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ABSTRACT
We introduce a mutation-based approach to automatically dis-
cover and expose ‘deep’ (previously unavailable) parameters
that affect a program’s runtime costs. These discovered pa-
rameters, together with existing (‘shallow’) parameters, form a
search space that we tune using search-based optimisation in a
bi-objective formulation that optimises both time and memory
consumption. We implemented our approach and evaluated
it on four real-world programs. The results show that we can
improve execution time by 12% or achieve a 21% memory con-
sumption reduction in the best cases. In three subjects, our
deep parameter tuning results in a significant improvement over
the baseline of shallow parameter tuning, demonstrating the
potential value of our deep parameter extraction approach.
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1. INTRODUCTION
Many software systems can reap significant performance ben-

efits from workload- or runtime-specific configurations or optimi-
sations. Software developers often expose a set of parameters for
users to re-configure such software systems adaptively. However,
manual parameter tuning is a demanding challenge because users
are usually required not only to have extensive knowledge about
the system and the workload, but also to balance many compet-
ing objectives, such as memory consumption and execution time.

Many studies have reported on the challenges of automated
parameter tuning [1, 6, 15, 17, 20, 29, 30]. Early work focused
on finding optimal values with mathmatical approaches [6, 20,
29, 30], while search-based software engineering (SBSE) [10] has
been used in more recent research [1, 15, 17] on this problem.
Although these approaches can automatically re-configure a
system, their improvements are limited to changes to existing,
explicit parameters.

Many software systems contain undocumented internal vari-
ables or expressions that also affect the performance of the
systems. Thus, these elements could also be good candidates for
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automated parameter tuning. However, many of these elements
are ‘private’, undocumented, or otherwise unexposed. Moreover,
some internal values may not even be stored in variables, private
or otherwise, but may merely exist as fleeting sub-expression
evaluation outcomes. Identifying these variables and expres-
sions is very difficult for general users, as it requires a deep
understanding of the source code of the system.

In this paper, we propose an automatic technique to discover
internal variables and expressions that normally cannot be ac-
cessed directly, but impact non-functional properties of interest.
Our goal is to expose new parameters that can directly influence
the values of these internal variables and expressions. To dis-
tinguish from parameters exposed by software designers (which
we call ‘shallow parameters’), we call these exposed parameters
‘deep parameters’ [13]. Modifying shallow parameter values does
not necessarily change the internal code elements represented by
deep parameters. Therefore, deep parameters provide additional
opportunities for subsequent automated parameter tuning.

In previous work, there has been an attempt to automate the
exposure of a limited form of ‘deep’ parameters with the Software
Tuning panel for Autonomic Control (STAC) [4]. However, it re-
quires initial human effort to characterise shallow parameters and
can only find a subset of deep parameters. Hutter et al. [16], on
the other hand, exposed almost all potential deep parameters and
required much more computation effort. To overcome these lim-
itations, we apply a mutation-based sensitivity analysis to fully
automate the process of locating influencial deep parameters and
subsequently apply NSGA-II [7] to search for optimal values for
these parameters to balance non-functional properties of interest.

In this paper, we focused on two non-functional properties,
memory consumption and execution time, because they are im-
portant objectives for many applications and because they are
often naturally conflicting, thereby yielding an interesting and
rewarding multi-objective solution space. We illustrate the ap-
proach by re-configuring a general purpose memory allocator, dl-
malloc. We choose memory allocators because they are critical to
the memory consumption of many programs and can account for
up to 60% of the total execution time in some scenarios [33]. As
a result, memory optimisation is a widely studied topic [25, 26].
We evaluate our approach using four specimen systems drawn
from benchmarks for dlmalloc and real world applications. Our
approach neither touches the source code of the application itself
nor requires any knowledge about the application under optimi-
sation, instead only tuning the parameters for dlmalloc library,
making it applicable to other C applications with little effort.

The paper presents evidence that deep parameter optimisa-
tion targeting dlmalloc is an effective approach for improving
program’s non-functional properties. The experimental results
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suggest that deep parameter optimisation competes favourably
with both shallow optimisation and default configurations. For
four subjects, deep parameter optimisation reduces memory
consumption by 21% or execution time by 12% in the best cases.
The contributions of the paper are summarised as follows:

1. We introduce an automated approach to discover and ex-
pose deep parameters. The discovery of these parameters
enhances search-based parameter tuning.

2. We report the results of an empirical study comparing
the traditional shallow parameter tuning approach with
our approach. On four applications totaling over 70,000
lines of code and guarded by over 700 tests, the results
show that our approach can reduce memory usage by 21%
and execution time by 12%, whereas shallow tuning alone
achieves only a 16% and 10% corresponding reduction.

3. Furthermore, we evaluate the offline optimisation-time
cost of our approach. For example, in our experiments,
deep parameter tuning can improve memory savings by
14%, at the cost of 13% longer offline optimisation time.
When deep parameter tuning is not helpful, this extra
optimisation-time cost reduces to a mere 0.7%, compared
to shallow parameter tuning.

2. MOTIVATING EXAMPLE
We illustrate the idea of deep parameters with an example

found by our approach for dlmalloc (version 2.8.6) [22].

1 static void* sys_alloc(mstate m,size_t nb) {

2 ...

3 if (ss == 0){ //check if first time through

4 char* base = (char*)CALL_MORECORE(0);

5 ...

6 }
Figure 1: sys_alloc function in dlmalloc

Figure 1 shows a part of the sys_alloc function in dlmal-
loc. We explain its internal operation here to give the reader
a feeling for the opportunities for optimisation. Of course, our
parameter exposing and search-based tuning are general purpose
techniques that have no knowledge of how dlmalloc operates.
Dlmalloc maintains an internal structure to organize the heap
for memory reuse. Only when dlmalloc cannot find a suitable
chunk of memory for a memory request does it call sys_alloc()

to extend the current heap.
Our approach begins with a form of mutation analysis that

evaluates subexpressions in the program to determine their util-
ity as candidate deep parameters. A subexpression is evaluated
by mutating it, running the resulting program variant against
a test suite, and evaluating the results in terms of functional
and non-functional properties. A subexpression that can be
profitably mutated to optimise a non-functional property while
retaining functional correctness can serve as a deep parameter.

In this example, the mutation analysis finds that mutants gen-
erated from mutating Line 4 have a notable affect on the memory
consumption and the execution time of dlmalloc. We take a close
took at Line 4. It calls the CALL_MORECORE() function, which
takes an integer as input. CALL_MORECORE() is a macro wrap-
ping the system call that extends or shrinks the current heap
and returns the beginning address of the newly allocated region
of heap. Specifically, CALL_MORECORE(0) neither extends nor
shrinks the heap but simply returns the current address of the
heap, which is the original purpose of Line 4 mentioned above.

Changing the input value for CALL_MORECORE() in Line 4
allows us to control the amount of memory pre-allocated. How-
ever, although dlmalloc provides several tuneable parameters to

programmers, allowing them to adjust behaviours (see Section
5 for details), none of these shallow parameters can affect the
CALL_MORECORE() function directly. Our algorithm exposes this
as a new deep parameter by transforming Line 4 into the code
below, where D is the deep parameter exposed that controls
the pre-allocated heap.

char * base = (char*)CALL_MORECORE(0 + D);

The optimal size of pre-allocated memory depends on the
specific program using this tunable memory allocator. Too
much pre-allocation may result in waste. On the other hand,
too little means that later requests must call CALL_MORECORE()

again to extend the heap, increasing runtime. By tuning the
deep parameter D, an SBSE approach can balance time and
space consumption. This is just one example of a potential
deep parameter. In our mutation analysis experiments, our tool
‘discovers’ that by changing the value of this deep parameter, it
can achieve a modest (2.5%) time reduction without increasing
heap space in one of our subjects.

3. DEEP PARAMETER OPTIMISATION
Figure 2 shows the work flow of our deep parameter optimi-

sation. The approach takes the source code of the program, a
set of test data and a set of non-functional properties of interest.
It first applies mutation analysis and a non-dominated rank
algorithm to discover potential locations for deep parameters, as
explained in Section 3.1. It then exposes deep parameters based
on the type of expressions found at the locations (Section 3.2).
Finally, to tune the program, a multi-objective search algorithm
is used to search for optimised values for both shallow and deep
parameters (Section 3.3).
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Figure 2: Deep parameter optimisation workflow.
Given a program, test suite and non-functional proper-
ties, our approach applies mutation analysis, exposes
deep parameters, and optimises them.

3.1 Discovering Locations for Deep Parame-
ters

The first step is to identify potential locations at which we
could expose deep parameters. In our approach, we represent
the input program as an Abstract Syntax Tree (AST) and a
potential location L is an expression node of the AST. We want
to find a set of locations LD such that, when we tune the value
of the expression at LD, some non-functional properties of the
program could be improved while the program retains identical
functional behaviour. We use a suite of regression test data to
validate the correctness from the optimisation, following other
established Genetic Improvement approaches [11, 21, 24]. We
assume the presence of a test suite with each target application.

We use mutation analysis to automate the process of searching
for locations LD. Mutation analysis deliberately makes simple
syntactic changes to the input program, to create a set of various
versions of a program called mutants, each containing a different
syntactic change [19]. A transformation rule that generates a
mutant from the input program is known as a mutation operator.



Table 1: Selected mutation operators
Mutation Operators Changes Between
CRCR – Constant replacement constants, 0, 1, −1
OAAN – Arithmetic operator +, -, *, /, %

OAAA – Arithmetic assignment +=, -=, *=, /=, %=

OCNG – Logical context negation expr, !expr
OIDO – Increment/decrement ++x, --x, x++, x--
OLLN – Logical operator &&, ||

OLNG – Logical negation x op y, x op !y,
!x op y, !(x op y)

ORRN – Relational operator >, >=, <, <=, ==

OBBA – Bitwise assignment &=, |=

OBBN – Bitwise operator &, |

By carefully choosing mutation operators, we can use mutants to
simulate the effect of making changes at those locations Ls from
which a potential deep parameter may be exposed. Table 1 lists
the operators we used to generate mutants, covering locations of
constants, relational, logical and arithmetic expressions. These
so-called ‘selective’ mutation operators have been widely used
in mutation analysis experiments [19].

To assess the quality of a mutant, we test each mutant against
the input test set and record the values of the non-functional
properties. If the functional result of running a mutant is dif-
ferent from the result of running the original program for any
test data in the input test set, then the mutant is said to be
‘killed’, otherwise it is said to have ‘survived’. After all mutants
are executed, we first filter out the killed mutants which fail
to retain the functional behaviour. A mutant is called pseudo
equivalent with respect to a given test suite T iff. it passes
the regression test of T . Thus we only select pseudo equivalent
mutants which preserve the functional behaviour of the original
program while potentially changing non-functional behaviour.

In practice, there is a large number of pseudo equivalent mu-
tants [23, 28, 31] generated. We desire a subset from them that
represents the locations that could have the greatest impact
on the non-functional properties of interest while also main-
taining a diversity of choices. We achieve this by ranking the
mutants based on their non-functional properties using the non-
dominated sorting approach of the NSGA-II algorithm [7]. Each
mutant is assigned a Pareto Level value and a Crowd Distance
value, where Pareto Level n means a mutant will be on the
Pareto Front after all the mutants with Pareto Level less than n
are removed, while Crowd Distance indicates how close a mutant
is to its neighbours on the same Pareto Level. For example,
a mutant with Pareto Level 1 is on the Pareto Front among
all the mutants and has the priority to be considered first. A
mutant is better than another in terms of non-dominated sorting
if its Pareto Level is smaller or if their Pareto Levels are the
same but the former is less crowded (larger Crowd Distance)
than the latter. After sorting all the mutants in terms of their
non-functional properties, we apply a greedy algorithm to pick
the first k locations that could best influence the non-functional
properties of the original, where k is the desired number of deep
parameters one wants to expose.

3.2 Exposing Deep Parameters
The second step is to expose deep parameters that allow users

to modify the value of the expression at selected locations. Based
on the type of mutation, we first classify the selected mutants into
two sets. Set 1 contains mutants generated from CRCR, OAAN,
OAAA and OIDO operators, which simulate locations with non-
logical expressions. Set 2 contains mutants generated from the

OCNG, OLLN, OLNG and ORRN operators, which simulate
locations with logical expressions (Table 1). Given a location
L, EL is the expression at the location L, we use the following
transformation rules to rewrite EL with a new parameter vL.

EL→
{

(EL+vL) if L ∈ Set 1
(EL) xor vL if L ∈ Set 2

(1)

We use addition to affect the value of non-logical expression
and exclusive or to affect the logical ones. Finally we expose
vL as a ‘public’ parameter so that users can assign a value to
vL through parameter passing or APIs.

3.3 Search-based Parameter Tuning
Although the exposed deep parameters can provide additional

‘knobs’ [15] to tune the program, a set of k deep parameters
need not necessarily subsume the existing shallow parameters of
the program. Thus, in this work, we propose to use both shallow
parameters and deep parameters and tune them together using
SBSE [10]. Because we are interested in multiple conflicting
properties, we consider this as a multi-objective optimisation
problem, thus a multi-objective Genetic Algorithm, NSGA-II [7],
is applied to search for optimal values for both shallow and deep
parameters.

We use an integer vector to represent the tuning parame-
ters. Each integer stores a solution value for one parameter.
At each generation, our NSGA-II implementation first applies
tournament selection, followed by a uniform crossover and a
uniform mutation operation. In our experiments our fitness
functions are designed to capture two non-functional properties:
execution time and memory consumption, while preserving the
functionality by assigning the worst value to both non-functional
properties. To measure execution time, Glibc’s wait4 system
call is used to calculate the CPU time (mean of 10 evaluations).
For memory consumption, we instrumented the program to
record the high-water mark of the virtual memory consumption.
We chose this instrumentation approach because the physical
memory reported by the OS is not always deterministic but
depends on the workload and the OS, and because the virtual
memory requirement is an upper bound of the physical memory
actually needed. For a subject program with configuration c,
we measure the execution time ti(c) and the high-water-mark of
memory consumption mi(c) of each test case i. Then the fitness
functions for the configuration c regarding execution time and
memory consumption can be formulated as:

ft(c)=
∑
i

ti(c) fm(c)=
∑
i

mi(c).

After fitness evaluation, a standard NSGA-II non-dominated se-
lection creates the next generation. Finally, all non-dominating
solutions in the final population are returned.

4. EXPERIMENTS
To assess the improvement of our Deep Parameter Tuning

approach, we compared it with Shallow Parameter Tuning:

RQ1 How much performance improvement, with re-
spect to the unmodified program, can be obtained
by ShallowParameter Turning using random search
or NSGA-II?

We consider RQ1 to provide a baseline result against which
we compare the results from Deep Parameter Tuning. We used
NSGA-II algorithm (described in Section 3.3) and Random al-
gorithm to search for better values for the shallow parameters in



dlmalloc, then compare the performance with dlmalloc’s default
configuration.

RQ2 How much additional improvement can be
achieved by our Deep Parameter Tuning algorithm
compared with Shallow Parameter Tuning alone?

We ask RQ2 to evaluate how useful our approach is at finding
better configurations for the given non-functional properties. In
these experiments, our Deep Parameter Tuning approach uses a
custom mutation analysis to identify the most sensitive parts of
the program, followed by an application of NSGA-II to optimise
both explicit and implicit parameters for dlmalloc.

RQ3 What are the optimisation-time costs for these
approaches to find their solutions?

Since our Deep Parameter Tuning approach exposes addi-
tional parameters which are then optimised in conjunction with
the baseline shallow parameters, it may require extra resources
at optimisation time. We thus measure the baseline cost of
Shallow Parameter Tuning, as well as the extra computation
required by our Deep Parameter Tuning. The user may use this
gain/cost ratio to decide whether to employ Shallow or Deep
Parameter Tuning.

4.1 Experiment Target
Many memory allocation strategies and managers have been

proposed and studied by many researchers to efficiently manage
dynamic memory. Among them, Doug Lea’s malloc (dlmal-
loc) is “among the fastest, most space-conserving, tunable, and
portable general purpose allocators” [22]. A study of Berger et
al. [3] shows that many other custom memory allocators do not
perform significantly better than dlmalloc, and are sometimes
worse. We focus on dlmalloc as an indicative starting point and
optimise its configuration to each of the subject applications.
Dlmalloc is a general memory allocator for C programs. Al-

though it provides a number of configuration parameters, it is
usually used with its default values. We call these configurable
parameters provided by the original author shallow parameters.
In these experiments we consider the nine shallow parameters
that are more relevant to the tradeoff between runtime and mem-
ory high-water-mark. Table 2 briefly describes these shallow
parameters.

4.2 Experiment Setup
For our evaluation, we selected four applications: espresso,

gawk, flex and sed. Espresso is a fast application for simpli-
fying complex digital electronic gate circuits. We use the
espresso benchmark source code and test cases from the DieHard
project [2]. Gawk is the GNU awk implementation for string
processing. We collect Version 4.1.0 of this application, as well
as its test suite, from the GNU archives. flex is a tool for gen-
erating scanners, programs which recognizes lexical patterns
in text, and sed is an editor that automatically modifies files
given a set of rules. We obtain these last two programs and
corresponding test suites from the SIR repository [8]. Summary
data for these subject programs is listed in Table 3.

4.3 Experiment Procedures
We first used the shallow parameters only and applied the

NSGA-II algorithm with a population of 50 for 300 generations,
using 5000 randomly generated chromosomes as seeds. These
standard values were chosen after a few trial experiments to

Table 3: Subject applications
Name Loc # Tests Description

espresso 13256 19 Digital circuit simplification
gawk 45241 334 String processing
flex 9597 62 Fast lexical analyzer generator
sed 5720 362 Special file editor

have the best performance and ensure convergent result for the
algorithms. A random search was also applied with the same
computation budget in optimising the shallow parameters.

We used the open source C mutation testing tool MILU [12,
18] to automatically generate mutants from the selective opera-
tors shown in Table 1. This mutation based pre-analysis finds the
equivalent mutants that are sensitive to the non-functional prop-
erties under optimisation. These equivalent mutants are trans-
formed and exposed into 9 deep parameters (the same number as
the provided shallow parameters for a fairer comparison) for each
subject program separately, as described in Section 3. Combin-
ing shallow and deep parameters, we again applied NSGA-II and
random search with other identical experimental settings. All ex-
periments were repeated for 20 runs to admit statistical analyses.

All experiments were carried out on desktop machines with a
quad-core CPU and 7.7 GB memory runing 64-bit Ubuntu 14.04.
We used dlmalloc version 2.8.6, which was compiled with gcc
4.8.1 with -O3 option. To capture the execution time and mem-
ory consumption precisely, we developed our own performance
tool to measure the CPU time and the high-water-mark vitural
memory consumption (see Section 3.3). The tool is publicly
available at https://github.com/FanWuUCL/memory.

5. RESULTS
We formalise the metrics we use to compare multi-objective

optimisation approaches in this section. The results are pre-
sented in Section 5.2, and are used to answer the RQs.

5.1 Metrics
To investigate RQ1 and RQ2, we collect the non-dominated

set of solutions from each algorithm for 20 runs, and report
it in an attainment surface as introduced by Fonseca [9]. To
quantitatively compare the quality of each algorithm, we cal-
culate Hypervolume and Contribution indicators to assess the
multi-objective Pareto Front.
Hypervolume: The Hypervolume indicator [32] measures

the space dominated by the solutions. It is defined as the hyper-
volume of the union of hypercubes dominated by each solution
on the Front. The bigger the Hypervolume is, the larger the
area dominated by the Pareto Front in the objective space is,
and thus the better the performance is.
Contribution: Since there is no way to know the true Pareto

Front, we use the non-dominated set of joint solutions from all
experiments to approximate the true Pareto Front, forming a
‘reference’ front. The Contribution indicator represents the ratio
of solutions on the reference front that are found by a given
algorithm. A higher ratio indicates a more successful search.

To allow comparison across subject programs, objectives are
normalised to the original performance of each subject.

5.2 Answers to RQs
For brevity we use Sha to refer to shallow parameters and All

to refer to all parameters including shallow and deep parameters,
followed by Rand or NSGA to indicate the search method used

https://github.com/FanWuUCL/memory


Table 2: dlmalloc selective shallow parameters made available by the developers and used in our experiments
Name Default Range Type Description
MALLOC ALIGNMENT 2∗sizeof (void∗) (1 – 16)∗sizeof (void∗) 2n∗sizeof (void∗) Alignment unit
FOOTERS false true or false boolean Additional information of each chunk
INSECURE false true or false boolean Secure check
NO SEGMENT TRAVERSAL false true or false boolean Traversal of chunks before coalescing
MORECORE CONTIGUOUS true true or false boolean Contiguous heap extension support
DEFAULT GRANULARITY 0 4 KB – 512 KB or 0 2n KB or 0 Unit of heap extension
DEFAULT TRIM THRESHOLD 2048 KB 64 KB – 16 MB 2n KB Threshold of trimming
DEFAULT MMAP THRESHOLD 256 KB 16 KB – 2 MB integer Threshold of direct memory mapping
MAX RELEASE CHECK RATE 4095 1000 – 10000 integer Frequency of coalescing
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(c) flex
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(d) sed

 ShaRand  ShaNSGA  AllRand  AllNSGA

Figure 3: Combined best solutions from the results of ShaRand, ShaNSGA, AllRand, AllNSGA over 20 runs
for each application. Lower and lefthand solutions dominate high and righthand solutions. ‘Wasted’ memory is
memory that is used but not needed.

(random search or NSGA-II). For example, ShaNSGA refers to
using NSGA-II to search for better values for shallow parameters.

To answer RQ1 and RQ2, we first report the 0%-attainment
surfaces (the ‘reference front’ that combines best solutions over
all runs) of the results of ShaRand, ShaNSGA, AllRand and
AllNSGA on all subjects in Figure 3. The solutions are plotted
according to their execution time and memory usage (at the
‘high-water-mark’) compared to the original performance. Spe-
cially, the original always lies at (1, 1) and is pinpointed by light
grey dashed lines. The high-water-mark is our primary target
since the remaining non-wasted memory is needed and thus can-
not be reduced. The figure shows that all algorithms can reduce
time or memory consumption without reducing the other objec-
tive, implying that the default configuration of dlmalloc is not
optimal for any application considered. This finding motivates
the use of SBSE for tuning memory allocators. In three subjects
(espresso, gawk and sed), AllNSGA outperforms the other three

on memory objective. In terms of time, no algorithm is strictly
better and each has its own strengths on different subjects.

We calculated the Hypervolume and Contribution indicator
of each algorithm on every subject, and report them in Figure 4
and 5 respectively for all 20 runs. In Figure 4, all the values are
normalised to the hypervolume of the 0% attainment reference
front, and the closer the value to 1 is, the better the result
is. It is clear that AllNSGA outperforms the others on subject
espresso and sed while it performs poorly on subject flex, and on
subject gawk the best value reached by AllNSGA is better than
that of the others. In terms of Contribution, the performance
of all algorithms is similar to that of Hypervolume. In general
AllNSGA is no worse than other algorithms on all subjects but
flex, where ShaNSGA has the highest Contribution value.

Since AllNSGA is good at finding better performance on
memory consumption, we report the most memory-saving per-
formance found by each algorithm of each of 20 runs in Figure 6.
On subject espresso and sed, AllNSGA finds more memory



(a) espresso (b) gawk

(c) flex (d) sed

Figure 4: Hypervolume indicator of ShaRand,
ShaNSGA, AllRand, AllNSGA on all subjects. Larger
values are better.

(a) espresso (b) gawk

(c) flex (d) sed

Figure 5: Contribution indicator of ShaRand,
ShaNSGA, AllRand, AllNSGA on all subjects. Larger
values are better.

reduction than the other approaches. On gawk, it does not per-
form as consistently, but can also find more memory reduction
than other approaches in the best case.

Inferential statistical tests were applied to the Hypervolume,
Contribution and Best-Memory-Reduction results over all sub-
jects. We used the Mann-Whitney-Wilcoxon U -test since we
make no assumptions about results distributions and apply a
Bonferroni Correction (catering for 16 total statistical tests)
to draw conservative conclusions with no risk of Type 1 error.
For those p-values less than 0.05/16=0.003125, we apply the

Vargha-Delaney (Â12) effect size measure (see Table 4). The
effect sizes are all large (either above 0.79 or below 0.21).

In all experiments involving All* we generated and evaluated
invalid configurations (i.e., those that that cause the program to
crash). However, this issue is not specific to our deep-parameter

(a) espresso (b) gawk

(c) flex (d) sed

Figure 6: The least memory consumption found by
each algorithm. Smaller numbers are better.

approach: surprisingly, even by just tuning the programmer-
specified shallow parameters (ShaRand and ShaNSGA optimisa-
tions) we also encounter (and discard) some configurations that
crash the program. This suggests that SBSE memory allocator
tuning can be used as a search based testing technique [14].
Without any guidance, AllRand finds valid configurations less
often than ShaRand, and thus requires more optimisation time
than ShaRand. Holding the searches to the same budget means
that AllNSGA, which must explore a higher search space, will
exhibit a higher variance. Despite this more challenging search
space, exposing and optimising deep parameters still allows
AllNSGA to find better configurations than ShaNSGA.

To enable a more quantitative look at maximal time and
memory savings, we examine the extreme performance observed
in our experiments. We report those that have the best perfor-
mance on one objective, even at the cost of reducing performance
on the other objective, found by each algorithm on each subject
and summarise them in Table 5. Some of these results are
significant departures from the original and are thus not plotted
in Figure 3.

To answer RQ3, we provide the average optimisation compu-
tation time for each of the apporaches in Table 6. Recall that
AllRand generates and evaluates numerous invalid configurations.
However, since crashing or incorrect mutants can be discarded
immediately, the computation time of AllRand is the lowest
among all approaches (given a fixed budget in terms of mutants
considered). Similarly, AllNSGA generates invalid configurations
more often than ShaNSGA, so it costs less computation time
than ShaNSGA. Taking the deep parameter discovery time into
account, AllNSGA requires slightly more time than ShaNSGA
does, and the percentage of the extra computation time is re-
ported in the last column of Table 6. Ultimately, AllNSGA
requires at most 18% more computation time than ShaNSGA
(on espresso), but requires only 0.7% more computation time on
flex, on which AllNSGA does not perform as good as ShaNSGA.
Overall, since this optimisation step is a compile-time rather
than run-time cost and can be done before deployment, we
view the benefits of deep parameter optimisation as significantly
outweighing their slight additional optimisation time cost.



Table 4: Vargha-Delaney effect sizes of Hypervolume, Contribution and Best Memory Reduction for any two of
the approaches on all subjects. Only the effect sizes of tests with p-value less than 5%/16=0.3125% are reported.

Comparing Approachs
Hypervolume Contribution Best Memory Reduction

espresso gawk flex sed espresso gawk flex sed espresso gawk flex sed

AllNSGA
AllRand 1.000 – – 0.975 0.859 – – 0.835 0.000 – – 0.000
ShaNSGA 0.935 – 0.105 0.808 0.868 – 0.191 0.868 0.063 – 0.950 0.050
ShaRand 0.900 – 0.035 0.785 0.814 – – 0.875 0.100 – 0.979 0.050

AllRand
ShaNSGA 0.000 0.053 0.038 0.045 – – 0.144 – 1.000 0.940 1.000 1.000
ShaRand 0.000 0.070 0.000 0.040 – – – – 1.000 0.928 1.000 1.000

ShaNSGA ShaRand 0.198 – – – – – – – 0.800 – – –

Table 5: Best reduction of time or memory (separately) found by each algorithm

Subject
Time

Original (s)
Time Reduction (%) Memory Original

(Peak/Wasted KB)
Wasted Memory Reduction (%)

ShaRand ShaNSGA AllRand AllNSGA ShaRand ShaNSGA AllRand AllNSGA
espresso 7.24 1.4 1.4 1.5 1.5 3500/521 6.1 6.1 0 19.2
gawk 3.43 3.2 6.7 4.4 4.4 29680/3552 15.6 15.6 16.2 20.9
flex 0.13 7.9 10.0 6.2 11.6 10816/525 13.0 13.0 0 12.2
sed 0.25 9.4 7.0 7.0 5.4 7048/948 3.8 3.8 2.1 17.9

Table 6: Computation Cost in Time
Subject

Optimisation Time (h) Exposing
Time (h)

Extra Time Needed
for *NSGA (%)ShaRand ShaNSGA AllRand AllNSGA

espresso 39.7 46.4 9.0 39.3 12.5 18.5
gawk 22.7 18.4 13.9 16.4 5.4 11.7
flex 7.7 6.3 5.3 5.0 1.3 0.7
sed 9.4 7.6 5.9 6.6 1.9 12.6

5.3 Threats to Validity
Internal Validity When exposing deep parameters, we used

a mutation-based sensitivity analysis because of its advantages
in terms of efficiency and automation. Whether it is the best
way to expose deep parameters remains to be proven. In ad-
dition, we have not formally investigated the relative merits of
the Mutation Operators used. Intuitively, our Mutation Oper-
ators change a constant or an operator in an expression, and
thus are likely to change the values of expressions to different
degrees, allowing us to capture the sensitivity of that program’s
non-functional behaviour to the value of that expression. Any
lack of efficacy of these Mutation Operators at capturing sensi-
tivity information introduces a threat to the effectiveness of our
approach. A formal evaluation of mutation operators for deep
parameter tuning remains as future work.

Another threat to the internal validity is that the execution
time measured may depend on the workload of the machine.
We mitigate this threat by averaging the execution time of 10
trials on an otherwise-unloaded machine.
External Validity Our choice of benchmark programs and

their associated test suites influences the generality of our results.
Even a good test suite that achieves high branch coverage, for
example, could still differ from real world inputs, in which case
the optimised configuration over this test suite may neither
achieve the best performance nor retain required functionality.
We attempt to mitigate this threat by including two subjects
(flex and sed) from the SIR repository [8]. These subjects come
with sets of high quality test suites, which achieve multiple
adequacy testing criteria.

Another aspect of generality is whether these results hold on
other applications. We attempt to mitigate this threat by se-
lecting subject applications from different fields, but our results
may not generalize beyond these benchmarks.

6. RELATED WORK
State-of-the-art dynamic memory managers (DMM) usually

combine several different allocation strategies to serve memory
requests with different sizes. Risco-Mart́ın et al. [27, 5] search for
the best allocation strategy for different sizes as well searching
for the best range of sizes on which each strategy should be

applied. Their work requires human effort to implement the
allocation strategies. In our approach, changing the parameters
not only (indirectly) changes the separators of size ranges and
allocation strategy applied on each range, but also influences
strategy behaviour.

ParamILS [17] is an automatic framework proposed by Hutter
et al., which automatically configures an algorithm’s parameters
to optimise performance on a given test suite. While targeting
parameter tuning as well, our approach focuses on standard
library code, based on the assumption that the general-purpose
memory allocators may not be optimal for each specific ap-
plication. In addition, ParamILS can only optimise existing
(shallow) parameters, while our approach exposes additional
parameters and adjusts their values to gain more improvement.

Hoffmann et al. [15] proposed PowerDial, a system which
dynamically adjusts an application’s behaviour to make it adapt-
able to fluctuating workloads. Whenever PowerDial detects a
resource shortage it sacrifices output quality by changing the
values of variables, allowing the application to ‘survive the crisis’.
One limitation of this work is that the search space of config-
uration variables must be small enough to admit an exhaustive
search. In our work the search space is too large to use such an
exhaustive search, and thus we applied search-based techniques.
PowerDial only operates on existing (shallow) parameters.

Hutter et al. [16] have tuned the parameters of a SAT solver,
SPEAR, by adjusting not only the explicit parameters but also
many implicit parameters. They expose almost all possibly
tunable variables and thereby a much larger search space than
we do. To reduce the computation effort by limiting the search
space, we use a mutation-based technique to find the most in-
fluential parts of the code and focus the search on just them.
This sensitivity analysis effectively reduces the space, admitting
practical searches.

In previous work, the Software Tuning panel for Autonomic
Control (STAC) [4] automated the expsoure of a limited form of
‘deep’ parameters. Although STAC can discover some deep pa-
rameters effectively, it suffers from two limitations. First, STAC
requires initial human effort to characterise shallow parame-
ters. Second, STAC can only find a subset of deep parameters,
those that have similar data transition patterns to the known
shallow parameters. To overcome these limitations, we apply a
mutation-based sensitivity analysis to fully automate the process
of locating potential deep parameters and subsequently apply
NSGA-II to search for optimal values for these parameters to
balance non-functional properties of interest.



7. CONCLUSIONS
In this paper we propose an automatic algorithm for discov-

ering and optimising deep parameters to tune programs with
respect to non-functional properties. In particular, we focus on
tuning dlmalloc, a memory allocator, to reduce the time and
memory high-water-mark requirements of off-the-shelf programs.
Our approach combines mutation analysis to discover sensitive
deep parameters as well as an SBSE approach which subse-
quently optimises these parameters, while retaining the function-
ality expressed in a test suite. In a series of experiments involving
over 70,000 lines of code and 700 test cases we found that our
deep parameter approach outperformed baseline optimisations
(which use only the programmer-provided shallow parameters),
ultimately improving execution time by 12% and memory con-
sumption by 21% in the best cases. In addition, despite the larger
search space considered, the additional optimisation time cost of
our approach is acceptably low. Overall, we feel that deep param-
eter tuning approaches show much promise for the automated im-
provement of software with respect to non-functional properties.
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