Evolving developmental programs that build
neural networks for solving multiple problems

Julian F. Miller, Dennis G. Wilson, and Sylvain Cussat-Blanc

Abstract A developmental model of an artificial neuron is presented. In this model,
a pair of neural developmental programs develop an entire artificial neural network
of arbitrary size. The pair of neural chromosomes are evolved using Cartesian Ge-
netic Programming. During development, neurons and their connections can move,
change, die or be created. We show that this two-chromosome genotype can be
evolved to develop into a single neural network from which multiple conventional
artificial neural networks can be extracted. The extracted conventional ANNs share
some neurons across tasks. We have evaluated the performance of this method on
three standard classification problems: cancer, diabetes and the glass datasets. The
evolved pair of neuron programs can generate artificial neural networks that perform
reasonably well on all three benchmark problems simultaneously. It appears to be
the first attempt to solve multiple standard classification problems using a develop-
mental approach.

1 Introduction

Artificial neural networks (ANNs) were first proposed seventy-five years ago [26]
Yet, ANNSs still have poorer general learning capabilities than relatively simple or-
ganisms. Organisms can learn to perform well on many tasks and can generalise
from few examples. Most ANNs models encode learned knowledge solely in the
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form of connection strengths (i.e. weights). Biological brains do not learn merely
by the adjustment of weights, they undergo topological changes during learning.
Indeed, restricting learning to weight adjustment leads to “catastrophic forgetting”
(CF) in which ANNSs trained to perform well on one problem, forget how to solve the
original problem when they are re-trained on a new problem [9, 25, 34]. Although
the original inspiration for ANNs came from knowledge about the brain, very few
ANN models use evolution and development, both of which are fundamental to the
construction of the brain [29]. In principle, developmental neural approaches could
alleviate catastrophic forgetting in at least two ways. Firstly, new networks could
form in response to learning. Secondly, by growing numerous connections between
pairs of neurons. In this way the influence of individual weighted connection could
be lessened.

Developmental neural networks have not widely been explored in the literature
and there remains a need for concerted effort to explore a greater variety of effec-
tive models. In this paper, we propose a new conceptually simple neural model. We
suggest that at least two neural programs are required to construct neural networks.
One to represent the neuron soma and the other the dendrite. The role of the soma
program is to allow neurons to move, change, die or replicate. For the dendrite,
the program needs to be able to grow and change dendrites, cause them to die and
also to replicate. Since developmental programs build networks that change over
time it is necessary to define new problem classes that are suitable to evaluate such
approaches. We argue that trying to solve multiple computational problems (poten-
tially even of different types) is an appropriate class of problems.

In this chapter, we show that the pair of evolved programs can build a network
from which multiple conventional ANNs can be extracted each of which can solve
a different classification problem. As far as we can tell, this is the first work that
attempts to evolve developmental neural networks that can solve multiple problems,
indeed it appears to be the first attempt to solve standard classification problems
using a developmental approach. We investigate many parameters and algorithmic
variants and assess experimentally which aspects are most associated with good per-
formance. Although we have concentrated in this paper on classification problems,
our approach is quite general and it could be applied to a much wider variety of
problems.

2 Related work

A number of authors have investigated ways of incorporating development to help
construct ANNSs [24] and [42]. Researchers have investigated a variety of genotype
representations at different levels of abstraction. Cangelosi et al. defined genotypes
which were a mixture of variables, parameters, and rules (e.g. cell type, axon length
and cell division instructions) [4]. The task was to control a simple artificial organ-
ism. Rust et al constructed a genotype consisting of developmental parameters (en-
coded in binary) that controlled the times at which dendrites could branch and how
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the growing tips would interact with patterns of attractants placed in an environment
[38]. Balaam investigated controlling simulated agents using a two-dimensional area
with chemical gradients in which neurons were either sensors, affectors, or pro-
cessing neurons according to location [2]. The neurons were defined as standard
CTRNNS. The genotype was effectively divided into seven chromosomes each of
which read the concentrations of the two chemicals and the cell potential. Each
chromosome provided respectively the neuron bias, time constant, energy, growth
increment, growth direction, distance to grow and new connection weight.

Gruau used a more abstract approach, called cellular encoding in which ANNs
were developed using graph grammars [12, 13]. He evaluated this approach on
hexapod robot locomotion and pole-balancing. Kodjabachian and Meyer used a
“geometry-orientated” variant of cellular encoding to develop recurrent neural net-
works to control the behaviour of simulated insects [23].

Jacobi presented a low-level approach in which cells used artificial genetic reg-
ulatory networks (GRNs). The GRN produced and consumed simulated proteins
that defined various cell actions (protein diffusion movement, differentiation, di-
vision, threshold). After a cellular network had developed it was interpreted as a
neural network [18]. Eggenberger also used an evolved GRN [6]. A neural network
phenotype was obtained by comparing simulated chemicals in pairs of neurons to
determine if the neurons are connected and whether the connection is excitory or
inhibitory. Weights of connections were initially randomly assigned and Hebbian
learning used to adjust them subsequently. Astor and Adami also encoded a form
of GRN together with an artificial chemistry (AC), in which cells were predefined
to exist in a hexagonal grid. Genes encoded conditions involving concentrations of
simulated chemicals which determine the level of activation of cellular actions (e.g.
grow axon or dendrite, increase or decrease weight, produce chemical) [1]. They
evaluated the approach on a simple artificial organism.

Federici used a simple recursive neural network as a developmental cellular pro-
gram [7]. In his model, cells could change type, replicate, release chemicals or die.
The type and metabolic concentrations of simulated chemicals in a cell were used
to specify the internal dynamics and synaptic properties of its corresponding neu-
ron. The position of the cell within the organism is used to produce the topological
properties of neuron: its connections to inputs, outputs and other neurons. From the
cellular phenotype, Federici interpreted a network of spiking neurons to control a
Khepera robot.

Some researchers have studied the potential of Lindenmeyer systems for de-
veloping artificial neural networks. Kitano used a kind of L-system in which he
evolved matrix re-writing rules to develop an adjacency matrix defining a neural net-
work [22]. Boers and Kuiper adapted L-systems to develop artificial feed-forward
neural networks [3]. They found that this method produced more modular neural
networks that performed better than networks with a predefined structure. They
showed that their method could produce ANNs for solving problems such as the
XOR function. Hornby and Pollack evolved L-systems to construct complex robot
morphologies and neural controllers [16, 15].
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Downing adopted a higher-level approach which avoided axonal and dendritic
growth, while maintaining key aspects of cell signaling, competition and coopera-
tion of neural topologies [5]. He applied this technique to the control of a multi-
limbed starfish-like animat.

Khan and Miller created a complex developmental neural network model that
evolved seven programs each representing various aspects of biological neurons
[19]. These were divided into two categories. Three of the CGP encoded chromo-
somes were responsible for ‘electrical’ processing of the ‘potentials’. These were
the dendrite, soma and axo-synapse chromosomes. One chromosome was devoted
to updating the weights of dendrites and axo-synapses. The remaining three chro-
mosomes were developmental responsible for updating the neural variables for the
soma (health and weight), dendrites (health, weight and length) and axo-synapse
(health, length). The evolved developmental programs were responsible for the
death and replication of neural components. The model was used in various ap-
plications: intelligent agent behaviour (wumpus world), checkers playing, and maze
navigation [20, 21].

Stanley introduced the idea of using evolutionary algorithms to build neural net-
works constructively (called NEAT). The network is initialised as a simple struc-
ture, with no hidden neurons consisting of a feed-forward network of input and
output neurons. An evolutionary algorithm controls the gradual complexification of
the network by adding a neuron along an existing connection, or by adding a new
connection between previously unconnected neurons [39]. However, using random
processes to produce more complex networks is potentially very slow. It also lacks
biological plausibility since natural evolution does not operate on aspects of the
brain directly. Later Stanley introduced an interesting extension to the NEAT ap-
proach called HyperNEAT [41] which uses an evolved generative encoding called
a Compositional Pattern Producing Network (CPPN) [40]. The CPPN takes coordi-
nates of pairs of neurons and outputs a number which is interpreted as the weight
of that connection. The advantage this brings is that ANNs can be evolved with
complex patterns where collections of neurons have similar behaviour depending
on their spatial location. It also means that one evolved function (the CPPN) can de-
termine the strengths of connections of many neurons. It is a form of non-temporal
development, where geometrical relationships are translated into weights.

Developmental Symbolic Encoding (DSE) [43] combines concepts from two ear-
lier developmental encodings, Gruau’s cellular encoding and L-systems. Like Hy-
perNEAT it can specify connectivity of neurons via evolved geometric patterns. It
was shown to outperform HyperNEAT on a shape recognition problem defined over
small pixel arrays. It could also produce partly general solutions to a series of even-
parity problems of various sizes. Huizinga et al. added an additional output to the
CPP program in HyperNEAT that controlled whether or not a connection between a
pair of neurons was expressed or not [17]. They showed that the new approach pro-
duced more modular solutions and superior performance to HyperNEAT on three
specially devised modular problems.

Evolvable-substrate HyperNEAT (ES-HyperNEAT) implicitly defined the posi-
tions of the neurons [35], however it proved to be computationally expensive. Iter-
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ated ES-HyperNEAT proposed a more efficient way to discover suitable positioning
of neurons [37]. This idea was taken further leading to Adaptive HyperNEAT which
demonstrated that not only could patterns of weights be evolved but also patterns
of local neural learning rules [36]. Like [17] in Adaptive HyperNEAT Risi et al. in-
creased the number of outputs from the CPPN program to encode learning rate and
other neural parameters.

3 The neuron model

Our aim is to construct a minimal developmental model. Minimal means that if
we take a snapshot of the neural network at a particular time we would see a con-
ventional graphs of neurons, weighted connections and a standard activation func-
tions. However, to make a developmental neural network we require a mechanism
whereby the ANN can change over time (possibly even during training). In addi-
tion, we take a cellular view of development, in which an entire network is devel-
oped from a few cells (possibly a single cell). The network itself grows from the
interaction of neurons acting in parallel (but sequentially simulated).

To construct such a developmental model of an artificial neural network we need
neural programs that not only apply a weighted sum of inputs to an activation func-
tion to determine the output from the neuron, but a program that can adjust weights,
create or delete connections, and create or delete neurons. Following [21] we have
used the concept of health to make this possible.

The model is illustrated in in Fig. 1. The neural programs are represented using
Cartesian Genetic Programming (CGP) (see Sect. 4). The programs are actually sets
of mathematical equations that read variables associated with neurons and dendrites
to output updates of those variables. This approach was inspired by some aspects
of a developmental method for evolving graphs and circuits proposed by Miller and
Thomson [32]. It was also influenced by some of the ideas described in [21]. In the
proposed model, weights are determined from a program that is a function of neuron
position, together with the health, weight and length of dendrites. It is neuro-centric
and temporal in nature. Thus the neural networks can change over time.

The inputs to the soma program are as follows: the health, bias and position of
the neuron and the average health, length and weight of all dendrites connected to
the neuron and problem type.

The problem type is a constant (in range [-1, 1]) which indicates whether a neu-
ron is not an output or in the case of an output neuron what computational prob-
lem the output neuron belongs to. Let P denote the computational problem. Define
P, = 0 to denote a non-output neuron, and F; =1,2 or N,, to respectively denote out-
put neurons belonging to different computational problems. Where, N, denotes the
number of computational problems. We define the problem type input to be given by
—1+2P,/N,. For example, if the neuron is not an output neuron the problem type
input is -1.0. If it is an output neuron belonging to the last problem its value is 1.0.
For all other computational problems its value is a value greater than -1.0 and less
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Fig. 1 The model of a developmental neuron. Each neuron has a position, health and bias and a
variable number of dendrites. Each dendrite has a position, health and weight. The behaviour of
a neuron soma is governed by a single evolved program. In addition each dendrite is governed
by another single evolved program. The soma program decides the values of new soma variables
position, health and bias based on previous values, the average over all dendrites belonging to the
neuron of dendrite health, position and weight and an external input called problem type. The latter
is a floating point value that indicates the neuron type. The dendrite program updates dendrite
health, position and weight based on previous values, the parent neuron’s health, position and bias
and problem type. When the evolved programs are executed, neurons can change, die replicate and
grow more dendrites and their dendrites can also change or die.

neuron health.Ji;  problem type

3 updated neuron health, ?T?.:
neuron position, X;

developmental
soma

neuron hias, 5i

Av. dendrite health, /1; program, i updated nevton bias b

Av. dendnte weight, ‘l_t‘i

Av. dendrite position, ‘-_1 updated neuron position, X;

(@)

problem type
neuron health, fz; ‘-,_.‘

1 updated dendrite health, }L:J
neuron position, X;

developmental
dendrite
program, j
of neuron, i

neuron bias, bi

updated dendrite

dendrite health, kij weight, wé
endrite weight, Wj
. . . updated dendnte
dendrite position, Xj; (b) pgsition. x{}

than 1.0. The thinking behind the problem type input is that since output neurons
are dedicated to a particular computational problem, they should be given informa-
tion that relates to this, so that the identical neural programs can behave differently
according to the computational problem they are associated with.

Bias refers to an input to the neuron activation function which is added to the
weighted sum of inputs (i.e. it is unweighted). The soma program updates its own
health, bias and position based on these inputs. These are indicated by primed sym-
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bols in Fig. 1). The user can decide between three different ways of using the pro-
gram outputs to update the neural variables. Which is most effective is a research
question. The update method is decided by a user defined parameter called Incr,;
(see Sec. 3.4) which defines how neuron variables are adjusted by the evolved pro-
grams (using user-defined incremental constants or otherwise).

Every dendrite belonging to each neuron is controlled by an evolved dendrite pro-
gram. The inputs to this program are the health, weight and position of the dendrite
and also the health, bias and position of the parent neuron. In addition as mentioned
earlier, dendrite programs can also receive the problem type of the parent neuron
The the evolved dendrite program decides how the health, weight and position of
the dendrite are to be updated.

In the model, all the neuron and dendrite parameters (weights, bias, health, posi-
tion and problem type) are defined by numbers in the range [—1,—1].

A fictitious developmental example is shown in Fig. 2. The initial state of the
brain is represented in (a). Initially there is one non-output neuron with a single
dendrite. The curved nature of the dendrites is purely for visualisation. In reality the
dendrites are horizontal lines emanating from the centre of neurons and of various
lengths. When extracting ANNSs the dendrites are assumed to connect to their nearest
neuron on the left (referred to as ‘snapping’). Output neurons are only allowed to
connect to non-output neurons or the first input (by default, if their dendrites lie
on the left of the leftmost non-output neuron). Thus the ANN that can be extracted
from the initial brain, has three neurons. The non-output neuron is connected to the
second input and both output neurons are connected via their single dendrite to the
non-output neuron.

Fig. 2(b) shows the brain after a single developmental step. In this step, the soma
program and dendrite programs are executed in each neuron. The non-output neuron
(labeled 0) has replicated to produce non-output neuron (labeled 1) it has also grown
a new dendrite. Its dendrites connect to both inputs. The newly created non-output
neuron is identical to its parent except that its position is a user-defined amount,
MNjy,, to the right of the parent and its health is set to 1 (an assumption of the
model). Both its dendrites connect to the second input. It is assumed that the soma
programs running in the two output neurons A and B have resulted in both output
neurons having moved to the right. Their dendrites have also grown in length. Neu-
ron A’s first dendrite is now connected to neuron one. In addition, neuron A has
high health so that it has grown a new dendrite. Every time a new dendrite grows it
is given a weight and health equal to 1.0. Also its new dendrite is given a position
equal to half the parent neuron’s position. These are assumptions of the model. This
its new dendrite is connected to neuron zero.Neuron B’s only dendrite is connected
to neuron one.

Fig. 2(c) shows the brain after a two developmental steps. The dendrites of neu-
ron zero have changed little and it is still connected in the same way as the previous
step. Neuron one’s dendrites have both changed. The first one has become longer
but remains connected to the first input. The second dendrite has become shorter but
it still snaps to the second input. Neuron one has also replicated as a result of its
health being above the replication threshold. It gets dendrites identical to its parent,
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Fig. 2 Example showing a developing brain. The squares on the left represent the inputs. The solid
circles indicate non-output neurons. Non-output neurons have solid dendrites. The dotted circles
represent output neurons. Output neuron’s dendrites are also dotted. In this example we assume
that only output neurons are allowed to move. The neurons, inputs and dendrites are all bound
to the interval [-1,1]. Dendrites connect to nearest neurons or inputs on the left of their position
(snapping). (a) shows the initial state of the brain. (b) shows the brain after one developmental step
and (c) shows it after two developmental steps.

its position is again incremented to the right of its parent and its health is set to
1.0. Its first dendrite connects to input one and its second dendrite to neuron zero.
Output neuron A has gained a dendrite, due to its health being above the dendrite
birth threshold. The new dendrite stretches to a position equal to half of its parent
neuron. So it connects to neuron zero. The other two dendrites remain the same and
they connects to neuron one and zero respectively. Finally, output neuron B’s only
dendrite has extended a little but still snaps to neuron one. Note, that at this stage
neuron two is not connected to this is redundant. It will be stripped out of the ANN
that is extracted from the brain.
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3.1 Model parameters

The model necessarily has a large number of user-defined parameters these are
shown in Table 1.

The total number of neurons allowed in the network is bounded between a user-
defined lower (upper)bound NN, (NNpgy). The number of dendrites each neu-
ron can have is bounded by user-defined lower (upper) bounds denoted by DN,
(DNyuyx). These parameters ensure that the number of neurons and connections per
neuron remain in well-defined bounds, so that a network can not eliminate itself
or grow too large. The initial number of neurons is defined by N;,; and the initial
number of dendrites per neuron is given by NDjy;;.

If the health of a neuron falls below (exceeds) a user-defined threshold, NH;,,,
(NHp;yyp) the neuron will be deleted (replicated). Likewise, dendrites are subject
to user defined health thresholds, DH .., (DHpirs) Which determine whether the
dendrite will be deleted or a new one will be created. Actually, to determine den-
drite birth the parent neuron health is compared with DHp;,4j, rather than dendrite
health. This choice was made to prevent the potential very rapid growth of dendrite
numbers.

When the soma or dendrite programs are run the outputs are used to decide how
to adjust the neural and dendrite variables. The amount of the adjustments are de-
cided by the six user-defined § parameters.

The number of developmental steps in the two developmental phases (‘pre’ learn-
ing and ‘while’ learning) are defined by the parameters, NDS,,. and NDS,,;. The
number of learning epochs is defined by N,,. Note that the pre-learning phase of
development, ‘pre’, can have different incremental constants (i.e. §s) to the learning
epoch phase, ‘while’.

In some cases, neurons will collide with other neurons (by occupying a small
interval around an existing neuron) and the neuron has to be moved by a certain
increment until no more collisions take place. This increment is given by MNj,..

The places where external inputs are provided is predetermined uniformly within
the region between -1 and [,,. The parameter /, defines the upper bound of their posi-
tion. Also output neurons are initially uniformly distributed between the parameter
O, and 1. However, depending on a user-defined option the output neurons as with
other neurons can move according to the neuron program. All neurons are marked
as to whether they provide an external output or not. In the initial network there are
Ninir non-output neurons and N, output neurons, where N, denotes the number of
outputs required by the computational problem being solved.

Finally, the neural activation function (hyperbolic tangent) and the sigmoid func-
tion (which is used in nonlinear incremental adjustment of neural variables) have a
slope constant given by .
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Table 1 Table of neural model constants and their meanings.

Symbol Meaning
NNpin(NNpax) Min. (Max.) allowed number of neurons
Ninit Initial number of non-output neurons
DNyin(DNpax) Min. (Max.) number of dendrites per neuron
ND;ir Initial number of dendrites per neuron
NH earn(NHpipn) Neuron health thresholds for death (birth)
DH o, (DHpipi1y) Dendrite health thresholds for death (birth)
Osn Soma health increment (pre, while)
Osp Soma position increment (pre, while)
Ospy Soma bias increment (pre, while)
San Dendrite health increment (pre, while)
Odp Dendrite position increment (pre, while)
Suw Dendrite weight increment (pre, while)
NDS . Number of developmental steps before epoch
NDS, i Number of ‘while’ developmental steps during epoch
Nep Number of learning epochs
MNj, Move neuron increment if collision
I, Max. program input position
] Min. program output position
o Sigmoid/Hyperbolic tangent exponent constant

3.2 Developing the brain and evaluating the fitness

An overview of the algorithm used for training and developing the ANNS is given
in Overview 1.

Overview 1 Overview of fitness algorithm

1:
2
3
4:
5:
6
7
8

13:
14:

function FITNESS
Initialise brain
Load ‘pre’ development parameters
Update brain NDS . times by running soma and dendrite programs
Load ‘while’ developmental parameters
repeat
Update brain NDS,,p,; times by running soma and dendrite programs
Extract ANN for each benchmark problem
Apply training inputs and calculate accuracy for each problem
Fitness is the normalised average accuracy over problems
If fitness reduces terminate learning loop and return previous fitness
until N,, epochs complete
return fitness
end function

The brain is always initialised with at least as many neurons as the maximum

number of outputs over all computational problems. Note, all problem outputs are
represented by a unique neuron dedicated to the particular output. However, the
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maximum and initial number of non-output neurons can be chosen by the user. Non-
output neurons can grow change or give birth to new dendrites. Output neurons can
change but not die or replicate as the number of output neurons is fixed by the choice
of computational problems. The detailed algorithm for training and developing the
ANN is given in Algorithm 1.

3.3 Updating the brain

Updating the brain is the process of running the soma and dendrite programs once
in all neurons and dendrites (i.e. it is a single developmental step). Doing this will
cause the brain to change and after all changes have been carried out a new updated
brain will be produced. This replaces the previous brain. Overview algorithm 2 gives
a high-level overview of the update brain process.

Overview 2 Update brain overview

1: function UPDATEBRAIN

2: Run soma program in non-output neurons to update soma

3 Ensure neuron does not collide with neuron in updated brain
4: Run dendrite program in all non-output neurons

5: If neuron survives add it to updated brain

6: If neuron replicates ensure new neuron does not collide

7 Add new neuron to updated brain

8 Run soma program in output neurons to update soma

9: Ensure neuron does not collide
10: Run dendrite program in all output neurons
11: If neuron survives add it to updated brain

12: Replace old brain with updated brain
13: end function

Sect. 14.1 presents a more detailed version of how the brain is updated at each
developmental step (see Algorithm 2) and gives details of the neuron collision avoid-
ance algorithm.

3.4 Running and updating the soma

The UPDATEBRAIN program calls the RUNSOMA program to determine how the
soma changes in each developmental step. As we saw in Fig. 1(a) the seven soma
program inputs are: neuron health, position and bias, the averaged position, weight
and health of the neuron’s dendrites and the problem type. Once the evolved CGP
soma program is run the soma outputs are returned to the brain update program.
These steps are shown in Overview 2.
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Overview 2 Running the soma: algorithm overview

1: function RUNSOMA

2 Calculate average dendrite health, position and weight
3 Gather soma program inputs

4: Run soma program

5 Return updated soma heath, bias and position

6: end function

The detailed version of the RUNSOMA function can be found in Sect. 14.3. The
RUNSOMA function uses the soma program outputs to adjust the health, position
and bias of the soma according to three user-chosen options defined by a variable
Incr, ;. This is carried out by the UPDATENEURON overview Alg. 3.

Overview 3 Update neuron algorithm overview

1: function UPDATENEURON

2: Assign original neuron variables to parent variables

3 Assign outputs of soma program to health, position and bias

4: Depending on Incr,), get increments

5: If soma program outputs > 0 (<0) then incr(decr.) parent variables
6: Assign parent variables to neuron

7 Bound health, position and bias

8: end function

3.5 Updating the dendrites and building the new neuron

This section is concerned with running the evolved dendrite programs. In every
dendrite, the inputs to the dendrite program have to be gathered. The dendrite pro-
gram is executed and the outputs are used to update the dendrite. This is carried out
by a function called RUNDENDRITE. Note, in RUNALLDENDRITES we build the
completely updated neuron from the updated soma and dendrite variables. The sim-
plified algorithm for doing this is shown in overview algorith 4. The more detailed
version is available in Sect. 14.5.

Overview Alg. 4 (in line 9) uses the updated dendrite variables obtained from
running the evolved dendrite program to adjust the dendrite variables (according to
the incrementation option chosen). This function is shown in the overview Alg. 5.
The more detailed version is available in Sect. 14.5.

The RUNDENDRITE function begins by assigning the dendrite’s health, position
and weight to the parent dendrite variables. It writes the dendrite program outputs
to the internal variables health, weight and position. It respectively carries out the
increments or decrements of the parent dendrite variables according whether the cor-
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Overview 4 An overview of the RUNALLDENDRITES algorithm which runs all

dendrite programs and uses all updated variables to build a new neuron.

1: function RUNALLDENDRITES

2 Write updated soma variables to new neuron

3 if Old soma health > DHj;,,;, then

4: Generate a dendrite for new neuron

5: end if

6: for all Dendrites do

7 Gather dendrite program inputs

8 Run dendrite program to get updated dendrite variables

9: Run dendrite to get updated dendrite
10: if Updated dendrite is alive then
11: Add updated dendrite to new neuron
12: if Maximum number of dendrites reached then
13: Stop processing any more dendrites
14: end if
15: end if
16: end for
17: if All dendrites have died then
18: Give new neuron the first dendrite of the old neuron
19: end if

20: end function

responding dendrite program outputs are greater than or less than or equal to zero.
After this it bounds those variables. Finally, it updates the dendrites health, weight

and position provided the adjusted health is above the dendrite death threshold.

Overview 5 Change dendrites according to the evolved dendrite program.

1: function RUNDENDRITE

2: Assign original dendrite variables to parent variables

3 Assign outputs of dendrite program to health, position and weight

4: Depending on Incr,), get increments

5: If dendrite program outputs > 0 (<0) then incr(decr.) parent variables
6: Assign parent variables to neuron

7 Bound health, position and weight

8 if (health > DH;,,,) then

9: Update dendrite variables
10: Dendrite is alive
11: else
12: Dendrite is dead
13: end if
14: Return updated dendrite variables and whether dendrite is alive

15: end function

We saw in the fitness function that we extract conventional ANNs from the

evolved brain. The way this is accomplished is as follows.
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Since we share inputs across problems we set the number of inputs to be the
maximum number of inputs that occur in the computational problem suite. If any
problem has less inputs the extra inputs are set to zero.

The next phase is to go through all dendrites of the neurons to determine which
inputs or neurons they connect to. To generate a valid neural network we assume
that dendrites are automatically connected to the nearest neuron or input on the left.
We refer to this as “snapping”. The dendrites of non-output neurons are allowed to
connect to either inputs or other non-output neurons on their left. However, output
neurons are only allowed to connect to non-output neurons on their left. It is not
desirable for the dendrites of output neurons to be connected directly to inputs,
however, when output neurons are allowed to move, they may only have inputs on
their left. In this case the output neuron dendrite neuron will be connected to the
first external input to the ANN network (by default).

The detailed version of the ANN extraction process is given in Sect. 14.6.

4 Cartesian GP

The two neural programs are represented and evolved using a form of Genetic Pro-
gramming (GP) known as Cartesian Genetic Programming (CGP). CGP [31, 28] is
a form of GP in which computational structures are represented as directed, often
acyclic graphs indexed by their Cartesian coordinates. Each node may take its in-
puts from any previous node or program input (although recurrent graphs can also
be implemented see [45]). The program outputs are taken from the output of any in-
ternal node or program input. In practice, many of the nodes described by the CGP
chromosome are not involved in the chain of connections from program input to
program output. Thus, they do not contribute to the final operation of the encoded
program, these inactive, or “junk”, nodes have been shown to greatly aid the evolu-
tionary search [30, 46, 47]. The representational feature of inactive genes in CGP is
also closely related to the fact that it does not suffer from bloat [27].

In general, the nodes described by CGP chromosomes are arranged in a rectan-
gular X ¢ grid of nodes, where r and ¢ respectively denote the user-defined number
of rows and columns. In CGP, nodes in the same column are not allowed to be
connected together. CGP also has a connectivity parameter / called “levels-back™
which determines whether a node in a particular column can connect to a node in
a previous column. For instance if / = 1 all nodes in a column can only connect
to nodes in the previous column. Note that levels-back only restricts the connectiv-
ity of nodes; it does not restrict whether nodes can be connected to program inputs
(terminals). However, it is quite common to adopt a linear CGP configuration in
which r = 1 and [ = c. This was done in our investigations here. CGP chromosomes
can describe multiple input multiple output (MIMO) programs with a range of node
functions and arities. For a detailed description of CGP, including its current de-
velopments and applications, see [28]. Both the soma and dendrite program have 7
inputs and 3 outputs. (see Fig. 1). The function set chosen for this study are defined
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over the real-valued interval [-1.0, 1.0]. Each primitive function takes up to three
inputs, denoted zg, z; and z;. The functions are defined in Table 2.

Table 2 Node function gene values, mnemonic and function definition

Value mnemonic  Definition

0 abs |zo]

1 sqrt \/H

2 sqr 207

3 cube 20°

4 exp (2exp(zo+1) — > —1)/(e* — 1)

5 sin sin(zp)

6  cos cos(zp)

7  tanh tanh(zp)

7 inv —20

9 step ifz0 <0.0 then O else 1.0

10 hyp (z0%+212)/2

11 add (zo+z1)/2

12 sub (Z()—Z])/Z

13 mult 2021

14  max if z0>=2z then zy elsez

15 min if zp<=2z; then 1z elsez

16 and if (20>0.0 and z; >0.0) then 1.0 else —1.0

17 or if (z0>00 or z; >0.0) then 1.0 else —1.0

18  rmux if 72>0.0 then z; else z

19 imult —2021

20  xor if (z2>00 and z;>0.0) then —1.0
elseif (z0<0.0 and z; <0.0) then —1.0
else 1.0

21  istep ifzo<1.0 then 0 else —1.0

22 tand if (20>0.0 and gz >0.0) then 1.0
elseif (z0<0.0 and z; <0.0) then —1.0
else 0.0

23 tor if (z20>00 or z >0.0) then 1.0
elseif (z0<0.0 or z;<0.0) them —1.0
else 0.0

S Benchmark problems

In this study, we evolve neural programs that build ANNs for solving three standard
classification problems. The problems are cancer, diabetes and glass. The definitions
of these problems are available in the well-known UCI repository of machine learn-
ing problems’. These three problems were chosen because they are well-studied and
also have similar numbers of inputs and a small number of classes. Cancer has 9 real
attributes and two Boolean classes. Diabetes has 8 real attributes and two Boolean

"'nttps://archive.ics.uci.edu/ml/datasets.html
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classes. Glass has 9 real attributes and six Boolean classes. The specific datsets cho-
sen were cancerl.dt, diabetes1.dt and glass1.dt which are described in the PROBEN
suite of problems 2. Since, for each benchmark problem we extract an ANN the
order of presentation of the benchmark problems is unimportant.

6 Experiments and Results

The long-term aim of this research is to explore effective ways to develop ANNs.
The work presented here is a just a beginning and there are many aspects that need
to be investigated in the future (see Sect. 12). The specific research questions we
have focused on are:

Are multiple learning epochs more effective than a single epoch?

Should neurons be allowed to move?

Should evolved program outputs update neural variables directly or should they
determine user-defined increments in those variables (linear or non-linear)?

To answer these questions a series of experiments were carried out to investi-
gate the impact of various aspects of the neural model on classification accuracy.
Twenty evolutionary runs of 20,000 generations of a 1+5-ES were used. Genotype
lengths for soma and dendrite programs were chosen to be 800 nodes. Goldman
mutation [10, 11] was used which carries out random point mutation until an active
gene is changed. For these experiments a subset of allowed node functions were
chosen as they appeared to give better performance. These were: step, add, sub,
mult, xor, istep. The remaining experimental parameters are shown in Table 3:

Four types of experiments were carried out to investigate the utility of neuron
movement. Acronyms describe these experiments. AMA means all neuron move-
ment was allowed (both non-output and output neurons). OMA means only the
movement of output neurons is allowed. NOMA means only the movement of non-
output neurons is allowed and finally, AMD means all movement of neurons is disal-
lowed. In addition, we examined three ways of incrementing or decrementing neural
variables. In the first the outputs of evolved programs determines directly the new
values of neural variables (position, health, bias, weight), that is to say there is no
incremental adjustment of neural variables. In the second, the variables are incre-
mented or decremented in user-defined amounts (the deltas in Table 1). In the third,
the adjustments to the neural variables are nonlinear (they are adjusted using a sig-
moid function). It should be noted that the scenario AMD does not imply that all
neurons remain in the fixed positions that they were initially given. The collision
avoidance mechanism and the birth of new neurons means that neurons will be as-
signed different positions during development. However, the neuron positions can
not be adjusted by incrementing neuron position.

https://publikationen.bibliothek.kit.edu
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Table 3 Table of neural model parameters.

Parameter Value
NNmin (NNmax) 0 (20)
Ninit 5
DNmin (D]Vmax) 1 (40)
NDinir 5
NDSp. 8
NDS, i 3
NDS s 0
Nep 1
MNjpe 0.03
1, -0.6
O, 0.8
o 1.5
‘Pre’ development parameters
NHgean (NHbirth) -0.6 (0.308)
DH jeatin(DHpireh) -0.404772 (-0.2012)
O 0.1
Osp 0.1
Op 0.07
Odh 0.1
Odp 0.2032
6{1 w 0.1
‘While’ development parameters
NHearn(NHpirsn) -0.58 (0.8)
DH earn(DHpirsn,) -0.38 (0.85)
O 0.01
Osp 0.01
Ost 0.0402
Sun 0.01
Oup 0.01
Say 0.02029

7 Tables of results

The mean, median, maximum and minimum accuracies achieved over 20 evolution-
ary runs when all neurons are allowed to move are shown in Table 4. We can see
that the best values of mean, median, maximum and minimum are all obtained when
only output neurons are allowed to move. The mean, median, maximum and mini-
mum are shown for each individual problem (cancer, diabetes and glass) in Table 5.

Table 6 shows how the results for OMA compare with the performance of 179
classifiers (covering 17 families) [8]>. The figures are given just to show that the
results for the developmental ANNs are respectable and are especially encourag-
ing considering that the evolved developmental programs build classifiers for three
different classification problems simultaneously.

3 The paper gives a link to the detailed performance of the 179 classifiers which contain the figures
given in the table
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Table 4 Training and testing accuracy for various neuron movement scenarios. All neurons al-
lowed to move (AMA), only output neurons are allowed to move (OMA), only non-output neurons
are allowed to move (NOMA) and no neurons are allowed to move (AMD).

Acc. AMA OMA NOMA

AMD

Train (Test)

Train (Test)

Train (Test)

Train (Test)

Mean
Median
Maximum
Minimum

0.7093 (0.6959)
0.7066 (0.7020)
0.7598 (0.7539)
0.6627 (0.6275)

0.7456 (0.7206)
0.7481 (0.7329)
0.7854 (0.7740)
0.7022 (0.6498)

0.6929
0.6886
0.7617
0.6254

(0.6303)
(0.6954)
(0.7643)
(0.6028)

Table S Training and testing accuracy on individual problems when only output neurons are al-

lowed to move.

Acc.

Cancer
Train (Test)

Diabetes
Train (Test)

Glass
Train (Test)

Mean
Median
Maximum

Minimum

0.9397 (0.9534)
0.9471 (0.9598)
0.9657 (0.9942)
0.8771 (0.8391)

0.7094 (0.6622)
0.7031 (0.6510)
0.7526 (0.7500)
0.6693 (0.6094)

0.5879 (0.5462)
0.5888 (0.5849)
0.6636 (0.6415)
0.4766 (0.3774)

Table 6 Comparison of test accuracies on three classification problems. OMA compared with huge

suite of classification methods as described in [8]

Acc.

Cancer
ML (OMA)

Diabetes
ML (OMA)

Glass
ML (OMA)

Mean

Maximum
Minimum

0.935(0.9534)
0.974(0.9942)
0.655(0.8391)

0.743(0.6622)
0.790(0.7500)
0.582(0.6094)

0.610(0.5462)
0.785(0.6415)
0.319(0.3774)

0.6920 (0.6821)
0.6929 (0.6950)
0.7363 (0.7245)
0.6575 (0.6089)

8 Comparisons and statistical significance

The results for the four experimental scenarios are presented graphically in Figs. 3
and 4. Maximum outliers are shown as asterisks and minimum outliers as filled
squares. The ends of the whiskers are set at 1.5*¥IQR above the third quartile and at
at 1.5*IQR below the first quartile, where IQR is the inter quartile range (Q3-Q1).
Clearly, the figures show that allowing only the output neurons to move (OMA)
produces the best results both on the training data set and the test data set. Also, in
this scenario there is a high level of generalisation as the results on the unseen data
set are close to the training results.

The Wilcoxon Ranked-Sum test (WRS) was used to assess the statistical differ-
ence between pairs of experiments. In this test, the null hypothesis is that the results
(best accuracy) over the multiple runs for the two different experimental conditions
are drawn from the same distribution and have the same median. If there is a sta-
tistically significant difference between the two then null hypothesis is false with a
degree of certainty which depends on the smallness of a calculated statistic called
a p-value. However, in the WRS before interpreting the p-value one needs to calcu-
late another statistic called Wilcoxon’s W value. This value needs to be compared
with calculated values which depend on the number of samples in each experiment.
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Fig. 3 Results for four experiments which allow or disallow neurons to move. The four neuron
movement scenarios are: all neurons allowed to move (AMA), only output neurons are allowed to
move (OMA), only non-output neurons are allowed to move (NOMA) and no neurons are allowed

to move (AMD). The figure shows classification accuracy on training set.
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Fig. 4 Results on test set for four experiments which allow or disallow neurons to move.
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Results are statistically significant when the calculated W-value is less than or equal
to certain critical values for W[48]. The critical values depend on the sample sizes
and the p-value. We used a publicly available Excel spreadsheet for doing these
calculations*. The critical W-values can be calculated in two ways: one-tailed or
two-tailed. The two-tailed test is appropriate here as we are interested in whether
one experiment is better than another (and vice versa).

For example, in Table 7 the calculated W-value is O and the critical W-value for
for the paired sample sizes of 20 (number of runs) with p-value less than 0.001
is 21 (assuming a two-tailed test)’. The p-value gives a measure of the certainty
with which the null hypothesis can be accepted. Thus the lower the value the more
likely that the two samples come from different distributions (i.e. are statistically
different). Thus in this case, the probability that the null hypothesis can be rejected
is 0.999.

4nttp://www.biostathandbook.com/wilcoxonsignedrank.html

3 http://www.real-statistics.com/statistics-tables/

wilcoxon-signed-ranks-table/
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The results of these tests are shown in Table 7 and Table 8. Comparing OMA
with AMD shows that there is an large advantage to allowing output neurons to
move. Indeed, allowing only output neurons to move is statistically significantly
better than either only allowing non-outputs neurons to move (NOMA) or allowing
all neurons to move (AMA). This is true both for testing and training. However,
as expected the differences are even more significant in training than testing. Also
using a linear increment is statistically significantly better than using a nonlinear
increment. Nonlinear increment is only marginally better than no increment (i.e.
Incr,p;=0).

It is important to understand how the experimental parameters shown in Table 3
were discovered. They were found by carrying out many experiments in the OMA
scenario. It turned out that when small changes in parameters had a clear improve-
ment on the quality of the first evolutionary run they significantly improved the
average performance over all twenty runs. . This was fortuitous in that one could
investigate the effect of changing parameters quickly by observing the performance
of the first evolutionary run. However, it is possible that the parameters found were
particular to the OMA scenario and that a similar process of tuning in the other
scenarios would probably improve the results in those scenarios. Ideally, one would
tune the parameters in each scenario (OMA, AMA, etc.) and compare results for the
best parameter set for each scenario. This would be computationally prohibitive.

Table 7 Statistical comparison of training results from experiments (Wilcoxon Rank-Sum two-
tailed).

Question Expt. A Expt. B |W| W P-value significant
critical
output movement OMA AMD 0] 21 p <0.001 very
v. no. movement?
output movement OMA NOMA 1| 21 p <0.001 very
v. non-output movement?

output movement OMA AMA 33| 37 (0.005 < p<0.01 yes
v. all movement?

Linear OMA OMA-non-lin|19| 37 p <0.001 very
v. nonlinear incr.

Non-linear OMA-non-lin|OMA no incr.|54| 69 | 0.05<p<0.1 | weakly

v. no increment?

9 Evolved developmental programs

The average number of active nodes in the soma and dendrite programs for the OMA
experiments was respectively, 56.75 and 55.0. Thus the programs are relatively sim-

6 Indeed, sometimes adjustments to a parameter in the fourth decimal place had a significant effect
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Table 8 Statistical comparison of zest results from experiments (Wilcoxon Rank-Sum two-tailed).

Question Expt. A|Expt. B|W|W critical P-value significant
critical
output movement OMA | AMD |35 37 0.005 < p < 0.01 yes
v. no movement?
output movement OMA |NOMA |44 52 0.02 < p <0.05 yes
v. non-output movement?
output movement OMA | AMA |53 60 0.05<p<0.1 yes
v. all movement?

ple. It is also possible that the graphs can be logically reduced to even simpler forms.
The graphs of the active nodes in the CGP graphs for the best evolutionary run in the
OMA scenario are shown in Figs. 5 — 6. The red input connections between nodes
indicate the first input in the subtraction operation. This is the only node operation
where node input order is important.

Fig. 5 Best evolved soma program when only output neurons can move. The input nodes are:
soma heath (sh), soma bias (sb), soma position (sp), average dendrite health (adh), average dendrite
weight (adw), average dendrite position (adp) and problem type (pt). The output nodes are: soma
health (SH), soma bias (SB) and soma position (SP).
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Fig. 6 Best evolved dendrite program when only output neurons can move. The input nodes are:
soma heath (sh), soma bias (sb), soma position (sp), dendrite health (dh), dendrite weight (dw),
dendrite position (dp) and problem type (pt). The output nodes are: dendrite health (DH), dendrite
weight (DW) and dendrite position (DP).

10 Developed ANNSs for each classification problem

The ANNSs for the evolutionary run with only output neuron movement allowed
were extracted (using Alg. 9) and can be seen in Figs. 7 — 9. The plots ignore
connections with weight equal to zero. The average training accuracy of these three
networks is 0.78538 (best) and the average test accuracy is 0.7459. In the figures,
each neuron is labeled with the problems it belongs to (cancer, diabetes, glass) and
it is also labeled with the neuron ID (in blue). Using these labels makes it easy to
identify which neurons are shared between problems. Note that output neurons are
not allowed to be shared.

The ANN which classifies the cancer data has 6 neurons with IDs: 9, 10, 12, 13,
19, 20. Neurons 9 and 13 are shared with the glass ANN, Neurons 10 and 12 are
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shared over all three problems. Class 0 of the cancer dataset is provided by a simple
function. The first attribute in the dataset is multiplied by a single weight and then
is the only input to a biased tanh neuron.

The ANN classifier for the diabetes dataset has 5 neurons with IDs: 10, 12, 15,
21, 27. Neurons with IDs 10 and 12 are shared across all problems. Neuron 15 is
shared with glass ANN.

The ANN classifier for the glass dataset has 15 neurons with IDs: 9, 10, 11, 12,
13, 14, 15, 16, 18, 22, 23, 24, 25, 26, 28. There are 4 neurons that are shared.

An interesting feature is that pairs of neurons often have multiple connections.
This is equivalent to a single connection where the weighted value is the sum of
the individual connections weights. This phenomenon was also observed in CGP
encoded and evolved ANNSs [44].

11 Evolving neural learning programs

The fitness function (see overview algorithm 1) included the possibility of learning
epochs. In this section we present and discuss results when a number of learning
epochs have been chosen. The task for evolution is then to construct two neural
programs that develop ANNs that improve with each learning epoch. The aim is to
find a general learning algorithm in which the ANNs change and improve with each
learning epoch beyond the limited number of epochs used in training. The experi-
mental parameters required to investigate were changed from those used previously
when there were no learning epochs. For the experiments here we retained most
of the previous parameters but altered the number of learning epochs and the delta
parameters in the ‘while’ loop. The new parameters are shown in Table 9.

Table 9 Table of changed neural model parameters when using multiple learning epochs.

Parameter| Value
Nep 10
6\'11 0.0
6\' p 0.0
6\'h 0.0
Sun 0.0
Odp 0.00106
[ 0.0

Informal experiments were undertaken to investigate suitable neural parameters
when using multiple learning epochs. The best results appeared to be obtained when
only the dendrite length was incrementally adjusted. As before, results are quite sen-
sitive to exact values for these parameters. It is interesting and surprising to observe
that adjustment of weights only in while phase does not produce as good results
as adjusting dendrite length. Twenty evolutionary runs were carried out using these
parameters and the results are shown in Table 10.
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Fig. 7 Developed ANN for cancer dataset. This datset has 9 attributes and two outputs. The num-
bers inside the circles are the neuron bias. Above the bias the problems which share the neuron are
shown. Below the bias the neuron ID (in blue) is shown. If any attributes are not present it means
they are unused. The training accuracy is 0.9571 and the test accuracy is 0.9828.
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Fig. 8 Developed ANN for diabetes dataset.This dataset has 8 attributes and two outputs. The
numbers inside the circles are the neuron bias. Above the bias the problems which share the neuron
are shown. Below the bias the neuron ID (in blue) is shown. Attributes not present are unused. The
training accuracy is 0.7448 and the test accuracy is 0.6510

In Table 10 we compare the results with multiple learning epochs with no learn-
ing epochs. Using no learning epochs gives better results. However, the results with
multiple learning epochs is reasonable despite the fact that the task is much more
difficult, effectively one is to trying evolve a learning algorithm. It is possible that
further experimentation with developmental parameters could produce better results
with multiple epochs.

In Figure 10 we examine how the accuracy of the classifications varies with learn-
ing epochs. We set the maximum number of epochs to 30 now to see if learning con-
tinues beyond the upper limit used during evolution (10). We can see that both the
test and training classification accuracy increases with each epoch up to 10 epochs
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Fig. 9 Developed ANN for glass dataset. This dataset has 9 attributes and six outputs. The numbers
inside the circles are the neuron bias. Above the bias the problems which share the neuron are
shown. Below the bias the neuron ID (in blue) is shown. Attributes not present are unused. The
training accuracy is 0.6542 and the test accuracy is 0.6038
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Table 10 Training and testing accuracy for ten learning epochs versus no learning epochs when
only output neurons are allowed to move.

Acc. |Learning epochs|No learning epochs
Train (Test) Train (Test)
Mean |0.7226 (0.6482) | 0.7456 (0.7206)
Median |0.7298 (0.6767)| 0.7481 (0.7329)
Maximum | 0.7609 (0.7864) | 0.7854 (0.7740)
Minimum | 0.6613 (0.3919) | 0.7022 (0.6498)

and there is a gradual decline in accuracy after this point. However, at 18 epochs the
accuracy stabilises to an accuracy of 0.65. Interestingly, the test accuracy is always
better than the training accuracy. We obtained several evolved solutions in which
training accuracy increased at each epoch until the imposed maximum number of
epochs, however, as yet none of these were able to improve beyond the limit.

Fig. 10 Variation of classification accuracy for training and testing with learning epoch when only
output movement is allowed.
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12 Further work

It remains unclear why better results can not at present be obtained when evolving
developmental programs with multiple epochs. Neither is it clear why programs can
be evolved that continuously improve the developed ANNs over a number of epochs
(i.e. 10) yet do not improve subsequently. It is worth contrasting the model discussed
in this chapter with previous work on Self-Modifying CGP [14]. In SMCGP pheno-
types can be iterated to produce a sequence of programs or phenotypes. The fitness
was accumulated over all the correct test cases summed over all the iterations. In
the problems studied (i.e. even-n parity, producing ) there was also a notion of
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perfection. For instance in the parity case perfection meant that at each iteration it
produced the next parity case (with more inputs) perfectly. If at the next iteration, the
appropriate parity function was not produced, then the iteration stopped. In the work
discussed here, the fitness is not cumulative. At each epoch, the fitness is the aver-
age accuracy of the classifiers over the three classification problems. If the fitness
reduces at the next epoch, then the epoch loop is terminated. However, in principle,
we could sum the accuracies at each epoch and if an accuracy at a particular epoch
is reduced, terminate the epoch loop. Summing the accuracies would give reward to
developmental programs that produced the best history of developmental changes.

At present, the developmental programs do not receive a reward signal during
multiple epochs. This means that the task for evolution is to continuously improve
developed ANNs without being supplied with a reward signal. However, one would
expect that as the fitness increases at each epoch the number of changes that need to
be made to the developed ANNs should decrease. This suggests that supplying the
fitness at the previous epoch to the developmental programs might be useful. In fact
this option has already been implemented but as yet evidence is inconclusive that
this produces improved results.

While learning over multiple epochs, we have assumed that the developmental
parameters should be fixed (i.e. they are chosen before the development loop - see
line 5 of Overview algorithm 1). However, it is not clear that this should be so.
One could argue that during early learning topological changes in the brain network
are more important and weight changes more important in later phases of learning.
This suggests that at each step of the learning loop one could load developmental
parameters, this would allow control of each epoch of learning.

The neural variables that are given as inputs to the CGP developmental programs
are an assumption of the model. For the soma these are: health, bias, position, prob-
lem type and average dendrite health, position and weight. For the dendrite they are:
dendrite health, weight, position, problem type and soma health, bias and position.
Further experimental work needs to be undertaken to determine whether they all are
useful. The program written already has the inclusion of any of these variables as an
option.

There are also many assumptions made in quite small aspects of the whole model.
When new neurons or dendrites are born what should the initial values of the neu-
ral variables be? What are the best upper bounds on the number of neurons and
dendrites? Currently, dendrite replication is decided by comparing the parent neu-
ron health with DHy;,j, rather than comparing dendrite health with this threshold.
If dendrite health was compared with a threshold it could rapidly lead to very large
numbers of dendrites. Many choices have been made that need to be investigated in
more detail.

There are also very many parameters in the model and experiment has shown
that results can be very sensitive to these. Thus further experimentation is required
to identify good choices for these parameters.

A fundamental issue is how to handle inputs. In the classification problems the
number of inputs is given by the problem with the most attributes, problems with
less are given the value zero for those inputs. This could be awkward if the prob-
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lems have hugely varying numbers of inputs. Is there another way of handling this?
Perhaps one could borrow more ideas from SMCGP and make all input connections
access inputs using pointer to a circular register of inputs. Every time a neuron con-
nected to an input, a global pointer to the register of inputs would be incremented.

So far, we have examined the utility of the developmental model on three clas-
sification problems. However, the aim of the work is to produce general problem
solving on many different kinds of computational problems. Clearly, a favourable
direction to go is to expand the list of problems and problem types. How much
neuron sharing would take place across problems of different types (e.g. classifi-
cation and real-time control)? Would different kinds of problems cause whole new
sub-networks to grow?

Currently the neurons exist in a one-dimensional space however it would be rel-
atively straightforward to extend it to two or even three spatial dimensions. This
remains for future work.

Eventually, the aim is to create developmental networks of spiking neurons. This
would allow a study of activity dependent development [33] which is an extremely
important aspect of biological brains.

13 Conclusions

We have presented a conceptually simple model of a developmental neuron in which
neural networks develop over time. Conventional ANNSs can be extracted from these
networks. We have shown that an evolved pair of programs can produce networks
that can solve multiple classification problems reasonably well. Multiple-problem
solving is a new domain for investigating more general developmental neural mod-
els.

14 Appendix: Detailed algorithms

14.1 Developing the brain and evaluating the fitness

The detailed algorithm for developing the brain and assessing its fitness is shown in
Alg. 1 There are two stages to development. The first (which we refer to as ‘pre’)
occurs prior to a learning epoch loop (lines 3-6). While the second phase (referred
to as ‘while’) occurs inside a learning epoch loop (lines 9-12).

Lines 13-22 are concerned with calculating fitness. For each computational prob-
lem an ANN is extracted from the underlying brain. This is carried by a function
ExtractANN (problem, Out putAddress) which is detailed in Alg. 9. This function
extracts a feedforward ANN corresponding to each computional problem (this is
stored in a phenotype which we do not detail here). The array Out putAddress stores
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the addresses of the output neurons associated with the computational problem. It is
used together with the phenotype to extract the network of neurons that are required
for the computational problem. Then the input data is supplied and the outputs of
the ANN calculated. The class of a data instance is determined by the largest out-
put. The learning loop (lines 8-29) develops the brain and exits if the fitness value
(in this case classification accuracy) reduces (lines 23-27 in Alg. 1). One can think
of the ‘pre’ development phase as growing a neural network prior to training. The
‘while’ phase is a period of development within the learning phase. N, denotes the
user-defined number of learning epochs. N, represents the number of problems in
the suite of problems being solved. N,.(p) denotes the number of examples for each
problem. A is the accuracy of prediction for a single training instance. F is the fit-
ness over all examples. TF is the accumulated fitness over all problems. Fitness is
normalised (lines 20 and 22).

Algorithm 1 Develop network and evaluate fitness

1: function FITNESS
2 Initialise brain
3 Use ‘pre’ parameters
4: for s =0tos <NDS,, do # develop prior to learning
5: UpdateBrain
6: end for
7 TFyrev =0
8: fore=0toe <N,, do # learning loop
9: Use ‘while’ parameters # learning phase
10: for s=0tos <NDS,,,; do
11: UpdateBrain
12: end for
13: TF=0 # initialise total fit
14: for p=0to p <N, do
15: Extract ANN(p, OutputAddress) # Get ANN for problem p
16: F=0 # initialise fit
17: forr =0to7 < N, (p) do
18: F =F+Acc # sum acc. over instances
19: end for
20: TF =TF +F /Ne(p) # sum normalised acc. over problems
21: end for
22: TF =TF/N, # normalise total fitness
23: if TF < TFp,, then # has fitness reduced?
24 TF =TFpey # return previous fitness
25: Break # terminate learning loop
26: else
27: TFyey=TF # update previous fitness
28: end if
29: end for

30: return TF
31: end function
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14.2 Developing the brain and evaluating the fitness

Algorithm 2 shows the update brain process. This algorithm is run at each devel-
opmental step. It runs the soma and dendrite programs for each neuron and from
the previously existing brain creates a new version (NewBrain) which eventually
overwrites the previous brain at the last step (lines 52-53).
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Algorithm 2 Update brain
1: function UPDATEBRAIN
2 NewNumNeurons = 0
3 for i =0 toi < NumNeurons do # get number and addresses of neurons
4: if (Brain[i].out = 0) then
5: NonOutputNeuronAddress[NumNonOutputNeurons] = i
6: increment NumNonOutputNeurons
7 else
8: OutputNeuronAddress[NumOutputNeurons] = i
9: increment NumOutputNeurons
10: end if
11: end for
12: for i = 0 to i < NumNonOutputNeurons do # process non-output neurons
13: NeuronAddress = NonOutputNeuronAddress|[i]
14: Neuron = Brain[NeuronAddress]
15: UpdatedNeurVars = RunSoma(Neuron) # get new position, health and bias
16: if (DisallowNonOutputsToMove) then
17: UpdatedNeurVars.x = Neuron.x
18: else
19: UpdatedNeur Vars.x = IfCollision(NewNumNeurons,NewBrain,UpdatedNeur Vars.x)
20: end if
21: UpdatedNeuron = RunAllDendrites(Neuron, UpdatedNeur Vars)
22: if (UpdatedNeuron.health > NHy,,,) then # if neuron survives
23: NewBrain[NewNumNeurons] = UpdatedNeuron
24: Increment NewNumNeurons
25: if (NewNumNeurons = NN,,,,-NumOutputNeurons) then
26: Break # exit non-output neuron loop
27: end if
28: end if
29: if (UpdatedNeuron.health > NHj,q,;) then # neuron replicates
30: UpdatedNeuron.x = UpdatedNeuron.x+M Njy.
31: UpdatedNeuron.x = IfCollision(NewNumNeurons, NewBrain, UpdatedNeuron.x)
32: NewBrain[NewNumNeurons] = CreateNewNeuron(UpdatedNeuron)
33: Increment NewNumNeurons
34: if (NewNumNeurons = NN,;,, - NumOutputNeurons) then
35: Break # exit non-output neuron loop
36: end if
37: end if
38: end for
39: for i = 0 to i < NumOutputNeurons do # process output neurons
40: NeuronAddress = OutputNeuronAddress|i]
41: Neuron = Brain[NeuronAddress]
42: UpdatedNeurVars = RunSoma(Neuron) # get new position, health and bias
43: if (DisallowOutputsToMove) then
44: UpdatedNeurVars.x = Neuron.x
45: else
46: UpdatedNeurVars.x = IfCollision(NewNumNeurons,NewBrain,UpdatedNeur Vars.x)
47: end if
48: UpdatedNeuron = RunAllDendrites(UpdatedNeuron)
49: NewBrain[NewNumNeurons] = UpdatedNeuron
50: Increment NewNumNeurons
51: end for
52: NumNeurons = NewNumNeurons
53: Brain = NewBrain

54: end function
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Alg. 2 starts by analyzing the brain to determine the addresses and numbers of
non-output and output neurons (lines 3-11). Then the non-output neurons are pro-
cessed. The evolved soma program is executed and it returns a neuron with updated
values for the neuron position, health and bias. These are stored in the variable
UpdatedNeurVars.

If the user-defined option to disallow non-output neuron movement is chosen
then the updated neuron position is reset to that before the soma program is run
(lines 16-17). Next the evolved dendrite programs are executed in all dendrites. The
algorithmic details are given in Alg. 6 (See Sect. 3.5).

The neuron health is compared with the user-defined neuron death threshold
NH,.q, and if the health exceeds the threshold the neuron survives (see lines 22-
28). At this stage it is possible that the neuron has been given a position that is
identical to one of the neurons in the developing brain (NewBrain) so one needs a
mechanism for preventing this. This is accomplished by Alg. 3 (Lines 19 and 46).
It checks whether a collision has occurred and if so an increment MN;,. is added to
the position and then it is bound to the interval [-1, 1]. In line 23 the updated neuron
is written into NewBrain. A check is made in line 25 to see if the allowed number of
neurons has been reached, if so the non output neuron update loop (lines 12 to 38) is
exited and the output neuron section starts (lines 39 to 51). If the limit on numbers
of neurons has not been reached, the updated neuron may replicate depending on
whether its health is above the user-defined threshold, NHj,. (line 29). The po-
sition of the new born neuron is immediately incremented by MNj,. so that it does
not collide with its parent (line 30). However, its position needs to be checked also
to see if it collides with any other neuron, in which case its position is incremented
again until a position is found that causes no collision. This is done in the function
IFCOLLISION.

In CREATENEWNEURON (see line 32) the bias, the incremented position and
dendrites of the parent neuron are copied into the child neuron. However, the new
neuron is given a health of 1.0 (the maximum value). The algorithm examines the
non-output neurons (lines 39-51) and again is terminated if the allowed number
of neurons is exceeded. The steps are similar to those carried out with non-output
neurons, except that output neurons can not either die or replicate as their number is
fixed by the number of outputs required by the computational problem being solved.

The details of the neuron collision avoidance mechanism is shown in Alg. 3.

14.3 Running the soma

The UPDATEBRAIN program calls the RUNSOMA program (Alg. 4) to deter-
mine how the soma changes in each developmental step. The seven soma pro-
gram inputs comprising the neuron health, position and bias, the averaged position,
weight and health of the neuron’s dendrites and the problem type are supplied to
the CGP encoded soma program (line 12). The array ProblemTypelnputs stores
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Algorithm 3 Move neuron if it collides with another.

1:
2
3
4:
5:
6:
7
8

9:

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:

function IFCOLLISION(NumNeurons, Brain, NeuronPosition)

NewPosition = NeuronPosition
collision = 1
while collision do
collision = 0
for i = 0 to j < NumNeurons do
if (| NeuronPosition - Brain[i].x | < 1.e-8) then
collision = 1
end if
if collision then
break
end if
end for
if collision then
NewPosition = NewPosition+MNj,.
end if
end while
if collision then
NewPosition = Bound(NewPosition)
end if
return NewPosition

22: end function

NumProblems+1 constants equally spaced between -1 and 1. These are used to al-

low output neurons to know what computational problem they belong to.
The soma program has three outputs relating to the position, health and bias of

the neuron. These are used to update the neuron (line 13).

Algorithm 4 RunSoma(Neuron)

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:

function RUNSOMA (Neuron)

AvDendritePosition = GetAvDendritePosition(Neuron)
AvDendriteWeight = GetAvDendriteWeight(Neuron)
AvDendriteHealth = GetAvDendriteHealth(Neuron)
SomaProgramInputs[0] = Neuron.health

SomaProgramInputs[1] = Neuron.x

SomaProgramInputs[2] = Neuron.bias

SomaProgramInputs[3] = AvDendritePosition
SomaProgramInputs[4] = AvDendriteWeight
SomaProgramInputs[5] = AvDendriteHealth
SomaProgramInputs[6] = ProblemTypeInputs[ WhichProblem]
SomaProgramOutputs = SomaProgram(SomaProgramInputs)
UpdatedNeuron = UpdateNeuron(Neuron, SomaProgramOutputs)
return UpdatedNeuron.x, UpdatedNeuron.health, UpdatedNeuron.bias

15: end function
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14.4 Changing the Neuron Variables

The UPDATENEURON algorithm ( 5) updates the neuron properties of health, posi-
tion and bias according to three user-chosen options defined by a variable Incr,,. If
this is zero, then the soma program outputs determine directly the updated values of
the soma’s health, position and bias. If Incr,, is one or two, the updated values of
the soma are changed from the parent neuron’s values in an incremental way. This is
either a linear or nonlinear increment or decrement depending on whether the soma
program’s outputs are greater than or less than or equal to zero (lines 8 to 16). The
magnitudes of the increments is defined by the user-defined constants: &y, sp, Ogp
and sigmoid slope parameter, o (see Table 1).

The increment methods described in Algorithm 5 change neural variables, so
action needs to be taken to force the variables to strictly lie in the interval [—1,1]. We
call this ‘bounding’ (lines 34-36).This is accomplished using a hyperbolic tangent
function.

14.5 Running all dendrite programs and building a new neuron

Alg. 6 takes an existing neuron and creates a new neuron using the updated soma
variables, position, health and bias which are stored in U pdateNeurVars (from
Alg. 4) and the updated dendrites which result from running the dendrite program
in all the dendrites. Initially (line 3-5), the updated soma variables are written into
the updated neuron. The number of dendrites in the updated neuron is set to zero.
In lines 8-11, the health of the non-updated neuron is examined and if it is above
the dendrite health threshold for birth, a new dendrite is generated and the updated
neuron gains a dendrite. If so, the neuron gains a dendrite created by a function
GenerateDendrite(). This assigns a weight, health and position to the new dendrite.
The weight and health is set to one and the position set to half the parent neuron
position. These choices appeared to give good results.

Lines 12-33 are concerned with processing the dendrite program in all the den-
drites of the non-updated neuron and updating the dendrites. If the updated dendrite
has a health above its death threshold then it survives and gets written into the up-
dated neuron (lines 22-28). Updated dendrites do not get written into the updated
neuron if it already has the maximum allowed number of dendrites (line 25-27). In
lines 30-33 a check is made as to whether the updated neuron has no dendrites. If
this is so, it is given one of the dendrites of the non-updated neuron. Finally, the
updated neuron is returned to the calling function.

Alg. 6 calls the function RUNDENDRITE (line 21). This function is detailed in
Alg. 7. It changes the dendrites of a neuron according to the evolved dendrite pro-
gram. It begins by assigning the dendrites health, position and weight to the parent
dendrite variables. It writes the dendrite program outputs to the internal variables
health, weight and position. Then in lines 8-16 it defines the possible increments in
health, weight and position that will be used to increment or decrement the parent
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Algorithm 5 Neuron update function

1: function UPDATENEURON(Neuron, SomaProgramOutputs)
2 ParentHealth = Neuron.health

3 ParentPosition = Neuron.x

4: ParentBias = Neuron.bias

5: health = SomaProgramOutputs[0]

6: position = SomaProgramOutputs[1]

7 bias = SomaProgramOutputs[2]

8

: if (Incr,,; = 1) then # calculate increment
9: HealthIncrement = &g,
10: PositionIncrement = &,
11: BiasIncrement = &y,
12: else if (Incr,,, = 2) then
13: HealthIncrement = Jy;,*sigmoid(health, o)
14: PositionIncrement = &, *sigmoid(position, )
15: BiasIncrement = ;,*sigmoid(bias, &)
16: end if
17: if (Incr,, > 0) then # apply increment
18: if (health > 0.0) then
19: health = ParentHealth + HealthIncrement
20: else
21: health = ParentHealth - HealthIncrement
22: end if
23: if (position > 0.0) then
24: position = ParentPosition + PositionIncrement
25: else
26: health = ParentPosition - PositionIncrement
27: end if
28: if (bias > 0.0) then
29: bias = ParentBias + BiasIncrement
30: else
31: bias = ParentBias - BiasIncrement
32: end if
33: end if

34: health = Bound(health)

35: position = Bound(position)

36: bias = Bound(bias)

37: return health, position and bias
38: end function

variables according to the user defined incremental options (linear or non-linear).In
lines 17-33 it respectively carries out the increments or decrements of the parent
dendrite variables according whether the corresponding dendrite program outputs
are greater than or less than or equal to zero. After this it bounds those variables.
Finally, in lines 37-44 it updates the dendrites health, weight and position provided
the adjusted health is above the dendrite death threshold (in other words it survives).
Note that if Incr,p = 0 then there is no incremental adjustment and the health,
weight and position of the dendrites are just bounded (lines 34-36).
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Algorithm 6 Run the evolved dendrite program in all dendrites

1: function RUNALLDENDRITES(Neuron, DendriteProgram, NewSomaPosition, NewSoma-

28:
29:
30:
31:
32:
33:
34:

Health, NewSomaBias)

WhichProblem = Neuron.isout
OutNeuron.x = NewSomaPosition
OutNeuron.health = NewSomaHealth
OutNeuron.bias = NewSomaBias
OutNeuron.isout = WhichProblem
OutNeuron.NumDendrites = 0
if (Neuron.health > DH;,,;, ) then
OutNeuron.dendrites[NumDendrites] = GenerateDendrite()
Increment OutNeuron.NumDendrites
end if
for i = 0 to i < OutNeuron.NumDendrites do
DendriteProgramInputs[0] = Neuron.health
DendriteProgramInputs[1] = Neuron.x
DendriteProgramInputs[2] = Neuron.bias
DendriteProgramInputs[3] = Neuron.dendrites[i].health
DendriteProgramInputs[4] = Neuron.dendrites[i]. weight
DendriteProgramInputs[5] = Neuron.dendrites[i].position
DendriteProgramInputs[6] = ProblemTypelnputs[ WhichProblem]
DendriteProgramOutputs = DendriteProgram(DendriteProgramInputs)
UpdatedDendrite = RunDendrite(Neuron, DendriteProgramOutputs)
if (UpdatedDendrite.isAlive) then
OutNeuron.dendrites[NumDendrites] = UpdatedDendrite
increment OutNeuron.NumDendrites
if (OutNeuron.NumDendrites > MaxNumDendrites) then
break
end if
end if
end for
if (OutNeuron.NumDendrites = 0) then # if all dendrites die
OutNeuron.dendrites[0] = Neuron.dendrites[0]
OutNeuron.NumDendrites = 1
end if
return OutNeuron

35: end function

Alg. 2 uses a function CREATENEWNEURON to create a new neuron if the neu-

ron health is above a threshold. This function is described in Alg. 8. It makes the
new born neuron the same as the parent (note, its position will be adjusted by the
collision avoidance algorithm) except that it is given a health of one. Experiments
suggested that this gave better results.
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Algorithm 7 Change dendrites according to the evolved dendrite program

1:
2
3
4:
5:
6.
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:

function RUNDENDRITE(Neuron, WhichDendrite, DendriteProgramOutputs)

ParentHealth = Neuron.dendrites] WhichDendrite].health
ParentPosition = Neuron.dendrites[ WhichDendrite].x
ParentWeight = Neuron.dendrites[ WhichDendrite].weight
health = DendriteProgramOutputs[0]
weight = DendriteProgramOutputs[1]
position = DendriteProgramOutputs[2]
if (Incr,; = 1) then
HealthIncrement = &y,
WeightIncrement = &,
PositionIncrement = §;,
else if (Incr,,, = 2) then
HealthIncrement = 8,4, *sigmoid(health, o)
WeightIncrement = &, *sigmoid(weight, @)
PositionIncrement = &, *sigmoid(position, c)
end if
if (Incr,, > 0) then
if (health > 0.0) then
health = ParentHealth + HealthIncrement
else
health = ParentHealth - HealthIncrement
end if
if (position > 0.0) then
position = ParentPosition + PositionIncrement
else
health = ParentPosition - PositionIncrement
end if
if (weight > 0.0) then
weight = ParentWeight + BiasIncrement
else
weight = ParentWeight - BiasIncrement
end if
end if
health = Bound(health)
position = Bound(position)
weight = Bound(weight)
if (health > DH_,4,) then
UpdatedDendrite.weight = weight
UpdatedDendrite.health = health
UpdatedDendrite.x = position
UpdatedDendriteisAlive = 1
else
UpdatedDendriteisAlive = 0
end if
return UpdatedDendrite and UpdatedDendriteisAlive

46: end function

14.6 Extracting conventional ANNSs from the evolved brain

In algorithm 1, a conventional feed-forward ANN is extracted from the underlying
collection of neurons (line 15). The algorithm for doing this is shown in algorithm 9.
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Algorithm 8 Create new neuron from parent neuron

1: function CREATENEWNEURON(ParentNeuron)

2: ChildNeuron.NumDendrites = ParentNeuron.NumDendrites
3 ChildNeuron.isout = 0

4 ChildNeuron.health = 1

5: ChildNeuron.bias = ParentNeuron.bias

6: ChildNeuron.x = ParentNeuron.x

7. for i = 0 to i < ChildNeuron.NumDendrites do

8 ChildNeuron.dendrites[i] = ParentNeuron.dendrites][i]

9: end for
10: end function

Firstly, this algorithm determines the number of inputs to the ANN (line 5). Since
inputs are shared across problems the number of inputs is set to be the maximum
number of inputs that occur in the computational problem suite. If an individual
problem has less inputs than this maximum, the extra inputs are set to 0.0. The
brain array is sorted by position. The algorithm then examines all neurons (line 7)
and calculates the number of non-output neurons and output neurons and stores the
neuron data in arrays NonOutputNeurons and Out putNeurons. It also calculates
their addresses in the brain array.

The next phase is to go through all dendrites of the non-output neurons to deter-
mine which inputs or neurons they connect to (lines 19 to 33). The evolved neuron
programs generate dendrites with end positions anywhere in the interval [-1, 1]. The
end positions are converted to lengths (line 25). In this step the dendrite position
is linearly mapped into the interval [0, 1]. To generate a valid neural network we
assume that dendrites are automatically connected to the nearest neuron or input on
the left. We refer to this as “snapping” (lines 28 and 44). The dendrites of non-output
neurons are allowed to connect to either inputs or other non-output neurons on their
left. However, output neurons are only allowed to connect to non-output neurons on
their left. Algorithm 10 returns the address of the neuron or input that the dendrite
snaps to. The dendrites of output neurons are not allowed to connect directly to in-
puts (see Line 4 of the GETCLOSEST function), however, when neurons are allowed
to move, there can occur a situation where an output neuron is positioned so that it is
the first neuron on the right of the outputs. In that situation it can only connect to in-
puts. If this situation occurs then the initialisation of the variable AddressO fClosest
to zero in the GETCLOSEST function (line 2) means that all the dendrites of the out-
put neuron will be connected to the first external input to the ANN network. Thus a
valid network will still be extracted albeit with a rather useless output neuron. It is
expected that evolution will avoid using programs that allow this to happen.

Algorithm 9 stores the information required to extract the ANN in an array
called Phenotype. It contains the connection addresses of all neurons and their
weights (lines 29-30 and 45-46). Finally it stores the addresses of the output neu-
rons (Out putAddress) corresponding to the computational problem whose ANN is
being extracted (lines 49-52). These define the outputs of the extracted ANNs when
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they are supplied with inputs (i.e. in the fitness function when the Accuracy is as-
sessed (see Alg. 1). The Phenotype is stored in the same format as Cartesian Genetic
Programming (see section 4) and decoded in a similar way to genotypes.
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Algorithm 9 The extraction of neural networks from the underlying brain.

1: function EXTRACTANN((problem, OutputAddress)
2: NumNonOutputNeurons = 0

3 NumOutputNeurons = 0

4: OutputCount=0

5: N; = max(N;, p)
6.
7
8

sort(Brain, O, NumNeurons-1) # sort neurons by position
for i = 0 to i < NumNeurons do
Address =i+ N;
9: if (Brain[i].isout > 0) then # non-output neuron
10: NonOutputNeur[NumNonOutputNeur] = Brain[i]
11: NonOutputNeuronAddress|[NumNonOutputNeur]= Address
12: Increment NumNonOutputNeur
13: else # output neuron
14: OutputNeurons[NumOutputNeurons]= Brain[i]
15: OutputNeuronAddress|[NumOutputNeurons]= Address
16: Increment NumOutputNeurons
17: end if
18: end for
19: for i = 0 to i < NumNonOutputNeur do # do non-output neurons
20: Phenotypel[i].isout = 0
21: Phenotype[i].bias = NonOutputNeur([i].bias
22: Phenotypel[i].address = NonOutputNeuronAddress|[i]
23: NeuronPosition = NonOutputNeur[i].x
24: for j =0 to j < NonOutputNeur[i]. NumDendrites do
25: Convert DendritePosition to DendriteLength
26: DendPos = NeuronPosition - DendriteLength
27: DendPos = Bound(DendPos)
28: AddressClosest = GetClosest(NumNonOutputNeur, NonOutputNeur, 0, DendPos)
29: Phenotype[i].ConnectionAddresses[j] = AddressClosest
30: Phenotype[i].weights[j] = NonOutputNeur[i].weight[j]
31: end for
32: Phenotype[i]. NumConnectionAddress = NonOutputNeur[i]. NumDendrites
33: end for
34: for i = 0 to i < NumOutputNeurons do # do output neurons
35: il = i+NumOutputNeurons
36: Phenotype[il].isout = OutputNeurons[i].isout
37: Phenotype[il].bias = OutputNeurons|i].bias
38: Phenotype[il].address = OutputNeuronAddress|[i]
39: NeuronPosition = OutputNeurons[i].x
40: for j =0 to j < OutputNeurons[i].NumDendrites do
41: Convert DendritePosition to DendriteLength
42: DendPos = NeuronPosition - DendriteLength
43: DendPos = Bound(DendPos)
44: AddressClosest = GetClosest(NumNonOutputNeur, NonOutputNeur, 1, DendPos)
45: Phenotype[il].ConnectionAddresses[j] = AddressClosest
46: Phenotype[il].weights[j] = OutputNeuron[i].weight[j]
47: end for
48: Phenotype[il].NumConnectionAddress = OutputNeurons[i]. NumDendrites
49: if (OutputNeurons[i].isout == problem+1) then
50: OutputAddress[OutputCount] = OutputNeuronAddress|i]
51: Increment OutputCount
52: end if
53: end for

54: end function
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Algorithm 10 Find which input or neuron a dendrite is closest to
1: function GETCLOSEST(NumNonOutNeur, NonOutNeur, IsOut, DendPos)
2 AddressOfClosest = 0
3 min = 3.0
4 if (IsOut = 0) then # only non-out neurons connect to inputs
5: for (i = 0 to i < MaxNumlInputs) do
6: distance = DendPos - InputLocations[i]
7 if distance > O then
8 if (distance < min) then
9: min = distance
10: AddressOfClosest = i
11: end if
12: end if
13: end for
14: end if
15: for j =0 to j <NumNonOutputNeur do
16: distance = DendPos - NonOutNeur([j].x
17: if distance > O then # feed-forward connections
18: if (distance < min) then
19: min = distance
20: AddressOfClosest = j + MaxNumlInputs
21: end if
22: end if
23: end for

24: return AddressOfClosest
25: end function




