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1 ABSTRACT

As fuzz testing strategies have become more and more sophisticated,
we see a natural application of fuzz testing to Genetic Improvement
techniques. In particular, the ability to generate high quality and
high coverage tests with advanced fuzzers can greatly enhance
the effectiveness of Genetic Improvement algorithms—especially
when the algorithm is applied to bug fixing or other similar kinds
of software improvement to improve qualities such as security.

2 INTRODUCTION

2.1 Fuzzers

Over the decades the security community has benefited greatly
from fuzzing, a testing technique that probes software with invalid
or random data [1] to find vulnerabilities. The techniques have
grown significantly over the years, resulting in different classes of
fuzzers. Blackbox fuzzers are the more traditional fuzzers, which
repeatedly send random input and observe the program for crashes.
Whitebox fuzzers have full knowledge of the program structure, and
can guide input generation based on symbolic execution. Microsoft
has been using their own proprietary whitebox fuzzer called Sage
for years [2], and it found roughly one third of all bugs discovered
during the development of Windows 7. Security researchers often
do not have access to the source code for the software they are
testing. There exists a middle ground in the most recent category of
fuzzers, greybox fuzzing. Greybox fuzzers typically do not assume
knowledge of the program through source code or sophisticated
program analysis. Instead they utilize some form of instrumented
feedback, such as code coverage. More recently, evolutionary grey-
box fuzzers [3] have been become popular. Evolutionary fuzzers
utilize a genetic algorithm to mutate and optimize test inputs. Their
fitness functions are often influenced by the amount of code covered
(hence the greybox categoration) and crashes.
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2.2 Genetic Improvement

Similarly, over the past couple of decades, there has been research
exploring software optimization and specialization through Genetic
Improvement [4], an increasingly popular search-based software
engineering approach using evolutionary algorithms. Genetic Im-
provement distinguishes itself from Genetic Programming as it
starts with an existing program that will then be modified. It has
been used for reducing energy consumption [5, 6], software spe-
cialization [7-9], performance [7, 10, 11], and automated bug fixing
[12-14]. Genetic Improvement is most commonly used for modify-
ing source code, but it has even been used on assembly language
programs [15] and program binaries [9, 14]. In all cases, Genetic
Improvement requires test cases to ensure correctness, which may
limit its effectiveness when test suites are not sufficiently robust.

3 BUG HUNTING AND FIXING

Automated bug hunting using fuzzers and automated bug repair
using Genetic Improvement seem a natural pairing. Haraldsson
et al [16] implemented an automated bug fixing system inspired
from Harman et al’s dreaming device [17], using exceptions raised
during user interaction during the day as test input for bug fix-
ing using genetic improvement after work hours, finding 22 bugs
over the course of 6 months. We believe that modern evolutionary
fuzzers, possibly utilizing search-based software testing techniques
[18], would compliment this approach to find even more bugs un-
likely to be uncovered by a non-malicious user that can be used to
automatically repair programs.

An exemplary example of a modern fuzzer which has received
a lot of attention and use is the open-source fuzzer AFL, Ameri-
can Fuzzy Lop (also the name for a breed of rabbit), developed by
Michal Zalewski [19]. At the time this paper was written, its bug-o-
rama trophy case referenced 371 notable vulnerabilities. Because
many bugs go unreported, such as those for internally-maintained
software, the number of vulnerabilities is likely much higher. AFL
supports blackbox fuzzing of binaries using QEMU, an open source
machine emulator and virtualizer, or using a compiler flag instru-
mentation option for gcc or clang if source code is available. Forks
of AFL exist to support other languages as well as kernel system
calls [20] and virtual machines [21].

AFL is considered application-unaware in that it does not de-
pend on application specific properties or data types. In contrast, a
newer open source application-aware fuzzer, Vuzzer [22], released
in 2017, uses static and dynamic analysis to learn properties of the
application. For our purposes, we have considered the capabilities
of AFL, which Vuzzer may also possess.

AFL is designed to be simple and it uses a genetic algorithm to
guide fuzzing tests which explore new paths in the binary. Feedback
to the genetic algorithm is measured in the form of coverage, con-
sisting of branches hit, execution path, and crashes (in the form of
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segmentation faults). This results in the genetic algorithm favoring
cases with new branches hit, or hit in a new order. Test cases that
result in crashes are written out to disk so they can be analyzed later.
Specifics on the internals of AFL can be found in AFL’s technical
whitepaper.

One of the powerful capabilities of evolutionary fuzzers, such
as AFL, is evolving a large number of test cases that explore the
input space of a program. Interestingly, evolutionary fuzzers have
been able to learn additional protocol features or commands for
protocols such as SMTP [3] and even learn the the JPEG filetype
[23] with very minimal seed test input; just a file with the string
“hello” in the later case.

We have begun initial experimentation with AFL and it shows
promise in finding bugs and increasing test case coverage.

As an initial test we used a publicly-available vulnerable C pro-
gram, based on a json parser consisting of numerous memory cor-
ruption bugs, called fuzzgoat [24]. The seed consisted of the invalid
json string: {"":"’}. After 43 hours, 67 unique crashes were found
resulting in the same number of crash test cases. Often these consist
of special characters, such as unicode and control characters, and
very long strings. Additionally, it had 944 test cases queued for
additional testing or mutation if it had continued to run. Using kcov
[25], we measured the initial seed test case covering 29.4% of the
executable code. With the 1,011 test cases, we measure 90.5% code
coverage. With these new test cases, we can increase our assurance
that transformations are safe, either online as part of the fitness
function or offline as a sanity check, and can incorporate crashing
test cases as part of the fitness test suite, which if repaired by no
longer resulting in crashes would decrease the likelihood of an
adversary exploiting those bugs.

Genetic Improvement, as an automated search technique relies
heavily on the availability and quality of test suites to ensure mu-
tated program validity. Evolutionary fuzzers use code coverage as a
fitness metric, which results in more or better test cases, which we
can leverage to increase assurance of correctness that modifications
to a program do not have unintended side effects. Additionally, the
primary purpose of fuzzers is to uncover new defects. These defects
could then be automatically collected, then supplied as new test
cases using Genetic Improvement to automatically repair the bugs.

4 FUTURE WORK

There are likely to be bugs which cannot be uncovered by a par-
ticular fuzzer. This could be due to exploitation of the input space
rather than exploration, or simply not identifying a type of bug due
to fuzzer implementation (fuzzers tend to be designed to discover
crashes which can result in exploits). As computational resources
become more cost effective, we can imagine a larger ensemble of
application-aware and unaware fuzzers, search-based software test-
ing based on program analysis, and user-driven bug reports getting
us closer to achieving software which is able to adapt for defense.

There may also be opportunities to leverage recent progress
in autonomic computing [26] to further enable self-* properties
(self-configuration, self-healing, self-optimization, self-protection).
Automated bug hunting and bug fixing could be a components
within an autonomic system that can be controlled or customized
based on system goals and priorities.
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