since the conversion factors
are different (and A2 # A3), this is impossible (unless a; = 0).

The above discussion shows that the performance of gradient descent heavily depends on the the scaling of
the input variables. In this context, it is worthwhile mentioning that in the literature gradient descent is
sometimes called steepest descent. This is somewhat misleading since it seems to indicate that the negative
gradient gives an exceptionally good direction for minimizing a function.

The name steepest descent derives from the fact, that among all directions, i.e. all vectors of a given small
length, the direction of the gradient is the one in which the function changes most rapidly. This is indeed true,
if one measures length using the conventional Euclidean norm vxTx. However, the unit of measurement in
the above example then is v/1bs? + ft* in the imperial and v/kg® + m? in the metric case. So one has different
notions of what a length is, and no straightforward way to choose between them.

A definition of what length, or more generally the distance between two points is, is called a metric. Many of
the more advanced optimization method can be considered as finding a metric which is tuned to the function
being optimized and as performing ’steepest descent’ w.r.t. to this metric. Except for the case of quadratic
functions, the metric used depends on the current point, so these are wariable metric methods.

5 Multivariate Minimization 2: Quadratic functions
The goal of this section is to derive efficient algorithms for minimizing multivariate quadratic functions. We

shall begin by summarizing some properties of quadratic functions, and as byproduct obtain an efficient
method for checking whether a symmetric matrix is positive definite.

5.1 Eigenvalues and Eigenvectors

Consider the quadratic function f(x) = +x7Ax — b"x + ¢ and for the moment assume that A is not just
symmetric but diagonal, i.e. A;; = 0 for ¢ # j. In this case it is easy to decide whether A is positive definite:
Since xT Ax = Y1 | A;;x?, a diagonal matrix is positive definite if and only if 4;; > 0. Also f(x) has the
simple form

1 n n
flx) = 5214“3312 —Zbﬂ‘i +c
i=1 i=1
"1
= ¢t Z(§Aiix§ = biz;)
i=1
and if A is positive definite:

n
1
min f(x) =c+ E min(§A,~,~x§ —biz;)
x Z;
i=1
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. For diagonal A we can decompose the multidimensional problem into n independent 1-dimensional problems
and obtain the solution z} = b;/A;;.

Note that A is diagonal if and only if Ae; = Aye;, ¢ = 1,...,n where e; is the unit vector in the i-th
direction. That is e; = (1,0,...,0)7, e; = (0,1,0,...,0)T etc.

If A is symmetric an important result from Linear Algebra tells us that we can find n linearly independent
eigenvectors v; with real eigenvalues A;:

AV,’ = )\z'Vz' -

Example 19 Eigenvectors of A = ( clz (11 ) are (1,1)7, with eigenvalue 1+a, and (1, —1)%, with eigenvalue

1 — a. For a = 0 the two eigenvalues are the same and any nonzero vector is an eigenvector.

The special property of the diagonal case is that the eigenvectors coincide with the axis of the coordinate
system. This suggests that for symmetric A we could simplify the minimization problem by a change of
coordinates. This becomes specially simple if the eigenvectors v; are orthogonal, and an important property
of symmetric matrices is that we can always find such eigenvectors. To see this, rewrite the expression )\,-v;‘-”vi
in the following way:

)\ivj Vi=V; Vi = \£ Avi =vi Av; = v \jvj = Ajvi v, = /\ij Vi

Comparing the first and last expression shows that VJTVz' =0, if \; # Aj. So, for a symmetric matrix,
eigenvectors which have different eigenvalues are always orthogonal. Now assume that we encounter the
special case A\; = A; = A. Since

A(sv; +tv;) = sAv; +tAv; = A(sv; +tvy) ,

any linear combination of v; and v; is an eigenvector as well. Thus we can the replace v; by the eigenvector

T

Vi Vj

! v J
V=V —tvy b= —m—=
J ’ ’ V; V;

and now viTv;- = 0. So if two eigenvalues are the same, we can nevertheless find orthogonal eigenvectors,
and it is straightforward to extend the argument to the case that more than two eigenvalues coincide. In
summary, a symmetric matrix always has n orthogonal eigenvectors, and since v;/|v;| is an eigenvector as
well, it even has n orthonormal eigenvectors.

From now on we assume that the v; are such an orthonormal basis of eigenvectors and use the eigenvectors
to construct the square matrix

R = (Vl,Vz,... 7vn) .

For the components of the product RTR we find (RTR);; = vIv;, so all the off-diagonal elements of RTR

i
are zero and the diagonal elements equal 1, i.e. RTR is the identity matrix. So R~! = RT, that is R is

orthogonal.
Similarly ,
vi
RTARZRT(Avl,AVQ,... ,Avn) = ()\1V1,)\2V2,... ,/\an) ,
Vi
so (RTAR);; = A\;jvIv; and
D=R"AR

is diagonal. The diagonal elements of D are just the eigenvalues of A, D;; = A;.

Now assume that D is not positive definite, that is we can find an x # 0 such that x” Dx < 0. Then ¥ = Rx
is nonzero as well since R is invertible. Further X7 A% = xTDx < 0 and A is not positive definite. But,
since R~ = RT, RDRT = A. So one can turn the argument around and also show that if A is not positive
definite, neither is D. Hence A is positive definite iff D is, that is iff all the eigenvalues of A are greater than
Z€ero.

Returning to minimization of

fx)= %XTAX —bTx+¢
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let us define the function
f®) = %chch — (R™b)Tx +c. (7)

Since f(R 'x) = f(x), if * is a minimum of f, we find that z* = R%* is a minimum of f. But minimizing
f is easy since D is diagonal.

Exercise 5 (5 marks) Show that if v is an eigenvector of the square matrix A, and 7 is a real number
different from zero, then v is also an eigenvector of A.

Exercise 6 (5 marks) Let f(x) = x7 Ax, where A is square but not necessarily symmetric. Show that
f(x) = 1xT(A + AT)x and show that A + AT is symmetric.

:1,) Z ) find vectors x and y such that xT Ay # yT Ax.

Would it still be possible to find such vectors if A were symmetric ¢

Exercise 8 (10 marks) This is a MATLAB ezercise.
Consider the quadratic form

Exercise 7 (5 marks) Given the matriz A =

fx) = %XTAX -bTx

2 1 3
=(145) »=(3)
Implement the gradient descent optimization method for this function starting from the point (—1,2.5), and
make a plot showing the path taken by the gradient descent algorithm. [Hint: Since f is quadratic the result of
the line search in the direction of the gradient can be calculated analytically and you do not have to implement
a line search algorithm.] This plot should show that successive directions taken are orthogonal. Decide on an
appropriate convergence (stopping) criterion. Hand in all of the code that you write. Also hand in a listing
of the successive x positions found by the algorithm.

Use the method with a starting location x* + v, where xX* is the minimum and v is an eigenvector of A.
To add lines to the plot you can use something like the following:

with

hold on
plot( [0 11,[0 11 )
plot( [1 21,[1 0] )
hold off

Figures can be printed to a file by using the command print -deps <filename> from the matlab command
line. This will produce an encapsulated postscript file (with the suffiz .eps) which can be easily printed.

5.2 Minimising Quadratic functions using Line Search

Without loss of generality, consider
L 7 T
f(x):ix Ax—b'x+c¢ (8)

where A is positive definite and symmetric. (If A is not symmetric, consider instead the symmetrised matrix
(A+ AT)/2, which gives the same function f).

Although we know where the minimum of this function is, just using linear algebra, we wish to use this
function as a toy model for more complex functions which however locally look approximately quadratic.
One approach to finding minima is to search along a particular direction p, and find a minimum along this
direction. We can then search for a deeper minima by looking in different directions. That is, we can search
along a line x* = x° + Ap such that the function attains a minimum. That is, the directional derivative is
zero along this line,

0=Dpf(x*) = Vf(x*)-p



5.3 Conjugate vectors 17

Differentiating equation (8), this gives

0=(Ax*—-b):p
0=(Ax0+AXAp—Db)-p

This has solution,

(b—4x") -p _ —V(x%)-p

A= pfAp — pT4p

Ok, so now we’ve found the minimum along the line through x° with direction p. But how should we choose
the line search direction p? It would seem sensible to choose successive line search directions p according to
p"¥ = —Vf(x*), so that each time we minimise the function along the line of steepest descent. However,
this is far from the optimal choice in the case of minimising quadratic functions. A much better set of search
directions are those defined by the vectors conjugate to A.

5.3 Conjugate vectors

So one way of solving the minimization problem would be to compute all of the eigenvectors of A. However,
this is quite involved and it turns out that a simpler procedure is available. The starting point is the
observation that the matrix R of the eigenvectors hast two properties: R~' = RT, and RT AR is diagonal.
But we only needed the second property to define the transformation (7) which diagonalizes f.
Consequently we want to construct a matrix P with the property that PTAP is diagonal. Let P =
(P1,P2,--- ,Pk), and note that we start with an n by k matrix, ¥ < n. The reason for this is that we are
aiming at an incremental procedure, where columns are successively added to P. Since (PTAP);; = p! Ap;
the matrix PT AP will be dlagonal if pf Ap; = 0 fori # j. It will be useful to require that P7 AP has positive
diagonal elements, i.e. pf Ap; > 0.

We thus arrive at the following definition: The vectors p;, i = 1,... ,k are called conjugate to the matrix A,
iff fori,j=1,...,k and i # j:

pz-TApj =0 and ptTApi >0.

The two conditions guarantee that conjugate vectors are linearly independent: Assume that

k
0= ZOC]'I)J Za]pj + a;p; + Z a;Pp;
j=1

j=i+1

Now multiplying from the left with p; T A yields 0 = ;P; T Ap;. So q; is zero since we know that iTAp,- > 0.
As we can make this argument for any ¢ = 1, ... , k, all of the a; must be zero.

That conjugate vectors are linearly independent, means that the matrix P = (p1,p2, ... ,Px) has full rank.
In particular, if & = n, the matrix P will be invertible. An important consequence is: If the symmetric n by
n matrix A has n conjugate directions, it is positive definite. To see this, let x be any nonzero vector. Then
% = P~!x is not zero, and since P% = x:

xT Ax = T PT AP%

But since P is made of conjugate vectors, PT AP is diagonal and all the diagonal elements are positive. So
PT AP is positive definite, x7 PT AP% is greater than zero, and thus x7 Ax > 0.

Exercise 9 (5 marks) For a symmetric n by n matriz A let p1,...,pn be linearly independent vectors such
that

PiAp; =0 if i#]
Show that A is positive definite if pf Ap; >0 fori=1,...,n

We now turn to constructing conjugate vectors using a procedure which is analoguous to Gram-Schmidt
orthogonalization. Assume we already have k conjugate vectors pi1,... ,pr and let v be a vector which is
linearly independent of pi,... ,pr- We then set

Pk+1 =V — Z TAp (13)
j
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and claim that now the vectors pi,...,Pr+1 are conjugate if A is positive definite: Since v is linearly
independent of p1, ... ,pr the new vector pg41 cannot be zero, and thus for positive definite A, pzﬂApkH >

0. We now only need to show that pf Apj+1 = 0. Indeed

k T
p; Av
P; Aprt1 = pjAv—) ——p] Ap;

T 4

T P; AV
CAv — - Ap;
P; p;r 1pipz Pi

= 0.

An important property of the Gram-Schmidt procedure is that the vectors pi,...,pr+1 Span the same
subspace as the vectors v and pi,...,pr: Any linear combination of pi,...,pr+1 can be rewritten as a
linear combination of v and p1,... ,pk just by replacing px+1 with the RHS of equation (13). So the space
spanned by pi,...,Pk+1 is contained in the one spanned by v and p1,... ,pg. But solving (13) for v allows
us to turn the argument around and so the two subspaces are the same.

Using the Gram-Schmidt procedure, we can construct n conjugate vectors for a positive definite matrix in
the following way. We start with n linearly independent vectors uy, ... ,u,, e.g. we might chose u; = e;,
the unit vector in the i-th direction. We then set p; = u; and use (13) to compute p2 from p; and v = us.
Next we set v = uz and compute ps from p;,p2 and v. Continuing in this manner we obtain n conjugate
vectors. Note that at each stage of the procedure the vectors uy,...,u; span the same subspace as the
vectors pi,... ,Pk-

What is going to happen if A is not positive definite? If we could find n conjugate vectors, A would be
positive definite, and so at some point k£ the Gram-Schmidt procedure must break down. This will happen
if p Apx < 0. So by trying out the Gram-Schmidt procedure, we can in fact find out whether a matrix is
positive definite.

Example 20 For the matrix A = ( clz (11 ) we apply the Gram-Schmidt procedure to u; = (1,0)7 and
uy = (0,1)T. So p; = (1,0)T and p{ Ap; = 1 is positive. Now

plTAv
T P1
Pi Ap:

P2 =V —
for v =uy = (0,1)T. So

P2
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Now pd Ap, = 1 — a?, so A is positive definite if —1 < a < 1.
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Exercise 10 (10 marks) Let {u;}_, be a set of linearly independent vectors and for k =0,... ,n —1 set
k T
Uj, 1 APj
Pk+1 Zuk+1—ZT7 j -
Then {p;}™, are A-conjugate, and p1,... ,Pr span the same subspace as uy,... ,uy if A is symmetric and

positive definite.
Try out this Gram-Schmidt procedure on the following matrices.

2 -3 0 2 -2 0 2 -1 0
-3 2 0 -2 2 0 -1 2 0
0 0 1 0 0 1 0 0 1

Explain whether or not the Gram-Schmidt procedure determines if the matriz is postive definite.
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Exercise 11 (5 marks) For an n by n Matriz A and vectors
ei:(51i762i;"';5ni)T:(0,...,0, 1 ,0,...,0)T
T §-th position
show that el Aej = A;j, fori,j =1,...,n. In particular, A is diagonal if el Ae; =0 fori # j.

Exercise 12 (20 marks)
(a) State the conditions for a matriz A to be positive definite.

State the conditions for a set of vectors {p;,i =1,...,n} to be conjugate to the n x n matriz A.

State the conditions for a set of vectors {u;,i =1,... ,n} to be linearly independent.

(b) You are given a set of linearly independent vectors {u;,i =1,... ,n} and a postive definite matriz A. We
wish to construct a set of vectors {p;,i =1,...,n} conjugate to A.

Without loss of generality, we may assume that py = uy. Assuming that
P2 —w + Ap1

find an appropriate value for A such that {p1,p2} for a set conjugate to A.
Assuming that, in general, we may write

k

Pit1 = W1 + ) AP
i=1

find an appropriate set of values {A\;,i =1,... ,k} such that {p1,...Pr+1} form a set conjugate to A. You
may assume that {p1,...pr} form a set conjugate to A.

(c) Show that if there exists a conjugate set {pi,...pn} for the n X n matriz A, then A is positive definite.
Hint: You may assume that any vector can be expressed as a linear combination of all the conjugate vectors.

5.4 The conjugate vectors algorithm

Let us assume that when minimizing f(x) = %XTAX — bTx + ¢ we first construct n vectors pi,...,Pn
conjugate to A which we use as our search directions. So

Xk+1 = Xg + O, Pk - (15)
At each step we chose ay by an exact line search, thus

_ DPigk
P APk (16)
We call this procedure the conjugate vectors algorithm, and the algorithm has a nice geometrical interpreta-
tion:

Theorem (Luenberger) The Expanding Subspace Theorem.

Let {p;}7_, be a sequence of vectors in R™ conjugate to the (positive definite) matrix A and f(x) = $x” Ax—
bTx + ¢. Then for any x; the sequence {x;} generated according to (15) and (16) has the property that
directional derivative of f in the direction p; vanishes at the point x4 if § < k; i.e. Dp, f(xk+1) = 0. (That
is, not only is the directional derivative zero at the new point along the direction pg, it is zero along all the
previous search directions p1,... ,pk)-

Proof: For i < k, we can write xz41 as:

k
Xp+1 = Xip1 + Z a;P; -
j=i+1

Since Vf(x) = Ax — b we have

k k k
Vf(Xp+1) = Axpr1 — b = A(xi41 + z Oéjpj) —b=A4x;;,; —b+ A Z a;p; = Vf (xig1) + Z OéjApj .
Jj=i+1 j=i+1 j=i+1
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So
Dpif(xk-i-l) = VfT(Xk+1)Pi = PiTVf(Xk-H)

= P; Vf Xz+1 Z a;p; Ap]
Jj=i+1

= (Dp,f)(xit1) Z a;p; Ap;
Jj=i+1

Now (Dx,,, f)(pi) = 0 since the point x;4; was obtained by an exact line search in the direction p;. But all
of the terms in the sum over j also vanish since j > i and p! Ap; = 0 by conjugacy. So (Dp,¢)(Xx+1) = 0.
The subspace theorem shows, that because we use conjugate vectors, optimizing in the direction py, does not
spoil the optimality w.r.t. to the previous search directions. In particular after having carried out n steps of
the algorithm we have (Dx, ., f)(pi) = VT (%p41)p; = 0, for i = 1,... ,n. The n equations can be written
in a more compact form as:

VT (Xn41)(P1,P2s--.Pn) = 0.

But the square matrix P = (p1,Pp2,---Pn) is invertible since the p; are conjugate, so we in fact have
Vf (xn+1) = 0: The point X, is the minimum x* of the quadratic function f. So in contrast to gradient
descent, for a quadratic function the conjugate vectors algorithm converges in a finite number of steps.

5.5 The conjugate gradients algorithm

The conjugate gradients algorithm is a special case of the conjugate vectors algorithm, in which the Gram-
Schmidt procedure becomes very simple. We do not use a predetermined set of conjugate vectors but construct
these “on-the-fly”.

After k-steps of the conjugate vectors algorithm we need to construct a vector pg41 which is conjugate to
P1,---,Pk- This could be done by applying the Gram-Schmidt procedure to any vector v which is linearly
independent of the vectors py,...,pk- In the conjugate gradients algorithm one makes the special choice

v =—Vf(Xpt1) -

By the subspace theorem the gradient at the new point x4 is orthogonal to p;, i = 1,... ,k. So Vf(Xg+1) is
linearly independent of p1, ... ,px and a valid choice for v, unless Vf(xg+1) = 0. In the latter case xp41 is our
minimum and we are done, and from now on we assume that Vf(xy+1) # 0. Using the notation g = Vf (xx),
the equation for the new search direction given by the Gram-Schmidt procedure is:

p; Agri1
Prt1 = —8k41 + Z %Pi- (17)
im1 p; Ap;
Since g1 is orthogonal to p;, ¢ = 1, .., k, by the subspace theorem we have p{+1gk+1 = —ng+1gk+1. So
ap+1 can be written as
T
8r+18k+1
Op41 = —7 (18)
P{+1Apk+1 ’

and in particular agy1 # 0.

We now want to show that because we have been using the conjugate gradients algorithm at the previous
steps as well, in equation (17) all terms but the last in the sum over i vanish. We shall assume that k¥ > 0
since in the first step (k = 0) we just set p1 = —g;.

First note that

gi+1 — 8 = Axiy1 — b — (Ax; = b) = A(xi41 — x3) = i Ap;
and since a; # O:
Ap; = (8i+1 — 8i)/ -
So in equation (17):

Pz’TAgk—i-l = ng+1APz' = g{+1(gi+1 —gi)/ai = (ng+1gz'+1 - ng+1gi)/04i
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Since the p; where obtained by applying the Gram-Schmidt procedure to the gradients g;, the subspace
theorem ng+1pi = 0, implies, also ngng- =0 for i = 1,.., k. This shows that

0 ifl1<i<k

T T T ) _
Pi Agk+1 = (8kr18i+1 — Bk118i)/ {ng+1gk+1 Jap ifi=k

Hence equation (17) simplifies to
Pk+1 = —8k+1 +
ol

This can be brought into an even simpler form by applying equation (18) to a:

g 118k+1 PY APk

Pk+t1 = —8k+1+
p;Apr  glgk
T
8r+18k+1
= Gkt —75 —
nggk
We shall write this in the form
g{ 18k+1
Prt1 = —8kt1 + BkPr  Where B = = (19)
8 Sk

So using (18) and (19), the conjugate gradients algorithm is:

Ocm

k=1

input x;

P1=—81

while g, #0
ar := —g; pr/ (P} APr)
Xk+1 1= Xk + O Pk
Br = ng+1gk+1/(nggk)
Pk+1 = —8k+1 + BrPk
k=k+1

end

We have shown that the simple formula (19) yields conjugate vectors and that the following theorem holds:
Theorem (Fletcher) For f(x) = 1x7Ax —bTx +c, A a positive definite n by n matrix, the above algorithm
terminates after k < n iteration and X1 is the minimum of f. The search directions p1, ... , pr are conjugate
and the gradients g, ... , g, are orthogonal.

In a practical implementation of the algorithm the test for completion, g # 0, would have to be replaced by
something like gI gj, > tol.

The formula (19) for 8y is due to Fletcher and Reeves. Since the gradients are orthogonal, 8 can also be
written as

_ ng+1(gk+1 — k)

Br
nggk

this is the Polak-Ribiere formula. The choice between the two expression for 8 can be of some importance
if f is not quadratic.

» Exercise 13 (10 marks) For the quadratic objective function
f(x) =227 +23/2+ 523 /2 + 2122 — 22123 — 821 — 372 + T3

the method of conjugate gradients, starting at xI = (0,0,0) proceeds via x3 = (1.248,0.468, —1.092) and
x3 = (1.491,1.084,—0.726). Verify that g3 p> = g3 P1 = 83 P1 = 0. Complete the minimization by finding
x4, and verify that this is indeed the minimum x*.

» Exercise 14 (10 marks) For the quadratic function

fx) = %XTAX —b'x +e¢,
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where A is positive definite, consider the change of variables x = ¢(X) where for some some non-singular
matriz S and constant vector d

#(X) = Sx+d or equivalently ¢ 1(x) =S (x—d).
Setting f(X) = f(4(X)) we have that f(X) = f(x) if x = ¢(X). Show that
Vix) =5"Vfx),
if x = ¢().

Let x1,%2,... be a sequence of points obtained by gradient descent in f, and X1,X2,... a sequence of points
obtained by gradient descent in f. So

Xk+1 = X — O 8k and )A(k_;_l = )A(k - dkgk

where

~

gr =Vf(x) and &= f(X)

and oy, is obtained by an exact line search in f, while &y, is obtained by an exact line search in f

Show that gradient descent is invariant to the change of coordinates ¢ if S is an orthogonal matrixz. That is
if S is orthogonal and x1, = ¢(X1) then for all k we have xj, = ¢(Xp).

In fact the invariance property is not limited to quadratic functions. Show that for any differentiable function

f
Vi) =STVf(x)

if x = ¢(X). For S orthogonal, give an argument as to why the line searches to find oy and &y should
give the same answer in both coordinate systems, and hence show that gradient descent is invariant to the
transformation ¢ for all orthogonal S.

5.6 Quasi-Newton methods

We have seen that for a quadratic function f(x) = 1/2x?Ax — bTx, the minimum occurs at x* = A~ 1b.
Using the local information g(x) = Ax — b, we can rewrite this as

x*=x— A7 'g(x) (20)

This can also be seen as Newton’s root-finding method applied to Vf. Thus if we are prepared to do a
n X n matrix inversion we can find the optimum x* in one step. However, for large-scale problems (when
the dimension of x may be O(100)) this inversion is computationally demanding, especially if the matrix is
singular or nearly so.

An alternative is to set up the iteration

Xp41 = Xk — 0 Sk 8k- (21)

This is a very general form; if S = A~! then we have Newton’s method, while if Sy = I we have steepest
descent. In general it would seem to be a good idea to choose S; to be an approximation to the inverse
Hessian. Also note that it is important that Sy be positive definite so that for small o we obtain a descent
method.

The idea behind most quasi-Newton methods is to try to construct an approximate inverse Hessian Hy, using
information gathered as the descent progresses, and to set Sp = Hy. As we have seen, for a quadratic
optimization problem we have the relationship

8kt+1 — 8k = A(Xpt1 — Xp) (22)
Defining
Sk =Xp+1 — Xk and  Yp = 8kt+1 — 8k (23)
we see that equation 22 becomes

Yi = Asp (24)
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It is reasonable to demand that
Hk+1Yz' =8; 1 S i S k (25)
After n linearly independent steps we would then have H,,; = A~!. For k < n there are an infinity of

solutions for Hy,1 satisfying equation 25. We shall focus on one of the most popular, the Broyden-Fletcher-
Goldfarb-Shanno (or BFGS) update. This is given by

(26)

TH sps?T  spyL Hy + Hyyes?
Hk+1:Hk+<1+yk kYk> Sk SkYj Hi + Hryrsy

Yisk /) Sp¥k SEYk
Note that this is a rank-2 correction to Hy constructed from the vectors s; and Hyyy.

The quasi-Newton algorithm is

Ocm

input x;

set Hy =1

fork=1,...n
pr = —Hig,

compute ay, to minimize f(xy + apg)
Sk = Xk+1 — Xk, Yk = Sk+1 — Sk, and update Hy41
k=k+1

end

There are a number of properties of the BFGS update

A. All the H’s are symmetric. This is proved immediately as H; = I is symmetric, and each update is
symmetric.

B. All the H’s are positive definite. This proof is quite involved and is omitted.

C. The direction vectors p1, P2, --- , Pr produced by the algorithm obey

P/ Ap; =0 1<i<j<k (27)
Hp 1 Ap; = p; 1<i<k (28)

Equation 28 is called the hereditary property. In our notation sy = aipg, and as the a’s are non-zero,
equation 27 can also be written as

sfds; =0 1<i<j<k (29)

Before proving that these properties hold, we first note that
Hir1yk = sk (30)

for all k£ > 1. We show this using the definition of Hy1, thus

T T T T
Vi Hiye \ se(5pyr)  se(yi Heyr) + Hryes Y
Hyp1yw = Hiyr + (1 + TES ) (Tk ) _ sl 3« k (31)
Yi Sk S Yk S Yk
T T
Vi Hiye yi Hiye
= Hyyy + (1 + kT7> sk — —r—s; — Hyy (32)
Yi Sk S Yk
= s (33)

The proof is by induction, with the base case taken as k = 2. As a special case of equation 30, we have that
H2y1 = 831. Also

P; Ap1 = —g; HaAp: (34)
= —82P1 (35)
=0 by the exact line search condition (36)
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We now assume that equations 27, 28 and 29 hold up to k, and prove that they hold for k£ + 1. We have
already proved that Hg11yr = s;. Now consider (for some i < k)

I'H Iy, TH,.v: + Hyypsly:
Hiryi = Heyi + (1 L Y TkYk) StSkYi _ kY ksz+ kY kSE Yi (37)
Yi Sk SpYk SLYk
_ YEHeyr \ sespAsi  spy? As; + Hyysy As;
=si+ (14 7k k2 - (38)
Yi Sk S Yk S Yk
=s; (39)
using y; = As;, yI =sT A and Hy; = s;
BYi = AS8;, Y = S A an kYi = Si-
Now consider the conjugacy relationship. For & we have
Pri1APE = 81 Hip1 APk (40)
= —gk+1Pk (41)
=0 by the exact line search condition (42)
and for i < k
PkT+1APi = —8r+1Hp+14p; (43)
= —8k+1Pi (44)
=0 (45)

This last equality is due to the expanding subspace theorem. QED.

Since the py’s are A-conjugate and since we successively minimize f in these directions, we see that the BFGS
algorithm is a conjugate direction method; with the choice of H; = I it is in fact the conjugate gradient
method.

The BFGS update is only one out of a large range of updates that be considered. An earlier on was the
Davidon-Fletcher-Powell (or DFP) update; however, this has some disadvantages in practice and so the BFGS
update is preferred.

BFGS tends to be better than CG methods for small problems. Prefer to use CG for large problems, with
more than 1000 variables. Note that the storage requirements for Quasi Newton methods scale quadratically
with the number of variables, whilst only linearly for Conjugate Gradient methods.

6 Multivariate Minimization 3: General Functions

6.1 Use of conjugate gradient and quasi-Newton methods

The basic strategy for the minimization of general (i.e. non-quadratic) functions is to apply the same algo-
rithms as in the quadratic case, except that exact line-minimizations (the calculation of the ay’s) have to be
replaced with inexact line-searches, for example using Brent’s algorithm. Of course it is much more difficult
to perform analysis in this general case.

An issue that arises is the question of “restarting”, meaning re-initializing the search direction to the negative
gradient after n iterations. This can be applied to both conjugate gradient (CG) and quasi-Newton (QN)
methods; in the latter case the approximate inverse Hessian would be reinitialized to the identity matrix.
For example, if the algorithm progresses from a non-quadratic region into the neighbourhood of the solution
where f(x) is closely approximated by a quadratic, a reset method can be expected to converge rapidly, while
a non-reset one may not do so.

For the conjugate gradient method, the exact formula used to compute 8 may be important in this respect.
For example, two possible formulae are

8118kt
Br = H;,i Fletcher-Reeves (46)
8 Sk
_ T
B, = (Bri1 Tg’“) k1l polak-Ribiere. (47)
g Sk

These formulae are equivalent for quadratic functions, as can be seen using equation 3.30. However, they
can have quite different effects in the non-quadratic case. If the algorithm is not making progress then we
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can expect gr4+1 ~ gk, and hence that 8 computed by the Polak-Ribiere formula will be near 0, and hence
that pg+1 =~ —gr+1- On the other hand, under the same circumstances the Fletcher-Reeves update will set

ﬂk ~ 1.
For general functions it can be shown (Fletcher, §3.2) that the BFGS quasi-Newton method:

(i) preserves positive definite matrices Hy, and hence that the descent property holds;
(ii) requires O(n?) multiplications per iteration;

(iii) has superlinear order of convergence;

(iv) has global convergence for strictly convex functions (with exact line searches)

A comparison of the conjugate gradient and quasi-Newton algorithms shows that CG methods require only
O(n) storage, as opposed to O(n?) for QN methods. Typically this means that QN methods are preferred for
problems of relatively small size, while CG methods are more suitable for very large problems (say O(1000)
variables). QN methods appear to be more tolerant of moderate precision line-searches compared to CG
methods, and Fletcher’s conclusion is that CG methods are less efficient and less robust than QN methods
on problems to which they can both be applied.

Exercise 15 (10 marks)
Try to find vectors conjugate to the matriz

A=

o
Q =
= Q O

by applying the Gram-Schmidt procedure to the vectors e; = (1,0,0)7, e; = (0,1,0)T and e3 = (0,0,1)T. For
which values of a is A positive definite?

7 Optimization with constraints

The methods treated so far have been concerned with minimizing a function f either locally or globally in a
Euclidean space R". However, many practical optimization problems place constraints on the search space.
These can be of two types:

e Equality (type A). ¢(x) = 0. These reduce the dimension of the search space.

e Inequality (type B). ¢(x) > 0 or ¢(x) > 0. These reduce the ‘volume’ of the search space, but do not
affect the dimension.

Unconstrained optimization techniques cannot be applied directly to such problems (although stochastic
methods can be used if the random steps can be constrained to the right region). When f and all the
constraints are linear, specialised linear programming methods are available that reliably converge to the
global optimum. However, these are complicated to describe and do not generalize, so will not be touched
on further here.

7.1 Transformation Methods

For some class A constraints, it is possible to solve for one variable z; in terms of the other coordinates of
x. If this can be done, then z; can be eliminated from f, and the whole problem reduced to one of lower
dimension with fewer constraints. This is always advantageous if it can be carried out.

Some class B constraints can be removed by simple variable substitutions so that they are automatically
satisfied. The choice of substitution may depend on how easy it is to calculate relevant derivatives after the
substitution has been made. For example, z; > 0 can be removed by substituting z; = y? or z; = expuy;,
while ¢ < z; < b can be removed by substituting

a+b a-b

Tr; = 2 + 9

tanh y;.

Another useful substitution in statistics is the ‘softmax’ function. Minimizing f(x) subject to the constraint

n
inzl, where 0 < z; <1 fori=1,...,n

=1
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can be transformed to minimizing f with

€Xp Y;
2?21 €Xp y;

Iy =

where the y;’s are now unconstrained.

Note that these substitutions can complicate the problem by introducing extra local minima and critical
points which, although predictable, could be found by the optimization routine. For example, consider the
problem of minimizing (z — 1)? subject to x > 0. This is minimized with x = 1. If we set = y?, then we
obtain an (unconstrained) minimization problem with function (y2 — 1)2. There are now two global optima
at y = £1 corresponding to = 1, and a new critical point at y = 0.

7.2 Lagrange multipliers
7.2.1 Single Constraint

Consider first the problem of minimising f(x) subject to a single constraint ¢(x) = 0.

Imagine that we have already identified an x that satisfies the constraint, that is ¢(x) = 0. How can we tell
if this x minimises the function f? We are only allowed to search for lower function values around this x in
directions which are consistent with the constraint. That is, c¢(x + 8) = 0.

c(x+0) ~c(x) +6-\%(x)

Hence, in order that the constraint remains satisfies, we can only search in a direction such that § - \&(x) = 0,
that is in directions & that are orthogonal to V&(x). So, lets explore the change in f along a direction n where
n-\(x) =0,

F(x+en) & f(x) + €V (x) - .

Since we are looking for a point x that minimises the function f, we require x to be a stationary point,
Vf(x) -n = 0. That is, Vf(x) must lie parallel to \&(x), so that

VF (x) = AVe(x)

for some A € R. To solve the optimisation problem therefore, we look for a point x such that Vf(x) = AVe(x),
for some A, and for which ¢(x) = 0. An alternative formulation of this dual requirement is to look for x and
A that jointly minimise the Lagrangian

£(x,\) = £(x) = Ac(x)
Differentiating with respect to x, we get the requirement Vf(x) = AW(x), and differentiaing with respect to
A, we get that ¢(x) = 0.
7.2.2 Multiple Constraints

Consider the problem of optimizing f(x) subject to the constraints ¢;(x) =0, i = 1,... ,r < n, where n is the
dimensionality of the space. Denote by S the n — r dimensional subspace of x which obeys the constraints.
Assume that x* is such an optimum. As in the unconstrained case, we consider perturbations v to x*, but
now such that v lies in S

ci(x* + hv) = ¢;(x*) + v Ve (x*) + O(h?) (48)
Let a} = Ve;(xx). Thus for the the perturbation to stay within S, we require that via; = 0for alli =1,...r.
Let A* be the matrix whose columns are aj,a3,...ay. Then this condition can be rewritten as A*v = 0.

We also require for a local optimum that vI'Vf = 0 for all v in S. We see that V f must be orthogonal to v,
and that v must be orthogonal to the a}’s. Thus V f must be a linear combination of the a}’s, i.e.

V=) Aaj=A"X (49)
i=1

Geometrically this says that the gradient vector is normal to the tangent plane to S at x*.
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[If this argument is too heuristic, a more formal proof is now given by contradiction. Let Vf = >, Afaj +d,
where d # 0 is orthogonal to the a}’s, i.e. A*Td = 0. In this case taking v = —d would violate vIVf = 0,
and hence we would not be at a stationary point. Hence d = 0. ]

These conditions give rise to the method of Lagrange multipliers for optimization problems with equality
constraints. The method requires finding x* and A* which solve the equations

i

¢i(x) = 0 fori=1,...r (51)

There are n + r equations and n 4+ r unknowns, so the system is well-determined. However, the system is
nonlinear (in x) in general, and so may not be esay to solve. We can restate these conditions by introducing
the Lagrangian function £ : R*" — R,

L(x,A) = f(x) — Z Xici(x). (52)

The partial derivatives of £ with respect to x and A reproduce equations 50 and 51. Hence a necessary
condition for a local minimizer is that x*, A" is a stationary point of the Lagrangian function. Note that this
stationary point is not a minimum but a saddle point, as £ depends linearly on A.

We have given first-order necessary and sufficient conditions for a local optimum. To show that this optimum
is a local minimum, we would need to consider second-order conditions, analogous to the positive definiteness
of the Hessian in the unconstrained case; this can be done, but will not be considered in detail here.

Ezample: Consider the minimization of f(x) = z? + z2 subject to the constraint ¢(x) = x5 — x1 + 3 = 0.

Exercise 16 (5 marks) Find the minimum of the function
1
Q = 5 (@t + a3 +a3)
subject to the constraints
1171—.’172=1 .1,'2—.’13'3:2.

Solve this constrained optimization problem
(a) using Lagrange multipliers
(b) by direct elimination.

Exercise 17 (5 marks) Let A be a symmetric n by n matriz and for x € R*, consider minimizing xT Ax
subject to the contraint xTx = 1. Show that the solution x* of this constrained optimization problem is an
eigenvector of A.

Exercise 18 (20 marks) Consider the problem of fitting a straight line through a set of datapoints x',i =
1,...,m.

Assuming that the data has zero mean, Y -, x! = 0, a reasonable criterion for finding a suitable direction e
is to find e that mazximises

subject to e - e = 1.
Find a suitable matriz A such that the above can be written as:
Find e that mazimises

el Ae

subject to e - e = 1.

(b) Form a suitable Lagrangian function L (e, \) for the above optimisation problem.

Show that a solution e* to this optimisation problem is an eigenvector of A. How many startionary points
will there be for an n X n matrix A of full rank?

(c) Given A = (2 !

1 3) find a vector e that maximises

el Ae

subject to eTe = 1. Hint: Be careful to ensure that your solution e* mazximises e’ Ae subject to the constraint.
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7.3 Computational approaches to constrained optimization

There are a wide variety of computational approaches to the non-linear constrained optimization problem, go-
ing under names such as penalty and barrier function methods, the reduced-gradient method, the augmented
Lagrangian method and the projected Lagrangian method. There are also many possible choices depending
on whether the constraints are equality or inequality constraints, and whether they are linear or non-linear.
We will consider the penalty and barrier function methods, which are not as effective as more sophisticated
techniques, but offer a good place to start and are relatively straightforward to implement.

Suppose that we are minimizing a function f(x) subject to constraints ¢;(x) = 0 for i = 1,... ;7. We can
construct a quadratic penalty function

Po(x,p) = f(x) + Se(x) e(x), (53)

where c¢(x) is the vector of constraints (¢;(x), c2(X),... ,c-(x))T and p is the penalty parameter.
Note that the penalty term is continuously differentiable. Under mild technical conditions, if x*(p) denotes
an unconstrained minimum of Py then it can be shown that

. * *

Jim x*(p) = x

where x* is the constrained minimum of f. However, we cannot just choose p to be large initially. If the
number of constraints is less than n, then the condition number of the Hessian at x*(p) becomes larger with
increasing p. Instead, it is more effective in practice to carry out several unconstrained minimizations for
gradually increasing p, with each one starting at the point where the previous one finished.

The effect of the penalty term is to create a local minimum near to x* for sufficiently large p. Simple examples
show that the penalty function may be unbounded below for any value of p. An unconstrained minimization
algorithm may move out side the feasible region. Thus it may be necessary to modify the algorithm to detect
and, if possible, recover from unboundedness. In addition, the starting point for search can be very important.



