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Abstract In general, the topology of Artificial Neural Networks (ANNs) is human-
engineered and learning is merely the process of weight adjustment. However, it is
well known that this can lead to sub-optimal solutions. Topology and Weight Evolv-
ing Artificial Neural Networks (TWEANNs) can lead to better topologies however,
once obtained they remain fixed and cannot adapt to new problems. In this chapter,
rather than evolving a fixed structure artificial neural network as in neuroevolution,
we evolve a pair of programs that build the network. One program runs inside neu-
rons and allows them to move, change, die or replicate. The other is executed inside
dendrites and allows them to change length and weight, be removed, or replicate.
The programs are represented and evolved using Cartesian Genetic Programming.
From the developed networks multiple traditional ANNs can be extracted, each of
which solves a different problem. The proposed approach has been evaluated on
multiple classification problems.

1 Introduction

Artificial neural networks (ANNs) were first proposed seventy-five years ago [45].
Yet, they remain poor caricatures of biological neurons. ANNs are almost always
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static arrangements of artificial neurons with simple activation functions. Learning
is largely considered to be the process of adjusting weights to make the behaviour
of the network conform as closely as possible to a desired behaviour. We refer to
this as the “synaptic dogma”. Indeed, there is abundant evidence that biological
brains learn through many mechanisms [32] and in particular, changes in synaptic
strengths are at best a minor factor in learning since synapses are constantly pruned
away and replaced by new synapses [66]. In addition, restricting learning to weight
adjustment leads immediately to the problem of so-called catastrophic forgetting.
This is where retraining an ANN on a new problem causes the previously learned
behaviour to be disrupted if not forgotten [19, 44, 55]. One approach to overcoming
catastrophic forgetting is to create developmental ANNs which, in response to envi-
ronmental stimulus (i.e. being trained on a new problems), grow a new sub-network
which integrates with the existing network. Such new networks could even share
some neurons with pre-existing networks.

In contrast to the synaptic dogma in ANNs, in neuroscience it is well-known that
learning is strongly related to structural changes in neurons. Examples of this are
commonplace. Mice reared in the dark and then placed in the light develop new
dendrites in the visual cortex within days [78]. Animals reared in complex envi-
ronments where active learning is taking place have an increased density of den-
drites and synapses [37, 38]. Songbirds in the breeding season increase the number,
size and spacing of neurons, where the latter is caused by increases in dendritic ar-
borization [74]. It is also well-known that the hippocampi of London taxi drivers are
significantly larger relative to those of control subjects [43]. Rose even argues that
after a few hours of learning the brain is permanently altered [60]. Another aspect
supporting the view that structural changes in the brain are strongly associated with
learning, is simply that the most significant period of learning in animals happens
in infancy, when the brain is developing [8].

There have been various attempts to create developmental ANNs and we review
past work in Sect 2. Although many interesting past approaches have been pre-
sented, generally the work has not continued. When one considers the enormous
potential of developmental neural networks there needs to be sustained and long-
term research on a diversity of approaches. In addition there is a need for such
approaches to be applied in a variety of real-world applications.

2 Related work on the development of ANNs

Although non-developmental in nature, a number of methods have been devised
which under supervision gradually augment ANNs by adding additional neurons or
join trained ANNs together via extra connections. ‘Constructive neural networks’
are traditional ANNs which start with a small network and add neurons incremen-
tally while training error is reduced [13, 18]. Modular ANNs use multiple ANNs
each of which has been trained on a sub-problem and these are combined by a hu-
man expert [64]. Both of these approaches could be seen as a form of human engi-
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neered development. More recent approaches adjust weighted connections between
trained networks on sub-problems [62, 72]. Aljundi et al. have a set of trained ANNs
for each task (experts) and use an additional ANN as a recommender as to which
expert to use for a particular data instance [1].

A number of authors have investigated ways of incorporating development to
help construct ANNs [41, 70]. Researchers have investigated a variety of genotype
representations at different levels of abstraction.

Cangelosi et al. defined genotypes which were a mixture of variables, param-
eters, and rules (e.g. cell type, axon length and cell division instructions) [6]. The
task was to control a simple artificial organism. Rust et al constructed a binary geno-
type which encoded developmental parameters that controlled the times at which
dendrites could branch and how the growing tips would interact with patterns of
attractants placed in an environment [61]. Balaam investigated controlling simu-
lated agents using a two-dimensional area with chemical gradients in which neu-
rons were either sensors, affectors, or processing neurons according to location [3].
The neurons were defined as standard continuous time recurrent neural networks
(CTRNNS). The genotype was effectively divided into seven chromosomes each
of which read the concentrations of the two chemicals and the cell potential. Each
chromosome provided respectively the neuron bias, time constant, energy, growth
increment, growth direction, distance to grow and new connection weight.

A variety of grammar-based developmental methods for building ANNs have
been proposed in the literature. Kitano evolved matrix re-writing rules to develop
an adjacency matrix defining the structure of a neural network [36]. He used back-
propagation to adjust the connection weights. He applied the technique to encoder-
decoder problems of various sizes. Kitano claimed that his method produced supe-
rior results to direct methods. However, it must be said, it was later shown in a more
careful study by Siddiqi and Lucas, that the two approaches were of equal qual-
ity [65]. Belew [4] evolved a two-dimensional context sensitive grammar that con-
structed polynomial networks (rather than ANNs) for time-series prediction. Gradi-
ent descent was used to refine weights. Genotypes were variable length with a va-
riety of mutation operators. He found a gene-doubling mutation to be critically im-
portant. Gruau devised a grammar-based approach called cellular encoding in which
ANNs were developed using graph grammars [22, 23]. He evaluated this approach
on hexapod robot locomotion and pole-balancing. Kodjabachian and Meyer used a
“geometry-orientated” variant of cellular encoding to develop recurrent neural net-
works to control the behaviour of simulated insects [39]. Drchal and Šnorek [10]
replaced the tree-based cellular encoding of Gruau with alternative genetic program-
ming methods, namely grammatical evolution (GE) [63] and gene expression pro-
gramming (GEP) [16]. They also investigated the use of GE and GEP to evolve edge
encoded [42] development trees. They evaluated the developed ANNs on the two-
input XOR problem. Jung used a context-free grammar to interpret an evolved gene
sequence [31]. When decoded it generates 2D spatially modular neural networks.
The approach was evaluated on predator-prey agents using a coevolution. Floreano
and Urzelai [17] criticised developmental methods that developed fixed weights.
They used a matrix re-writing method inspired by Kitano, but each connection ei-
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ther had a fixed weight or the neuron could choose one of four synaptic adjustment
rules (i.e. plasticity). After development stopped synaptic adjustment rules were ap-
plied to all neuron connections. They applied their method to robot controllers and
found that synaptic plasticity produced ANNs with better performance than fixed
weight networks. In addition they were more robust in changed environments.

Jacobi presented a low-level approach in which cells used artificial genetic regu-
latory networks (GRNs). The GRN produced and consumed simulated proteins that
defined various cell actions (protein diffusion movement, differentiation, division,
threshold). After a cellular network had developed it was interpreted as a neural
network [30]. Eggenberger also used an evolved GRN [12]. A neural network phe-
notype was obtained by comparing simulated chemicals in pairs of neurons to de-
termine if the neurons are connected and whether the connection is excitatory or
inhibitory. Weights of connections were initially randomly assigned and Hebbian
learning used to adjust them subsequently. Astor and Adami devised a developmen-
tal ANN model known as Norgev (Neuronal Organism Evolution) which encoded
a form of GRN together with an artificial chemistry (AC), in which cells were pre-
defined to exist in a hexagonal grid. Genes encoded conditions involving concen-
trations of simulated chemicals which determine the level of activation of cellular
actions (e.g. grow axon or dendrite, increase or decrease weight, produce chemi-
cal) [2]. They evaluated the approach on a simple artificial organism. In later work,
Hampton and Adami showed that neurons could be removed and the developmen-
tal programs would grow new neurons and recover the original functionality of the
network (it computed the NAND function) despite having a non-deterministic de-
velopmental process [24]. Yerushalmi and Teicher [80] presented an evolutionary
cellular development model of spiking neurons. Inside the cells was a bio-plausible
genetic regulatory network which controls neurons and their dendrites and axons in
2D space. In two separate experiments the GRN in cells was evolved to produce: (a)
specific synaptic plasticity types (Hebbian, AntiHebbian, Non-Hebbian and Spike-
Time Dependent Plasticity) and (b) simple organisms that had to mate. In the latter,
they examined the types of synaptic plasticity that arose.

Federici used a simple recursive neural network as a developmental cellular pro-
gram [14]. In his model, cells could change type, replicate, release chemicals or
die. The type and metabolic concentrations of simulated chemicals in a cell were
used to specify the internal dynamics and synaptic properties of its corresponding
neuron. The weight of a connection between cells was determined by the difference
in external chemical concentrations produced by the two cells. The position of the
cell within the organism is used to produce the topological properties of a neuron:
its connections to inputs, outputs and other neurons. From the cellular phenotype,
Federici interpreted a network of spiking neurons to control a Khepera robot.

Roggen et al. devised a highly simplified model of development that was tar-
geted at electronic hardware [59]. Circuits were developed in two phases. Diffusers
are placed in a cellular grid and diffuse signals (analogous to chemicals) to local
neighbours. There can be multiple signal types and they do not interact with each
other. At the same time as the diffusion phase an expression phase determines the
function of the cells by matching signal intensities with a signal-function expression
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table. A genetic algorithms is used to evolve the positions of diffusing cells (which
are given a maximum signal) and the expression table. By interpreting the function-
alities as various kinds of spiking neurons with particular dendritic branches, the
authors were able develop spiking neural networks. Connection weights were fixed
constants with a sign depending on whether the pre-synaptic neuron is excitatory or
inhibitory. They evaluated the approach on character recognition and robot control.

Some researchers have studied the potential of Lindenmeyer systems for devel-
oping artificial neural networks. Boers and Kuiper adapted L-systems to develop
artificial feed-forward neural networks [5]. They found that this method produced
more modular neural networks that performed better than networks with a prede-
fined structure. They showed that their method could produce ANNs for solving
problems such as the XOR function. Hornby and Pollack evolved L-systems to con-
struct complex robot morphologies and neural controllers [27, 26].

Downing developed a higher-level, neuroscience-informed approach which avoided
having to handle axonal and dendritic growth, and maintained important aspects of
cell signaling, competition and cooperation of neural topologies [9]. He adopted
ideas from Deacon’s Displacement Theory [7] which is built on Edelman’s Darwin-
istic view of neurogenesis, known as “The Theory of Neural Group Selection” [11].
In the latter, neurons will only reach maturity if they grow axons to, and receive ax-
ons from, other neurons. Downing’s method has three phases. The first (translation)
decodes the genotype which defines one or more neuron groups. In the second phase
(displacement) the sizes and connectivity of neuron groups undergo modification.
In the final stage (instantiation) populations of neurons and their connections are
established. He applied this technique to the control of a multi-limbed starfish-like
animat.

Khan and Miller created a complex developmental neural network model that
evolved seven programs each representing various aspects of idealised biological
neurons [33]. The programs were represented and evolved using Cartesian Genetic
Programming (CGP) [50]. The programs were divided into two categories. Three of
the encoded chromosomes were responsible for ‘electrical’ processing of the ‘po-
tentials’. These were the dendrite, soma and axo-synapse chromosomes. One chro-
mosome was devoted to updating the weights of dendrites and axo-synapses. The
remaining three chromosomes were responsible for updating the neural variables
for the soma (health and weight), dendrites (health, weight and length) and axo-
synapse (health, length). The evolved developmental programs were responsible for
the removal or replication of neural components. The model was used in various ap-
plications: intelligent agent behaviour (wumpus world), checkers playing, and maze
navigation [34, 35].

Although not strictly developmental, Koutnik et al. [40] investigated evolving a
compression of the ANN weight matrix by mapping it to a real-valued vector of
Fourier coefficients in the frequency domain. This idea reduces the dimensional-
ity of the weight space by ignoring high-frequency coefficients, as in lossy image
compression. They evaluated the merits of the approach on ANNs solving pole-
balancing, ball throwing and octopus arm control. They showed that approach found
solutions in significantly fewer evaluations than evolving weights directly.
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Stanley introduced the idea of using evolutionary algorithms to build neural net-
works constructively (called NEAT). The network is initialised as a simple struc-
ture, with no hidden neurons consisting of a feed-forward network of input and
output neurons. An evolutionary algorithm controls the gradual complexification of
the network by adding a neuron along an existing connection, or by adding a new
connection between previously unconnected neurons [67]. However, using random
processes to produce more complex networks is potentially very slow. It also lacks
biological plausibility since natural evolution does not operate on aspects of the
brain directly. Later Stanley introduced an interesting and popular extension to the
NEAT approach called HyperNEAT [69] which uses an evolved generative encod-
ing called a Compositional Pattern Producing Network (CPPN) [68]. The CPPN
takes coordinates of pairs of neurons and outputs a number which is interpreted
as the weight of that connection. The advantage this brings is that ANNs can be
evolved with complex patterns where collections of neurons have similar behaviour
depending on their spatial location. It also means that one evolved function (the
CPPN) can determine the strengths of connections of many neurons. It is a form
of non-temporal development, where geometrical relationships are translated into
weights.

Developmental Symbolic Encoding (DSE) [71] combines concepts from two ear-
lier developmental encodings, Gruau’s cellular encoding and L-systems. Like Hy-
perNEAT it can specify connectivity of neurons via evolved geometric patterns. It
was shown to outperform HyperNEAT on a shape recognition problem defined over
small pixel arrays. It could also produce partly general solutions to a series of even-
parity problems of various sizes. Huizinga et al. added an additional output to the
CPP program in HyperNEAT that controlled whether or not a connection between a
pair of neurons was expressed or not [28]. They showed that the new approach pro-
duced more modular solutions and superior performance to HyperNEAT on three
specially devised modular problems.

Evolvable-substrate HyperNEAT (ES-HyperNEAT) implicitly defined the posi-
tions of the neurons [56], however it proved to be computationally expensive. Iter-
ated ES-HyperNEAT proposed a more efficient way to discover suitable positioning
of neurons [58]. This idea was taken further leading to Adaptive HyperNEAT which
demonstrated that not only could patterns of weights be evolved but also patterns
of local neural learning rules [57]. Like [28] in Adaptive HyperNEAT Risi et al. in-
creased the number of outputs from the CPPN program to encode learning rate and
other neural parameters.

3 Abstracting aspects of biological brains

Once we accept that developmental ANNs are desirable, it becomes necessary to
abstract and simplify important mechanisms from neuroscience. Which aspects of
biological neurons are most relevant depends on the nature of the abstracted neu-
ron model. For instance, if the abstracted developmental neural programs include
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genetic regulatory networks one could consider epigenetic processes inside neurons
since recent evidence from neuroscience suggests that these may be important in
neuron response to past environmental conditions [75, 29]. Here we compare and
contrast the proposed abstract model with various aspects of biological neurons in
section 3.

Brain development: All multicellular organisms begin as a single cell which
undergoes development. Some of the cells become neural stem cells which gradu-
ally differentiate into mature neurons. In the proposed model we allow the user to
choose how many non-output neurons to start with prior to development. However,
the model assumes that there is a dedicated output neuron corresponding to each
output in the suite of computational problems being solved. Further discussion on
the topic of how to handle outputs can be found in Sect. 13.

Arrangement of neurons: The overall architecture of both ANNs and many
neural developmental systems is fixed once developed, whereas biological neurons
move themselves (in early development) and their branches change over time. Thus
the morphology of the network is time dependent and can change during problem
solving. In our model, we evolve a developmental process which means that the net-
work of neurons and branches are time dependent.

Neuron structure: Biological neurons have dendrites and axons with branches.
Each neuron has a single axon with a variable number of axon branches. In addi-
tion, it has a number of dendrites and dendrite branches. There are many types of
neurons with different morphologies, some with few dendrites and others with huge
numbers of highly branched dendritic trees. In addition neurons have a membrane,
a nucleus and a cytoplasm. Since our model of the neuron has zero volume, these
aspects are also not included. In our model, the user can choose the minimum and
the maximum number of dendrites neurons can have. The evolved developmental
programs determine how many dendrites individual neurons can have and indeed,
different neurons can have different numbers of dendrites. We have not modelled
the axon in our approach. We decided this to keep the proposed model as simple as
possible.

Neuron volume: Neurons have many physical properties (volume, temperature,
pressure, elasticity...). We have not modelled any of these and like conventional
ANNs the neurons in our model are mathematical points. Dendrites are equally un-
physical and are merely lines that emanate from neurons and are positioned on the
left of the neuron position. They can pass through each other.

Neuron movement: In brains undifferentiated neurons migrate to specific loca-
tions in the early stages of development. When they reach their destinations they
either develop into mature neurons complete with dendrites and an axon, or they
undergo cell death [73]. Moreover, this ability of neurons to migrate to their ap-
propriate positions in the developing brain is critical to brain architecture and func-
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tion [46, 54]. We have allowed neuron movement in our model. Neuron movement
in real brains is closely related to the physicality of neurons and this could have
important consequences. Clearly, mature biological neurons that are entangled with
many other neurons will have restricted movement.

Synapses: The connections between biological neurons are called synapses. Sig-
nal propagation is via the release of neurotransmitters from the pre-synaptic neuron
to the post-synaptic. Like traditional ANNs, we have no notion of neurotransmitters
and signals are propagated as if by wires. However, unlike traditional ANNs, den-
drites connect with their nearest neuron (on the left). These connections can change
when dendrites grow or shrink and when neurons move. Thus, the number of con-
nections between neurons is time-dependent.

Activity Dependent Morphology: There are few proposed models in which
changes in levels of activity (in potentials or signals) between neurons leads to
changes in neural morphology. This is an extremely important aspect of real brains
[53]. This has not been included in the current model. Possibly a measure of signals
could be used as an input to the developmental programs. We return to this issue in
Sect. 13.

Neuron State: Biological neurons have dendritic trees which change over time.
New dendrites can emerge and dendrite branches can develop or be pruned away. In-
deed, we discussed in the introduction how important this aspect is for learning. We
have abstracted this process by allowing neurons to have multiple dendrites which
can replicate (an abstraction of branching) or be removed (an abstraction of prun-
ing). In the model, this process is dependent on a variable called ‘health’ which is
an abstraction of neuron and dendrite state. Khan et al. [35] first suggested the use
of this variable.

4 The neuron model

The model we propose is new and conceptually simple. Two evolved neural pro-
grams are required to construct neural networks. One represents the neuron soma
and the other the dendrite. The role of the soma program is to allow neurons to
move, change, die or replicate. For the dendrite, the program needs to be able to
grow and change dendrites, cause them to be removed and also to replicate.

The approach is simple in two ways. Firstly, because only two evolved programs
are required to build an entire neural network. Secondly, because a snapshot of the
neural network at a particular time would show merely a conventional graphs of
neurons, weighted connections and standard activation functions. To construct such
a developmental model of an artificial neural network we need neural programs
that not only apply a weighted sum of inputs to an activation function to determine
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the output from the neuron, but a program that can adjust weights, create or prune
connections, and create or delete neurons.

Since developmental programs build networks that change over time it is neces-
sary to define new problem classes that are suitable for evaluating such approaches.
We argue that trying to solve multiple computational problems (potentially even of
different types) is an appropriate class of problems.

The pair of evolved programs can be used to build a network from which multiple
conventional ANNs can be extracted each of which can solve a different classifica-
tion problem. We investigate many parameters and algorithmic variants and assess
experimentally which aspects are most associated with good performance. Although
we have concentrated in this paper on classification problems, our approach is quite
general and it could be applied to a much wider variety of problems.

The model is illustrated in in Fig. 1. The neural programs are represented using
Cartesian Genetic Programming (CGP) (see Sect. 5). The programs are actually sets
of mathematical equations that read variables associated with neurons and dendrites
to output updates of those variables. This approach was inspired by some aspects
of a developmental method for evolving graphs and circuits proposed by Miller and
Thomson [51] and is also strongly influenced by some of the ideas described in [35].
In the proposed model, weights are determined from a program that is a function of
neuron position, together with the health, weight and length of dendrites. It is neuro-
centric and temporal in nature.

As shown in Fig. 1 the inputs to the soma program are: the health, bias and
position of the neuron and the average health, length and weight of all dendrites
connected to the neuron and problem type. The problem type is a constant (in range
[-1, 1]) which indicates whether a neuron is not an output or in the case of an output
neuron what computational problem the output neuron belongs to. Let Pt denote the
computational problem. Define Pt = 0 to denote a non-output neuron, and Pt =1,2
or Np to respectively denote output neurons belonging to different computational
problems, where, Np denotes the number of computational problems. We define the
problem type input to be given by −1+ 2Pt/Np. For example, if the neuron is not
an output neuron the problem type input is -1.0. If it is an output neuron belonging
to the last problem its value is 1.0. For all other computational problems its value
is a value greater than -1.0 and less than 1.0. The thinking behind the problem type
input is that since output neurons are dedicated to a particular computational prob-
lem, they should be given information that relates to this, so that the identical neural
programs can behave differently according to the computational problem they are
associated with. Later experiments were conducted to investigate the utility of prob-
lem type (see Sect. 7).

Bias refers to an input to the neuron activation function which is added to the
weighted sum of inputs (i.e. it is unweighted). The soma program updates its own
health, bias and position based on these inputs. These are indicated by primed sym-
bols in Fig. 1). The user can decide between three different ways of using the pro-
gram outputs to update the neural variables. The update method is decided by a user
defined parameter called Incropt (see Sec. 4.5) which defines how neuron variables



10 Miller et al.

Fig. 1 The model of a developmental neuron. Each neuron has a position, health and bias and a
variable number of dendrites. Each dendrite has a position, health and weight. The behaviour of
a neuron soma is governed by a single evolved program. In addition each dendrite is governed
by another single evolved program. The soma program decides the values of new soma variables
position, health and bias based on previous values, the average over all dendrites belonging to
the neuron of dendrite health, position and weight and an external input called problem type. The
latter is a floating point value that indicates the neuron type. The dendrite program updates dendrite
health, position and weight based on previous values, the health, position and bias of the neuron the
dendrite belongs to, and the problem type. When the evolved programs are executed, neurons can
change, die replicate and grow more dendrites and their dendrites can also change or be removed.
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are adjusted by the evolved programs (using user-defined incremental constants or
otherwise).

Every dendrite belonging to each neuron is controlled by an evolved dendrite
program. As shown in Fig. 1 the inputs to this program are the health, weight and
position of the dendrite and also the health, bias and position of the parent neuron. In
addition as mentioned earlier, dendrite programs can also receive the problem type
of the parent neuron The evolved dendrite program decides how the health, weight
and position of the dendrite are to be updated.

In the model, all the neuron and dendrite parameters (weights, bias, health, posi-
tion and problem type) are defined by numbers in the range [−1,1].
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4.1 Fictitious example of early brain development

A fictitious developmental example is shown in Fig. 2. The initial state of the exam-
ple brain is represented in (a). Initially there is one non-output neuron with a single
dendrite. The curved nature of the dendrites is purely for visualisation. In reality the
dendrites are horizontal lines emanating from the centre of neurons and of various
lengths. When extracting ANNs the dendrites are assumed to connect to their near-
est neuron on the left (referred to as ‘snapping’). Output neurons are only allowed to
connect to non-output neurons or the first input (by default, if their dendrites lie on
the left of the leftmost non-output neuron). Thus the ANN that can be extracted from
the initial example brain, has three neurons. The non-output neuron is connected to
the second input and both output neurons are connected via their single dendrite to
the non-output neuron.

Fig. 2 Example showing a developing fictitious example brain. The squares on the left represent
the inputs. The solid circles indicate non-output neurons. Non-output neurons have solid dendrites.
The dotted circles represent output neurons. Output neuron’s dendrites are also dotted. In this ex-
ample, we assume that only output neurons are allowed to move. The neurons, inputs and dendrites
are all bound to the interval [-1,1]. Dendrites connect to nearest neurons or inputs on the left of
their position (snapping). (a) shows the initial state of the example brain. (b) shows the example
brain after one developmental step and (c) shows it after two developmental steps.

(a)

(b)

(c)

0

0 1

A B

A B

0 1 2 A B

Fig. 2(b) shows the example brain after a single developmental step. In this step,
the soma program and dendrite programs are executed in each neuron. The non-
output neuron (labeled 0) has replicated to produce another non-output neuron (la-
beled 1) it has also grown a new dendrite. Its dendrites connect to both inputs. The
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newly created non-output neuron is identical to its parent except that its position is
a user-defined amount, MNinc, to the right of the parent and its health is set to 1
(an assumption of the model). Both its dendrites connect to the second input. It is
assumed that the soma programs running in the two output neurons A and B have
resulted in both output neurons having moved to the right. Their dendrites have also
grown in length. Neuron A’s first dendrite is now connected to neuron one. In addi-
tion, neuron A has high health so that it has grown a new dendrite. Every time a new
dendrite grows it is given a weight and health equal to 1.0. Also its new dendrite is
given a position equal to half the parent neuron’s position. These are assumptions
of the model. Thus its new dendrite is connected to neuron zero. Neuron B’s only
dendrite is connected to neuron one.

Fig. 2(c) shows the example brain after a two developmental steps. The dendrites
of neuron zero have changed little and it is still connected in the same way as the
previous step. The dendrites of neuron one have both changed. The first one has
become longer but remains connected to the first input. The second dendrite has
become shorter but it still snaps to the second input. Neuron one has also replicated
as a result of its health being above the replication threshold. It gets dendrites iden-
tical to its parent, its position is again incremented to the right of its parent and its
health is set to 1.0. Its first dendrite connects to input one and its second dendrite to
neuron zero. Output neuron A has gained a dendrite, due to its health being above
the dendrite birth threshold. The new dendrite stretches to a position equal to half of
its parent neuron. So it connects to neuron zero. The other two dendrites remain the
same and they connect to neuron one and zero respectively. Finally, output neuron
B’s only dendrite has extended a little but still snaps to neuron one. Note, that at this
stage neuron two is not connected to by another neuron and is redundant. It will be
stripped out of the ANN that is extracted from the example brain.

4.2 Model parameters

The model necessarily has a large number of user-defined parameters these are
shown in Table 1.

The total number of neurons allowed in the network is bounded between a user-
defined lower (upper)bound NNmin (NNmax). The number of dendrites each neu-
ron can have is bounded by user-defined lower (upper) bounds denoted by DNmin
(DNmax). These parameters ensure that the number of neurons and connections per
neuron remain in well-defined bounds, so that a network can not eliminate itself
or grow too large. The initial number of neurons is defined by Ninit and the initial
number of dendrites per neuron is given by NDinit .

If the health of a neuron falls below (exceeds) a user-defined threshold, NHdeath
(NHbirth) the neuron will be deleted (replicated). Likewise, dendrites are subject
to user defined health thresholds, DHdeath (DHbirth) which determine whether the
dendrite will be deleted or a new one will be created. Actually, to determine den-
drite birth the parent neuron health is compared with DHbirth rather than dendrite
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health. This choice was made to prevent the potential very rapid growth of dendrite
numbers.

When the soma or dendrite programs are run the outputs are used to decide how
to adjust the neural and dendrite variables. The amount of the adjustments are de-
cided by the six user-defined δ parameters.

The number of developmental steps in the two developmental phases (‘pre’ learn-
ing and ‘while’ learning) are defined by the parameters, NDSpre and NDSwhi. The
number of learning epochs is defined by Nep. Note that the pre-learning phase of
development, ‘pre’, can have different incremental constants (i.e. δ s) to the learning
epoch phase, ‘while’.

In some cases, neurons will collide with other neurons (by occupying a small
interval around an existing neuron) and the neuron has to be moved by a certain
increment until no more collisions take place. This increment is given by MNinc.

The places where external inputs are provided is predetermined uniformly within
the region between -1 and Iu. The parameter Iu defines the upper bound of their posi-
tion. Also output neurons are initially uniformly distributed between the parameter
Ol and 1. However, depending on a user-defined option the output neurons as with
other neurons can move according to the neuron program. All neurons are marked
as to whether they provide an external output or not. In the initial network there are
Ninit non-output neurons and No output neurons, where No denotes the number of
outputs required by the computational problem being solved.

Finally, the neural activation function (hyperbolic tangent) and the sigmoid func-
tion (which is used in nonlinear incremental adjustment of neural variables) have a
slope constant given by α .

Table 1 Table of neural model constants and their meanings.

Symbol Meaning
NNmin(NNmax) Min. (Max.) allowed number of neurons

Ninit Initial number of non-output neurons
DNmin(DNmax) Min. (Max.) number of dendrites per neuron

NDinit Initial number of dendrites per neuron
NHdeath(NHbirth) Neuron health thresholds for death (birth)
DHdeath(DHbirth) Dendrite health thresholds for death (birth)

δsh Soma health increment (pre, while)
δsp Soma position increment (pre, while)
δsb Soma bias increment (pre, while)
δdh Dendrite health increment (pre, while)
δd p Dendrite position increment (pre, while)
δdw Dendrite weight increment (pre, while)

NDSpre Number of developmental steps before epoch
NDSwhi Number of ‘while’ developmental steps during epoch

Nep Number of learning epochs
MNinc Move neuron increment if collision

Iu Max. program input position
Ol Min. program output position
α Sigmoid/Hyperbolic tangent exponent constant
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4.3 Developing the brain and evaluating the fitness

An overview of the algorithm used for training and developing the ANNs is given
in Overview 1.

Overview 1 Overview of fitness algorithm

1: function FITNESS
2: Initialise brain
3: Load ‘pre’ development parameters
4: Update brain NDSpre times by running soma and dendrite programs
5: Load ‘while’ developmental parameters
6: repeat
7: Update brain NDSwhi times by running soma and dendrite programs
8: Extract ANN for each benchmark problem
9: Apply training inputs and calculate accuracy for each problem

10: Fitness is the normalised average accuracy over problems
11: If fitness reduces terminate learning loop and return previous fitness
12: until Nep epochs complete
13: return fitness
14: end function

The brain is always initialised with at least as many neurons as the maximum
number of outputs over all computational problems. Note, all problem outputs are
represented by a unique neuron dedicated to the particular output. However, the
maximum and initial number of non-output neurons can be chosen by the user. Non-
output neurons can grow change or give birth to new dendrites. Output neurons can
change but not die or replicate as the number of output neurons is fixed by the choice
of computational problems. The detailed algorithm for training and developing the
ANN is given in Algorithm 1.

Development of the brain can happen in two phases, ‘pre’ and ‘while’. The ‘pre’
phase runs for NDSpre developmental steps and is outside the learning loop. This
is an early phase of development. It has its own set of developmental parameters.
The ‘while’ phase happens inside the learning loop which has Nep epochs. It too
has its own set of developmental parameters. The idea of two phases is inspired
by the phases of biological development. In early brain development, neurons are
stem cells that move to particular locations and have no dendrites and axons. This
can effectively be mimicked since in the ‘pre’ phase the parameters controlling den-
drites can be disabled by setting DHdeath =−1.0 and DHbirth = 1.0. This means that
dendrites can not be removed or be born. In addition, setting δdh = 0.0, δd p = 0.0
and δdw = 0.0 would mean that any existing dendrites could not change. In a similar
way, ‘while’ parameters could be chosen to disallow somas to move, die, replicate or
change during the learning loop and also to allow dendrites to grow/shrink, change,
be removed, or replicate. Thus it can be seen that the collection of parameters gives
the user a lot of control of the developmental process.
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The learning loop evaluates the brain by extracting conventional ANNs for each
problem and calculating a fitness (based on accuracy of classification) it checks to
see if the new fitness value is greater than or equal to the previous value at the last
epoch. If the fitness has reduced the learning loop terminates and the previous value
of fitness is returned. The purpose of the learning loop is to enable the evolution of a
development process that progressively improves the brain’s performance. The aim
is to find programs for the soma and dendrite which allow this improvement to con-
tinue with epoch beyond the limit chosen (Nep). Later in this chapter, an experiment
is conducted to test whether this general learning behaviour has been achieved (see
Sect. 12).

4.4 Updating the brain

Updating the brain is the process of running the soma and dendrite programs once
in all neurons and dendrites (i.e. it is a single developmental step). Doing this will
cause the brain to change and after all changes have been carried out a new updated
brain will be produced. This replaces the previous brain. Overview algorithm 2 gives
a high-level overview of the update brain process.

Overview 2 Update brain overview

1: function UPDATEBRAIN
2: Run soma program in non-output neurons to update soma
3: Ensure neuron does not collide with neuron in updated brain
4: Run dendrite program in all non-output neurons
5: If neuron survives add it to updated brain
6: If neuron replicates ensure new neuron does not collide
7: Add new neuron to updated brain
8: Run soma program in output neurons to update soma
9: Ensure neuron does not collide

10: Run dendrite program in all output neurons
11: If neuron survives add it to updated brain
12: Replace old brain with updated brain
13: end function

Sect. 15.1 presents a more detailed version of how the brain is updated at each
developmental step (see Algorithm 2) and gives details of the neuron collision avoid-
ance algorithm.
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4.5 Running and updating the soma

The UPDATEBRAIN program calls the RUNSOMA program to determine how the
soma changes in each developmental step. As we saw in Fig. 1(a) the seven soma
program inputs are: neuron health, position and bias, the averaged position, weight
and health of the neuron’s dendrites and the problem type. Once the evolved CGP
soma program is run the soma outputs are returned to the brain update program.
These steps are shown in Overview 2.

Overview 2 Running the soma: algorithm overview

1: function RUNSOMA
2: Calculate average dendrite health, position and weight
3: Gather soma program inputs
4: Run soma program
5: Return updated soma heath, bias and position
6: end function

The detailed version of the RUNSOMA function can be found in Sect. 15.3. The
RUNSOMA function uses the soma program outputs to adjust the health, position
and bias of the soma according to three user-chosen options defined by a variable
Incropt .This is carried out by the UPDATENEURON overview Alg. 3.

Overview 3 Update neuron algorithm overview

1: function UPDATENEURON
2: Assign original neuron variables to parent variables
3: Assign outputs of soma program to health, position and bias
4: Depending on Incropt get increments
5: If soma program outputs > 0 (≤0) then incr. (decr.) parent variables
6: Assign parent variables to neuron
7: Bound health, position and bias
8: end function

4.6 Updating the dendrites and building the new neuron

This section is concerned with running the evolved dendrite programs. In every
dendrite, the inputs to the dendrite program have to be gathered. The dendrite pro-
gram is executed and the outputs are used to update the dendrite. This is carried out
by a function called RUNDENDRITE. Note, in RUNALLDENDRITES we build the
completely updated neuron from the updated soma and dendrite variables. The sim-
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plified algorithm for doing this is shown in overview algorith 4. The more detailed
version is available in Sect. 15.5.

Overview 4 An overview of the RUNALLDENDRITES algorithm which runs all
dendrite programs and uses all updated variables to build a new neuron.

1: function RUNALLDENDRITES
2: Write updated soma variables to new neuron
3: if Old soma health > DHbirth then
4: Generate a dendrite for new neuron
5: end if
6: for all Dendrites do
7: Gather dendrite program inputs
8: Run dendrite program to get updated dendrite variables
9: Run dendrite to get updated dendrite

10: if Updated dendrite is alive then
11: Add updated dendrite to new neuron
12: if Maximum number of dendrites reached then
13: Stop processing any more dendrites
14: end if
15: end if
16: end for
17: if All dendrites have died then
18: Give new neuron the first dendrite of the old neuron
19: end if
20: end function

Overview Alg. 4 (in line 9) uses the updated dendrite variables obtained from
running the evolved dendrite program to adjust the dendrite variables (according to
the incrementation option chosen). This function is shown in the overview Alg. 5.
The more detailed version is available in Sect. 15.5.

The RUNDENDRITE function begins by assigning the dendrite’s health, position
and weight to the parent dendrite variables. It writes the dendrite program outputs
to the internal variables health, weight and position. It respectively carries out the
increments or decrements of the parent dendrite variables according whether the cor-
responding dendrite program outputs are greater than or less than or equal to zero.
After this it bounds those variables. Finally, it updates the dendrites health, weight
and position provided the adjusted health is above the dendrite death threshold.

We saw in the fitness function that we extract conventional ANNs from the
evolved brain. The way this is accomplished is as follows.

Since we share inputs across problems we set the number of inputs to be the
maximum number of inputs that occur in the computational problem suite. If any
problem has less inputs the extra inputs are set to zero.

The next phase is to go through all dendrites of the neurons to determine which
inputs or neurons they connect to. To generate a valid neural network we assume that
dendrites are automatically connected to the nearest neuron or input on the left. We
refer to this as snapping. The dendrites of non-output neurons are allowed to connect
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Overview 5 Change dendrites according to the evolved dendrite program.

1: function RUNDENDRITE
2: Assign original dendrite variables to parent variables
3: Assign outputs of dendrite program to health, position and weight
4: Depending on Incropt get increments
5: If dendrite program outputs > 0 (≤0) then incr(decr.) parent variables
6: Assign parent variables to neuron
7: Bound health, position and weight
8: if (health > DHdeath) then
9: Update dendrite variables

10: Dendrite is alive
11: else
12: Dendrite is dead
13: end if
14: Return updated dendrite variables and whether dendrite is alive
15: end function

to either inputs or other non-output neurons on their left. However, output neurons
are only allowed to connect to non-output neurons on their left. It is not desirable for
the dendrites of output neurons to be connected directly to inputs, however, when
output neurons are allowed to move, they may only have inputs on their left. In this
case the output neuron’s dendrite will be connected to the first external input to the
ANN network (by default).

The detailed version of the ANN extraction process is given in Sect. 15.6.

5 Cartesian GP

The two neural programs are represented and evolved using a form of Genetic Pro-
gramming (GP) known as Cartesian Genetic Programming (CGP). CGP [48, 50] is
a form of GP in which computational structures are represented as directed, often
acyclic graphs indexed by their Cartesian coordinates. Each node may take its in-
puts from any previous node or program input (although recurrent graphs can also
be implemented see [77]). The program outputs are taken from the output of any in-
ternal node or program input. In practice, many of the nodes described by the CGP
chromosome are not involved in the chain of connections from program input to
program output. Thus, they do not contribute to the final operation of the encoded
program, these inactive, or “junk”, nodes have been shown to greatly aid the evolu-
tionary search [49, 79, 81]. The representational feature of inactive genes in CGP is
also closely related to the fact that it does not suffer from bloat [47].

In general, the nodes described by CGP chromosomes are arranged in a rectan-
gular r×c grid of nodes, where r and c respectively denote the user-defined number
of rows and columns. In CGP, nodes in the same column are not allowed to be
connected together. CGP also has a connectivity parameter l called “levels-back”
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which determines whether a node in a particular column can connect to a node in
a previous column. For instance if l = 1 all nodes in a column can only connect
to nodes in the previous column. Note that levels-back only restricts the connectiv-
ity of nodes; it does not restrict whether nodes can be connected to program inputs
(terminals). However, it is quite common to adopt a linear CGP configuration in
which r = 1 and l = c. This was done in our investigations here. CGP chromosomes
can describe multiple input multiple output (MIMO) programs with a range of node
functions and arities. For a detailed description of CGP, including its current de-
velopments and applications, see [48]. Both the soma and dendrite program have 7
inputs and 3 outputs. (see Fig. 1). The function set chosen for this study are defined
over the real-valued interval [-1.0, 1.0]. Each primitive function takes up to three
inputs, denoted z0, z1 and z2. The functions are defined in Table 2.

Table 2 Node function gene values, mnemonic and function definition

Value mnemonic Definition

0 abs |z0|
1 sqrt

√
|z0|

2 sqr z0
2

3 cube z0
3

4 exp (2exp(z0 +1)− e2−1)/(e2−1)
5 sin sin(z0)
6 cos cos(z0)
7 tanh tanh(z0)
7 inv −z0
9 step if z0 < 0.0 then 0 else 1.0
10 hyp

√
(z02 + z12)/2

11 add (z0 + z1)/2
12 sub (z0− z1)/2
13 mult z0z1
14 max if z0 >= z1 then z0 else z1
15 min if z0 <= z1 then z0 else z1
16 and if (z0 > 0.0 and z1 > 0.0) then 1.0 else −1.0
17 or if (z0 > 0.0 or z1 > 0.0) then 1.0 else −1.0
18 rmux if z2 > 0.0 then z0 else z1
19 imult −z0z1
20 xor if (z0 > 0.0 and z1 > 0.0) then −1.0

else if (z0 < 0.0 and z1 < 0.0) then −1.0
else 1.0

21 istep if z0 < 1.0 then 0 else −1.0
22 tand if (z0 > 0.0 and z1 > 0.0) then 1.0

else if (z0 < 0.0 and z1 < 0.0) then −1.0
else 0.0

23 tor if (z0 > 0.0 or z1 > 0.0) then 1.0
else if (z0 < 0.0 or z1 < 0.0) then −1.0
else 0.0
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6 Benchmark problems

In this study, we evolve neural programs that build ANNs for solving three standard
classification problems. The problems are cancer, diabetes and glass. The definitions
of these problems are available in the well-known UCI repository of machine learn-
ing problems1. These three problems were chosen because they are well-studied and
also have similar numbers of inputs and a small number of classes. Cancer has 9 real
attributes and two Boolean classes. Diabetes has 8 real attributes and two Boolean
classes. Glass has 9 real attributes and six Boolean classes. The specific datsets cho-
sen were cancer1.dt, diabetes1.dt and glass1.dt which are described in the PROBEN
suite of problems 2.

7 Experiments

The long-term aim of this research is to explore effective ways to develop ANNs.
The work presented here is just a beginning and there are many aspects that need to
be investigated in the future (see Sect. 13). The specific research questions we have
focused on in this chapter are:

• What types of neuron activation function is most effective?
• How many neurons and dendrites should we allow?
• Should neuron and dendrite programs be allowed to read problem type?

These questions complement the questions asked and investigated using the same
neural model in recent previous work [52]. There, the utility of neuron movement in
both non-output and output neurons was investigated. It was found that statistically
significantly better results were obtained when only output-neurons were allowed to
move. In addition, the work examined three ways of incrementing or decrementing
neural variables. In the first the outputs of evolved programs determines directly the
new values of neural variables (position, health, bias, weight), that is to say there
is no incremental adjustment of neural variables. In the second, the variables are
incremented or decremented in user-defined amounts (the deltas in Table 1). In the
third, the adjustments to the neural variables are nonlinear (they are adjusted using
a sigmoid function). Linear adjustment of variables (increment or decrement) was
found to be statistically superior to the alternatives.

To answer the questions above, a series of experiments were carried out to inves-
tigate the impact of various aspects of the neural model on classification accuracy.
Twenty evolutionary runs of 20,000 generations of a 1+5-ES were used. Genotype
lengths for soma and dendrite programs were chosen to be 800 nodes. Goldman
mutation [20, 21] was used which carries out random point mutation until an active
gene is changed. For these experiments a subset of allowed node functions were

1 https://archive.ics.uci.edu/ml/datasets.html
2 https://publikationen.bibliothek.kit.edu
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chosen as they appeared to give better performance. These were: step, add, sub,
mult, xor, istep. The remaining experimental parameters are shown in Table 3:

Some of the parameter values are very precise (defined to the fourth decimal
place). The process of discovering these values consisted of an informal but greedy
search for good parameters that produced high fitness in the first evolutionary run.
It was fortuitous as it turned out that this was a reasonable way of obtaining good
parameters on average.

Table 3 Table of neural model parameters.

Parameter Value
NNmin(NNmax) 0 (20-100)

Ninit 5
DNmin(DNmax) 1 (5-50)

NDinit 5
NDSpre 4
NDSwhi 8

Nep 1
MNinc 0.03

Iu -0.6
Ol 0.8
α 1.5

‘Pre’ development parameters
NHdeath(NHbirth) -0.405 (0.406)
DHdeath(DHbirth) -0.39 (-0.197)

δsh 0.1
δsp 0.1487
δsb 0.07
δdh 0.1
δd p 0.1
δdw 0.101

‘While’ development parameters
NHdeath(NHbirth) 0.435 (0.7656)
DHdeath(DHbirth) 0.348 (0.41)

δsh 0.009968
δsp 0.01969
δsb 0.01048
δdh 0.0107
δd p 0.0097
δdw 0.0097

8 Results

The mean, median, maximum and minimum accuracies achieved over 20 evolu-
tionary runs for three different neuron activation functions neurons are shown in
Table 4. We can see that the best values of mean, median, maximum and minimum
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are all obtained when the hyperbolic tangent function is used. The rectilinear neu-
ral functions is zero for negative arguments and equal to its argument for positive
arguments. Both the sigmoid and hyperbolic tangent activation functions have α as
exponent multipliers.

Table 4 Training and testing accuracy for three neural activation functions.

Acc. Hyperbolic Tangent Rectilinear Sigmoid
Train (Test) Train (Test) Train (Test)

Mean 0.7401 (0.7075) 0.7150 (0.6698) 0.6980 (0.6760)
Median 0.7392 (0.7266) 0.7101 (0.6717) 0.7036 (0.6851)

Maximum 0.7988 (0.7669) 0.7654 (0.7398) 0.7315 (0.7237)
Minimum 0.6840 (0.6200) 0.6815 (0.6217) 0.6251 (0.5894)

Table 5 Training and testing accuracy on individual problems when using tanh activation.

Acc. Cancer Diabetes Glass
Train (Test) Train (Test) Train (Test)

Mean 0.9086 (0.9215) 0.7233 (0.6594) 0.5883 (0.5415)
Median 0.9129 (0.9281) 0.7266 (0.6615) 0.5841 (0.5849)

Maximum 0.9657 (0.9770) 0.7630 (0.6823) 0.6729 (0.6981)
Minimum 0.8571 (0.8621) 0.6693 (0.6198) 0.4673 (0.3396)

Table 6 shows how the results for the model (using tanh activation) compare
with the performance of 179 classifiers (covering 17 families) [15]3. The figures
are given just to show that the results for the developmental ANNs are respectable.
The results are particularly encouraging considering that the evolved developmental
programs build classifiers for three different classification problems simultaneously,
so the comparison is unfairly biased against the proposed model. The cancer results
produced by the model are very close to those compiled from the suite of ML meth-
ods, however it can be seen that the models’s results for diabetes and glass are not
as close. It is unclear why this is the case.

Table 6 Comparison of test accuracies on three classification problems. Model using tanh activa-
tion compared with huge suite of classification methods as described in [15]

Acc. Cancer Diabetes Glass
ML (model) ML (model) ML (model)

Mean 0.935(0.9215) 0.743(0.6594) 0.610(0.5415)
Maximum 0.974(0.9770) 0.790(0.6822) 0.785(0.6981)
Minimum 0.655(0.8621) 0.582(0.6198) 0.319(0.3340)

3 The paper gives a link to the detailed performance of the 179 classifiers which contain the figures
given in the table
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The second series of experiments examined how the classifier performance var-
ied with the upper bound on the number of allowed neurons and the number of
dendrites.

Table 7 Training and testing accuracy for different upper bounds on the number of neurons
(NNmax). The number of dendrites was 50 in all cases.

Acc. NNmax=20 NNmax=40 NNmax=60 NNmax=80 NNmax=100
Train (Test) Train (Test) Train (Test) Train (Test) Train (Test)

Mean 0.7314 (0.7026) 0.7401 (0.7075) 0.7161 (0.6927) 0.7179 (0.6969) 0.7222 (0.7072)
Median 0.7327 (0.7176) 0.7392 (0.7266) 0.7155 (0.6919) 0.7252 (0.7045) 0.7219 (0.7081)

Maximum 0.7605 (0.7468) 0.7988 (0.7669) 0.7355 (0.7461) 0.7757 (0.7483) 0.7493 (0.7480)
Minimum 0.7002 (0.6563) 0.6840 (0.6200) 0.6654 (0.6408) 0.6284 (0.5998) 0.6691 (0.6492)

The third series of experiments was concerned with varying the upper bound on
the number of dendrites allowed for each neuron (DNmax). It was found that the
results when the dendrite upper bound is 20 produced exactly the same results as
an upper bound of 50. All dendrites must snap to a neuron or input and therefore
contribute to the output of the network. The fact that increasing the upper bound
made no difference implies that the number of dendrites the neurons used never
exceeded 20 anyway.

Table 8 Training and testing accuracy for different upper bounds on the number of dendrites
(DNmax). The upper bound on the number of neurons was 40 in all cases.

Acc. DNmax=5 DNmax=10 DNmax=15 DNmax=50
Train (Test) Train (Test) Train (Test) Train (Test)

Mean 0.7408 (0.7125) 0.7347 (0.7053) 0.7338 (0.6966) 0.7401 (0.7075)
Median 0.7463 (0.7208) 0.7335 (0.7152) 0.7325 (0.6857) 0.7392 (0.7266)

Maximum 0.7926 (0.7701) 0.7924 (0.7640) 0.7988 (0.7669) 0.7988 (0.7669)
Minimum 0.6789 (0.6047) 0.6850 (0.6395) 0.6797 (0.6281) 0.6840 (0.6200)

Statistical significance testing with the test data revealed that the better scenarios
(NNmax=20, 40 or DNmax=5, 50) are only weakly statistically different from other
scenarios. So it appears that performance is not particularly sensitive to the maxi-
mum number of neurons and dendrites (within reasonable bounds).

The fourth series of experiments concerned the issue of problem type. As dis-
cussed in Section 4, problem type is a real-valued quantity in the interval [-1, 1]. It
is a quantity that indicates what computational problem a neuron belongs to. Non-
output neurons are not committed to a problem type so the problem type is assumed
to be -1.0. However, output neurons are all dedicated to a particular problem. The
cancer problem has two output neurons, the diabetes has two and the glass problem
has six. The extraction process that gets the ANNs associated with each problem be-
gins from the output neurons corresponding to each problem. So the question arises
as to whether it is useful or not to allow the neural programs to read the problem
type? The results are shown in Table 9.
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Table 9 Training and testing accuracy with and without problem type inputs to evolved programs.
The upper bounds on the number of neurons and dendrites was 40 and 50 respectively.

Acc. Without problem type With problem type
Train (Test) Train (Test)

Mean 0.7314 (0.7026) 0.7401 (0.7075)
Median 0.7327 (0.7176) 0.7392 (0.7266)

Maximum 0.7605 (0.7468) 0.7988 (0.7669)
Minimum 0.7002 (0.6563) 0.6840 (0.6200)

Using the problem type as an input to neural programs appears to be useful as
it improves the mean, median and maximum compared with not using the problem
type. However, tests of statistical significance discussed in the next section show
that the difference is not significant.

9 Comparisons and statistical significance

The Wilcoxon Ranked-Sum test (WRS) was used to assess the statistical difference
between pairs of experiments. In this test, the null hypothesis is that the results (best
accuracy) over the multiple runs for the two different experimental conditions are
drawn from the same distribution and have the same median. If there is a statistically
significant difference between the two then null hypothesis is false with a degree of
certainty which depends on the smallness of a calculated statistic called a p-value.
However, in the WRS before interpreting the p-value one needs to calculate another
statistic called Wilcoxon’s W value. This value needs to be compared with calcu-
lated values which depend on the number of samples in each experiment. Results are
statistically significant when the calculated W-value is less than or equal to certain
critical values for W[82]. The critical values depend on the sample sizes and the p-
value. We used a publicly available Excel spreadsheet for doing these calculations4.
The critical W-values can be calculated in two ways: one-tailed or two-tailed. The
two-tailed test is appropriate here as we are interested in whether one experiment is
better than another (and vice versa).

For example, in Table 10 the calculated W-value is 34 and the critical W-value
for for the paired sample sizes of 20 (number of runs) with p-value less than 0.01
is 38 (assuming a two-tailed test)5. The p-value gives a measure of the certainty
with which the null hypothesis can be accepted. Thus the lower the value the more
likely that the two samples come from different distributions (i.e. are statistically
different). Thus in this case, the probability that the null hypothesis can be rejected
is 0.99.

4 http://www.biostathandbook.com/wilcoxonsignedrank.html
5 http://www.real-statistics.com/statistics-tables/
wilcoxon-signed-ranks-table/
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Table 10 Statistical comparison of testing results from experiments (Wilcoxon Rank-Sum two-
tailed).

Question Expt. A Expt. B W W P-value significant?
critical

Activation tanh rectilinear 34 38 0.005 < p < 0.01 yes
Activation rectilinear sigmoid 90 69 0.2 < p no

Problem Type Input Yes No 92 69 0.2 < p no

The conclusions we can draw from Table 10 are that a hyperbolic tangent activa-
tion function is statistically significantly superior to either a rectilinear or sigmoid
function. In addition, the use of problem type as an evolved program input is not
statistically distinguishable from not using a problem type input. This is surprising
as output neurons are dedicated to problem types and one might expect by a problem
type input would allow neural programs to behave differently according to problem
type.

10 Evolved developmental programs

The average number of active nodes in the soma and dendrite programs for the hy-
perbolic tangent activation function is 54.7 in both cases. Thus the programs are
relatively simple. It is also possible that the graphs can be logically reduced to even
simpler forms. The graphs of the active nodes in the CGP graphs for the best evolu-
tionary run (0) are shown in Figs. 3 and 4. The red input connections between nodes
indicate the first input in the subtraction operation. This is the only node operation
where node input order is important.

Fig. 3 Best evolved soma program. The input nodes are: soma heath (sh), soma bias (sb), soma
position (sp), average dendrite health (adh), average dendrite weight (adw), average dendrite po-
sition (adp) and problem type (pt). The output nodes are: soma health (SH), soma bias (SB) and
soma position (SP).
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Fig. 4 Best evolved dendrite program. The input nodes are: soma heath (sh), soma bias (sb), soma
position (sp), dendrite health (dh), dendrite weight (dw), dendrite position (dp) and problem type
(pt). The output nodes are: dendrite health (DH), dendrite weight (DW) and dendrite position (DP).

11 Developed ANNs for each classification problem

The ANNs for the best evolutionary run (0) were extracted (using Alg. 9) and can
be seen in Figs. 5 and 6. The plots ignore connections with weight equal to zero.

In the figures, a colour scheme is adopted to show which neurons belong to which
problems. Red indicates a neuron belonging to the ANN predicting cancer, green
indicates a neuron belonging to the ANN predicting diabetes and blue indicates a
neuron belonging to an ANN predicting the type of glass. If neurons are shared the
colours are a mixture of the primary colours. So white, or an absence of colour, in-
dicates that a neuron is shared over all three problems. Magenta indicates a neurons
shared between cancer and glass. Yellow would indicate neurons shared between
cancer and diabetes (in the case shown there are no neurons shared between cancer
and diabetes).

The ANNs use 21 neurons in total of which only four non-output neurons were
unshared (output neurons cannot be shared). It is interesting to note that the number
of neurons used for the diabetes data set was 6 (two of which were output neurons)
even though the diabetes classification problem is more difficult than cancer. Also
the brain was allowed to use up to 40 neurons but many of these were redundant
and not used in the extracted ANNs. These redundant neurons were not referenced
in the chain of connections from output neurons to inputs. This redundancy is very
much like the redundancy that occurs in CGP when extracting active computational
nodes.
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Fig. 5 Developed ANN for cancer dataset. This dataset has 9 attributes and two outputs. The num-
bers inside the circles are the neuron bias. The numbers in larger font near but outside the neurons
are neuron IDs. The connection weights between neurons are shown near to the connections. If
any attributes are not present it means they are unused. The training accuracy is 0.9657 and the test
accuracy is 0.9770.

It is interesting that for the cancer prediction ANN, class 0 is decided by a very
small network in which only two attributes are involved (the 5th and 6th attributes).
This network is independent of the network determining class 1. It is also interesting
that the neurons with IDs 17 and 18 are actually identical. Note that attributes 0, 1
and 4 have been ignored. There are three identical neurons connected to attribute 2
(with IDs 9, 10 and 11), these can be reduced to a single neuron!
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Fig. 6 Developed ANN for diabetes (a) and glass (b) datasets.The diabetes dataset has 8 attributes
and two outputs. The glass dataset has has 9 attributes and six outputs. The numbers inside the
circles are the neuron bias. The numbers in larger font near but outside the neurons are neuron
IDs. The connection weights between neurons are shown near to the connections. Attributes not
present are unused. The diabetes training accuracy is 0.7578 and the test accuracy is 0.6823. The
glass training accuracy is 0.6729 and the test accuracy is 0.6415

It is surprising that the diabetes ANN is so small. Indeed the neurons with IDs 18
and 19 can be replaced with a single neuron as the two neurons are identical. The
ANN only reads three attributes of the dataset! In the case of the glass ANN, once
again we see that the ANN consists of distinct networks (3), one predicting classes
2 and 5, one predicting classes 0, 1 and one predicting classes 3 4.

When we analyzed ANNs produced in other cases we sometimes observed ANNs
in which neurons occur that only have inputs with weight zero (i.e. effectively no
inputs). Such neurons can still be involved in prediction as provided the bias is non-
zero the neuron will output a constant value.

Another interesting feature is that pairs of neurons often have multiple connec-
tions. This is equivalent to a single connection where the weighted value is the sum
of the individual connections weights. This phenomenon was also observed in CGP
encoded and evolved ANNs [76].
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12 Evolving neural learning programs

The fitness function (see overview algorithm 1) included the possibility of learning
epochs. In this section we present and discuss results when a number of learning
epochs have been chosen. The task for evolution is then to construct two neural
programs that develop ANNs that improve with each learning epoch. The aim is
to find a general learning algorithm in which the ANNs change and improve with
each learning epoch beyond the limited number of epochs used in training. The
‘while’ experimental parameters required to investigate were changed from those
used previously when there were no learning epochs. The new parameters are shown
in Table 11.

Table 11 Table of neural model parameters.

Parameter Value
NNmin(NNmax) 0 (40)

Ninit 5
DNmin(DNmax) 1 (50)

NDinit 5
NDSpre 4
NDSwhi 1

Nep 10
MNinc 0.03

Iu -0.6
Ol 0.8
α 1.5

‘Pre’ development parameters
NHdeath(NHbirth) -0.405 (0.406)
DHdeath(DHbirth) -0.39 (-0.197)

δsh 0.1
δsp 0.1487
δsb 0.07
δdh 0.1
δd p 0.1
δdw 0.101

‘While’ development parameters
NHdeath(NHbirth) -0.8 (0.8)
DHdeath(DHbirth) -0.7 (0.7)

δsh 0.0011
δsp 0.0011
δsb 0.0011
δdh 0.0011
δd p 0.0011
δdw 0.0011

Twenty evolutionary runs were carried out using these parameters and the results
are shown in Table 12. Once again, we see that parameter values are very precise.
They were obtained using the same greedy search discussed earlier.
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Table 12 Test accuracy for ten learning epochs versus no learning epochs.

Acc. Learning epochs No learning epochs
Mean 0.6974 0.7075

Median 0.6985 0.7266
Maximum 0.7355 0.7669
Minimum 0.6685 0.6200

Table 13 Test accuracies over problems using ten learning epochs .

Acc. Cancer Diabetes Glass
Mean 0.8799 0.6250 0.3774

Median 0.9425 0.6354 0.3962
Maximum 0.9885 0.7031 0.5660
Minimum 0.6092 0.4740 0.0000

In Table 12 shows the results with multiple learning epochs versus those with no
learning epochs. Table 13 shows the results on each problem using multiple learn-
ing epochs. It is clear that using no learning epochs gives better results. However,
the results with multiple learning epochs are still reasonable despite the fact that the
task is much more difficult, since one is effectively trying to evolve a learning al-
gorithm. It is possible that further experimentation with developmental parameters
could produce better results with multiple epochs.

Fig. 7 Variation of test classification accuracy with learning epoch for run 1 of 20

In Figure 7 we examine how the accuracy of the classifications varies with learn-
ing epochs (run 1 of 20). We set the maximum number of epochs to 100 now to see
if learning continues beyond the upper limit used during evolution (10). We can see
that classification accuracy increases with each epoch up to 10 epochs and starts to
gradually decline after that. However, at epoch 29 the accuracy suddenly drops to
0.544 and at epoch 39 the accuracy increases again to 0.647. After this the accu-
racy shows a slow decline. We obtained several evolved solutions in which training
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accuracy increased at each epoch until the imposed maximum number of epochs,
however, as yet none of these were able to improve beyond the limit.

13 Open questions

There are many issues and questions that remain to be investigated.
Firstly, it is unclear why better results can not at present be obtained when

evolving developmental programs with multiple epochs. Neither is it clear why
programs can be evolved that continuously improve the developed ANNs over a
number of epochs (i.e. 10) yet do not improve subsequently. It is worth contrast-
ing the model discussed in this chapter with previous work on Self-Modifying CGP
(SMCGP) [25]. In SMCGP phenotypes can be iterated to produce a sequence of
programs or phenotypes. In some cases genotypes were found that produced gen-
eral solutions and always improved at each iteration. The fitness was accumulated
over all the correct test cases summed over all the iterations. In the problems studied
(i.e. even-n parity, producing π) there was also a notion of perfection. For instance
in the parity case perfection meant that at each iteration it produced the next par-
ity case (with more inputs) perfectly. If at the next iteration, the appropriate parity
function was not produced, then the iteration stopped. In the work discussed here,
the fitness is not cumulative. At each epoch, the fitness is the average accuracy of
the classifiers over the three classification problems. If the fitness reduces at the next
epoch, then the epoch loop is terminated. However, in principle, we could sum the
accuracies at each epoch and if an accuracy at a particular epoch is reduced, termi-
nate the epoch loop. Summing the accuracies would give reward to developmental
programs that produced the best history of developmental changes.

At present, the developmental programs do not receive a reward signal during
multiple epochs. This means that the task for evolution is to continuously improve
developed ANNs without being supplied with a reward signal. However, one would
expect that as the fitness increases at each epoch the number of changes that need to
be made to the developed ANNs should decrease. This suggests that supplying the
fitness at the previous epoch to the developmental programs might be useful. In fact
this option has already been implemented but as yet evidence is inconclusive that
this produces improved results.

While learning over multiple epochs, we have assumed that the developmental
parameters should be fixed (i.e. they are chosen before the development loop - see
line 5 of Overview algorithm 1). However, it is not clear that this should be so.
One could argue that during early learning topological changes in the brain network
are more important and weight changes more important in later phases of learning.
This suggests that at each step of the learning loop one could load developmental
parameters, this would allow control of each epoch of learning. However, this has
the drawback of increasing the number of possible parameter settings.

The neural variables that are given as inputs to the CGP developmental programs
are an assumption of the model. For the soma these are: health, bias, position, prob-
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lem type and average dendrite health, position and weight. For the dendrite they are:
dendrite health, weight, position, problem type and soma health, bias and position.
Further experimental work needs to be undertaken to determine whether they all are
useful. The program written already has the inclusion of any of these variables as an
option.

There are also many assumptions made in quite small aspects of the whole model.
When new neurons or dendrites are born what should the initial values of the neu-
ral variables be? What are the best upper bounds on the number of neurons and
dendrites? Currently, dendrite replication is decided by comparing the parent neu-
ron health with DHbirth rather than comparing dendrite health with this threshold.
If dendrite health was compared with a threshold it could rapidly lead to very large
numbers of dendrites. Many choices have been made that need to be investigated
in more detail. In real biological brains, early in the developmental process neu-
rons move (and have no or few dendrites) and later neurons do not move and have
many or at least a number of dendrites. This is understandable as moving when you
have dendrites is difficult (if not impossible) as they provided resistance and would
get obstructed by the dendrites of other neurons. However, in the proposed model
movement can happen irrespective of such matters. It would be possible to restrict
movement of whole neurons by making the movement increments depend on the
number of dendrites a neuron has.

There are also very many parameters in the model and experiment has shown
that results can be very sensitive to some of these. Thus further experimentation is
required to identify good choices for these parameters.

A fundamental issue is how to handle inputs and outputs. In the classification
problems the number of inputs is given by the problem with the most attributes,
problems with less are given the value zero for those inputs. This could be awkward
if the problems have hugely varying numbers of inputs. Is there another way of han-
dling this? Perhaps one could borrow more ideas from SMCGP and make all input
connections access inputs using pointer to a circular register of inputs. Every time
a neuron connected to an input, a global pointer to the register of inputs would be
incremented. Another possible idea is to assign all inputs a unique position (across
all problems) and introduce the appropriate inputs at the ANN extraction stage, this
would remove the need to assign zero to non-existent inputs (as mentioned above).
This would mean no inputs are shared. Equally fundamental is the issue of handling
outputs. Currently, we have dedicated output neurons for each output, however, this
means that development can not start with a single neuron. Perhaps, neurons could
decide to be an output neuron for a particular problem and some scheme would
need to be devised to allocate the appropriate number of outputs for each computa-
tional problem (rather like was done in SMCGP). Alternatively, extra genes could
be added to the genome like output genes in standard CGP. These output connection
genes would be real-valued between -1 and 1 and snap to nearest neurons. Essen-
tially, this would mean that the model would have three chromosomes, one each for
the soma, dendrites and outputs. This would have the advantage that only non-output
neurons would be necessary.
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So far, we have examined the utility of the developmental model on three clas-
sification problems. However, the aim of the work is to produce general problem
solving on many different kinds of computational problems. Clearly, a favourable
direction to go is to expand the list of problems and problem types. How much
neuron sharing would take place across problems of different types (e.g. classifi-
cation and real-time control)? Would different kinds of problems cause whole new
sub-networks to grow? These questions relate to a more fundamental issue which is
the assessment of developmental ANNs. Should we have a training set of problems
(rather than data) and evaluate on an unseen (but related) set of problems?

Currently the neurons exist in a one-dimensional space however it would be rel-
atively straightforward to extend it to two or even three spatial dimensions.

In brains the morphology of neurons is activity dependent [53]. A simple way
to introduce this would be to examine whether a neuron is actually involved in the
propagation of signal from inputs to outputs (i.e. whether it is redundant or not).
This activity could be input to developmental programs. Alternatively, a signal re-
lated input could be provided to developmental programs. This would mean that
signals from other neurons in the model could influence decisions made by neu-
ral and dendrite programs. However, running developmental programs during the
process of passing signals through the ANN would mean that conventional ANNs
could not be extracted and also it would slow down assessment of network response
to applied signals. Perhaps some statistical measures of signals could be computed
which are supplied to neural programs. They could be calculated during each de-
velopmental step and then supplied to neuron and dendrite programs at the start of
the next developmental step. However, it should be noted that activity dependent
morphology implies that networks would change during training (and testing) and
network morphology and behaviour would depend on past training history. This
would complicate fitness assessment!

Eventually, the aim is to create developmental networks of spiking neurons. This
would allow models of activity dependent development based on biological neurons
to be abstracted and included in artificial models.

14 Conclusions

We have presented a conceptually simple model of a developmental neuron in which
neural networks develop over time. Conventional ANNs can be extracted from these
networks. We have shown that an evolved pair of programs can produce networks
that can solve multiple classification problems reasonably well. Multiple-problem
solving is a new domain for investigating more general developmental neural mod-
els.
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15 Appendix: Detailed algorithms

15.1 Developing the brain and evaluating the fitness

The detailed algorithm for developing the brain and assessing its fitness is shown in
Alg. 1 There are two stages to development. The first (which we refer to as ‘pre’)
occurs prior to a learning epoch loop (lines 3-6). While the second phase (referred
to as ‘while’) occurs inside a learning epoch loop (lines 9-12).

Lines 13-22 are concerned with calculating fitness. For each computational prob-
lem an ANN is extracted from the underlying brain. This is carried by a function
ExtractANN(problem,Out putAddress) which is detailed in Alg. 9. This function
extracts a feedforward ANN corresponding to each computional problem (this is
stored in a phenotype which we do not detail here). The array Out putAddress stores
the addresses of the output neurons associated with the computational problem. It is
used together with the phenotype to extract the network of neurons that are required
for the computational problem. Then the input data is supplied and the outputs of
the ANN calculated. The class of a data instance is determined by the largest out-
put. The learning loop (lines 8-29) develops the brain and exits if the fitness value
(in this case classification accuracy) reduces (lines 23-27 in Alg. 1). One can think
of the ‘pre’ development phase as growing a neural network prior to training. The
‘while’ phase is a period of development within the learning phase. Nep denotes the
user-defined number of learning epochs. Np represents the number of problems in
the suite of problems being solved. Nex(p) denotes the number of examples for each
problem. A is the accuracy of prediction for a single training instance. F is the fit-
ness over all examples. T F is the accumulated fitness over all problems. Fitness is
normalised (lines 20 and 22).
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Algorithm 1 Develop network and evaluate fitness

1: function FITNESS
2: Initialise brain
3: Use ‘pre’ parameters
4: for s = 0 to s < NDSpre do # develop prior to learning
5: UpdateBrain
6: end for
7: T Fprev = 0
8: for e = 0 to e < Nep do # learning loop
9: Use ‘while’ parameters # learning phase

10: for s = 0 to s < NDSwhi do
11: UpdateBrain
12: end for
13: T F = 0 # initialise total fit
14: for p = 0 to p < Np do
15: ExtractANN(p, OutputAddress) # Get ANN for problem p
16: F = 0 # initialise fit
17: for t = 0 to t < Nex(p) do
18: F = F +Acc # sum acc. over instances
19: end for
20: T F = T F +F/Nex(p) # sum normalised acc. over problems
21: end for
22: T F = T F/Np # normalise total fitness
23: if T F < T Fprev then # has fitness reduced?
24: T F = T Fprev # return previous fitness
25: Break # terminate learning loop
26: else
27: T Fprev = T F # update previous fitness
28: end if
29: end for
30: return TF
31: end function

15.2 Developing the brain and evaluating the fitness

Algorithm 2 shows the update brain process. This algorithm is run at each devel-
opmental step. It runs the soma and dendrite programs for each neuron and from
the previously existing brain creates a new version (NewBrain) which eventually
overwrites the previous brain at the last step (lines 52-53).
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Algorithm 2 Update brain

1: function UPDATEBRAIN
2: NewNumNeurons = 0
3: for i = 0 to i < NumNeurons do # get number and addresses of neurons
4: if (Brain[i].out = 0) then
5: NonOutputNeuronAddress[NumNonOutputNeurons] = i
6: increment NumNonOutputNeurons
7: else
8: OutputNeuronAddress[NumOutputNeurons] = i
9: increment NumOutputNeurons

10: end if
11: end for
12: for i = 0 to i < NumNonOutputNeurons do # process non-output neurons
13: NeuronAddress = NonOutputNeuronAddress[i]
14: Neuron = Brain[NeuronAddress]
15: UpdatedNeurVars = RunSoma(Neuron) # get new position, health and bias
16: if (DisallowNonOutputsToMove) then
17: UpdatedNeurVars.x = Neuron.x
18: else
19: UpdatedNeurVars.x = IfCollision(NewNumNeurons,NewBrain,UpdatedNeurVars.x)
20: end if
21: UpdatedNeuron = RunAllDendrites(Neuron, UpdatedNeurVars)
22: if (UpdatedNeuron.health > NHdeath) then # if neuron survives
23: NewBrain[NewNumNeurons] = UpdatedNeuron
24: Increment NewNumNeurons
25: if (NewNumNeurons = NNmax-NumOutputNeurons) then
26: Break # exit non-output neuron loop
27: end if
28: end if
29: if (UpdatedNeuron.health > NHhealth) then # neuron replicates
30: UpdatedNeuron.x = UpdatedNeuron.x+MNinc
31: UpdatedNeuron.x = IfCollision(NewNumNeurons, NewBrain, UpdatedNeuron.x)
32: NewBrain[NewNumNeurons] = CreateNewNeuron(UpdatedNeuron)
33: Increment NewNumNeurons
34: if (NewNumNeurons = NNmax - NumOutputNeurons) then
35: Break # exit non-output neuron loop
36: end if
37: end if
38: end for
39: for i = 0 to i < NumOutputNeurons do # process output neurons
40: NeuronAddress = OutputNeuronAddress[i]
41: Neuron = Brain[NeuronAddress]
42: UpdatedNeurVars = RunSoma(Neuron) # get new position, health and bias
43: if (DisallowOutputsToMove) then
44: UpdatedNeurVars.x = Neuron.x
45: else
46: UpdatedNeurVars.x = IfCollision(NewNumNeurons,NewBrain,UpdatedNeurVars.x)
47: end if
48: UpdatedNeuron = RunAllDendrites(UpdatedNeuron)
49: NewBrain[NewNumNeurons] = UpdatedNeuron
50: Increment NewNumNeurons
51: end for
52: NumNeurons = NewNumNeurons
53: Brain = NewBrain
54: end function
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Alg. 2 starts by analyzing the brain to determine the addresses and numbers of
non-output and output neurons (lines 3-11). Then the non-output neurons are pro-
cessed. The evolved soma program is executed and it returns a neuron with updated
values for the neuron position, health and bias. These are stored in the variable
U pdatedNeurVars.

If the user-defined option to disallow non-output neuron movement is chosen
then the updated neuron position is reset to that before the soma program is run
(lines 16-17). Next the evolved dendrite programs are executed in all dendrites. The
algorithmic details are given in Alg. 6 (See Sect. 4.6).

The neuron health is compared with the user-defined neuron death threshold
NHdeath and if the health exceeds the threshold the neuron survives (see lines 22-
28). At this stage it is possible that the neuron has been given a position that is
identical to one of the neurons in the developing brain (NewBrain) so one needs a
mechanism for preventing this. This is accomplished by Alg. 3 (Lines 19 and 46).
It checks whether a collision has occurred and if so an increment MNinc is added to
the position and then it is bound to the interval [-1, 1]. In line 23 the updated neuron
is written into NewBrain. A check is made in line 25 to see if the allowed number of
neurons has been reached, if so the non output neuron update loop (lines 12 to 38) is
exited and the output neuron section starts (lines 39 to 51). If the limit on numbers
of neurons has not been reached, the updated neuron may replicate depending on
whether its health is above the user-defined threshold, NHhealth (line 29). The po-
sition of the new born neuron is immediately incremented by MNinc so that it does
not collide with its parent (line 30). However, its position needs to be checked also
to see if it collides with any other neuron, in which case its position is incremented
again until a position is found that causes no collision. This is done in the function
IFCOLLISION.

In CREATENEWNEURON (see line 32) the bias, the incremented position and
dendrites of the parent neuron are copied into the child neuron. However, the new
neuron is given a health of 1.0 (the maximum value). The algorithm examines the
non-output neurons (lines 39-51) and again is terminated if the allowed number
of neurons is exceeded. The steps are similar to those carried out with non-output
neurons, except that output neurons can not either die or replicate as their number is
fixed by the number of outputs required by the computational problem being solved.

The details of the neuron collision avoidance mechanism is shown in Alg. 3.

15.3 Running the soma

The UPDATEBRAIN program calls the RUNSOMA program (Alg. 4) to deter-
mine how the soma changes in each developmental step. The seven soma pro-
gram inputs comprising the neuron health, position and bias, the averaged position,
weight and health of the neuron’s dendrites and the problem type are supplied to
the CGP encoded soma program (line 12). The array ProblemTypeInputs stores
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Algorithm 3 Move neuron if it collides with another.

1: function IFCOLLISION(NumNeurons, Brain, NeuronPosition)
2: NewPosition = NeuronPosition
3: collision = 1
4: while collision do
5: collision = 0
6: for i = 0 to j < NumNeurons do
7: if (| NeuronPosition - Brain[i].x |< 1.e-8) then
8: collision = 1
9: end if

10: if collision then
11: break
12: end if
13: end for
14: if collision then
15: NewPosition = NewPosition+MNinc
16: end if
17: end while
18: if collision then
19: NewPosition = Bound(NewPosition)
20: end if
21: return NewPosition
22: end function

NumProblems+1 constants equally spaced between -1 and 1. These are used to al-
low output neurons to know what computational problem they belong to.

The soma program has three outputs relating to the position, health and bias of
the neuron. These are used to update the neuron (line 13).

Algorithm 4 RunSoma(Neuron)

1: function RUNSOMA(Neuron)
2: AvDendritePosition = GetAvDendritePosition(Neuron)
3: AvDendriteWeight = GetAvDendriteWeight(Neuron)
4: AvDendriteHealth = GetAvDendriteHealth(Neuron)
5: SomaProgramInputs[0] = Neuron.health
6: SomaProgramInputs[1] = Neuron.x
7: SomaProgramInputs[2] = Neuron.bias
8: SomaProgramInputs[3] = AvDendritePosition
9: SomaProgramInputs[4] = AvDendriteWeight

10: SomaProgramInputs[5] = AvDendriteHealth
11: SomaProgramInputs[6] = ProblemTypeInputs[WhichProblem]
12: SomaProgramOutputs = SomaProgram(SomaProgramInputs)
13: UpdatedNeuron = UpdateNeuron(Neuron, SomaProgramOutputs)
14: return UpdatedNeuron.x, UpdatedNeuron.health, UpdatedNeuron.bias
15: end function
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15.4 Changing the Neuron Variables

The UPDATENEURON algorithm ( 5) updates the neuron properties of health, posi-
tion and bias according to three user-chosen options defined by a variable Incropt . If
this is zero, then the soma program outputs determine directly the updated values of
the soma’s health, position and bias. If Incropt is one or two, the updated values of
the soma are changed from the parent neuron’s values in an incremental way. This is
either a linear or nonlinear increment or decrement depending on whether the soma
program’s outputs are greater than or less than or equal to zero (lines 8 to 16). The
magnitudes of the increments is defined by the user-defined constants: δsh, δsp, δsb
and sigmoid slope parameter, α (see Table 1).

The increment methods described in Algorithm 5 change neural variables, so
action needs to be taken to force the variables to strictly lie in the interval [−1,1]. We
call this ‘bounding’ (lines 34-36).This is accomplished using a hyperbolic tangent
function.

15.5 Running all dendrite programs and building a new neuron

Alg. 6 takes an existing neuron and creates a new neuron using the updated soma
variables, position, health and bias which are stored in U pdateNeurVars (from
Alg. 4) and the updated dendrites which result from running the dendrite program
in all the dendrites. Initially (line 3-5), the updated soma variables are written into
the updated neuron. The number of dendrites in the updated neuron is set to zero.
In lines 8-11, the health of the non-updated neuron is examined and if it is above
the dendrite health threshold for birth, a new dendrite is generated and the updated
neuron gains a dendrite. If so, the neuron gains a dendrite created by a function
GenerateDendrite(). This assigns a weight, health and position to the new dendrite.
The weight and health is set to one and the position set to half the parent neuron
position. These choices appeared to give good results.

Lines 12-33 are concerned with processing the dendrite program in all the den-
drites of the non-updated neuron and updating the dendrites. If the updated dendrite
has a health above its death threshold then it survives and gets written into the up-
dated neuron (lines 22-28). Updated dendrites do not get written into the updated
neuron if it already has the maximum allowed number of dendrites (line 25-27). In
lines 30-33 a check is made as to whether the updated neuron has no dendrites. If
this is so, it is given one of the dendrites of the non-updated neuron. Finally, the
updated neuron is returned to the calling function.

Alg. 6 calls the function RUNDENDRITE (line 21). This function is detailed in
Alg. 7. It changes the dendrites of a neuron according to the evolved dendrite pro-
gram. It begins by assigning the dendrites health, position and weight to the parent
dendrite variables. It writes the dendrite program outputs to the internal variables
health, weight and position. Then in lines 8-16 it defines the possible increments in
health, weight and position that will be used to increment or decrement the parent
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Algorithm 5 Neuron update function

1: function UPDATENEURON(Neuron, SomaProgramOutputs)
2: ParentHealth = Neuron.health
3: ParentPosition = Neuron.x
4: ParentBias = Neuron.bias
5: health = SomaProgramOutputs[0]
6: position = SomaProgramOutputs[1]
7: bias = SomaProgramOutputs[2]
8: if (Incropt = 1) then # calculate increment
9: HealthIncrement = δsh

10: PositionIncrement = δsp
11: BiasIncrement = δsb
12: else if (Incropt = 2) then
13: HealthIncrement = δsh*sigmoid(health, α)
14: PositionIncrement = δsp*sigmoid(position, α)
15: BiasIncrement = δsb*sigmoid(bias, α)
16: end if
17: if (Incropt > 0) then # apply increment
18: if (health > 0.0) then
19: health = ParentHealth + HealthIncrement
20: else
21: health = ParentHealth - HealthIncrement
22: end if
23: if (position > 0.0) then
24: position = ParentPosition + PositionIncrement
25: else
26: health = ParentPosition - PositionIncrement
27: end if
28: if (bias > 0.0) then
29: bias = ParentBias + BiasIncrement
30: else
31: bias = ParentBias - BiasIncrement
32: end if
33: end if
34: health = Bound(health)
35: position = Bound(position)
36: bias = Bound(bias)
37: return health, position and bias
38: end function

variables according to the user defined incremental options (linear or non-linear).In
lines 17-33 it respectively carries out the increments or decrements of the parent
dendrite variables according whether the corresponding dendrite program outputs
are greater than or less than or equal to zero. After this it bounds those variables.
Finally, in lines 37-44 it updates the dendrites health, weight and position provided
the adjusted health is above the dendrite death threshold (in other words it survives).
Note that if Incropt = 0 then there is no incremental adjustment and the health,
weight and position of the dendrites are just bounded (lines 34-36).



Evolving neural programs 41

Algorithm 6 Run the evolved dendrite program in all dendrites

1: function RUNALLDENDRITES(Neuron, DendriteProgram, NewSomaPosition, NewSoma-
Health, NewSomaBias)

2: WhichProblem = Neuron.isout
3: OutNeuron.x = NewSomaPosition
4: OutNeuron.health = NewSomaHealth
5: OutNeuron.bias = NewSomaBias
6: OutNeuron.isout = WhichProblem
7: OutNeuron.NumDendrites = 0
8: if (Neuron.health > DHbirth ) then
9: OutNeuron.dendrites[NumDendrites] = GenerateDendrite()

10: Increment OutNeuron.NumDendrites
11: end if
12: for i = 0 to i < OutNeuron.NumDendrites do
13: DendriteProgramInputs[0] = Neuron.health
14: DendriteProgramInputs[1] = Neuron.x
15: DendriteProgramInputs[2] = Neuron.bias
16: DendriteProgramInputs[3] = Neuron.dendrites[i].health
17: DendriteProgramInputs[4] = Neuron.dendrites[i].weight
18: DendriteProgramInputs[5] = Neuron.dendrites[i].position
19: DendriteProgramInputs[6] = ProblemTypeInputs[WhichProblem]
20: DendriteProgramOutputs = DendriteProgram(DendriteProgramInputs)
21: UpdatedDendrite = RunDendrite(Neuron, DendriteProgramOutputs)
22: if (UpdatedDendrite.isAlive) then
23: OutNeuron.dendrites[NumDendrites] = UpdatedDendrite
24: increment OutNeuron.NumDendrites
25: if (OutNeuron.NumDendrites > MaxNumDendrites) then
26: break
27: end if
28: end if
29: end for
30: if (OutNeuron.NumDendrites = 0) then # if all dendrites die
31: OutNeuron.dendrites[0] = Neuron.dendrites[0]
32: OutNeuron.NumDendrites = 1
33: end if
34: return OutNeuron
35: end function

Alg. 2 uses a function CREATENEWNEURON to create a new neuron if the neu-
ron health is above a threshold. This function is described in Alg. 8. It makes the
new born neuron the same as the parent (note, its position will be adjusted by the
collision avoidance algorithm) except that it is given a health of one. Experiments
suggested that this gave better results.



42 Miller et al.

Algorithm 7 Change dendrites according to the evolved dendrite program

1: function RUNDENDRITE(Neuron, WhichDendrite, DendriteProgramOutputs)
2: ParentHealth = Neuron.dendrites[WhichDendrite].health
3: ParentPosition = Neuron.dendrites[WhichDendrite].x
4: ParentWeight = Neuron.dendrites[WhichDendrite].weight
5: health = DendriteProgramOutputs[0]
6: weight = DendriteProgramOutputs[1]
7: position = DendriteProgramOutputs[2]
8: if (Incropt = 1) then
9: HealthIncrement = δdh

10: WeightIncrement = δdw
11: PositionIncrement = δd p
12: else if (Incropt = 2) then
13: HealthIncrement = δdh*sigmoid(health, α)
14: WeightIncrement = δdw*sigmoid(weight, α)
15: PositionIncrement = δd p*sigmoid(position, α)
16: end if
17: if (Incropt > 0) then
18: if (health > 0.0) then
19: health = ParentHealth + HealthIncrement
20: else
21: health = ParentHealth - HealthIncrement
22: end if
23: if (position > 0.0) then
24: position = ParentPosition + PositionIncrement
25: else
26: health = ParentPosition - PositionIncrement
27: end if
28: if (weight > 0.0) then
29: weight = ParentWeight + BiasIncrement
30: else
31: weight = ParentWeight - BiasIncrement
32: end if
33: end if
34: health = Bound(health)
35: position = Bound(position)
36: weight = Bound(weight)
37: if (health > DHdeath) then
38: UpdatedDendrite.weight = weight
39: UpdatedDendrite.health = health
40: UpdatedDendrite.x = position
41: UpdatedDendriteisAlive = 1
42: else
43: UpdatedDendriteisAlive = 0
44: end if
45: return UpdatedDendrite and UpdatedDendriteisAlive
46: end function

15.6 Extracting conventional ANNs from the evolved brain

In algorithm 1, a conventional feed-forward ANN is extracted from the underlying
collection of neurons (line 15). The algorithm for doing this is shown in algorithm 9.
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Algorithm 8 Create new neuron from parent neuron

1: function CREATENEWNEURON(ParentNeuron)
2: ChildNeuron.NumDendrites = ParentNeuron.NumDendrites
3: ChildNeuron.isout = 0
4: ChildNeuron.health = 1
5: ChildNeuron.bias = ParentNeuron.bias
6: ChildNeuron.x = ParentNeuron.x
7: for i = 0 to i < ChildNeuron.NumDendrites do
8: ChildNeuron.dendrites[i] = ParentNeuron.dendrites[i]
9: end for

10: end function

Firstly, this algorithm determines the number of inputs to the ANN (line 5). Since
inputs are shared across problems the number of inputs is set to be the maximum
number of inputs that occur in the computational problem suite. If an individual
problem has less inputs than this maximum, the extra inputs are set to 0.0. The
brain array is sorted by position. The algorithm then examines all neurons (line 7)
and calculates the number of non-output neurons and output neurons and stores the
neuron data in arrays NonOut putNeurons and Out putNeurons. It also calculates
their addresses in the brain array.

The next phase is to go through all dendrites of the non-output neurons to deter-
mine which inputs or neurons they connect to (lines 19 to 33). The evolved neuron
programs generate dendrites with end positions anywhere in the interval [-1, 1]. The
end positions are converted to lengths (line 25). In this step the dendrite position
is linearly mapped into the interval [0, 1]. To generate a valid neural network we
assume that dendrites are automatically connected to the nearest neuron or input on
the left. We refer to this as “snapping” (lines 28 and 44). The dendrites of non-output
neurons are allowed to connect to either inputs or other non-output neurons on their
left. However, output neurons are only allowed to connect to non-output neurons on
their left. Algorithm 10 returns the address of the neuron or input that the dendrite
snaps to. The dendrites of output neurons are not allowed to connect directly to in-
puts (see Line 4 of the GETCLOSEST function), however, when neurons are allowed
to move, there can occur a situation where an output neuron is positioned so that it is
the first neuron on the right of the outputs. In that situation it can only connect to in-
puts. If this situation occurs then the initialisation of the variable AddressO fClosest
to zero in the GETCLOSEST function (line 2) means that all the dendrites of the out-
put neuron will be connected to the first external input to the ANN network. Thus a
valid network will still be extracted albeit with a rather useless output neuron. It is
expected that evolution will avoid using programs that allow this to happen.

Algorithm 9 stores the information required to extract the ANN in an array
called Phenotype. It contains the connection addresses of all neurons and their
weights (lines 29-30 and 45-46). Finally it stores the addresses of the output neu-
rons (Out putAddress) corresponding to the computational problem whose ANN is
being extracted (lines 49-52). These define the outputs of the extracted ANNs when
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they are supplied with inputs (i.e. in the fitness function when the Accuracy is as-
sessed (see Alg. 1). The Phenotype is stored in the same format as Cartesian Genetic
Programming (see section 5) and decoded in a similar way to genotypes.
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networks. In: V. Kůrková, R. Neruda, J. Koutnı́k (eds.) Artificial Neural Networks - ICANN,
pp. 839–848. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

11. Edelman, G., Tononi, G.: A Universe of Consciousness. Basic Books, New York (2000)
12. Eggenberger, P.: Creation of neural networks based on developmental and evolutionary prin-

ciples. In: W. Gerstner, A. Germond, M. Hasler, J.D. Nicoud (eds.) Artificial Neural Networks
— ICANN’97, pp. 337–342 (1997)

13. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Advances in
neural information processing systems, pp. 524–532 (1990)

14. Federici, D.: A regenerating spiking neural network. Neural Networks 18(5-6), 746–754
(2005)

15. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of clas-
sifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181
(2014)

16. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelli-
gence, 2 edn. Springer, New York (2006)

17. Floreano, D., Urzelai, J.: Neural morphogenesis, synaptic plasticity, and evolution. Theory in
Biosciences 120(3), 225–240 (2001)

18. Franco, L., Jerez, J.M.: Constructive neural networks, vol. 258. Springer (2009)
19. French, R.M.: Catastrophic Forgetting in Connectionist Networks: Causes, Consequences and

Solutions. Trends in Cognitive Sciences 3(4), 128–135 (1999)
20. Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming.

In: Genetic Programming: 16th European Conference, EuroGP 2013, Vienna, Austria, April
3-5, 2013. Proceedings, pp. 61–72. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)



Evolving neural programs 45

21. Goldman, B.W., Punch, W.F.: Analysis of cartesian genetic programmings evolutionary mech-
anisms. Evolutionary Computation, IEEE Transactions on 19, 359 – 373 (2015)

22. Gruau, F.: Automatic definition of modular neural networks. Adaptive Behaviour 3, 151–183
(1994)

23. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and direct encod-
ing for genetic neural networks. In: Proc. Conf. on Genetic Programming, pp. 81–89 (1996)

24. Hampton, A.N., Adami, C.: Evolution of robust developmental neural networks. In: J. Pollack,
M.A. Bedau, P. Husbands, T. Ikegami, R. Watson (eds.) Proceedings of Artificial Life IX, pp.
438–443 (2004)

25. Harding, S., Miller, J.F., Banzhaf, W.: Developments in cartesian genetic programming: Self-
modifying cgp. Genetic Programming and Evolvable Machines 11(3-4), 397–439 (2010)

26. Hornby, G., Lipson, H., Pollack, J.B.: Generative representations for the automated design of
modular physical robots. IEEE Trans. on Robotics and Automation 19, 703–719 (2003)

27. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation
for body-brain evolution. Artificial Life 8(3) (2002)

28. Huizinga, J., Clune, J., Mouret, J.B.: Evolving neural networks that are both modular and
regular: HyperNEAT plus the connection cost technique. In: Proc. Conf. on Genetic and
Evolutionary Computation, pp. 697–704 (2014)

29. Isles, A.: Neural and Behavioral Epigenetics; what it Is, and what is Hype. John Wiley & Sons
Limited (2015)

30. Jakobi, N.: Harnessing Morphogenesis, COGS Research Paper 423. Tech. rep., University of
Sussex (1995)

31. Jung, S.Y.: A topographical method for the development of neural networks for artificial brain
evolution. Artificial Life 11, 293–316 (2005)

32. Kandel, E.R., Schwartz, J.H., Jessell: Principles of Neural Science, 4th Edition. McGraw-Hill
(2000)

33. Khan, G.M.: Evolution of Artificial Neural Development - In Search of Learning Genes, Stud-
ies in Computational Intelligence, vol. 725. Springer (2018)

34. Khan, G.M., Miller, J.F.: In search of intelligence: evolving a developmental neuron capable
of learning. Connect. Sci. 26(4), 297–333 (2014)

35. Khan, G.M., Miller, J.F., Halliday, D.M.: Evolution of Cartesian Genetic Programs for Devel-
opment of Learning Neural Architecture. Evol. Computation 19(3), 469–523 (2011)

36. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system.
Complex Systems 4, 461–476 (1990)

37. Kleim, J.A., Lussnig, E., Schwartz, E.R., Comery, T.A., Greenough, W.T.: Synaptogenesis and
fos expression in the motor cortex of the adult rat after motor skill learning. J. Neurosci 16,
4529–4535 (1996)

38. Kleim, J.A., Vij, K., Ballard, D.H., Greenough, W.T.: Learning-dependent synaptic modifica-
tions in the cerebellar cortex of the adult rat persist for at least four weeks. J. Neurosci 17,
717–721 (1997)

39. Kodjabachian, J., Meyer, J.A.: Evolution and development of neural controllers for locomo-
tion, gradient-following, and obstacle-avoidance in artificial insects. IEEE Transactions on
Neural Networks 9, 796–812 (1998)

40. Koutnı́k, J., Gomez, F., Schmidhuber, J.: Evolving neural networks in compressed weight
space. In: Proc. Conference on Genetic and Evolutionary Computation (GECCO-10) (2010)

41. Kumar, S., Bentley, P. (eds.): On Growth, Form and Computers. Academic Press (2003)
42. Luke, S., Spector, L.: Evolving graphs and networks with edge encoding: Preliminary report.

In: Late Breaking Papers at the Genetic Programming Conference, pp. 117–124 (1996)
43. Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S.J.,

Frith, C.D.: Navigation-related structural change in the hippocampi of taxi drivers. PNAS 97,
4398–4403 (2000)

44. McCloskey, M., Cohen, N.: Catastrophic Interference in Connectionist Networks: The Se-
quential Learning Problem. The Psychology of Learning and Motivation 24, 109–165 (1989)

45. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. The
Bulletin of Mathematical Biophysics 5, 115–133 (1943)



46 Miller et al.

46. Métin, C., Vallee, R., Rakic, P., Bhide, P.: Modes and mishaps of neuronal migration in the
mammalian brain. Neuroscience 28, 11,746–11,752 (2008)

47. Miller, J.F.: What bloat? cartesian genetic programming on boolean problems. In: Proc. Conf.
Genetic and Evolutionary Computation, Late breaking papers, pp. 295–302 (2001)

48. Miller, J.F. (ed.): Cartesian Genetic Programming. Springer (2011)
49. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in Cartesian Genetic Pro-

gramming. IEEE Trans. on Evolutionary Computation 10(2), 167–174 (2006)
50. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proc. European Conf. on Ge-

netic Programming, LNCS, vol. 10802, pp. 121–132 (2000)
51. Miller, J.F., Thomson, P.: A Developmental Method for Growing Graphs and Circuits. In:

Proc. Int. Conf. on Evolvable Systems, LNCS, vol. 2606, pp. 93–104 (2003)
52. Miller, J.F., Wilson, D.G., Cussat-Blanc, S.: Evolving developmental programs that build neu-

ral networks for solving multiple problems. In: W. Banzhaf, L. Spector, L. Sheneman (eds.)
Genetic Programming Theory and Practice XVI, chap. TBC, p. TBC. Springer (2019)

53. Ooyen, A.V. (ed.): Modeling Neural Development. MIT Press (2003)
54. Rakic, P.: Principles of neural cell migration. Experientia 46, 882–891 (1990)
55. Ratcliff, R.: Connectionist Models of Recognition and Memory: Constraints Imposed by

Learning and Forgetting Functions. Psychological Review 97, 205–308 (1990)
56. Risi, S., Lehman, J., Stanley, K.O.: Evolving the placement and density of neurons in the

HyperNEAT substrate. In: Proc. Conf. on Genetic and Evolutionary Computation, pp. 563–
570 (2010)

57. Risi, S., Stanley, K.O.: Indirectly encoding neural plasticity as a pattern of local rules. In:
From Animals to Animats 11: Conf. on Simulation of Adaptive Behavior (2010)

58. Risi, S., Stanley, K.O.: Enhancing ES-HyperNEAT to evolve more complex regular neural
networks. In: Proc. Conf. on Genetic and Evolutionary Computation, pp. 1539–1546 (2011)

59. Roggen, D., Federici, D., Floreano, D.: Evolutionary morphogenesis for multi-cellular sys-
tems. Genetic Programming and Evolvable Machines 8(1), 61–96 (2007)

60. Rose, S.: The Making of Memory: From Molecules to Mind. Vintage (2003)
61. Rust, A., Adams, R., Bolouri, H.: Evolutionary neural topiary: Growing and sculpting artificial

neurons to order. In: Proc. Conf. on the Simulation and synthesis of Living Systems, pp. 146–
150 (2000)

62. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K.,
Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv preprint arXiv:1606.04671
(2016)

63. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: Evolving programs for an arbitrary
language. In: W. Banzhaf, R. Poli, M. Schoenauer, T.C. Fogarty (eds.) Genetic Programming,
pp. 83–96. Springer Berlin Heidelberg (1998)

64. Sharkey, A.J.: Combining artificial neural nets: ensemble and modular multi-net systems.
Springer Science & Business Media (2012)

65. Siddiqi, A.A., Lucas, S.M.: A comparison of matrix rewriting versus direct encoding for evolv-
ing neural networks. In: Proceedings IEEE International Conference on Evolutionary Com-
putation Proceedings, pp. 392–397 (1998)

66. Smythies, J.: The Dynamic Neuron. MIT Press (2002)
67. Stanley, K., Miikkulainen, R.: Efficient evolution of neural network topologies. In: Proc.

Congress on Evolutionary Computation, vol. 2, pp. 1757–1762 (2002)
68. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of develop-

ment. Genetic Programming and Evolvable Machines 8, 131–162 (2007)
69. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-

scale neural networks. Artificial Life 15, 185–212 (2009)
70. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2),

93–130 (2003)
71. Suchorzewski, M., Clune, J.: A novel generative encoding for evolving modular, regular and

scalable networks. In: Proc. Conf. on Genetic and Evolutionary Computation, pp. 1523–1530
(2011)



Evolving neural programs 47

72. Terekhov, A.V., Montone, G., ORegan, J.K.: Knowledge transfer in deep block-modular neu-
ral networks. In: Conference on Biomimetic and Biohybrid Systems, pp. 268–279. Springer
(2015)

73. Tierney, A., Nelson III, C.: Brain development and the role of experience in the early years.
Zero Three 30, 9–13 (2009)

74. Tramontin, A.D., Brenowitz, E.: Seasonal plasticity in the adult brain. Trends in Neuroscience
23, 251–258 (2000)

75. Tsankova, N., Renthal, W., Kumar, A., Nestler, E.: Epigenetic regulation in psychiatric disor-
ders. Nature Reviews Neuroscience 8(5), 33–367 (2007)

76. Turner, A.J., Miller, J.F.: Cartesian Genetic Programming encoded artificial neural networks:
A comparison using three benchmarks. In: Proceedings of the Conference on Genetic and
Evolutionary Computation (GECCO), pp. 1005–1012 (2013)

77. Turner, A.J., Miller, J.F.: Recurrent cartesian genetic programming. In: Proc. Parallel Problem
Solving from Nature, pp. 476–486 (2014)

78. Valverde, F.: Rate and extent of recovery from dark rearing in the visual cortex of the mouse.
Brain Res. 33, 1–11 (1971)

79. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital Circuit Evo-
lution. In: Proc. Int. Conf. on Evolvable Systems, LNCS, vol. 1801, pp. 252–263. Springer
Verlag (2000)

80. Yerushalmi, U., Teicher, M.: Evolving synaptic plasticity with an evolutionary cellular devel-
opment model. PLOS One 3(11), e3697 (2008)

81. Yu, T., Miller, J.F.: Neutrality and the Evolvability of Boolean function landscape. In: Proc.
European Conference on Genetic Programming, LNCS, vol. 2038, pp. 204–217 (2001)

82. Zar, J.H.: Biostatistical Analysis, 2nd edn. Prentice Hall (1984)



48 Miller et al.

Algorithm 9 The extraction of neural networks from the underlying brain.

1: function EXTRACTANN(problem, OutputAddress)
2: NumNonOutputNeurons = 0
3: NumOutputNeurons = 0
4: OutputCount=0
5: Ni = max(Ni, p)
6: sort(Brain, 0, NumNeurons-1) # sort neurons by position
7: for i = 0 to i < NumNeurons do
8: Address = i+Ni
9: if (Brain[i].isout > 0) then # non-output neuron

10: NonOutputNeur[NumNonOutputNeur] = Brain[i]
11: NonOutputNeuronAddress[NumNonOutputNeur]= Address
12: Increment NumNonOutputNeur
13: else # output neuron
14: OutputNeurons[NumOutputNeurons]= Brain[i]
15: OutputNeuronAddress[NumOutputNeurons]= Address
16: Increment NumOutputNeurons
17: end if
18: end for
19: for i = 0 to i < NumNonOutputNeur do # do non-output neurons
20: Phenotype[i].isout = 0
21: Phenotype[i].bias = NonOutputNeur[i].bias
22: Phenotype[i].address = NonOutputNeuronAddress[i]
23: NeuronPosition = NonOutputNeur[i].x
24: for j = 0 to j < NonOutputNeur[i].NumDendrites do
25: Convert DendritePosition to DendriteLength
26: DendPos = NeuronPosition - DendriteLength
27: DendPos = Bound(DendPos)
28: AddressClosest = GetClosest(NumNonOutputNeur, NonOutputNeur, 0, DendPos)
29: Phenotype[i].ConnectionAddresses[j] = AddressClosest
30: Phenotype[i].weights[j] = NonOutputNeur[i].weight[j]
31: end for
32: Phenotype[i].NumConnectionAddress = NonOutputNeur[i].NumDendrites
33: end for
34: for i = 0 to i < NumOutputNeurons do # do output neurons
35: i1 = i+NumOutputNeurons
36: Phenotype[i1].isout = OutputNeurons[i].isout
37: Phenotype[i1].bias = OutputNeurons[i].bias
38: Phenotype[i1].address = OutputNeuronAddress[i]
39: NeuronPosition = OutputNeurons[i].x
40: for j = 0 to j < OutputNeurons[i].NumDendrites do
41: Convert DendritePosition to DendriteLength
42: DendPos = NeuronPosition - DendriteLength
43: DendPos = Bound(DendPos)
44: AddressClosest = GetClosest(NumNonOutputNeur, NonOutputNeur, 1, DendPos)
45: Phenotype[i1].ConnectionAddresses[j] = AddressClosest
46: Phenotype[i1].weights[j] = OutputNeuron[i].weight[j]
47: end for
48: Phenotype[i1].NumConnectionAddress = OutputNeurons[i].NumDendrites
49: if (OutputNeurons[i].isout == problem+1) then
50: OutputAddress[OutputCount] = OutputNeuronAddress[i]
51: Increment OutputCount
52: end if
53: end for
54: end function



Evolving neural programs 49

Algorithm 10 Find which input or neuron a dendrite is closest to

1: function GETCLOSEST(NumNonOutNeur, NonOutNeur, IsOut, DendPos)
2: AddressOfClosest = 0
3: min = 3.0
4: if (IsOut = 0) then # only non-out neurons connect to inputs
5: for (i = 0 to i < MaxNumInputs) do
6: distance = DendPos - InputLocations[i]
7: if distance > 0 then
8: if (distance < min) then
9: min = distance

10: AddressOfClosest = i
11: end if
12: end if
13: end for
14: end if
15: for j = 0 to j <NumNonOutputNeur do
16: distance = DendPos - NonOutNeur[j].x
17: if distance > 0 then # feed-forward connections
18: if (distance < min) then
19: min = distance
20: AddressOfClosest = j + MaxNumInputs
21: end if
22: end if
23: end for
24: return AddressOfClosest
25: end function


