Domain Concept-Based Queries for Cancer Research Data Sources

Alejandra González Beltrán
Joint work with Anthony Finkelstein (UCL), J Max Wilkinson (NCRI) and Jeff Kramer (ICL)

CBMS 2009
The 22nd IEEE International Symposium on Computer-Based Medical Systems
August 3-4 2009, Albuquerque, New Mexico, USA
Overview

- ONIX (ONcology Information eXchange) – UK NCRI platform to facilitate access to distributed cancer-research data sources
 - Interoperability with the caGrid infrastructure
 - Support for non-caGrid resources

- caGrid metadata infrastructure and query language
 - Queries based on the structure of the resource
 - No support for concept-based queries

- Goal: support for high-level and descriptive queries of cancer-research data sources, expressed using domain concepts and their relationships

- Architecture & Approach: caGrid + Semantic Web technologies
 - Concept-based queries and data integration
 - Extensible to non-caGrid resources

- Conclusions
caGrid infrastructure

cagGrid Data Service

Cancer Research Data Source
caGrid infrastructure
caGrid infrastructure

- caGrid Data Service
- Cancer Research Data Source
- Information Model

Metadata Registry (based on ISO 11179)

Annotated UML model

Global Model Exchange (GME)
XML-Schema Repository
caGrid infrastructure

CQL query

CQLQuery Processor Information Model

caGrid Data Service

Cancer Research Data Source

Metadata Registry (based on ISO 11179)

EVS Enterprise Vocabulary Services

Global Model

Exchange (GME)

XML-Schema Repository

Annotated UML model
caGrid infrastructure

caGrid Query Language (CQL)
- Simple object-oriented query language (semantic annotations are not considered)
- Procedural (client must be aware of resource’s structure)

Global Model Exchange (GME)
XML-Schema Repository

caGrid Data Service
Cancer Research Data Source

CQL query

Structural layer

CQL Query Processor
Information Model

Annotated UML model
Motivating example

- A biomedical scientist is interested in finding single nucleotide polymorphisms (SNPs) associated with the gene *Transforming Growth Factor Beta 1 (TGFB1)*
caGrid query language (CQL)

```xml
<xs1:CQLQuery xmlns:xs1="http://CQL.caBIG/1/gov.nih.nci.cagrid.CQLQuery">
  <xs1:Target name="gov.nih.nci.cabio.domain.SNP">
    <xs1:Association name="gov.nih.nci.cabio.domain.GeneRelativeLocation" roleName="relativeLocationCollection">
      <xs1:Association name="gov.nih.nci.cabio.domain.Gene" roleName="gene">
        <xs1:Attribute name="symbol" predicate="EQUAL_TO" value="TGFB1"/>
      </xs1:Association>
    </xs1:Association>
  </xs1:Target>
</xs1:CQLQuery>
```
Web Ontology Language (OWL): W3C recommendation for knowledge representation

Reasoning: inference capabilities

OWL generation service: develops OWL ontologies from information models

Semantic query service: transforms concept-based queries to CQL using the generated ontologies + reasoning

Prototype: OWLAPI and Pellet
Approach

1) Generate an ontology from the data service metadata (annotated UML to OWL transformation)
Approach

2) Express the concept-based query over the generated ontology

- Find objects that have concept Single_Nucleotide_Polymorphism and have an association with objects whose concept is Gene, which in turn have an attribute with concept Gene_Symbol, whose value is “TGFB1”
Approach

2) Express the concept-based query over the generated ontology

- Find objects that have concept *Single_Nucleotide_Polymorphism* and have an association with objects whose concept is *Gene*, which in turn have an attribute with concept *Gene_Symbol*, whose value is “TGFB1”

- hasConcept some *Single_Nucleotide_Polymorphism* and hasAssociation some (hasConcept some *Gene* and hasAttribute some (hasConcept some *Gene_Symbol* and hasValue value “TGFB1”))

Description Logic query (DL-query) in Manchester OWL Syntax
Approach

2) Express the concept-based query over the generated ontology

- Find objects that have concept `Single_Nucleotide_Polymorphism` and have an association with objects whose concept is `Gene`, which in turn have an attribute with concept `Gene_Symbol`, whose value is “TGFB1”

- `hasConcept some Single_Nucleotide_Polymorphism` and `hasAssociation some (hasConcept some Gene and hasAttribute some (hasConcept some Gene_Symbol and hasValue value “TGFB1”)`)

Description Logic query
(DL-query) in Manchester OWL Syntax

- **Concept-based** query: it can be used for any resource annotated with the same vocabulary
- **High-level** query: it is not based on the structure of a particular target resource
- **Descriptive**: it gives the criteria for the desired data
Approach

3) Transform the query using the generated ontology into the caGrid query language

- Concept-based query
- Syntactic and semantic analysis
- Reformulate query in terms of the data service’s elements
- Translate DL-query into the Object-query optimisation language (MCC) and normalise
- Translate the object-query expression (MCC) to CQL

CQL query
Conclusions

- Support for high-level descriptive queries based on domain concepts for caGrid data services

- Approach generates ontologies from caGrid metadata and uses ontologies+reasoning to translate concept-based queries to CQL
 - Same concept-based query applicable to all the relevant resources
 - No need for the user to be aware of the structure of the target resource

- General approach: it is applicable to other resources exposing metadata and semantic annotations for query translation and data integration

- Prototype Demo http://tinyurl.com/o6uw7z
Acknowledgements

- Cancer Research UK
- UK National Cancer Research Institute Informatics Initiative
Thank you!
Questions?