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Abstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda1, focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy Testing’ (SBET), Multi-objective
SBST and SBST for Test Strategy Identification. We conclude
with a vision of FIFIVERIFY tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

I. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Engineering (SBSE) concerned with
software testing [2], [85]. SBSE uses computational search
techniques to tackle software engineering problems (testing
problems in the case of SBST), typified by large complex
search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
diverse) testing problems. As a result, SBST has proved to
be a widely applicable and effective way of generating test
data, and optimising the testing process. However, there are
many exciting challenges and opportunities that remain open
for further research and development, as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concerned
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers, a figure little changed since the last
thorough publication audit (for papers up to 2009), which
found 54% of SBSE papers concerned SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2], [4], [55], [85], [126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST research trends, focusing on open challenges and areas
for future work and development.

1This keynote was given by Mark Harman at the 8th IEEE International
Conference on Software Testing, Verification and Validation (ICST 2015), but
this paper, on which the keynote was based, is the work of all three authors.

II. A BRIEF HISTORY OF SBST

Since the first paper on SBST is also likely to be the first
paper on SBSE, the early history of SBST is also the early
history of SBSE. SBSE is a sub-area of software engineering
with origins stretching back to the 1970s but not formally
established as a field of study in its own right until 2001
[51], and which only achieved more widespread acceptance
and uptake many years later [38], [43], [100].

The first mention of software optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842. Her
English language translation of the article (written in Italian
by Menabrae), ‘Sketch of the Analytical Engine Invented
by Charles Babbage’ includes seven entries, labelled ‘Note
A’ to ‘Note G’ and initialed ‘A.A.L’. Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

“In almost every computation a great variety of
arrangements for the succession of the processes is
possible, and various considerations must influence
the selection amongst them for the purposes of
a Calculating Engine. One essential object is to
choose that arrangement which shall tend to reduce
to a minimum the time necessary for completing the
calculation.” Extract from ‘Note D’.

The introduction of the idea of software testing is probably
due to Turing [115], who suggested the use of manually
constructed assertions. In his short paper, we can find the
origins of both software testing and software verification. The
first use of optimisation techniques in software testing and
verification probably dates back to the seminal PhD thesis
by James King [67], who used automated symbolic execution
to capture path conditions, solved using linear programming.
The first formulation of the test input space as a search
space probably dates back seven years earlier to 1962, when
a Cobol test data generation tool was introduced by Sauder
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space, though the search
algorithm is random search, making this likely to be the first
paper on Random Test Data Generation. Sauder’s work is
also significant because it introduces the idea of constraints
to capture path conditions, although these constraints are
manually defined and not automatically constructed.



The first paper to use a meta-heuristic search technique was
probably the work of Boyer, Elspas and Levitt on the SELECT
system [16]. The paper is remarkable in many ways. Consider
the following paragraph, quoted from the paper:

“The limitation of the above algorithms to linear
combinations is an unacceptable, and vexing, one.
For example, they could not handle an inequality like
X⇤Y +10⇤Z�W � 5 among its constraints, unless
one were prepared to assign to X a trial value,
and then attempt a solution (assuming the other
inequalities are linear). We therefore considered
various alternatives that would not be subject to this
limitation. The most promising of these alternatives
appears to be a conjugate gradient algorithm (‘hill
climbing’ program) that seeks to minimise a poten-
tial function constructed from the inequalities.” [16]

Here we can see, not only the first use of computational
search (hill climbing) in software engineering, but also a
hint at the idea (assignment of concrete values) that was
subsequently to become Dynamic Symbolic Execution (DSE)
[21]. Within this single paragraph we therefore may arguably
find the origins of both DSE and SBST (and, by extension,
SBSE too).

The SELECT paper is also remarkable in its sober and
prescient assessment of the relative merits of testing and
verification. Shortly after its publication, these two closely
related research communities entered into a protracted and
unhelpful ‘feud’ that generated a great deal more heat than
light [29], [31], [35], [60]. Fortunately, we have more recently
witnessed an accommodation between the two communities
[61], and greater degree of welcome collaboration at their
intersection [59]. We really ought to ruefully reflect on the
delay in this rapprochement given the ‘understanding’ already
set out by the SELECT paper in 1975. For example, speaking
about the complementarity of testing and verification, the
authors have this to say:

“Even after a mathematical proof of correctness,
one cannot be certain that the program will run
as intended on a given machine. Testing in the real
machine environment on actual data would appear
to be a useful complementary technique to formal
verification since it is not contingent on [such]
assumptions.” [16]

At about the same time2 Miller and Spooner [86], were
also experimenting with optimisation-based approaches for
generating test data (which they refer to as ‘test selection’
in the sense that they ‘select’ from the input space, which,
in the more recent literature we would refer to as ‘test data
generation’).

2The Miller and Spooner paper was published in 1976, but was received
by the journal on the 9th of September 1975. The acknowledgements of the
1976 journal paper indicate that it was one of the referees who pointed out the
existence of the 1975 conference paper, which the 1976 paper cites. Although
the conference was held in April 1975 and the proceedings appeared in the
July 1975 issue of ACM SIGPLAN Notices, it is quite likely that Miller and
Spooner were already working on their manuscript, which was submitted only
a couple of months later.
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Fig. 1: Cumulative number of Search Based Software Testing
papers. As can be seen, the overall trend continues to suggest
a polynomial yearly rise in the number of papers, highlighting
the breadth of interest and strong health of SBST.

Unlike Boyer et al. [16], Miller and Spooner used concrete
execution of the program rather than symbolic execution,
making their approach more similar to the techniques that
ultimately became SBST, while the work of Boyer et al.
followed a closely-related (but different) evolutionary path,
which ultimately led to DSE. Current research develops both
these techniques, and also hybrids that combine the best
features of both [9], [63], [71], [110].

It appears that SBST research lay dormant for at approxi-
mately a decade until the work of Korel [68], which introduced
a practical test data generation approach, the Alternating
Variable Method (AVM), based on hill climbing. The first
use of genetic algorithms for software engineering problems
is usually attributed also to the field of SBST, with the
work of Xanthakis et al. [122], who introduced a genetic
algorithm to develop whole test suites. Subsequent theoretical
and empirical results tend to suggest that AVM outperforms
genetic algorithms (in ‘non-royal road’ test data generation
problems), at least for imperative programs in the C language
[57]. Since the late 1990s, with a greater overall software
engineering focus on SBSE, there has been an explosion in
SBST publications as the analysis below indicates.
Analysis of Trends in SBST: Figure 1 shows the growth in
papers published on SBST. The data is taken from the SBSE
repository [130]. The aim of the repository is to contain every
SBSE paper, underpinned by regular and careful human-based
update. Although no repository can guarantee 100% precision
and recall, the SBSE repository has proved sufficiently usable
that it has formed the basis of several other detailed analyses
of the literature [27], [38], and is widely used by the SBSE
community as a first source of information on related work.
We found a close fit to a quartic function, indicating strong
polynomial growth. If the trend continues, there will be more
than 1,700 SBST papers before the end of this decade.
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Fig. 2: The changing ratio of SBSE papers that are SBST
papers. Initially, SBST dominated SBSE. Over the years, this
ratio has decreased, stabilising at around 50%. This represents
the growth in non-testing related areas of SBSE rather than any
decline in the number of papers on SBST (as can be seen by
comparing this figure with Figure 1).

The data for the most recent years is usually an under
estimate of the number of papers published, because there
is an inherent latency involved, depressing the assessment of
the number of papers. Notwithstanding these issues, Figure 1
clearly shows, the number of SBST papers published is rising
polynomially, indicating continued health, growth and interest
in this approach to software testing problems.

In order to understand the relative contribution of software
testing to the overall body of literature on SBSE, we also
report, in Figure 2, the relative proportion of papers in the
overall field of SBSE that concerns software testing problems.
As can be seen from this figure, the proportion of papers on
SBST is reducing, although their number is increasing. These
two figures, taken together, thus reflect growing interest in
SBSE, rather than decreasing interest in SBST.

Perhaps it is a sign of SBSE’s growing maturity, that
the proportion of SBSE papers on testing problems appears
to be stabilising at approximately the value (roughly half)
witnessed throughout software engineering more generally. We
believe that the proportional SBST decline is therefore more
a stabilisation to a reasonable proportion. This proportion,
perhaps not coincidentally, is also widely regarded as the
estimate of the amount of effort/budget allocated by practising
software engineers to software testing.
SBST’s Industrial Applications and Tools: SBST is now
sufficiently mature that it has transitioned from laboratory
study to industrial application, for example at Daimler [117],
Ericsson [3] and Microsoft [111]. There are also publicly
available SBSE tools for automated program repair [76], and
tools for SBST for popular languages, such as AUSTIN [69],
an open source SBST system for the C language, and EvoSuite
[36], an open source SBST system for Java.

EvoSuite has proved to be particularly effective as a tool for
testing Java programs. It is provided as a plug-in to Eclipse
that works ‘out-of-the-box’ (the user simply needs to click
‘run EvoSuite’). A great deal of engineering effort has been
directed towards the usability of the tool for practical software
testing. For example, most computational search algorithms
are ‘anytime’ algorithms; they can be stopped at any time and
yield the best result found so far. EvoSuite exploits this by
ensuring that all executions complete within reasonable time.

For regression testing, the selection and prioritisation algo-
rithms are easy to implement. For such regression testing tools
the fitness function need not be a part of the tool itself, as it is
for test data generation. Instead, the search based regression
test optimisation tool simply relies on recorded information
concerning the properties of interest of the test suite. This
makes these algorithms easy to deploy in a real world setting,
provided data is available. Adoption effort is more normally
found to be that associated with data collection rather than
tool deployment in our experience.
Breadth of SBST Applications to Testing Problems: SBST
for structural coverage is the most well studied and well
understood paradigm within SBST. This was true when last
surveyed in 2009 [55] and it remains the case among the 718
papers published on SBST to the present day in the analysis
we present in this paper.

The structural code coverage achieved is not always as high
as we might hope [70], with the result that we may need to
rely on non-adequate test suites and all that this entails [39]
using currently available tools. However, the principles are
relatively well understood and progress continues with regular
newly published incremental advances on the state-of-the-art.

The breadth and diversity of other testing paradigms, do-
mains and applications attacked using SBST is a compelling
testament to its general and widespread applicability. For any
desirable properties of good test data that are captured as
adequacy criteria, these criteria naturally reformulate as fitness
functions. As has also been known, since at least 1962 [103],
a system’s input space makes a very natural search space, in
which we can automate the process of searching for test inputs
that meet these test adequacy criteria.

Here is a long (yet partial) list of just some of the testing
problems with citations to a few example papers (of many)
that adopt an SBST approach to find suitable test data:
functional testing [118], safety testing [11], [32], security
testing [41], robustness testing [104], integration testing [18],
[26], service-based testing [24], temporal testing [19], [113],
[119], exception testing [114], Combinatorial Interaction Test-
ing (CIT) [20], [25], [95], (and Software Product Line (SPL)
testing [48]), state [77] and state-based-model testing [30],
[78] (including popular modelling notations such as MATLAB
Simulink [90], [129]), and mutation based test [37], [49] and
mutant [65], [92] generation.
The State of the Art: SBST has made many achievements,
and demonstrated its wide applicability and increasing uptake.
Nevertheless, there are pressing open problems and challenges
that need more attention and to which we now turn.



Specifically:
1) We need to extend SBST to test non-functional prop-

erties, a topic that remains relatively under-explored,
compared to structural testing (as revealed in Section III
below). In particular, we need more work on Search
Based Energy Testing (SBET).

2) We need Search Based Test Strategy Identification
(SBTSI). Regression test process optimisation is well
developed and understood, but techniques for finding test
generation strategies remain under-developed.

3) We need more work on multi-objective test data gen-
eration techniques (MoSBaT). Previous work on search
based test data generation has tended to focus solely on
a single objective optimisation (such as branch cover-
age), with comparatively little work on multi-objective
test data generation. Unfortunately, real-world testing
problems are messy, constrained and are unlikely to be
captured by a single objective.

In the remainder of this paper, we present a roadmap of
future work in these three areas of Search Based Energy
Testing (SBET), Search Based Test Strategy Identification
(SBTSI) and Multi-objective Search Based Testing (MoSBaT).
We wish to conclude on a positive note, highlighting the
exciting opportunities that arise because of the extraordinary
progress in SBST in particular, and SBSE in general.

We therefore close the paper with an outline of ‘FiFiVerify
tools’; tools that use SBSE and verification to automatically
find faults, fix them and verify the fixes. Such FiFiVerify
tools would be a fitting development and realisation of testing
and verification complementarity, which was expressed so
eloquently by Boyer, Elspas and Levitt in their 1975 SELECT
paper (discussed earlier in this section).

III. SEARCH BASED ENERGY TESTING (SBET)
An excellent survey of the state-of-the-art in search based

software testing for non-functional system-level properties was
presented by Afzal, Torkar and Feldt [2]. We used the SBSE
repository [130] to extend to 2014, the quantitative analysis
of publications contained in the paper by Afzal et al.

The results are presented in Figure 3. As can be seen from
this figure, there remains activity in this area. However, given
the overall growth in papers on search based software testing,
revealed by Figure 1, it is surprising (and perhaps disappoint-
ing) that more work is not focused on these properties.

Lack of work on non-functional properties is surprising
because of the increasing importance of non-functional proper-
ties. It is disappointing because search based software testing
techniques have the significant advantage that they can, the-
oretically, be applied to any testing problem for which the
adequacy criterion can be captured as a fitness function. In
principle, testing for execution time, quality of service, and
energy consumption, should be no more difficult than testing
for branch coverage; we simply require a different fitness
function. Of course, the measurements that inform fitness may
come with their own sets of challenges, peculiar to each non-
functional property of interest.
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Fig. 3: SBST for non-functional properties. Data from 1996
to 2007 comes from the SLR by Afzal et al. [2]. Data from
2008 to 2014 was computed using the SBSE repository [130].

Analysis of all Work on Non-Functional SBST: In total,
since the review by Afzal et al. (i.e., since 1st. January 2008),
there have been 44 SBST papers on non-functional properties
(9% of the 464 in total on SBST over the same period). This
compares to 35 papers, (16% of the 221 published) over the
period of the study by Afzal et al. Although the number of
papers is steadily rising, this could be simply due to overall
SBST growth; the proportion appears to be falling, a troubling
finding when we consider the importance of non-functional
properties. The proportion of SBST papers concerning non-
functional properties ought to be closer to 50% than 10%, if
research activity is to adequately reflect importance.

Analyzing sub-topic distribution between the two periods,
we compared the results reported by Afzal et al., with those
we obtained, by extending their analysis. Afzal et al. identified
5 categories. We observed activity in all 5 of these, and new
activity in a further 6. We thus conclude that SBST has been
used to test at least 11 different non-functional attributes, with
overall research output in the ratios given by Figure 4.
The Startling Lack of SBET Work: There is work on SBSE
for improving energy consumption. For example, Li et al.
[80] formulate energy optimisation as the problem of finding
the mobile device screen colour choices that minimise energy
consumption, while maintaining colour contrast. Monotas et
al. [83] also define a search space for energy optimisation
choices. They currently use an exhaustive search, but plan to
extend to full SBSE for scalability to larger search spaces.
Both approaches are similar, in spirit, to Genetic Improvement
[53], since they search the space of program improvements.
However, we could find only a single paper that has been
published on Search Based Energy Testing (SBET) [15]. It is
possible that our search has failed to find all papers. However,
we remain confident that the overall trends we report are
reasonably accurate and can be fairly confident about the
finding that SBET is under-developed in the literature.
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Fig. 4: The pie chart on the left shows the relative distribution of papers published over the five categories identified by Afzal
et al. [2] in their systematic literature review (1996-2007), while the one on the right shows the 11 categories we identified in
2014 (which extends the analysis of Afzal et al. to include all papers from 1996-2014). As can be seen, a number of different
non-functional properties that have been attacked using SBST has grown, yet there is very little work on Search Based Energy
Testing (SBET), which is particularly surprising, given the importance of this problem.

Energy optimisation has been a topic of interest for at least
20 years [112], and is gaining considerable recent interest
because of its implications for the environment, and due
to the dramatic increase in battery-powered computing. In
order to make progress on search based software testing
of non-functional properties, we need to measure the non-
functional properties of concern with sufficiently computa-
tionally efficient fitness functions. This need for efficient
fitness computation may mandate the use of surrogates or
approximations to the true measurement [47]. In this section,
we focus on Search Based Energy Testing (SBET), for which
we believe immediate progress can be made and for which
there are already potential measurement approaches [42], [94],
and possible surrogates [88].

The problem of inadequate battery life is routinely be-
moaned by many mobile device users [33] and the space
occupied by the battery is becoming the predominant driver of
device size. This clearly affects smart general purpose mobile
devices, such as phones, notepads and laptops, for which the
battery may occupy as much as 90% of the available space.
However, it is also important for medical devices such as
pacemakers, where the battery can typically occupy at least
50% of the device [91].

Estimates for the carbon footprint of computational energy
consumption vary, but all accounts agree that the proportion of
energy consumed by computation is rising and that it denotes
a nontrivial fraction of global energy demand. Claims that
a smartphone could consume more energy per year than a
medium-sized refrigerator are deemed to be exaggerated by,
perhaps, a factor of four [116], so there may be some degree
of hyperbole at work.

Nevertheless, the total energy consumed by computation is
undoubtedly rising. One study, conducted in 2009 and again,
by the same authors, in 2011 [108], estimated the proportion
of global electricity consumption due to information and
communications technology rose from 3% to 6% between the
two years at which the assessments were reported. Testing
and optimising energy consumption is therefore an ecological
imperative as well as pressing user need [82].

It is a challenge to measure the amount of energy consumed
by the execution of a software system in a reliable and accurate
manner. However, if we can find suitable metrics that can
measure energy consumption and that can be reformulated
as fitness functions, according to the standard SBSE mantra
‘metrics are fitness functions too’ [46], then we can use these
to search for worst-case and best-case energy consumption,
and to find anomalies, ‘energy bugs’ and ‘hotspots’ [10].

This agenda would constitute a nascent subfield of SBST
called ‘Search Based Energy Testing’ (SBET). In the remain-
der of this section we outline some of the issues and outline
potential solutions to problems in energy measurement for
SBET.
Efficiency: We shall require that we can measure energy con-
sumption quickly, because the overall search based approach
will need to consider many different test cases in order to
search for worst case or anomalous case energy consumption.
Granularity: The measurement of energy consumption can
be fine grained (assessing the individual contribution of each
line of code to energy consumed), mid-grained (focussing on
energy consumed by a block of code or a method/procedure)
or coarse-grained (simply reporting energy consumed by the
program execution over a period of time).



Fine grained approaches such as eLens [42] and Eprof [94],
would be needed to profile for sensitivity analysis. Energy
sensitivity information would be useful for SBSE applications
such as genetic improvement. Such techniques have been
used for optimising energy usage [83], [120] and for which
sensitivity analysis is helpful [73]. For SBST, however, the
primary need for measurement will be to capture the energy
consumed by a test execution, which can be coarse-grained.
This is important because coarse-grained energy measurement
is likely to come with fewer technical challenges, compared
to fine grained measurement.
Hawthorne effect: We have to be careful for potential
‘Hawthorne’-like effects, in which the property we seek to
measure is affected by the measurement process. In particular,
any non-functional property we measure by instrumenting the
code will likely be influenced by instrumentation code itself,
thereby reducing the measurements’ reliability. If the measure-
ments’ influence on the non-functional property is minimal or
constant, then we might choose to either ignore it or factor
it out. However, since many non-functional properties will be
interesting, precisely because their effect is context-sensitive,
we should not assume that the effect of instrumentation will
be constant, and it may not be minimal.

One possible solution would be to create two versions of
the system under test: one with normal instrumentation, and
one with duplicated instrumentation. We can measure the
non-functional property of interest for both, subtracting one
from the other to determine the amount of non-functional
property due purely to instrumentation. This doubles the total
amount of computation required, but it potentially provides
a context-sensitive and more accurate way to factor out the
instrumentation influences.
Specificity: It is natural to design tools for search based soft-
ware testing that are generally applicable, but non-functional
properties such as energy, are inherently device and platform
specific. There will be a tension between the applicability of an
approach and the degree of information that it can return. By
being specific, we may not merely test the energy consumed,
but may additionally give detailed assessments of where this
energy is consumed. Such a detailed and specific assessment
might highlight ways to reduce energy consumption. For
example, the Running Average Power Limit (RAPL) approach
[28], has been developed by Intel to distinguish between
the energy consumed in CPU, the dynamic random access
memory, and the so-called ‘CPU uncore’ (such as caches and
on-chip graphics processing units). This specificity, so closely
coupled to the hardware it assesses, gives more insights as to
the causes of energy consumption, but the insights it yields
are naturally pertinent only to specific devices.
Specialised Hardware Requirements: Measuring the amount
of energy consumed using specialised hardware, can lead
to more accurate assessment of energy consumption, but
requires specialised equipment [107]. Hardware-based energy
measurement has been used for thread management [97] and
to assess the energy implications of code obfuscation on the
Android platform [102].

Hardware based approaches typically consist of several
phases. For example, the SEEP approach [62] uses symbolic
execution to capture paths, which are subsequently executed
with concrete values to give platform-specific energy con-
sumption for basic blocks.

For SBST, the number of executions required by test
generation may make the use of hardware-based approaches
prohibitive when no such API is provided. By contrast, for
test case management, such as regression testing, there is a
fixed pool of test cases, each of which needs to be assessed
for the non-functional property of interest only once, prior
to a subsequent optimisation phase. Once this is known, the
optimisation problem consists of either prioritising, selecting
or minimising the test suite according to the non-functional
properties of interest [45], [126]. Therefore, for test manage-
ment applications, such as regression test optimisation, it may
be acceptable to build a specialised hardware test rig. The
rig measures, once and for all, but with a greater degree of
human effort, the non-functional properties of each test case.
Hardware-based approaches, even those without a software
API, may be applicable to test suite optimisation. Indeed, the
LEAP node approach [107] has recently been used for just
such a test suite optimisation [79].

IV. SEARCH BASED TEST STRATEGY IDENTIFICATION
(SBTSI)

Most forms of test data generation have been concerned
with finding specific inputs or sets of inputs (test suites) that
have desirable properties. Other SBSE formulations, as yet
underexplored, have more of the character of Test Strategy
Identification (TSI) problems, as we outline in this section.
Genetic Programming for SBSTI: Genetic programming is
increasingly finding applications in SBSE [54], [73], [76],
[121]. The primary difference between genetic programming
and other forms of evolutionary computation is that the
search space is a space over programs expressed in some
programming language. The programming language can be as
general or as specific as the application demands. Suppose we
formulate simple testing strategies in a formal language. Could
we then use genetic programming to search test strategies for
those well adapted to a particular testing problem?

The idea of searching for testing strategies [98] rather than
searching for test cases is appealing, because it may help us
to raise our abstraction level; finding strategies for finding
test cases rather than finding test cases themselves. It also
may yield insight, which may ultimately prove to be more
valuable than test suites. In the remainder of this section, we
give one example of such insight, outlining how test strategy
identification can be used to cluster programs and the faults
they may contain.
Using SBSTI to cluster programs: Suppose we search for
test strategies for a particular suite of programs that achieve
high mutation score. Given a particular set of mutants and a
particular set of programs, a particular strategy will emerge
that is adapted to the set of programs concerned.



The difficulty in finding a suitable strategy will be partly
governed by the degree to which the programs have some
commonality, and the degree to which effective mutant killing
submits to some particular strategy.

The difficulty of finding a solution can be measured quite
naturally in terms of the fitness achieved for a given budget
of computational search effort. One very desirable outcome is
obviously the test strategy itself, if we can find a good one.
However, even when TSI fails to identify good strategies, strat-
egy identification difficulty can be used as a fitness function
to help us to identify fault categories, and the programs which
may contain them:

We can cluster programs with respect to a given set of faults.
The cluster identification approach will, itself, be a multi-
objective search problem: minimise the number of clusters,
while simultaneously maximising the fitness achieved by TSI
within each cluster. Programs residing in a given cluster
exhibit related fault behaviour; there is a single unifying
strategy for testing them in order to reveal these faults.

One possible formulation would be: Given a set of programs
P , find the largest subset S for which TSI achieves a mutation
adequacy (mutation score) above ↵ on a set of mutants
M . The fitness function could be the size of the subset S
(including more programs is better, because TSI is more
widely applicable). This formulation seeks the most general
strategy for achieving at least ↵.

There is a great degree of choice available in the particular
formulation we might adopt. For instance, we might fix the
subset of programs, S, and search for a strategy that achieves
the highest mutation adequacy on a given set of mutants, M .
This formulation seeks the best possible strategy for finding
a particular class of faults (captured by M ) on a given set of
programs, S.
A co-evolutionary approach to SBSTI: Suppose we vary the
sets of faults considered (varying M ). We might formulate this
problem as a co-evolutionary search that seeks to partition
the set of programs of interest, on the one hand, while
simultaneously partitioning the set of mutants on the other.
Both competitive [6] and cooperative [101] co-evolution have
been used in the SBSE literature, but only competitive co-
evolution has been used in SBST, and co-evolution, in general,
remains relatively under-explored in the SBSE literature [56].

One possible co-evolutionary formulation would be to
evolve the subset S and the set of mutants M . A co-operative
formulation would use set size as the fitness for S and M , such
that there is a strategy that achieves 100% mutation adequacy
with respect to M on all of the programs S. This more co-
operative approach tries to find sets of faults and programs
which ‘co-operate’ in the sense that the faults can easily be
found with a particular strategy on a large set of programs.

A competitive formulation might define the fitness of S to
be the size of the largest such set for which a strategy exists
that kills all mutants in M , while the fitness of M is the size
of the largest such set that avoids being killed by all programs
in S.

Assignment problems: Assignment problems are increasingly
interesting in software engineering. They can often be formu-
lated as systems that recommend engineers for particular tasks,
such as debugging and testing [5], [14]. These recommender
systems have an inherent optimisation flavour [99]: In general,
we seek an assignment of solution techniques to problem
instances that maximises the quality of solutions found.

In order for SBSE to be a viable approach, we need a
representation, fitness function and a search space that is suffi-
ciently large to make enumeration infeasible [58]. Assignment
problems typically come with some form of representation,
r that captures the mapping between solution and problem
instances. There is guaranteed to be some method, a, for
assessing solution quality, otherwise no intelligent assignment
can be performed. It is reasonable to believe that the search
space will be too large to be feasibly innumerable, since
assignment problem search spaces grow exponentially. The
open research problem is to find appropriate reformulations,
that use a computational search technique, guided by fitness
function defined in terms of a, to search the space r.

When using SBSE to attack assignment problems in soft-
ware testing, we need not restrict ourselves merely to the
assignment of engineers. Since we have an array of different
testing techniques, and a bafflingly complicated set of possible
programs and test problems to which they might be applied,
there is an important assignment problem for researchers and
practitioners has remained under-explored: How do we find
the best assignment of test techniques to testing problems
and particular programs? This is a problem for which hyper-
heuristics has recently been successful [64].

V. MULTI-OBJECTIVE SEARCH BASED TESTING
(MOSBAT)

For problems concerned with test suite selection and priori-
tisation, multi-objective approaches are increasingly prevalent
[8], [13], [17], [87], [105], [106], [125]. However, for test data
generation problems, the large majority of existing approaches
are single objective. Relatively few attack multi-objective test
case generation [7], [34], [74], [84], [124], despite it having
been proposed sometime ago [52]. This is unrealistic because
practising software testers are unlikely to be concerned only
with a single test objective [45]. Therefore, we believe that
more work is required on multi-objective search based test
data generation.

Perhaps one of the reasons why multi-objective techniques
have not received the attention they deserve, lies in the under
development of the field of SBST for non-functional properties
(discussed in Section III). Certainly, many of the additional
objectives that practising testers may seek to achieve are likely
to concern non-functional properties. For example, a tester
may be interested in achieving higher coverage, but while also
targeting unusually long execution times, security properties,
or energy consumption (or all of these). Since the community
seems sluggish in its uptake of non-functional properties, this
may have had a concomitant effect on applications of multi-
objective techniques.



Fortunately, search based techniques are readily available
for multi-objective optimisation. Since many different test
adequacy criteria have been captured as fitness functions, all
that remains is to consider how to combine these in multi-
objective frameworks, methods and tools.
Multi-objective Understanding: Such multi-objective test
data generation may not be confined merely to the revelation
of faults; It may so be used at a more strategic level, to
understand, investigate and highlight problems at the level
of policy formulation. For example, there is a well-known
tension between usability and security [1], two non-functional
properties that we might also seek to measure and test.

In order to investigate this phenomenon and its practical
ramifications for a particular security policy, we can capture
user behaviour in a simple language that defines the strategies
that a user might take to increase usability. Suppose we can
measure usability properties. We can now search for user
strategies that maximise usability (using a similar approach to
SBTSI), thereby investigating the limitations and shortcomings
of security policies that sacrifice usability for security.

Furthermore, this approach could be extended to help iden-
tify potential security policies. We can formulate the trade-
off between usability and security using a multi-objective
approach. If we have a language for defining security policies
as well as a language for defining likely user behaviours, then
we can co-evolve a security policy and user behaviour using
co-evolution. In this co-evolutionary framework, the fitness
of a security policy is defined by the security level achieved
with respect to the population of user behaviours, while the
fitness of the user behaviour strategy is defined by its ability to
maximise usability with respect to the security policies. Using
variations on this theme, we may be able to find security
policies that are well adapted to particular user behaviours,
thereby balancing usability and security.
The Path from Automated Testing to Automated Improve-
ment: In this discussion we have moved relatively seamlessly
from seeking to search for test cases, to using testing to
discover improved systems. This is one of the principles that
underlies the recent upsurge in work on Genetic Improvement
(GI) [6], [50], [53], [54], [72], [73], [75], [96], [109], [121];
If we can search for test cases that expose suboptimal system
behaviour, can we not also search for versions of the system
that improve this behaviour? We believe that there is a sym-
biotic relationship between SBST and GI: SBST can generate
test cases to help guide GI [53], but it also suggest intellectual
routes through which we can make the technical and practical
journey from automating testing to automating improvement.

VI. FIND, FIX, VERIFY (FIFIVERIFY)

We are tantalisingly within sight of exciting future testing
tools that we would like to outline in this section; tools
that will find, fix and verify the systems to which they are
applied. Such near-future software engineering tools will take
a program that may contain bugs (from some identified bug
class, such as memory faults) and return an improved program.

The improved program has all bugs for the specified class
fixed and is verified as being free from this class of faults.
It may also come with a regression test suite that gives the
engineer some degree of confidence that the improved system
has not regressed and/or a proof that the improved version is
‘no less correct’ than the original.

We name this type of hypothesised tool a ‘FIFIVERIFY tool’
(short for ‘Find, Fix and Verify’). Though any FIFIVERIFY
tool would be giant leap forward from current testing and
debugging technology, we believe that such tools are already
within the grasp of the verification and testing community.
In the remainder of this section, we outline the case that the
techniques and algorithms required to build a FIFIVERIFY
tool, are already available and reported in the literature.

Verification: Verification techniques are sufficiently mature
that they can verify non-trivial systems free from memory
faults, scaling to complete verification (with respect to a given
property) of device drivers (thousands of Lines of Code) [123]
and partial verification of much larger systems [22], [23].
Where there remain faults, we can use fault localisation [66],
[127] to highlight likely ‘suspicious’ statements on which we
can target automated repair [76].

A New Application for Fault Localisation: Fault localisation
has known theoretical limits [128]. There has also been recent
discussion of whether it offers real benefits to human pro-
grammers [93]. However, the practical concerns are pertinent
only for applications to human debuggers; fault localisation
definitely offers benefits to automated repair techniques [89].
We believe that automated repair may prove to be a much more
profitable use-case for automated fault localisation, and we
hope for more work on fault localisation specifically tailored to
automated repair (and, more generally, genetic improvement).

Find and Fix: Combining this work on test generation,
localisation and repair will allow us to find and fix bugs
automatically. This will allow us to find and fix bugs (a FIFI
tool).

FiFi and Verify: We can then alternate between find-and-fix
and verification until the verification system is able to prove
freedom from the class of faults of interest. This is a rather
naive outline of a FIFIVERIFY tool. A more sophisticated
approach would seek a more intimate combination of these
technologies, so that testing can inform verification and vice
versa, making each more efficient and effective. However, a
simple iterative sequential composition would provide a proof
of concept FIFIVERIFY tool.

FiFi and Verify Absence of Regression Faults: Finally, as
outlined in Section II we have test data generation techniques
that can achieve reasonable coverage, possibly augmented (or,
where feasible, replaced by) verification [40], [81]. These can
be used to help find the bugs, to guide the repair process and
they could be used to provide a regression test suite. Since
there is no oracle problem for regression testing [12], the
regression testing also can be entirely automated.



VII. CONCLUSION

In this paper we have reviewed work on Search Based
Software Testing, its origins, trends in publication and open
problems. We showed that the area continues to grow, with
a polynomial increase in publications, but there are causes
for concern. We presented evidence that the range of different
non-functional properties being attacked using SBST is rising,
but the proportion of papers on this topic is falling, which is
troubling, given the increasing importance of non-functional
properties to testers. Specifically, we highlighted the lack
of work on Search Based Energy Testing (SBET), outlining
energy measurement techniques that might be reused as fitness
functions and some of the issues involved.

We also argue the case for multi-objective software testing,
since we believe that most testers will have more than one
objective in mind when they search for a test suite. Although
multi-objective techniques have penetrated the regression test-
ing problem space, they have yet to make a significant impact
in the area of software test data generation. We give some
examples of open problems and possible opportunities for
multi-objective test data generation.

We conclude with an upbeat assessment of the exciting
possible SBSE tools that may appear in the near future, posing
the FiFiVerify tool challenge. To qualify as a FiFiVerify tool,
the tool must automatically find faults in a given class, fix
them and verify that the faults had been fixed. We believe that
rudimentary FiFiVerify tools are already within the current
capabilities of the research community.
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