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Abstract— Mutation Testing is a fault–based software testing
technique that has been widely studied for over three decades.
The literature on Mutation Testing has contributed a set of
approaches, tools, developments and empirical results. This paper
provides a comprehensive analysis and survey of Mutation Test-
ing. The paper also presents the results of several development
trend analyses. These analyses provide evidence that Mutation
Testing techniques and tools are reaching a state of maturity
and applicability, while the topic of Mutation Testing itself is the
subject of increasing interest.

Index Terms— mutation testing, survey

I. INTRODUCTION

Mutation Testing is a fault-based testing technique which pro-
vides a testing criterion called the “mutation adequacy score”. The
mutation adequacy score can be used to measure the effectiveness
of a test set in terms of its ability to detect faults.

The general principle underlying Mutation Testing work is that
the faults used by Mutation Testing represent the mistakes that
programmers often make. By carefully choosing the location and
type of mutant, we can also simulate any test adequacy criteria.
Such faults are deliberately seeded into the original program, by
simple syntactic changes, to create a set of faulty programs called
mutants, each containing a different syntactic change. To assess
the quality of a given test set, these mutants are executed against
the input test set. If the result of running a mutant is different
from the result of running the original program for any test cases
in the input test set, the seeded fault denoted by the mutant is
detected. One outcome of the Mutation Testing process is the
mutation score, which indicates the quality of the input test set.
The mutation score is the ratio of the number of detected faults
over the total number of the seeded faults.

The history of Mutation Testing can be traced back to 1971 in
a student paper by Richard Lipton [144]. The birth of the field
can also be identified in papers published in the late 1970s by
DeMillo et al. [66] and Hamlet [107].

Mutation Testing can be used for testing software at the unit
level, the integration level and the specification level. It has been
applied to many programming languages as a white box unit test
technique, for example, Fortran programs [3], [36], [40], [131],
[145], [181], Ada programs [29], [192], C programs [6], [56],
[97], [213], [214], [237], [239], Java programs [44], [45], [127]–
[130], [150], [151], C# programs [69]–[73], SQL code [43], [212],
[233], [234] and AspectJ programs [12], [13], [17], [90]. Mutation
Testing has also been used for integration testing [54]–[56], [58].
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Besides using Mutation Testing at the software implementation
level, it has also been applied at the design level to test the
specifications or models of a program. For example, at the design
level Mutation Testing has been applied to Finite State Machines
[20], [28], [88], [111], State charts [95], [231], [260], Estelle
Specifications [222], [223], Petri Nets [86], Network protocols
[124], [202], [216], [238], Security Policies [139], [154], [165],
[166], [201] and Web Services [140], [142], [143], [193], [245],
[259].

Mutation Testing has been increasingly and widely studied
since it was first proposed in the 1970s. There has been much
research work on the various kinds of techniques seeking to
turn Mutation Testing into a practical testing approach. However,
there is little survey work in the literature on Mutation Testing.
The first survey work was conducted by DeMillo [62] in 1989.
This work summarized the background and research achievements
of Mutation Testing at this early stage of development of the
field. A survey review of the (very specific) sub area of Strong,
Weak, and Firm mutation techniques was presented by Woodward
[253], [256]. An introductory chapter on Mutation Testing can
be found in the book by Mathur [155] and also in the book
by Ammann and Offutt [11]. The most recent survey work was
conducted by Offutt and Untch [191] in 2000. They summarized
the history of Mutation Testing and provide an overview of the
existing optimization techniques for Mutation Testing. However,
since then, there have been more than 230 new publications on
Mutation Testing.

In order to provide a complete survey covering all the publica-
tions related to Mutation Testing since the 1970s, we constructed
a Mutation Testing publication repository, which includes more
than 390 papers from 1977 to 2009 [121]. We also searched for
Master and PhD theses that have made a significant contribution
to the development of Mutation Testing. These are listed in Table
I. We took four steps to build this repository. First we searched
the online repositories of the main technical publishers, including
IEEE explore, ACM Portal, Springer Online Library, Wiley Inter
Science and Elsevier Online Library, collecting papers which
have either “mutation testing”, “mutation analysis”, “mutants +
testing”, “mutation operator + testing”, “fault injection” and “fault
based testing” keywords in their title or abstract. Then we went
through the references for each paper in our repository, to find
missing papers using the same keyword rules. In this way, we
performed a ‘transitive closure’ on the literature. Mutation Test-
ing work which was not concerned with software, for example,
hardware and also filtered out papers not written in English.
Finally we sent a draft of this paper to all cited authors asking
them to check our citations. We have made the repository publicly
available at http://www.dcs.kcl.ac.uk/pg/jiayue/repository/ [121].
Overall growth trend of all papers in Mutation Testing can be
found in Figure 1.

The rest of the paper is organized as follows. Section II
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Fig. 1. Mutation Testing Publications from 1978-2009 (* indicates years in which a mutation workshop was held.)

TABLE I
A LIST OF PHD AND MASTER WORK ON MUTATION TESTING

Author Title Type University Year
Acree [2] On Mutation PhD Georgia Institute of Technology 1980
Hanks [108] Testing Cobol Programs by Mutation PhD Georgia Institute of Technology 1980
Budd [34] Mutation Analysis of Program Test Data PhD Yale University 1980
Tanaka [228] Equivalence Testing for Fortran Mutation System Using

Data Flow Analysis
PhD Georgia Institute of Technology 1981

Morell [164] A Theory of Error-Based Testing PhD University of Maryland at College
Park

1984

Offutt [194] Automatic Test Data Generation PhD Georgia Institute of Technology 1988
Craft [48] Detecting Equivalent Mutants Using Compiler Optimiza-

tion Techniques
Master Clemson University 1989

Choi [46] Software Testing Using High-performance Computers PhD Purdue University 1991
Krauser [132] Compiler-Integrated Software Testing PhD Purdue University 1991
Fichter [91] Parallelizing Mutation on a Hypercube Master Clemson University 1991
Lee [141] Weak vs. Strong: An Empirical Comparison of Mutation

Variants
Master Clemson University 1991

Zapf [261] A Distributed Interpreter for the Mothra Mutation Test-
ing System

PhD Clemson University 1993

Delamaro [52] Proteum - A Mutation Analysis Based Testing Environ-
ment

PhD University of São Paulo 1993

Wong [248] On Mutation and Data Flow PhD Purdue University 1993
Pan [197] Using Constraints to Detect Equivalent Mutants Master George Mason University 1994
Untch [236] Schema-based Mutation Analysis: A New Test Data

Adequacy Assessment Method
PhD Clemson University 1995

Ghosh [98] Testing Component-Based Distributed Applications PhD Purdue University 2000
Ding [74] Using Mutation to Generate Tests from Specifications Master George Mason University 2000
Okun [195] Specification Mutation for Test Generation and Analysis PhD University of Maryland Baltimore 2004
Ma [148] Object-oriented Mutation Testing for Java PhD KAIST University in Korea 2005
May [161] Test Data Generation: Two Evolutionary Approaches to

Mutation Testing
PhD University of Kent 2007

Hussain [116] Mutation Clustering Master King’s College London 2008
Adamopoulos [4] Search Based Test Selection and Tailored Mutation Master King’s College London 2009
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introduces the fundamental theory of Mutation Testing including
the hypotheses, the process and the problems of Mutation Testing.
Section III explains the techniques for the reduction of the com-
putational cost. Section IV introduces the techniques for detecting
equivalent mutants. The applications of Mutation Testing are
introduced in Section V. Section VI summarises the empirical
experiments of the research work on Mutation Testing. Section
VII describes the development work on mutation tools. Section
VIII discusses the evidences for the increasing importance of
Mutation Testing. Section IX discusses the unresolved problems,
barriers and the areas of success in Mutation Testing. The paper
concludes in Section X.

II. THE THEORY OF MUTATION TESTING

This section will first introduce the two fundamental hypotheses
of Mutation Testing. It then discusses the general process of
Mutation Testing and the problems from which it suffers.

A. Fundamental Hypotheses

Mutation Testing promises to be effective in identifying ad-
equate test data which can be used to find real faults [96].
However, the number of such potential faults for a given program
is enormous; it is impossible to generate mutants representing all
of them. Therefore, traditional Mutation Testing targets only a
subset of these faults, those which are close to the correct version
of the program, with the hope that these will be sufficient to
simulate all faults. This theory is based on two hypotheses: the
Competent Programmer Hypothesis (CPH) [3], [66] and Coupling
Effect [66].

The CPH was first introduced by DeMillo et al. in 1978 [66].
It states that programmers are competent, which implies that
they tend to develop programs close to the correct version. As
a result, although there may be faults in the program delivered
by a competent programmer, we assume that these faults are
merely a few simple faults which can be corrected by a few
small syntactical changes. Therefore, in Mutation Testing, only
faults constructed from several simple syntactical changes are
applied, which represent the faults that are made by “competent
programmers”. An example of the CPH can be found in Acree
et al.’s work [3]. A theoretical discussion using the concept of
program neighbourhoods can also be found in Budd et al.’s work
[37].

The Coupling Effect was also proposed by DeMillo et al. in
1978 [66]. Unlike the CPH concerning a programmer’s behaviour,
the Coupling Effect concerns the type of faults used in mutation
analysis. It states that “Test data that distinguishes all programs
differing from a correct one by only simple errors is so sensitive
that it also implicitly distinguishes more complex errors”. Offutt
[174], [175] extended this into the Coupling Effect Hypothesis
and the Mutation Coupling Effect Hypothesis with a precise
definition of simple and complex faults (errors). In his definition,
a simple fault is represented by a simple mutant which is created
by making a single syntactical change, while a complex fault is
represented as a complex mutant which is created by making more
than one change.

According to Offutt, the Coupling Effect Hypothesis is that
“complex faults are coupled to simple faults in such a way that a
test data set that detects all simple faults in a program will detect
a high percentage of the complex faults ” [175]. The Mutation

Fig. 2. Generic Process of Mutation Analysis [191]

Coupling Effect Hypothesis now becomes “Complex mutants are
coupled to simple mutants in such a way that a test data set
that detects all simple mutants in a program will also detect a
large percentage of the complex mutants [175]”. As a result, the
mutants used in traditional Mutation Testing are limited to simple
mutants only.

There has been much research work on the validation of
the coupling effect hypothesis [145], [164], [174], [175]. Lipton
and Sayward [145] conducted an empirical study using a small
program, FIND. In their experiment, a small sample of 2nd-
order, 3rd-order and 4th-order mutants is investigated. The results
suggested that an adequate test set generated from 1st-order
mutants was also adequate for the samples of kth-order mutants
(k = 2, ..., 4). Offutt [174], [175] extended this experiment using
all possible 2nd-order mutants with two more programs, MID and
TRITYP. The results suggested that test data developed to kill
1st-order mutants killed over 99% 2nd-order and 3rd-order mutants.
This study implied that the mutation coupling effect hypothesis
does, indeed manifest itself in practice. Similar results were found
in the empirical study by Morell [164].

The validity of the mutation coupling effect has also been
considered in the theoretical studies of Wah [242]–[244] and
Kappoor [125]. In Wah’s work [243], [244], a simple theoretical
model, the q function model was proposed which considers a
program to be a set of finite functions. Wah applied test sets to
the 1st-order and the 2nd-order model. Empirical results indicated
that the average survival ratio of 1st-order mutants and 2nd-order
mutants is 1/n and 1/n2 respectively where n is the order of the
domain [243]. This result is also similar to the estimated results
of the empirical studies mentioned above. A formal proof of the
coupling effect on the boolean logic faults can be also found in
Kappoor’s work [125].

B. The Process of Mutation Analysis

The traditional process of mutation analysis is illustrated in
Figure 2. In mutation analysis, from a program p, a set of faulty
programs p′ called mutants, is generated by a few single syntactic
changes to the original program p. As an illustration, Table II
shows the mutant p′, generated by changing the and operator
(&&) of the original program p, into the or operator (||), thereby
producing the mutant p′.

A transformation rule that generates a mutant from the original
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TABLE II
A EXAMPLE OF MUTATION OPERATION

Program p Mutant p′

... ...
if ( a > 0 && b > 0 ) if ( a > 0 || b > 0 )
return 1; return 1;
... ...

TABLE III
THE FIRST SET OF MUTATION OPERATORS: THE 22 “MOTHRA” FORTRAN

MUTATION OPERATORS (ADAPTED FROM [131])

Mutation
Operator Description
AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement
DER DO statement alterations
DSA DATA statement alterations
GLR GOTO label replacement
LCR logical connector replacement
ROR relational operator replacement
RSR RETURN statement replacement
SAN statement analysis
SAR scalar variable for array reference replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion

program is known as a mutation operator1. Table II contains
only one example of a mutation operator; there are many others.
Typical mutation operators are designed to modify variables and
expressions by replacement, insertion or deletion operators. Table
III lists the first set of formalized mutation operators for the
Fortran programming language. These typical mutation operators
were implemented in the Mothra mutation system [131].

To increase the flexibility of Mutation Testing in practical
applications, Jia and Harman introduced a scripting language, the
Mutation Operator Constraint Script (MOCS) [123]. The MOCS
provides two types of constraint: Direct Substitution Constraint
and Environmental Condition Constraint. The Direct Substitution
Constraint allows users to select a specific transformation rule
that performs a simple change while the Environmental Condition
Constraint is used to specify the domain for applying mutation
operators. Simao et al. [217] also proposed a transformation
language, MUDEL, used to specify the description of mutation
operators. Besides modifying program source, mutation operators
can also be defined as rules to modify the grammar used to capture
the syntax of a software artefact. A much more detailed account
of these grammar-based mutation operators can be found in the
work of Offutt et al. [177].

In the next step, a test set T is supplied to the system. Before
starting the mutation analysis, this test set needs to be successfully

1In the literature of Mutation Testing, mutation operators are also known
as mutant operators, mutagenic operators, mutagens and mutation rules [191].

executed against the original program p to check its correctness
for the test case. If p is incorrect, it has to be fixed before running
other mutants, otherwise each mutant p′ will then be run against
this test set T . If the result of running p′ is different from the
result of running p for any test case in T , then the mutant p′ is
said to be ‘killed’, otherwise it is said to have ‘survived’.

After all test cases have been executed, there may still be a
few ‘surviving’ mutants. To improve the test set T , the program
tester can provide additional test inputs to kill these surviving
mutants. However, there are some mutants that can never be
killed, because they always produce the same output as the
original program. These mutants are called Equivalent Mutants.
They are syntactically different but functionally equivalent to the
original program. Automatically detecting all equivalent mutants
is impossible [35], [187], because program equivalence is unde-
cidable. The equivalent mutant problem has been a barrier that
prevents Mutation Testing from being more widely used. Several
proposed solutions to the equivalent mutant problem are discussed
in Section IV.

Mutation Testing concludes with an adequacy score, known
as the Mutation Score, which indicates the quality of the input
test set. The mutation score (MS) is the ratio of the number of
killed mutants over the total number of non-equivalent mutants.
The goal of mutation analysis is to raise the mutation score to
1, indicating the test set T is sufficient to detect all the faults
denoted by the mutants.

C. The Problems of Mutation Analysis

Although Mutation Testing is able to effectively assess the
quality of a test set, it still suffers from a number of problems. One
problem that prevents Mutation Testing from becoming a practical
testing technique is the high computational cost of executing
the enormous number of mutants against a test set. The other
problems are related to the amount of human effort involved in
using Mutation Testing. For example, the human oracle problem
[247] and the equivalent mutant problem [35].

The human oracle problem refers to the process of checking the
original program’s output with each test case. Strictly speaking,
this is not a problem unique to Mutation Testing. In all forms of
testing, once a set of inputs has been arrived at, there remains
the problem of checking output [247]. However, mutating testing
is effective precisely because it is demanding and this can lead
to an increase in the number of test cases, thereby increasing
oracle cost. This oracle cost is often the most expensive part of
the overall test activity. Also, because of the undecidability of
mutant equivalence, the detection of equivalent mutants typically
involves additional human effort.

Although it is impossible to completely solve these problems,
with existing advances in Mutation Testing, the process of Mu-
tation Testing can be automated and the run-time can allow for
reasonable scalability, as this survey will show. A lot of previous
work has focused on techniques to reduce computational cost, a
topic to which we now turn.

III. COST REDUCTION TECHNIQUES

Mutation Testing is widely believed to be a computationally
expensive testing technique. However, this belief is partly based
on the outdated assumption that all mutants in the traditional
Mothra set need to be considered. In order to turn Mutation
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Fig. 4. Percentage of publications using each Mutant Reduction Technique

Testing into a practical testing technique, many cost reduction
techniques have been proposed. In the survey work of Offutt
and Untch [191], cost reduction techniques are divided into three
types: ‘do fewer’, ‘do faster’ and ‘do smarter’. In this paper, these
techniques are classified into two types, reduction of the generated
mutants (which corresponds to ‘do fewer’) and reduction of the
execution cost (which combines do faster and do smarter). Figure
3 provides an overview of the chronological development of
published ideas for cost reduction.

To take a closer look at the cost reduction research work,
we counted the number of publications for each technique (see
Figure 4). From this figure, it is clear that Selective Mutation
and Weak Mutation are the most widely studied cost reduction
techniques. Each of the other techniques is studied in no more
than five papers, to date. The rest of the section will introduce
each cost reduction technique in detail. Section III-A will present
work on mutant reduction techniques, while Section III-B will
cover execution reduction techniques.

A. Mutant Reduction Techniques

One of the major sources of computational cost in Mutation
Testing is the inherent running cost in executing the large number
of mutants against the test set. As a result, reducing the number of
generated mutants without significant loss of test effectiveness has
become a popular research problem. For a given set of mutants,
M , and a set of test data T , MST (M) denotes the mutation score
of the test set T applied to mutants M . The mutant reduction
problem can be defined as the problem of finding a subset of
mutants M ′ from M , where MST (M

′) ≈ MST (M). This section
will introduce four techniques used to reduce the number of
mutants, Mutant Sampling, Mutant Clustering, Selective Mutation
and Higher Order Mutation.

1) Mutant Sampling: Mutant Sampling is a simple approach
that randomly chooses a small subset of mutants from the entire
set. This idea was first proposed by Acree [2] and Budd [34]. In
this approach, all possible mutants are generated first as in tra-

ditional Mutation Testing. x% of these mutants are then selected
randomly for mutation analysis and the remaining mutants are
discarded. There were many empirical studies of this approach.
The primary focus was on the choice of the random selection
rate (x). In Wong and Mathur’s studies [159], [248], the authors
conducted an experiment using a random selection rate x% from
10% to 40% in steps of 5%. The results suggested that random
selection of 10% of mutants is only 16% less effective than a full
set of mutants in terms of mutation score. This study implied that
Mutant Sampling is valid with a x% value higher than 10%. This
finding also agreed with the empirical studies by DeMillo et al.
[64] and King and Offutt [131]. Instead of fixing the sample rate,
Sahinoglu and Spafford [207] proposed an alternative sampling
approach based on the Bayesian sequential probability ratio test
(SPRT). In their approach, the mutants are randomly selected until
a statistically appropriate sample size has been reached. The result
suggested that their model is more sensitive than the random
selection becuase it is self-adjusting based on the avilable test
set.

2) Mutant Clustering: The idea of Mutant Clustering was first
proposed in Hussain’s masters thesis [116]. Instead of selecting
mutants randomly, Mutant Clustering chooses a subset of mutants
using clustering algorithms. The process of Mutation Clustering
starts from generating all first order mutants. A clustering al-
gorithm is then applied to classify the first order mutants into
different clusters based on the killable test cases. Each mutant
in the same cluster is guaranteed to be killed by a similar set
of test cases. Only a small number of mutants are selected
from each cluster to be used in Mutation Testing, the remaining
mutants are discarded. In Hussain’s experiment, two clustering
algorithms, K-means and Agglomerative clustering were applied
and the result was compared with random and greedy selection
strategies. Empirical results suggest that Mutant Clustering is able
to select fewer mutants but still maintain the mutation score. A
development of the Mutant Clustering approach can be found
in the work of Ji et al. [120]. Ji et al. use a domain reduction
technique to avoid the need to execute all mutants.

3) Selective Mutation: A reduction in the number of mutants
can also be achieved by reducing the number of mutation op-
erators applied. This is the basic idea, underpinning Selective
Mutation, which seeks to find a small set of mutation operators
that generate a subset of all possible mutants without signif-
icant loss of test effectiveness. This idea was first suggested
as “constrained mutation” by Mathur [156]. Offutt et al. [190]
subsequently extended this idea calling it Selective Mutation.

Mutation operators generate different numbers of mutants and
some mutation operators generate far more mutants than others,
many of which may turn out to be redundant. For example,
two mutation operators of the 22 Mothra operators, ASR and
SVR, were reported to generate approximately 30% to 40% of
all mutants [131]. To effectively reduce the generated mutants,
Mathur [156] suggested omitting two mutation operators ASR
and SVR which generated most of the mutants. This idea was
implemented as “2-selective mutation” by Offutt et al. [190].

Offutt et al. [190] have also extended Mathur and Wong’s work
by omitting four mutation operators (4-selective mutation) and
omitting six mutation operators (6-selective mutation). In their
studies, they reported that 2-selective mutation achieved a mean
mutation score of 99.99% with a 24% reduction in the number of
mutants reduced. 4-selective mutation achieved a mean mutation
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Fig. 3. Overview of the Chronological Development of Mutant Reduction Techniques

score of 99.84% with a 41% reduction in the number of mutants.
6-selective mutation achieved a mean mutation score of 88.71%
with a 60% reduction in the number of mutants.

Wong and Mathur adopted another type of selection strategy,
selection based on test effectiveness [248], [252], known as
constraint mutation. Wong and Mathur suggested using only two
mutation operators: ABS and RAR. The motivation for the ABS
operator is that killing the mutants generated from ABS requires
test cases from different parts of the input domain. The motivation
for the ROR operator is that killing the mutants generated from
ROR requires test cases which ‘examine’ the mutated predicate
[248], [252]. Empirical results suggest that these two mutation
operators achieve an 80% reduction in the number of mutants
and only 5% reduction in the mutation score in practice.

Offutt et al. [182] extended their 6-selective mutation further
using a similar selection strategy. Based on the type of the Mothra
mutation operators, they divided them into three categories:
statements, operands and expressions. They tried to omit operators
from each class in turn. They discovered that 5 operators from
the operands and expressions class became the key operators.
These 5 operators are ABS, UOI, LCR, AOR and ROR. These
key operators achieved 99.5% mutation score.

Mresa and Bottaci [167] proposed a different type of selective
mutation. Instead of trying to achieve a small loss of test effective-
ness, they also took the cost of detecting equivalent mutants into
consideration. In their work, each mutation operator is assigned
a score which is computed by its value and cost. Their results
indicated that it was possible to reduce the number of equivalent
mutants while maintaining effectiveness.

Based on previous experience, Barbosa et al. [19] defined a
guideline for selecting a sufficient set of mutation operators from
all possible mutation operators. They applied this guideline to
Proteum’s 77 C mutation operators [6] and obtained a set of

10 selected mutation operators, which achieved a mean mutation
score of 99.6% with a 65.02% reduction in the number of mutants.
They also compared their operators with Wong’s and Offutt et al.’s
set. The results showed their operator set achieved the highest
mutation score.

The most recent research work on selective mutation was
conducted by Namin et al. [168]–[170]. They formulated the
selective mutation problem as a statistical problem: the variable
selection or reduction problem. They applied linear statistical
approaches to identify a subset of 28 mutation operators from
108 C mutation operators. The results suggested that these 28
operators are sufficient to predict the effectiveness of a test
suite and it reduced 92% of all generated mutants. According to
their results, this approach achieved the highest rate of reduction
compared with other approaches.

4) Higher Order Mutation: Higher Order Mutation is a com-
paratively new form of Mutation Testing introduced by Jia and
Harman [122]. The underlying motivation was to find those rare
but valuable higher order mutants that denote subtle faults. In
traditional Mutation Testing, mutants can be classified into first
order mutants (FOMs) and higher order mutants (HOMs). FOMs
are created by applying a mutation operator only once. HOMs
are generated by applying mutation operators more than once.

In their work, Jia and Harman introduced the concept of
subsuming HOMs. A subsuming HOM is harder to kill than
the FOMs from which it is constructed. As a result, it may be
preferable to replace FOMs with the single HOM to reduce the
number of the mutants. In particular, they also introduced the
concept of a strongly subsuming HOM (SSHOM) which is only
killed by a subset of the intersection of test cases that kill each
FOM from which it is constructed.

This idea has been partly proved by Polo et al.’s work [199].
In their experiment, they focused on a specific order of HOMs,
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the second order mutants. They proposed different algorithms to
combine first order mutants to generate the second order ones.
Empirical results suggest that applying second order mutants
reduced test effort by approximately 50%, without much loss
of test effectiveness. More recently, Langdon et al. have applied
multi-object genetic programming to the generation of higher
order mutants [136], [137]. In their experiment, they have found
realistic higher order mutants that are harder to kill than any first
order mutant.

B. Execution Cost Reduction Techniques
In addition to reducing the number of generated mutants, the

computational cost can also be reduced by optimizing the mutant
execution process. This section will introduce the three types of
techniques used to optimize the execution process that have been
considered in the literature.

1) Strong, Weak and Firm Mutation: Based on the way in
which we decide whether to analyse if a mutant is killed during
the execution process, Mutation Testing techniques can be classi-
fied into three types, Strong Mutation, Weak Mutation and Firm
Mutation.

Strong Mutation is often referred to as traditional Mutation
Testing. That is, it is the formulation originally proposed by
DeMillo et al. [66]. In Strong Mutation, for a given program
p, a mutant m of program p is said to be killed only if mutant m
gives a different output from the original program p.

To optimize the execution of the Strong Mutation, Howden
[115] proposed Weak Mutation. In Weak Mutation, a program
p is assumed to be constructed from a set of components C =
{c1, ..., cn}. Suppose mutant m is made by changing component
cm, mutant m is said to be killed if any execution of component
cm is different from mutant m. As a result, in Weak Mutation,
instead of checking mutants after the execution of the entire
program, the mutants need only to be checked immediately after
the execution point of the mutant or mutated component.

In Howden’s work [115], the component C referred to one of
the following five types: variable reference, variable assignment,
arithmetic expression, relational expression and boolean expres-
sion. This definition of components was later refined by Offutt and
Lee [183], [184]. Offutt and Lee defined four types of execution:
evaluation after the first execution of an expression (Ex-Weak/1),
the first execution of a statement (St-Weak/1), the first execution
of a basic block (BB-Weak/1) and after N iterations of a basic
block in a loop ((BB-Weak/N ).

The advantage of weak mutation is that each mutant does
not require a complete execution process; once the mutated
component is executed we can check for survival. Moreover, it
might not even be necessary to generate each mutant, as the
constraints for the test data can sometimes be determined in
advance [253]. However, as different components of the original
program may give different outputs from the original execution,
weak mutation test sets can be less effective than strong mutation
test sets. In this way, weak mutation sacrifices test effectiveness
for improvements in test effort. This raises the question as to what
kind of trade-off can be achieved.

There were many empirical studies on the Weak Mutation
trade off. Girgis and Woodward [103] implemented a weak
mutation system for Fortran 77 programs. Their system is an
analytical type of weak mutation system in which the mutants
are killed by examining the program’s internal state. In their

experiment, four of Howden’s five program components were
considered. The results suggested that weak mutation is less
computationally expensive than strong mutation. Marick [153]
drew similar conclusions from his experiments.

A theoretical proof of Weak Mutation by Horgan and Mathur
[113] showed that under certain conditions, test sets generated by
weak mutation can also be expected to be as effective as strong
mutation. Offutt and Lee [183], [184] presented a comprehensive
empirical study using a weak mutation system named Leonardo.
In their experiment, they used the 22 Mothra mutation operators
as fault models instead of Howden’s five component set. The
results from their experiments indicated that Weak Mutation is an
alternative to Strong Mutation in most common cases, agreeing
with the probabilistic results of Horgan and Mathur [113] and
experimental results of Girgis and Woodward [103] and Marick
[153].

Firm Mutation was first proposed by Woodward and Halewood
[257]. The idea of Firm Mutation is to overcome the disadvan-
tages of both weak and strong mutations by providing a contin-
uum of intermediate possibilities. That is, the ‘compare state’ of
Firm Mutation lies between the intermediate states after execution
(Weak Mutation) and the final output (Strong Mutation). In 2001,
Jackson and Woodward [119] proposed a parallel Firm Mutation
approach for Java programs. Unfortunately, to date there is no
publicly available firm mutation tool.

2) Run-time Optimization Techniques: The Interpreter-Based
Technique is one of the optimization techniques used in the first
generation of Mutation Testing tools [131], [181]. In traditional
Interpreter-Based Techniques, the result of a mutant is interpreted
from its source code directly. The main cost of this technique
is determined by the cost of interpretation. To optimise the
traditional Interpreter-Based approach, Offutt and King [131],
[181] translated the original program into an intermediate form.
Mutation and interpretation are performed at this intermediate
code level. Interpreter-Based tools provide additional flexibility
and are sufficiently efficient for mutating small programs. How-
ever, due to the nature of interpretation, it becomes slower as the
scale of programs under test increases.

The Compiler-Based Technique is the most common approach
to achieve program mutation [52], [53]. In a Compiler-Based
Technique, each mutant is first compiled into an executable
program; the compiled mutant is then executed by a number of
test cases. Compared to source code interpretation techniques, this
approach is much faster because execution of compiled binary
code takes less time than interpretation. However, there is also a
speed limitation, known as compilation bottleneck, due to the high
compilation cost for programs whose run-time is much longer
than the compilation/link time. [47].

DeMillo et al. proposed the Compiler-Integrated Technique
[65] to optimise the performance of the traditional Compiler-
Based Techniques. Because there is only a minor syntactic differ-
ence between each mutant and the original program, compiling
each mutant separately in the Compiler-Based technique will
result in redundant compilation cost. In the Compiler-Integrated
technique, an instrumented compiler is designed to generate and
compile mutants.

The instrumented compiler generates two outputs from the orig-
inal program: an executable object code for the original program
and a set of patches for mutants. Each patch contains instructions
which can be applied to convert the original executable object
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code image directly to executable code for a mutant. As a result,
this technique can effectively reduce the redundant cost from
individual compilation. A much more detailed account can be
found in the Krauser’s PhD thesis [132].

The Mutant Schema Generation approach is also designed to
reduce the overhead cost of the traditional interpreter-based tech-
niques [235]–[237]. Instead of compiling each mutant separately,
the mutant schema technique generates a metaprogram. Just like
a ‘super mutant’ this metaprogram can be used to represent
all possible mutants. Therefore, to run each mutant against the
test set, only this metaprogram need be compiled. The cost of
this technique is composed of a one-time compilation cost and
the overall run-time cost. As this metaprogram is a compiled
program, its running speed is faster than the interpreter-based
technique. The results from Untch et al.’s work [237] suggest that
the mutant schema prototype tool, TUMS, is significantly faster
than Mothra using interpreter techniques. Much more extensive
results are reported in detail in the Untch’s PhD dissertation [236].
A similar idea of the Mutant Schemata technique, named the
Mutant Container, was proposed by Mathur independently. The
details can be found in a software engineering course ‘handout’
by Mathur [157].

The most recent work on reduction of the compilation cost
is the Bytecode Translation Technique. This technique was first
proposed by Ma et al. [151], [185]. In Bytecode Translation,
mutants are generated from the compiled object code of the
original program, instead of the source code. As a result, the
generated ‘bytecode mutants’ can be executed directly without
compilation. As well as saving compilation cost, Bytecode Trans-
lation can also handle off-the-shelf programs which do not have
available source code. This technique has been adopted in the Java
programming language [151], [152], [185], [208]. However, not
all programming languages provide an easy way to manipulate
intermediate object code. There are also some limitations for the
application of Bytecode Translation in Java, such as not all the
mutation operators can be represented at the Bytecode level [208].

Bogacki and Walter introduced an alternative approach to
reduce compilation cost, called Aspect-Oriented Mutation [26],
[27]. In their approach, an aspect patch is generated to capture
the output of a method on the fly. Each aspect patch will run
programs twice. The first execution obtains the results and context
of the original program and mutants are generated and executed
in the second execution. As a result, there is no need to compile
each mutant. Empirical evaluation between a prototype tool and
Jester can be found in the work of Bogacki and Walter [26].

3) Advanced Platforms Support for Mutation Testing: Muta-
tion Testing has also been applied to many advanced computer
architectures to distribute the overall computational cost among
many processors. In 1988, Mathur and Krauser [158] were the
first to perform Mutation Testing on a vector processor system.
Krauser et al. [133], [134] proposed an approach for concur-
rent execution mutants under SIMD machines. Fleyshgakker
and Weiss [92], [246] proposed an algorithm that significantly
improved techniques for parallel Mutation Testing. Choi and
Mathur [47] and Offutt et al. [189] have distributed the execution
cost of Mutation Testing through MIMD machines. Zapf [261]
extended this idea in a network environment, where each mutant
is executed independently.

TABLE IV
A EXAMPLE OF EQUIVALENT MUTATION

Program p Equivalent Mutant m

for (int i = 0; i < 10; i++) for (int i = 0; i ! = 10; i++)
{ {

...(the value of i ...(the value of i
is not changed) is not changed)

} }

IV. EQUIVALENT MUTANT DETECTION TECHNIQUES

To detect if a program and one of its mutants programs are
equivalent is undecidable, as proved in the work of Budd and
Angluin [35]. As a result, the detection of equivalent mutants
alternatively may have to be carried out by humans. This has been
a source of much theoretical interest. For a given program p, m
denotes a mutant of program p. Recall that m is an equivalent
mutant if m is syntactically different from p, but has the same
behaviour with p. Table IV shows an example of equivalent
mutant generated by changing the operator < of the original
program into the operator ! =. If the statements within the loop do
not change the value of i, program p and mutant m will produce
identical output.

An equivalent mutant is created when a mutation leads to no
possible observable change in behaviour; the mutant is syntacti-
cally different but semantically identical to the original program
from which it is created. Grün et al. [106] manually investigated
eight equivalent mutants generated from the JAXEN XPATH
query engine program. They pointed out four common equivalent
mutant situations: the mutant is generated from dead code, the
mutant improves speed, the mutant only alters the internal states
and the mutant cannot be triggered (i.e. no input test data can
change the program’s behaviour at the mutation point). It is worth
noticing that these four are not the only situations that lead to
equivalent mutants. For example, none of it applies to the example
in Table IV.

As the mutation score is counted based on non-equivalent mu-
tants, without a complete detection of all equivalent mutants, the
mutant score can never be 100%, which means the programmer
will not have complete confidence in the adequacy of a potentially
perfectly adequate test set. Empirical results indicate that there
are 10% to 40% of mutants which are equivalent [178], [187].
Fortunately, there has been much research work on the detection
of the equivalent mutants.

Baldwin and Sayward [18] proposed an approach that used
compiler optimization techniques to detect equivalent mutants.
This approach is based on the idea that the optimization procedure
of source code will produce an equivalent program, so a mutant
might be detected as equivalent mutants by either ‘optimization’
or a ‘de-optimization process’. Baldwin and Sayward [18] pro-
posed six types of compiler optimization rules that can be used for
the detection of equivalent mutants. These six were implemented
and empirically studied by Offutt and Craft [178]. The empirical
results showed that, generally, 10% of all mutants were equivalent
mutants for 15 subject programs.

Based on the work of constraint test data generation, Offutt
and Pan [186], [187], [197] introduced a new equivalent mutant
detection approach using constraint solving. In their approach,
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the equivalent mutant problem is formulated as a constraint
satisfaction problem by analysing the path condition of a mutant.
A mutant is equivalent if and only if the input constraint is unsat-
isfiable. Empirical evaluation of a prototype has shown that this
technique is able to detect a significant percentage of equivalent
mutants (47.63% among 11 subject programs) for most of the
programs. Their results suggest that the constraint satisfaction
formulation is more powerful than the compiler optimization
technique [178].

The program slicing technique has also been proposed to assist
in the detection of equivalent mutants [109], [110], [241]. Voas
and McGraw [241] were the first to suggest the application
of program slicing to Mutation Testing. Hierons et al. [110]
demonstrated an approach using slicing to assist the human
analysis of equivalent mutants. This is achieved by the generation
of a sliced program that denotes the answer to an equivalent
mutant. This work was later extended by Harman et al. [109]
using dependence analysis.

Adamopoulos et al. [5] proposed a co-evolutionary approach
to detect possible equivalent mutants. In their work, a fitness
function was designed to set a poor fitness value to an equivalent
mutant. Using this fitness function, equivalent mutants are wiped
out during the co-evolution process and only mutants that are
hard to kill and test cases that are good at detecting mutants are
selected.

Ellims et al. [83] reported that mutants with syntactic difference
and the same output can be also semantically different in terms of
running profile. These mutants often have the same output as the
original programs but have different execution time or memory
usage. Ellims et al. suggested that ‘resource-aware’ might be used
to kill the potential mutants.

The most recent work on the equivalent mutants was conducted
by Grün et al. [106] who investigated the impact of mutants.
The impact of a mutant was defined as the different program
behaviour between the original program and the mutant and it
was measured through the code coverage in their experiment. The
empirical results suggested that there was a strong correlation
between mutant ‘killability’ and its impact on execution, which
indicates that if a mutant has higher impact, it is less likely to be
equivalent.

V. THE APPLICATION OF MUTATION TESTING

Since Mutation Testing was proposed in the 1970s, it has been
applied to test both program source code (Program Mutation)
[60] and program specification (Specification Mutation) [105].
Program Mutation belongs to the category of white box based
testing, in which faults are seeded into source code, while
Specification Mutation belongs to black box based testing where
faults are seeded into program specifications, but in which the
source code may be unavailable during testing.

Figure 5 shows the chronological development of research work
on Program Mutation and Specification Mutation. Figure 6 shows
the percentage of the publications addressing each language to
which Mutation Testing has been applied. As Figure 5 shows,
there has been more work on Program Mutation than Specification
Mutation. Notably more than 50% of the work has been applied
to Java, Fortran and C. Fortran features highly because a lot
of the earlier work on Mutation Testing was carried out on
Fortran programs. In the following section, the applications of

Fig. 6. Percentage of publications addressing each language to which
Mutation Testing has been applied

Program Mutation and Specification Mutation are summarized
by the programming language targeted.

A. Program Mutation
Program Mutation has been applied to both the unit level

[66] and the integration level [55] of testing. For unit level
Program Mutation, mutants are generated to represent the faults
that programmers might have made within a software unit, while
for the integration level Program Mutation, mutants are designed
to represent the integration faults caused by the connection
or interaction between software units [240]. Applying Program
Mutation at the integration level is also known as Interface
Mutation which was first introduced by Delamaro et al. [55]
in 1996. Interface Mutation has been applied to C Programs by
Delamaro et al. [54]–[56] and also to the CORBA Programs by
Ghosh and Mathur [98], [100]–[102]. Empirical evaluations of
Interface Mutation can be found in Vincenzei et al.’s work [240]
and Delamaro et al.’s work [57], [58].

1) Mutation Testing for Fortran: In the earliest days of Muta-
tion Testing, most of the experiments on Mutation Testing targeted
Fortran. Budd et al. [36], [40] was the first to design mutation
operators for Fortran IV in 1977. Based on these studies, a
Mutation Testing tool named PIMS was developed for testing
Fortran IV programs [3], [36], [145]. However, there were no
formal definitions of mutation operators for Fortran until 1987.
In 1987, Offutt and King [131], [181] summarized the results
from previous work and proposed 22 mutation operators for
Fortran 77. This set of mutation operators became the first set
of formalized mutation operators and consequently had greater
influence on later definitions of mutation operators for applying
Mutation Testing to the other programming languages. These
mutation operators are divided into three groups; the Statement
analysis group, the Predicate analysis group and the Coincidental
correctness group.

2) Mutation Testing for Ada: Ada mutation operators were first
proposed by Bowser [29] in 1988. In 1997, based on previous
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Fig. 5. Publications of the Applications of Mutation Testing

work of Bowser’s Ada mutation operators [29], Agrawal et al.’s
C mutation operators [6] and the design of Fortran 77 mutation
operators for MOTHRA [131], Offutt et al. [192] redesigned
mutation operators for Ada programs to produce a proposed
set of 65 Ada mutation operators. According to the semantics
of Ada, this set of Ada mutation operators is divided into five
groups: Operand Replacement Operators group, Statement Op-
erators group, Expression Operators group, Coverage Operators
group and Tasking Operators group.

3) Mutation Testing for C: In 1989, Agrawal et al. [6] pro-
posed a comprehensive set of mutation operators for the ANSI
C programming language. There were 77 mutation operators
defined in this set, which was designed to follow the C language
specification. These operators are classified into variable mutation,
operator mutation, constant mutation and statement mutation.
Delamaro et al. [54]–[56], [58] investigated the application of
Mutation Testing at the integration level. They selected 10 mu-
tation operators from Agrawal et al.’s 77 mutation operators to
test interfaces of C programs. These mutation operators focus
on injecting faults into the signature of public functions. More
recently, Higher Order Mutation Testing has also been applied to
C Programs by Jia and Harman [122].

There are also mutation operators that target specific C program
defects or vulnerabilities. Shahriar and Zulkernine [214] proposed
8 mutation operators to generate mutants that represent Format
String Bugs (FSBs). Vilela et al. [239] proposed 2 mutation
operators representing faults associated with static and dynamic
memory allocations, which were used to detect Buffer Overflows
(BOFs). This work was subsequently extended by Shahriar and
Zulkernine [213] who proposed 12 comprehensive mutation op-
erators to support the testing of all BOF vulnerabilities, targeting
vulnerable library functions, program statements and buffer size.

Ghosh et al. [97] have applied Mutation Testing to an Adaptive
Vulnerability Analysis (AVA) to detect BOFs.

4) Mutation Testing for Java: Traditional mutation operators
are not sufficient for testing Object Oriented (OO) programming
languages like Java [130], [151]. This is mainly because the faults
represented by the traditional mutation operators are different to
those in the OO environment, due to OO’s different programming
structure. Moreover, there are new faults, introduced by OO-
specific features, such as inheritance and polymorphism.

As a result, the design of Java mutation operators was not
strongly influenced by previous work. Kim et al. [128] were
the first to design mutation operators for the Java programming
language. They proposed 20 mutation operators for Java using
HAZOP (Hazard and Operability Studies). HAZOP is a safety
technique which investigates and records the result of system
deviations. In Kim et al.’s work, HAZOP was applied to the
Java syntax definition to identify the plausible faults of the
Java programming language. Based on these plausible faults, 20
Java mutation operators were designed, falling into six groups:
Types/Variables, Names, Classes/interface declarations, Blocks,
Expressions and others.

Based on their previous work on Java mutation operators,
Kim et al. [127] introduced Class Mutation, which applies mu-
tation to OO (Java) programs targeting faults related to OO-
specific features. In Class Mutation, three mutation operators
representing Java OO-features were selected from the 20 Java
mutation operators. In 2000, Kim et al. [129] added another
10 mutation operators for Class Mutation. Finally, in 2001, the
number of the Class mutation operators was extended to 15
and these mutation operators were classified into four types:
polymorphic types, method overloading types, information hiding
and exception handling types [130]. A similar approach was also
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adopted by Chevalley and Thevenod-Fosse in their work [44],
[45].

Ma et al. [150], [151] pointed out that the design of mutation
operators should not start with the selected approach (Kim et al.’s
approach [127]). They suggested that the selected mutation opera-
tors should be obtained from empirical results of the effectiveness
of all mutation operators. Therefore, instead of continuing Kim
et al.’s work [129], Ma et al. [150] proposed 24 comprehensive
Java mutation operators based on previous studies of OO Fault
models. These are classified into six groups: Information Hid-
ing group, Inheritance group, Polymorphism group, Overloading
group, Java Specific Features group and Common Programming
Mistakes group. Ma et al. conducted an experiment to evaluate
the usefulness of the proposed class mutation operators [149]. The
results suggested that some class mutation model faults can be
detected by traditional Mutation Testing. However, the mutants
generated by the EOA class mutation (Reference assignment and
content assignment replacement) and the EOC class mutation
(Reference comparison and content comparison replacement) can
not be killed by a traditional mutation adequate test set.

There are also alternative approaches to the definition of the
mutation operators for Java. For example, instead of applying
mutation operators to the program source, Alexander et al. [9],
[24] designed a set of mutation operators to inject faults into
Java utility libraries, such as, the Java container library and the
iterator library. Based on work on traditional mutation operators,
Bradury et al. [31] introduced an extension to the concurrent Java
environment.

5) Mutation Testing for C#: Based on previous proposed Java
mutation operators, Dereziǹska introduced an extension to a set
of C# specialized mutation operators [70], [71] and implemented
them in a C# mutation tool named CREAM [72]. Empirical results
for this set of C# mutation operators using the CREAM were
reported by Dereziǹska and Szustek [71], [73].

6) Mutation Testing for SQL: Mutation Testing has also been
applied to SQL code to detect faults in database applications.
The first attempt to the design of mutation operators for SQL was
done by Chan et al. [43] in 2005. They proposed 7 SQL mutation
operators based on the enhanced entity-relationship model. Tuya
et al. [234] proposed another set of mutant operators for SQL
query statements. This set of mutation operators is organized into
four categories, including mutation of SQL clauses, mutation of
operators in conditions and expressions, mutation handling NULL
values and mutation of identifiers. They also developed a tool
named SQLMutation that implements this set of SQL mutation
operators and an empirical evaluation concerning results using
SQLMutation [233]. A development of this work targeting Java
database applications can be found in the work of Zhou and Frankl
[264]. Shahriar and Zulkernine [212] have also proposed a set of
mutation operators to handle the full set of SQL statements from
connection to manipulation of the database. They introduced 9
mutation operators and implemented them in an SQL mutation
tool called MUSIC.

7) Mutation Testing for Aspect-Oriented Programming:
Aspect-Oriented Programming (AOP) is a programming paradigm
that aids programmers in separation of crosscutting concerns.
Ferrari et al. [90] proposed 26 mutation operators based on a
generalization of faults for general Aspect-Oriented programs.
These mutation operators are divided into three groups: point-
cut expressions, aspect declarations and advice definitions and

implementation. Empirical results from evaluation of this work
using real world applications can also be found in their work [90].
A recent work from Delamare et al. introduced an approach to
detect equivalent mutants in AOP programs using static analysis
of aspects and base code [51].

AspectJ is a widely studied aspect-oriented extension of the
Java language, which provides many special constructs such as
aspects, advice, join points and pointcuts [13]. Baekken and
Alexander [17] summarised previous research work on the fault
model associated with AspectJ pointcuts. They proposed a com-
plete AspectJ fault model based on the incorrect pointcut pattern,
which was used as a set of mutation operators for AspectJ
programs. Based on this work, Anbalagan and Xie [12], [13]
proposed a framework to generate mutants for pointcuts and to
detect equivalent mutants. To reduce the total number of mutants,
a classification and ranking approach based on the strength of the
pointcuts was also introduced in their framework.

8) Other Program Mutation Applications: Besides these pro-
gramming languages, Mutation Testing has also been applied to
Lustre programs [80], [81], PHP programs [215], Cobol programs
[108], Matlab/Simulink [262] and spreadsheets [1]. There is also
research work investigating the design of mutation operators
for real-time systems [96], [171], [172], [227] and concurrent
programs [8], [31], [41], [99], [147].

B. Specification Mutation
Although Mutation Testing was originally proposed as a white

box testing technique at the implementation level, it has also
been applied at the software design level. Mutation Testing at
design level is often referred to as ‘Specification Mutation’, which
was first introduced by Gopal and Budd in 1983 [38], [105]. In
Specification Mutation, faults are typically seeded into a state
machine or logic expressions to generate ‘specification mutants’.
A specification mutant is said to be killed if its output condition
is falsified. Specification Mutation can be used to find faults
related to missing functions in the implementation or specification
misinterpretation [195].

1) Mutation Testing for Formal Specifications: The formal
specifications can be presented in many forms, for example
calculus expressions, Finite State Machines (FSM), Petri Nets
and Statecharts. The earlier research work on Specification Muta-
tion considered specifications of simple logical expressions. Gopal
and Budd [38], [105] considered specifications in predicate cal-
culus targeting the predicate structure of the program under test.
A similar work applied to the refinement calculus specification
can be found in the work of Aichernig [7]. Woodward [254],
[257] investigated mutation operators for algebraic specifications.
In their experiment, they applied an optimization approach to
compile a specification mutant into executable code and evaluated
the approach to provide empirical results [255].

More recently, many formal techniques have been proposed to
specify the dynamic aspects of a software system, for example,
Finite State Machines (FSM), Petri Nets and State charts. Fabbri
et al. [88] applied Specification Mutation to validate specifica-
tions presented as FSMs. They proposed 9 mutation operators,
representing faults related to the states, events and outputs of an
FSM. This set of mutation operators was later implemented as
an extension of the C mutation tool Proteum [85]. An empirical
evaluation of these mutation operators was reported by them [85].
Hierons and Merayo [111], [112] investigated the application of
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Mutation Testing to Probabilistic Finite State Machines (PFSMs).
They defined 7 mutation operators and provided an approach to
avoid equivalent mutants. Other work on EFSM mutation can also
be found in the work of Batth et al. [20], Bombieri et al. [28]
and Belli et al. [23].

Statecharts are widely used for the formal specification of
complex reactive systems. Statecharts can be considered as an
extension of FSMs, so the first set of mutation operators for
Statecharts was also proposed by Fabbri et al. [87], based on their
previous work on FSM mutation operators. Using Fabbri et al.’s
Statecharts mutation operators, Yoon et al. [260] introduced a new
test criterion, the State-based Mutation Test Criterion (SMTC).
In the work of Trakhtenbrot [231], the author proposed new
mutations to assess the quality of tests for statecharts at the
implementation level as well as the model level. Other work on
Statechart mutation can be found in the work of Fraser et al. [95].

Besides FSMs and Statecharts, Specification Mutation has been
also applied to a variety of specification languages. For example,
Souza et al. [222], [223] investigated the application of Mutation
Testing to the Estelle Specification language. Fabbri et al. [86]
proposed mutation operators for Petri Nets. Srivatanakul et al.
[225] performed an empirical study using Specification Muta-
tion to CSP Specifications. Olsson and Runeson [196] and Sugeta
et al. [226] proposed mutation operators for SDL. Definitions of
mutation operators for formal specification language can be found
in the work of Black et al. [25] and the work of Okun [195].

2) Mutation Testing for Running Environment: During the
process of implementing specifications, bugs might be introduced
by programmers due to insufficient knowledge of the final target
environment. These bugs are called “environment bugs” and they
can be hard to detect. Examples are the bugs caused by mem-
ory limitations, numeric limitations, value initialization, constant
value interpretation, exception handling and system errors [224].
Mutation Testing was first applied to the detection of such bugs
by Spafford [224] in 1990. In his work, environment mutants were
generated to detect integer arithmetic environmental bugs.

The idea of environment bugs was extended in 1990s by Du
and Mathur, as many empirical studies suggested that “the envi-
ronment plays a significant role in triggering security flaws that
lead to security violations” [78]. As a result, Mutation Testing was
also applied to the validation of security vulnerabilities. Du and
Mathur [78] defined an EAI fault mode for software vulnerability,
and this model was applied to generate environmental mutants.
Empirical results from the evaluation of their experiments are
reported in [79].

3) Mutation Testing for Web Services: Lee and Offutt [142]
were the first to apply Mutation Testing to Web Services. In 2001,
they introduced an Interaction Specification Model to formalize
the interactions between web components [142]. Based on this
specification model, a set of generic mutation operators was
proposed to mutate the XML data model. This work was later
extended by Xu et al. [193], [259] targeting the mutation of XML
data and they renamed it XML perturbation. Instead of mutating
XML data directly, they perturbed XML schemas to create invalid
XML data using 7 XML schema mutation operators. A constraint-
based test case generation approach was also proposed and the
results of empirical studies were reported [259]. Another set of
XML schema mutation operators was proposed by Li and Miller
[143].

There is also Web Service mutation work targeting specific

XML-based language features, for example, the OWL-S specifica-
tion language [140], [245] and WS-BPEL specification language
[84]. Unlike the traditional XML specification language, OWL-S
introduces semantics to workflow specification using an ontology
specification language. In the work of Lee et al. [140], the
authors propose mutation operators for detection of semantic
errors caused by the misuse of the ontology classes.

4) Mutation Testing for Networks: Protocol robustness is an
important aspect of any network system. Sidhu and Leung [216]
investigated fault coverage of network protocols. Based on this
work, Probert and Guo proposed a set of mutation operators to
test network protocols [202]. Vigna et al. [238] applied Mutation
Testing to network-based intrusion detection signatures, which are
used to identify malicious traffic. Jing et al. [124] built a NFSM
model for protocol messages and applied Mutation Testing to this
model using the TTCN-3 specification language. Other work on
the application of Mutation Testing to State based protocols can
be found in the work of Zhang et al. [263].

5) Mutation Testing for Security Policy: Mutation Testing has
also been applied to security policies [139], [154], [165], [166],
[201]. Much of this research work sought to designed mutation
operators that inject common flaws into different types of security
policies. For example, Xie et al. [154] applied mutation analysis to
test XACML, an Oasis standard XML syntax for defining security
policies. A similar approach has also been applied by Mouelhi et
al. [166]. Le Traon et al. [139] introduced 8 mutation operators for
the Organization Based Access Control OrBAC policy. Mouelhi
et al. [165] proposed a generic meta-model for security policy
formalisms. Based on this formalism, a set of mutation operators
was introduced to apply to all rule-based formalisms. Hwang et
al. proposed an approach that applies Mutation Testing to test
firewall policies [117].

C. Other Testing Application
In addition to assessing the quality of test sets, Mutation

Testing has also been used to support other testing activities, for
example test data generation and regression testing, including test
data prioritization and test data minimization. In this section, we
summarise the main work on mutation as a support to these testing
activities.

1) Test Data Generation: The main idea of mutation based
test data generation is to generate test data that can effectively
kill mutants. Constraint-based test data generation (CBT) is one
of the automatic test data generation techniques using Mutation
Testing. It was first proposed in Offutt’s PhD work [194]. Offutt
suggested that there are three conditions for a test case to kill
a mutant: reachability, necessity and sufficiency. In CBT, each
condition for a mutant is turned into constraint. Test data that
guarantees to kill this mutant can be generated by finding input
values that satisfy these constraints.

Godzilla is a test data generator that uses the CBT technique.
It was implemented by DeMillo and Offutt [67] under the Mothra
system. Godzilla applied control-flow analysis, symbolic evalua-
tion and a constraint satisfaction technique to generate and solve
constraints for each mutant. Empirical results suggest that 90% of
mutants can be killed using the CBT technique for most programs
[68]. However, the CBT technique also suffers from some of
the drawbacks associated with symbolic evaluation. Offutt et al.
[179], [180] addressed these problems by proposing the Dynamic
Domain Reduction technique.
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Baudry et al. proposed an approach to automatically generate
test data for components implemented by contract [22]. In this
research work, a testing-for-trust methodology was introduced to
keep the consistency of the three component artefacts: specifica-
tion, implementation and test data. Baudry et al. applied a genetic
algorithm to generate test data. The generated test data is then
considered as a predator which is used to validate the program
and the contract at the same time. Experimental results showed
that 75% of mutants can be can be killed using this test data
generation technique.

Besides generating test data directly, Mutation Testing has also
been applied to improve the quality of test data. Baudry et al.
[21] proposed an approach to improve the quality of test data
using Mutation Testing with a Bacteriological Algorithm. Smith
and Williams applied Mutation Testing as a guidance to test data
augmentation [219]. Le Traon et al. [138] use mutation analysis
to improve component contract. Xie et al. [258] applied Mutation
Testing to assist programmers in writing parametrised unit tests.

2) Regression testing: Test case prioritization techniques are
one way to assist regression testing. Mutation Testing has been
applied as a test case prioritization technique by Do and Gregg
[75], [76]. Do and Gregg measured how quickly a test suite
detects the mutant in the testing process. Testing sequences
are rescheduled based on the rate of mutant killing. Empirical
studies suggested that this automated test case prioritization can
effectively improve the rate of fault detection of test suites [76].

Mutation Testing has also been used to assist the test case
minimization process. Test case minimization techniques aim to
reduce the size of a test set without losing much test effectiveness.
Offutt et al. [173] proposed an approach named Ping-Pong.
The main idea is to generate mutants targeting a test criterion.
A subset of test data with the highest mutation score is then
selected. Empirical studies show that Ping-Pong can reduce a
mutation adequacy test set by a mean of 33% without loss of
test effectiveness.

In addition to the previous mentioned applications, mutation
analysis has also been applied to other application domains. For
example, Serrestou et al. proposed an approach to evaluate and
improve the functional validation quality of RTL in a hardware
environment [210], [211]. Mutation analysis has also been used
to assist the evaluation of software clone detection tools [204],
[205].

VI. EMPIRICAL EVALUATION

Empirical study is an important aspect in the evaluation and
dissemination of any technique. In the following sections, the
subject programs used in empirical studies are first summarised.
Empirical results on the evaluation of Mutation Testing are then
reported in detail.

A. Subject Programs

In order to investigate the empirical studies on Mutation
Testing, we have collected all the subject programs for each
empirical experiment work from our repository, as shown in Table
IX (Table IX is located in the end of the paper). Table IX shows
the name, size, description, the year when the subject program
was first applied and the overall number of research papers that
report results for this subject program. The table entry for some
sizes and descriptions of the subject programs are shown as “not

reported”. This occurs where the information is unavailable in
the literature. Table IX is sorted by the number of papers that
use the subject program, so the first ten programs are the most
studied subject programs in the literature on Mutation Testing.
These wildly studied programs are all laboratory programs under
50 LoC but we also noticed that the 11th program is SPACE, a
non-trivial real program.

To provide an overview of the trend of empirical studies
on Mutation Testing to attack more challenging programs, we
calculated the size of the largest subject program for each year.
For each year on the horizontal axis, the data point in Figure 7
shows the size of the largest program considered in a mutation
study up to that point in time. Clearly the definition of “program
size” can be problematic, so the figure is merely intended to
be used as a rough indicator. There is evidence to indicate
that the size of the subject programs that can be handled by
Mutation Testing is increasing. However, caution is required. We
found that although some empirical experiments were reported to
handle large programs, some studies applied only a few mutation
operators. We also counted the number of newly introduced
subject programs for each year. The results are shown in Figure
8. The dashed line in the figure is the cumulative view of the
results. The number of newly used subject programs is gradually
increasing, which suggests a growth in practical work.

In the empirical studies, it may be more indicative to use a
real world program rather than laboratory program. To understand
the relationship between the use of laboratory programs and
real world programs in mutation experiments, we have counted
each type by year. The results are shown in Figure 9. In this
study, we consider a real world program to be either an open
source or an industry program. In Figure 9, the cumulative view
shows that the number of real world programs started increasing
in 1992, while the number of laboratory programs had already
started increasing by 1988. Figure 9 also shows the number of
laboratory and real programs introduced into studies each year
as bars. This clearly indicates that, while there are correctly
more laboratory programs overall, since 2002, far more new real
programs than laboratory programs have been introduced. This
finding provides some evidence to support the claim that the
development of Mutation Testing is maturing.

In our study, we found that for each research area of Mutation
Testing there is a different set of subject programs used as
benchmarks. In Table V we have summarised these benchmark
programs. We chose five active research areas based on our
studies: Coupling effect, Selective Mutation, Weak, Strong and
Firm Mutation, Equivalent Mutant Detection and experiments
supporting testing, including the use of mutation analysis to select,
minimise, prioritise and generate test data.

B. Empirical Results
Many researchers have conducted experiments to evaluate the

effectiveness of Mutation Testing [14], [50], [61], [93], [94],
[160], [188], [248]. These experiments can be divided into two
types: comparing mutation criteria with data flow criteria such
as “all-use” and comparing mutants with real faults. Table VI
summarises the evaluation type and the subject programs used in
each of these experiments.

Mathur and Wong have conducted experiments to compare the
“all-use” criterion with mutation criteria [160], [248], [251]. In
their experiment, Mathur and Wong manually generated 30 sets
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Fig. 8. New programs applied for each year.

of test cases satisfying each criterion for each subject program.
Empirical results suggested that mutation adequate test sets more
easily satisfy the “all-use” criteria than all use test sets satisfy
mutation criteria. This result indicates mutation criteria “prob-
subsumes” 2 the “all-use” criteria in general.

Offutt et al. conduced a similar experiment using ten different
programs [188]. The ‘cross scoring’ result also provides evidence
for Mathur and Wong’s probsubsumes relationship [160], [248].
In addition to comparing the two criteria with each other, Offutt
et al. also compared the two criteria in terms of the fault
detection rate. This result showed that 16% more faults can be
detected using mutation adequate test sets than “all-use” test sets,
indicating that mutation criteria is “probbetter” 3 than the “all-

2If a test criterion C1 probsumes a test criterion C2, a test set which is
adequate to C1 is likely to be adequate to C2 [188]

3If a test criterion C1 probbetter than a test criterion C2, then a randomly
selected test set which satisfies C1 is more likely to detect a fault than a
randomly selected test set which satisfies C2 [188]

use” data flow. This conclusion also agreed with the results of
the experiment of Frankl et al. [93], [94]

In addition to comparing mutation analysis with other test-
ing criteria, there have also been empirical studies comparing
real faults and mutants. In the work of Daran and Thévenod-
Fosse [50], the authors conducted an experiment comparing real
software errors with 1st order mutants. The experiment used a
safety-critical program from the civil nuclear field as the subject
program with 12 real faults and 24 generated mutants. Empirical
results suggested that 85% of the errors caused by mutants were
also produced by real faults, thereby providing evidence for the
Mutation Coupling Effect Hypothesis. This result also agreed
with DeMillo and Mathur’s experiment [61]. DeMillo and Mathur
carried out an extensive study of the errors in TeX reported by
Knuth [61] and they demonstrated how simple mutants could
detect real complex errors from TeX.

Andrews et al. [14] conducted an experiment comparing manu-
ally instrumented faults generated by experienced developers with
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TABLE V
SUBJECT PROGRAMS BY APPLICATION

Application Subject Programs Reference
Coupling Effect Triangle, Find, MID [174], [175]

Selective Mutation Triangle, Find, Bubble, MID, Calendar, Euclid, Quad,
Insert, Warshall, Pat, Totinfo, Schedule1, Schedule2,
TCAS, Printtok1, Printtok2, Space, Replace, Banker,
Sort, Areasg, Minv, Rpcalc, Seqstr, Streql, Tretrvi, Ap-
pend, Archive, Change, Ckglob, Cmp, Command, Com-
pare, Compress, Dodash, Edit, Entab, Expand, Getcmd,
Getdef, Getfn, Getfns, Getlist, Getnum, Getone, Gtext,
Makepat, Omatch, Optpat, Spread, Subst, Translit, Un-
rotate

[19], [167], [168], [170], [182],
[190]

Weak, Strong, Firm Muta-
tion

Triangle, Find, Bubble, MID, Calendar, Euclid, Quad,
Insert, Warshall, Pat, Gcd, Sort, Max index

[183], [184], [257]

Equivalent Mutant Triangle, Find, Bubble, MID, Calendar, Euclid, Quad,
Insert, Warshall, Pat, Bsearch, Max, Banker, Deadlock,
Count, Dead

[178], [186], [187]

Testing (test case genera-
tion, prioritization, selection
and reduction)

Triangle, Find, Bubble, MID, Calendar, Euclid, Quad,
Insert, Warshall, Pat, Space, Bsearch, Totinfo, Sched-
ule1, Schedule2, TCAS, Printtok1, Printtok2, Replace,
Gcd, Binom, Ant, Stats Twenty-four, Conversions, Op-
erators, Xml-Security, Jmeter, JTopas, ATM, BOOK,
VirtualMeeting, MinMax, NextDate, Finance

[16], [67], [68], [75], [76], [114],
[146], [173], [179], [180], [250]

mutants automatically generated by 4 carefully selected mutation
operators. In the experiment, the Siemens suite (Printtokens, Print-
tokens2, Replace, Schedule, Schedule2, Tcas and Totinfo) and the
Space program were used as subjects. Empirical results suggested
that, after filtering out equivalent mutants, the remaining non-
equivalent mutants generated from the selected mutation operators
were a good indication of the fault detection ability of a test suite.
The results also suggested that the human generated faults are
different from the mutants; both human and auto-generated faults
are needed for the detection of real faults.

Do and Rothermel [75], [76] studied the effect of both hand

seeded faults and machine generated mutants on fault detection
ability and the test prioritization order. In the test data prioritiza-
tion study, Do and Rothermel considered several prioritization
techniques to improve the fault detection rate. Their analysis
showed that for non-control test case prioritization, the use of
mutation can improve fault detection rates. However the results
are affected by the number of mutation faults applied. In the fault
detection ability studies, Do and Rothermel followed Andrews et
al.’s experimental procedure [14]. Results from 4 out of the 6
subject programs revealed a similar data spread to the work of
Andrews et al. The effect of test set minimization using mutation
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TABLE VI
EMPIRICAL EVALUATION OF MUTATION TESTING

Research Evaluation Type Subject Programs
DeMillo and Mathur [61] real faults vs mutants Tex
Mathur and Wong [160], [248] all-use vs mutation criteria Find, Strmat1, Strmat2 and Textfmt
Offutt et al. [188] all-use vs mutation criteria Bub, Cal, Euclid, Find, Insert, Mid, Pat, Quad, Trityp

and Warshall
Daran and Thévenod-Fosse [50] real faults vs mutants Nuclear Reactor Safety Shutdown System
Frankl et al. [93], [94] all-use vs mutation criteria Determinant, Find1, Find2, Matinv1, Matinv2, Str-

match1, Strmatch2, Textformat.r and Transpose
Andrews et al. [14] hand seeded faults vs mutants Space, Printtokens, Printtokens2, Replace, Schedule,

Schedule2, Tcas and Totinfo
Do and Rothermel [75], [76] hand seeded faults vs mutants Ant, Xml-security, Jmeter, Jtopas, galileo and nanoxml

can be found in the work of Wong et al. [249].
Despite evaluating Mutation Testing against other testing ap-

proaches, there are also experiments that use mutation analysis
to evaluate different testing approaches. For example, Andrews et
al. [15] conducted an experiment to compare test data generation
using control flow and data flow. Thevenod et al. [229] applied
mutation analysis to compare random and deterministic input
generation techniques. Bradbury et al. [32] used mutation analysis
to evaluate traditional testing and model checking approaches on
concurrent programs.

VII. TOOLS FOR MUTATION TESTING

The development of Mutation Testing tools is an important
enabler for the transformation of Mutation Testing from the
laboratory into a practical and widely used testing technique.
Without a fully automated mutation tool, Mutation Testing is
unlikely to be accepted by industry. In this section, we summarise
development work on Mutation Testing tools.

Since the idea of Mutation Testing was first proposed in the
1970s, many mutation tools have been built to support automated
mutation analysis. In our study, we have collected information
concerning 36 implemented mutation tools, including the aca-
demic tools reported in our repository as well as the tools from
the open source and the industrial domains. Table VII summarises
the application, publication time and any notable characteristics
for each tool. The detailed description of the tools can be found
in the references cited in the final column of the table.

Figure 10 shows the growth in the number of tools introduced.
In Figure 10, the development work can be classified into three
stages. The first stage was from 1977 to 1981. In this early stage,
in which the idea of Mutation Testing was first proposed, four
prototype experimental mutation tools were built and used to
support the establishment of the fundamental theory of mutation
analysis, such as the Competent Programmer Hypothesis [3]
and the Coupling Effect Hypothesis [66]. The second stage was
from 1982 to 1999. There were four tools built in this period,
three academic tools, MOTHRA for Fortran [63], [64], PROTEUM,
TUMS for C [52], [53], [236] and one industry tool called
INSURE++. Engineering effort had been put into MOTHRA and
PROTEUM so that they were able to handle small real programs
not just laboratory programs. As a result, these two academic
tools were widely used. Most of the advanced mutation techniques
were experimented on using these two tools, for example, Weak
Mutation [183], [184], Selective Mutation [182], [190], Mutant
Sampling [159], [248] and Interface Mutation [54], [55]. The third

TABLE VIII
CLASSIFICATION OF MUTATION TESTING TOOLS

Stage Overall
Tools

Academic
Tools

Open
Source
Tools

Commercial
Tools

1975-1999 8 7 0 1
2000-present 28 19 7 2

stage of Mutation Testing development appears to have started
from the turn of the new millennium, when the first mutation
workshop was held. There have been 28 tools implemented since
this time. In Figure 10, the dashed line shows a cumulative view
of this development work. We can see that the tool development
trend is rapidly increasing since year 2000, indicating that re-
search work on Mutation Testing remains active and increasingly
practical.

In order to explore the impact of Mutation Testing within
the open source and industrial domains, we have classified tools
into three classes: academic, open sources and industrial. Table
VIII shows the number of each class over two periods; one is
before the year 2000, the other is from the year 2000 to the
present. As can be seen, there are more open source and industrial
tools implemented recently, indicating that Mutation Testing has
gradually become a practical testing technique, embraced by both
the open source and industrial communities.

VIII. EVIDENCE FOR THE INCREASING IMPORTANCE OF
MUTATION TESTING

To understand the general trend for the Mutation Testing re-
search area, we analysed the number of publications by year from
1977 to 2009. Consider again the results in Figure 1; there are
five apparent outliers in years 1994, 2001, 2006, 2007 and 2009.
The reason for the last four years, is that there were four Mutation
Testing workshops held in 2000 (with proceedings published in
2001), 2006, 2007 and 2009. However, there is no direct evidence
to explain the spike in year 2004; this just appears to be an
anomalous productive year for Mutation Testing. The reader will
also notice that 1986 is unique as no publications were found. An
interesting explanation was provided by Offutt [176]: “1986 was
when we were maximally devoted to programming Mothra. ”

We performed a regression analysis on these data and found
there is a strong positive correlation between year and the number
of publications (r = 0.7858). In order to predict the trend of publi-
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TABLE VII
SUMMARY OF PUBLISHED MUTATION TESTING TOOLS

Name Application Year Character Available Reference
PIMS Fortran 1977 General No [36], [40],

[145]
EXPER Fortran 1979 General No [3], [34], [39]
CMS.1 Cobol 1980 General No [2], [108]
FMS.3 Fortran 1981 General No [228]
Mothra Fortran 1987 General Yes [63], [64]
Proteum 1.4 C 1993 Interface Mutation, Finite State Machines No [52], [53]
TUMS C 1995 Mutant Schemata Generation No [235]–[237]
Insure++ C/C++ 1998 Source Code Instrumentation (Commer-

cial)
Commercially [198]

Proteum/IM 2.0 C 2001 Interface Mutation, Finite State Machines Yes [59]
Jester Java 2001 General (Open Source) Yes [163]
Pester Python 2001 General (Open Source) Yes [163]
TDS CORBA IDL 2001 Interface Mutation No [100]
Nester C# 2002 General (Open Source) Yes [220]
JavaMut Java 2002 General Yes [45]
MuJava Java 2004 Mutant Schemata, Reflection Technique Yes [151], [152],

[185]
Plextest C/C++ 2005 General (Commercial) Commercially [118]
SQLMutation SQL 2006 General Yes [233]
Certitude C/C++ 2006 General (Commercial) Commercially [42]
SESAME C, Lustre,

Pascal
2006 Assembler Injection No [49]

ExMAn C, Java 2006 TXL Yes [30]
MUGAMMA Java 2006 Remote Monitoring Yes [126]
MuClipse Java 2007 Weak Mutation, Mutant Schemata, Eclipse

plug-in
Yes [218]

CSAW C 2007 Variable type optimization Yes [82], [83]
Heckle Ruby 2007 General (Open Source) Yes [206]
Jumble Java 2007 General (Open Source) Yes [221]
Testooj Java 2007 General Yes [200]
ESPT C/C++ 2008 Tabular Yes [89]
MUFORMAT C 2008 Format String Bugs No [214]
CREAM C# 2008 General No [73]
MUSIC SQL(JSP) 2008 Weak Mutation, SQL Vulnerabilities No [212]
MILU C 2008 Higher Order Mutation, Search-based

technique, Test harness embedding
Yes [123]

Javalanche Java 2009 Invariant and Impact analysis Yes [106], [208]
GAmera WS-BPEL 2009 Genetic algorithm Yes [77]
MutateMe PHP 2009 General (Open Source) Yes [33]
AjMutator AspectJ 2009 General Yes [51]
JDAMA SQL(JDBC) 2009 Byte code translation Yes [264]

cations in the future, we have tried to find a trend line for this data
using several common regression models: Linear, Logarithmic,
Polynomial, Power, Exponential and Moving average. The dashed
line in Figure 1 is the best fit line we found. It uses a quadratic
model, which achieves the highest coefficient of determination
(R2 = 0.7747). To put the Mutation Testing growth trend into a
wider context, we also collected and plotted the publication data
from DBLP for the subject of computer science as a whole [232].
According to DBLP, the general growth in computer science is
also exponential. From this analysis it is clear that Mutation
Testing remains at least as healthy as computer science itself.

In order to take a closer look at the growing trend of the
research work on Mutation Testing, we have classified this
work into theoretical work and practical work. The theoretical
category includes the publications concerning the hypotheses
supporting Mutation Testing, optimization techniques, techniques
for reducing computational cost and techniques for the detection
of equivalent mutants and surveys. The practical category includes

publications on applications of Mutation Testing, development
work on Mutation Testing tools and related empirical studies.

The goal of this separation of papers into theoretical and
practical work is to allow us to analyse the temporal relationship
between the development of theoretical and practical research
effort by the community. Figure 11 shows the overall cumulative
result. It is clear that both theoretical and practical work is
increasing. In 2006 for the first time, the total number of practical
publications surpasses the number of theoretical publications. To
take a closer look at this relationship, Figure 12 shows the number
of publications per year. From 1977 to 2000, there were fewer
practical publications than theoretical. From 2000 to 2009, most
of the research work appears to shift to the application area. This
provides some evidence to suggest that the field is starting to
move from foundational theory to practical application, possibly
a sign of increasing maturity.

In the Redwine-Riddle maturation model [203], there is a trend
that indicates that a technology takes about 15 to 20 years to
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Fig. 10. The number of tools introduced for each year
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reach a level of maturity at which time industrial uptake takes
place. Suppose we cast our attention back by 15 years to the mid
1990s. We reach a point where only approximately 25% of the
current volume of output had then been published in the literature.
(see Figure 12). The ideas found in this early Mutation Testing
literature have now been implemented in practical commercial
Mutation Testing tools, as shown in Table VII. This observation
suggests that the development of Mutation Testing is in line with
Redwine and Riddle’s findings.

Furthermore, the set of Mutation Testing systems developed in
the laboratory now provides tooling for a great many different
programming language paradigms (as shown in Table VII). This
provides further evidence of maturity and offers hope that, as
these tools mature, following the Redwine and Riddle model, we
can expect a future state–of–practice in which a wide coverage
of popular programming paradigms will be covered by real world
Mutation Testing tools.

Finally, an increasing level of maturity can also be seen in
the development of the empirical studies reported on Mutation
Testing. For example, there is a noticeable trend for empirical
studies to involve more programs and to also involve bigger and
more realistic programs, as can be seen in the chronological data
on empirical studies presented in Figure 7 and 8. However, it
should also be noted that more work is required on real world
programs and that many of our empirical evidence still rests on
studies of what would now be regarded as ‘toy programs’. There
also appears to be an increasing degree of corroboration and
replication of the results reported (see Table VI).

IX. DISCUSSION OF UNRESOLVED PROBLEMS, BARRIERS AND
AREAS OF SUCCESS

This section discusses some of the findings and conclusions
that can be drawn from this survey of the literature concerning
the current state of Mutation Testing. Naturally, this account is, to
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some extent, influenced by the authors’ own position on Mutation
Testing. However, we have attempted to take a step back and to
summarize unresolved problems, barriers and areas of success
in an objective manner, based on the available literature and the
trends we have found within it.

A. Unresolved Problems
One barrier to wider application of Mutation Testing centres

on the problems associated with Equivalent Mutants. As the
survey shows, there has been a sustained interest in techniques
for reducing the impact of equivalent mutants. This remains an
unresolved problem. We see several possible developments along
this line. Past work has concentrated on techniques to detect
equivalent mutants once they have been produced. In future,
Mutation Testing approaches may seek to avoid their initial
creation or to reduce their likelihood. Mutation Testing may be
applied to languages that do not have equivalent mutants. Where
equivalent mutants are a possibility, there will be a focus on
designing operators and analyzing code so that their likelihood
is reduced. Of course, we should be careful not to ‘throw the
baby out with the bath water’; we seek to retain the highly
valuable, so-called stubborn mutants, while filtering out those
that are equivalent. However, behaviourally these two classes of
mutants are highly similar.

Most work on Mutation Testing has been concerned with the
generation of mutants. Comparatively less work has concentrated
on the generation of test cases to kill mutants. Though there are
existing tools for mutant generation that are mature enough for
commercial application, there is currently no tool that offers test
cases generation to kill mutants at a similar level of maturity. The
state of the art is therefore one in which Mutation Testing has
provided a way to assess the quality of test suites, but there has
been comparatively little work on improving the test suites, based
on the associated mutation analysis. We expect that, in future,
there will be much more work that seeks to use high quality
mutants as a basis for generating high quality test data. However,
at present, practical software test data generation for mutation test
adequacy remains an unresolved problem.

B. Barriers to be overcome

There remains a perception — perhaps misplaced, but nonethe-
less widely held — that Mutation Testing is costly and imprac-
tical. This remains a barrier to wider academic interest in the
subject and also to a wider uptake within industry. We hope that
this survey will go some way towards addressing the remaining
doubts of academics. There is plenty of evidence in this survey
to show that Mutation Testing is on the cusp of a rising trend
of maturity and that it is making a transition from academic to
industrial application.

The barriers to industrial uptake are more significant and will
take longer to fully overcome. The primary barriers appear to be
those that apply to many other emergent software technologies
as they make their transition from laboratory to wider practical
application. That is, a need for reliable tooling and compelling
evidence to motivate the necessary investment of time and money
in such tooling.

As the survey shows, there is an increasingly practical trend in
empirical work. That is, as shown in Section VI, empirical studies
are increasingly focussing on non-trivial industrial subjects, rather
than laboratory programs. In order to provide a compelling
body of evidence, sufficient to overcome remaining practitioner
doubts, this trend will need to continue. There is also evidence
that Mutation Testing tools are starting to emerge as practical
commercial products (see Section VII). However, more tooling
is required to ensure widespread industrial uptake. Furthermore,
there is a pressing need to address the, currently unresolved,
problem of test case generation. An automated practical tool that
offered test case generation would be a compelling facilitator
for industrial uptake of Mutation Testing. No such tool currently
exists for test data generation, but recent developments in dynamic
symbolic execution [104], [209], [230] and search-based test data
generation [10], [135], [162] indicates that such a tool cannot be
far off. The Mutation Testing community will need to ensure that
it does not lag behind in this trend.
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C. Areas of Success
As this paper has shown (see Figures 1, 3, 11, 12 and

Tables VII, VIII), work on Mutation Testing is growing at a rapid
rate and tools and techniques are reaching a level of maturity not
previously witnessed in this field. There has also been a great deal
of work to extend Mutation Testing to new languages, paradigms
and to find new domains of application (see Figures 5, 7, 8, 9 and
Tables V, IX). Based on this existing success, we can expect that
the future will bring many more applications. There may shortly
be few widely–used programming languages to which Mutation
Testing has yet to be applied.

In all aspects of testing there is a trade-off to be arrived at
that balances the cost of test effort and the value of fault finding
ability; a classic tension between effort and effectiveness. Tradi-
tionally, Mutation Testing has been seen to be a rather expensive
technique that offers high value. However, more recently, authors
have started to develop techniques that reduce costs, without over-
compromising on quality. This has led to successful techniques
for reducing mutation effort without significant reduction in test
effectiveness (as described in Section III).

X. CONCLUSION AND FUTURE WORK

This paper has provided a detailed survey and analysis of
trends and results on Mutation Testing. The paper covers theories,
optimization techniques, equivalent mutant detection, applica-
tions, empirical studies and mutation tools. There has been much
optimization to reduce the cost of the Mutation Testing process.
From the data we collected from and about the Mutation Testing
literature, our analysis reveals an increasingly practical trend in
the subject.

We also found evidence that there is an increasing number
of new applications. There are more, larger and more realistic
programs that can be handled by Mutation Testing. Recent trends
also include the provision of new open source and industrial tools.
These findings provide evidence to support the claim that the field
of Mutation Testing is now reaching a mature state.

Recent work has tended to focus on more elaborate forms
of mutation than on the relatively simple faults that have been
previously considered. There is an interest in the semantic effects
of mutation, rather than the syntactic achievement of a mutation.
This migration from the syntactic achievement of mutation to the
desired semantic effect has raised interest in higher order mutation
to generate subtle faults and to find those mutations that denote
real faults. We hope the future will see a further coming of age,
with the generation of more realistic mutants and the test cases
to kill them and with the provision of practical tooling to support
both.
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TABLE IX: Programs used in Empirical Studies

Name Size Description First Use No. of Uses
Triangle 30 Loc Return the type of a triangle 1978 25
Find 30 Loc Patition the input array by order using input index 1988 22
Bubble 10 Loc Bubble sort algorithm 1988 18
MID 15 Loc Return the mid value of three integers 1989 16
Calendar/Days 30 Loc Compute number of days between input days 1988 15
Euclid 10 Loc Euclide’s algorithm to find the greatest common divisor of two

intergers
1991 15

Quad 10 Loc Find the root of a quadratic equation 1991 14
Insert 15 Loc Insert sort algorithm 1991 13
Warshall 10 Loc Calculates the ttransitive closure of Boolean matrix. 1991 12
Pat 20 Loc Decide if a pattern is in a subject 1991 10
SPACE 6000 Loc European Space Agency program 1997 9
Bsearch 20 Loc Binary search on an interger array 1992 6
Totinfo 350 Loc Information measure 1998 6
Schedule1 300 Loc Priority scheduler 1998 6
Schedule2 300 Loc Priority scheduler 1998 6
TCAS 140 Loc Altitude separation 1998 6
Printtok1 400 Loc Lexical analyzer 1998 6
Printtok2 480 Loc Lexical analyzer 1998 6
Replace 510 Loc Pattern replacement 1998 6
Max 5 Loc Return the greater from the inputs 1978 4
STRMAT 20 Loc Search String based on input pattern 1993 4
TEXTFMT 30 Loc Text formating program 1993 4
Banker 40 Loc Deadlock avoid algorithm 1994 4
Cal 160 Loc Print a calendar for a specified year or month 1994 4
Checkeq 90 Loc Report missing or unbalanced delimiters and .EQ / .EN pairs 1994 4
Comm 145 Loc Select or reject lines common to two sorted files 1994 4
Look 135 Loc Find words in the system dictionary or lines in a sorted list 1994 4
Uniq 85 Loc Report or remove adjacent duplicate lines 1994 4
Gcd 55 Loc Compute greatest common divisor of an array 1988 3
Sort 20 Loc Sort algorithm foran array 1988 3
Binom 6 Func Solves binomial equation 1994 3
Col 275 Loc Filter reverse paper motions from nroff output for display on a

terminal
1994 3

Sort(Linux) 842 Loc Sort and merge files 1994 3
Spline 289 Loc Interpolate smooth curve based on given data 1994 3
Tr 100 Loc Translate characters 1994 3
Ant 21,000 Loc A build tool from Apache 2002 3
Determinant 60 Loc Matrix manipulation programs based on LU decomposition 1994 2
Matinv 30 Loc Matrix manipulation programs based on LU decomposition 1994 2
Transpose 80 Loc Transpose routine of a sparse-matrix package 1994 2
Deadlock 50 Loc Check for deadlock 1994 2
Stats 4 Func Not reported 1994 2
Twenty-four 2 Func Not reported 1994 2
Conversions 8 Func Not reported 1994 2
Operators 4 Func Not reported 1994 2
Crypt 120 Loc Encrypt and decrypt a file using a user supplied password 1994 2
Bisect 20 Loc Not reported 1996 2
NewTon 15 Loc Not reported 1996 2
MRCS Not reported Mars Robot Communication System 2004 2
Xml-Security 143 Class Implements security XML 2005 2
Jmeter 389 Class A Java desktop application designed to load test functional

behavior and measure performance
2005 2

JTopas 50 Class A java library used for parsing text data 2005 2
ATM 5500 Loc The ATM component are ValidatePin 2005 2
Tetris Not reported AspectJ benchmark 2006 2
Max index 15 Loc Find the max value in the input array 1988 1
NASA’s planetary
lander control
software

Not reported NASA’s planetary lander control software 1992 1

QCK Not reported Non-recurisive interger quicksort 1992 1
Gold Version G 2000 Loc A battle simulation software 1992 1
Count 10 Loc Not reported 1994 1
Dead 10 Loc Not reported 1994 1
TCAS Not reported Air craft avoid colision system 1994 1

Continued on next page
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Table IX – continued from previous page
Name Size Description First Use No. of Uses
STU 15 Func A part of a nuclear reactor safety shutdown system that period-

ically scans the position of the reactor’s control rods.
1996 1

DIV/MOD Not reported Not reported 1996 1
EBC 10 Loc Not reported 1996 1
Search 14 Nod Not reported 1997 1
Secant 9 Nod Not reported 1997 1
State chart of Citizen
watch

Not reported State chart of Citizen watch 1999 1

Queue Not reported ADS class library 1999 1
Dequeue Not reported ADS class library, double-ended queue 1999 1
PriorityQueue Not reported ADS class library, priority queue 1999 1
Areasg 50 Loc Calculates the areas of the segments formed by a rectangle

inscribed in a circle
1999 1

Minv 44 Loc Computes the inverse ofthe square N by N matrix A 1999 1
Rpcalc 55 Loc Calculates the value of a reverse polish expression using a stack 1999 1
Seqstr 70 Loc Locate sequences of integers within an input array and copies

them to an output array
1999 1

Streql 45 Loc Compares two strings after replacing consecutive white space
characters with asingle space

1999 1

Tretrv 55 Loc Performs an in-order traversal of a binary tree of integers to
produce a sequence of integers

1999 1

Alternating-bit pro-
tocol

Not reported Estelle specification Alternating-bit protocol 2000 1

Append 15 Loc A component of a text editor 2001 1
Archive 15 Loc A component of a text editor 2001 1
Change 15 Loc A component of a text editor 2001 1
Ckglob 25 Loc A component of a text editor 2001 1
Cmp 15 Loc A component of a text editor 2001 1
Command 70 Loc A component of a text editor 2001 1
Compare 20 Loc A component of a text editor 2001 1
Compress 15 Loc A component of a text editor 2001 1
Dodash 15 Loc A component of a text editor 2001 1
Edit 25 Loc A component of a text editor 2001 1
Entab 20 Loc A component of a text editor 2001 1
Expand 15 Loc A component of a text editor 2001 1
Getcmd 30 Loc A component of a text editor 2001 1
Getdef 30 Loc A component of a text editor 2001 1
Getfn 10 Loc A component of a text editor 2001 1
Getfns 25 Loc A component of a text editor 2001 1
Getlist 20 Loc A component of a text editor 2001 1
Getnum 20 Loc A component of a text editor 2001 1
Getone 25 Loc A component of a text editor 2001 1
Gtext 15 Loc A component of a text editor 2001 1
Makepat 30 Loc A component of a text editor 2001 1
Omatch 35 Loc A component of a text editor 2001 1
Optpat 15 Loc A component of a text editor 2001 1
Spread 20 Loc A component of a text editor 2001 1
Subst 35 Loc A component of a text editor 2001 1
Translit 35 Loc A component of a text editor 2001 1
Unrotate 30 Loc A component of a text editor 2001 1
LogServiceProvider 230 Loc An abstract class which is extended by classes providing logging

services.
2001 1

Print Writer Log Ser-
vice Provider

85 Loc Used for writing textual log messages to a print stream (for
example, to the console)

2001 1

Logger 170 Loc Provides the central control for the PSK logging service such
as registering multiple log service providers to be operative
concurrently

2001 1

LogMessage 150 Loc A Message format to be logged by the logging service 2001 1
LogException 55 Loc Base exception class for exceptions thrown by the logger and

log service providers
2001 1

Junit 1,500 Loc A unit testing framework 2002 1
GraphPath 150 Loc Finds the shortest path and distance between specified nodes in

a directed graph
2002 1

Paint 330 Loc Calculates the amount of paint needed to paint a hous 2002 1
MazeGame 1,600 Loc A game that involves finding a rescuing a hostage in a maze 2002 1

Continued on next page
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Table IX – continued from previous page
Name Size Description First Use No. of Uses
Specification of elec-
trionic purse

Specification of electrionic purse 2003 1

Parking Garage sys-
tem

12 Class Java 2004 1

Video shop manager 17 Class Java 2004 1
EJB Trading Not reported An EJB trading Component 2004 1
RSDIMU Not reported The application was part of the navigation system in an aircraft

or spacecraft
2005 1

Roots Not reported Determines whether a quadratic equation has real roots or not 2005 1
Calculate Not reported Calculates sum, product and average of the inputs 2005 1
BAMean Not reported Calculates mean of the input and both averages of numbers

below and above mean
2005 1

SCMSA Not reported Application defined by the Web Services Interoperability Orga-
nization

2005 1

BOOK 250 Loc An application between the diagnosis accuracy and the DBB
sizes

2006 1

VirtualMeeting 1500 Loc A server that simulates business meetings over network 2006 1
Nunit 20,000 Loc A .NET unit test application 2006 1
Nhibernate 100,000 Loc Library for object-relational mapping dedicated for .NET 2006 1
Nant 80, 000 Loc .Net build tool 2006 1
System.XML 100,000 Loc The Mono class libraries 2006 1
Assign value Not reported A safety-critical software component of the DARTs 2006 1
Vending Machine 50L Loc A vending maching example 2006 1
Sudoku 3360 Loc A puzzle board game 2006 1
Polynomial Solver 450 Loc A Polynomial solver 2006 1
MinMax 10 Loc Return the maximum and minimum elements of an interger

array
2006 1

Field 65 Loc org.apache.bcel.classfile 2006 1
BranchHandle 80 Loc org.apache.bcel.generic 2006 1
String Representa-
tion

190 Loc org.apache.bcel.verifier.statics 2006 1

Pass2Verifier 1000 Loc org.apache.bcel.verifier.statics 2006 1
ConstantPoolGen 405 Loc org.apache.bcel.generic 2006 1
LocalVariable 145 Loc org.apache.bcel.classfile 2006 1
ClassPath 250 Loc org.apache.bcel.until 2006 1
IntructionList 560 Loc org.apache.bcel.generic 2006 1
JavaClass 465 Loc org.apache.bcel.classfile 2006 1
CodeExceptionGen 120 Loc org.apache.bcel.generic 2006 1
LocalVariables 95 Loc org.apache.bcel.structurals 2006 1
NextDate 70 Loc Determines the date of the next input day 2007 1
TicketsOrderSim 75 Loc A simulation program in which agents sell airline tickets 2007 1
LinkedList 300 Loc A program that has two threads adding elements to a shared

linked list
2007 1

BufWriter 213 Loc A simulation program that contains a number of threads that
write to a buffer and one thread that reads from the buffer

2007 1

AccountProgram 145 Loc A banking simulation program where threads are responsible
for managing accounts

2007 1

Finance 5500 Loc A reuses interfaces provided by an open source Java library
MoneyJar.jar

2007 1

iTrust 2630 Loc A web-based healthcare application 2007 1
Bean Not reported AspectJ benchmark suites 2008 1
NullCheck Not reported AspectJ benchmark suites 2008 1
Cona-sim Not reported AspectJ benchmark suites 2008 1
Spring.NET 100,000 Loc An environment for programs execution 2008 1
Castle.DynamicProxy 6,600 Loc A library for implementation of the Proxy design pattern 2008 1
Castle.Core 6,200 Loc Comprises the basic classes used in Castle projects 2008 1
Castle.ActiveRecord 21,000 Loc Implements the ActiveRecord design pattern 2008 1
Adapdev 68,000 Loc Extends the standard library of the .NET environment 2008 1
Ncover 4,300 Loc A tool for the quality analysis of the source code in .NET

programs
2008 1

CruiseControl 31,300 Loc A server supporting a continuous integration of .NET programs 2008 1
Pprotection 220 Loc Password Protection controls a reserved area 2008 1
Hhorse MP3 170 Loc Manages MP3 audio files 2008 1
PHPP.Protect 1,300 Loc Protects files 2008 1
AmyQ 200 Loc Control a FAQ System 2008 1
EasyPassword 490 Loc Manages password 2008 1

Continued on next page
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Table IX – continued from previous page
Name Size Description First Use No. of Uses
Show Pictures 1140 Loc A mini Web portal 2008 1
Administrator 1400 Loc Controls and administers reserved area 2008 1
Cmail 720 Loc Sends email 2008 1
Workflow 7500 Loc Manages a workflow system 2008 1
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[70] A. Derezińska, “Advanced Mutation Operators Applicable in C# Pro-
grams,” Warsaw University of Technology, Warszawa, Poland, Tech-
nique Report, 2005.
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