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ABSTRACT
P�GGI is a lightweight Python framework that can be used to im-
plement generic Genetic Improvement algorithms at the API level.
The original version of P�GGI only provided lexical modi�cations,
i.e., modi�cations of the source code at the physical line granularity
level. This paper introduces new extensions to P�GGI that enables
syntactic modi�cations for Python code, i.e., modi�cations that
operates at the AST granularity level. Taking advantage of the new
extensions, we also present a case study that compares the lexical
and syntactic search granularity level for automated program repair,
using ten seeded faults in a real world open source Python project.
The results show that search landscapes at the AST granularity
level are more e�ective (i.e. eventually more likely to produce plau-
sible patches) due to the smaller sizes of ingredient spaces (i.e., the
space from which we search for the material to build a patch), but
may require longer time for search because the larger number of
syntactically intact candidates leads to more �tness evaluations.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering;
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1 INTRODUCTION
Most of the currently available Genetic Improvement (GI) [17] tools
are meant to be research prototypes, and naturally are either tied
or specialised to particular research ideas. For example, astor
provides Java re-implementations of a series of widely studied GI
approaches [13]: while the re-implementations share common in-
frastructures provided by astor itself, one may argue that the aim
of the framework is to provide a suite of GI approaches, rather than
to provide a general framework at the API level. GIN is designed to
be a general framework [21], but its current implementation has
some limitations such as only being able to operate one Java source
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�le. Additionally, GIN’s implementation language, Java, can pose
inherent overhead to fast prototyping. Consequently, in practice,
it may be hard to use those implementations as a baseline to build
new GI tools and experiments. Since the essential parts of GI, such
as program preprocessing, code modi�cations, or patch manage-
ment, can impose considerable implementation overhead, a general
framework that is extensible and easy to use may serve researchers
and practitioners alike.

We have previously introduced the initial version of P�GGI [1]
as a general framework of GI written in Python1. Our aimwas to im-
plement a simple, lightweight yet extensible framework, that can be
used by researchers and practitioners to implement GI techniques of
various �avours, rather than to promote a speci�c algorithm for GI.
The initial version only provided lexical modi�cation, i.e., insertion,
copy, and replacement of physical lines of program source code. The
lexical modi�cations had the bene�t of being language agnostic, as
found in other techniques such as Observational Slicing [3, 7].

In this paper, we introduce the extended version of P�GGI that
supports syntactic modi�cations for Python (i.e., modi�cations
that operate on parsed Python code) as well as fault localisation
supports. In addition, exploiting the new extensions, we also present
an empirical study that compares the lexical and the syntactic search
spaces for automated program repair using seeded faults in an open
source project. The lexical search space is the space of all programs
that can be constructed by application of lexical operators (i.e., copy,
insertion, and replacement of physical lines), whereas the syntactic
search space is the space of all programs that can be constructed
by application of syntactic operators (i.e., modi�cations of abstract
syntax tree nodes that correspond to Python statements).

The technical contributions of this paper is as follows:

• We present a new version of P�GGI which now supports
syntactic modi�cation at the statement level for Python,
rather than the lexical modi�cation at the physical line level
in the previous version.

• We conduct a case study that compares line and AST gran-
ularity level and corresponding search landscapes for the
statement level automated program repair (i.e., repairs that
consist of copy, insertion, and replacement of program state-
ments). We use a Python open source project, sh, and seeded
faults for the evaluation. the results show that the AST level
granularity and its search landscape are more e�ctive at
producing plausible patches, as patches tend to lead to fewer
syntactic errors.

We begin by describing the overall design of P�GGI.

1Available from https://github.com/coinse/pyggi.

https://doi.org/10.1145/3194810.3194814
https://doi.org/10.1145/3194810.3194814
https://github.com/coinse/pyggi


GI’18, June 2, 2018, Gothenburg, Sweden Gabin An, Jinhan Kim, and Shin Yoo

2 DESIGN OF PYGGI

Figure 1: P�GGI Overview

Figure 1 illustrates the overall system of P�GGI version 1.1 and
shows how it works through the example: green boxes represent
either inputs user provides (i.e., source code to patch or test scripts
to execute) or an GI program user writes using P�GGI API (e.g.,
improve.py). To run P�GGI, a user provides a target program
and locates a con�guration �le in the root path of the program. The
con�guration �le should contain the information about paths to
the target source codes and a test command. With the inputs from
the user, P�GGI preprocesses the source codes into own contents
according to the given granularity level.

Depending on the algorithm, P�GGImodi�es the target program
with edit operators and applies them lazily; that is, P�GGImanages
a sequence of edit operators and applies it only when the candidate
patch needs to be evaluated. Generating a cloned temporary direc-
tory, P�GGI executes the test command to evaluate the candidate
patch. The test program or script, i.e., run_test.sh in Figure 1,
should yield output in a pre-de�ned format. Otherwise, the user
should provide a test result parser. The whole process continues
until the termination criteria are met.

2.1 P�GGI Classes
P�GGI is composed of several classes as shown in Figure 2. Com-
pared to the initial version, Edit class have been replaced with two
abstract classes, AtomicOperator and CustomOperator, to allow
implementation of operators that correspond to di�erent granu-
larity levels. P�GGI also provides four child classes that actually
instantiate operators that are speci�c to di�erent granularity levels.

While it is not represented in Figure 2, P�GGI also contains a
module named algorithms. It currently includes only one ab-
stract class, LocalSearch, that implements the basic skeleton of
a local search algorithm. The user can easily inherit and override
this to implement multiple local search variants, such as the Hill
climbing or Tabu search. P�GGI can also be intergrated with evolu-
tionary computation libraries, such as DEAP [4], to take advantage
of both single and multi-objective evolutionary algorithms.

2.1.1 Program. Program encapsulates the target program, es-
pecially its source code. The actual internal representation of the
pogram depends on the choice of granularity level. See Section 2.2
for details.

2.1.2 Logger. Logger customises a logging object for a pro-
gram instance to help recording various information during the GI
process. It has �le and stream handlers, and provides �ve logging
levels: debug, info, warning, error, and critical.

2.1.3 GranularityLevel. GranularityLevel dictates multi-
ple factors: how the program is pre-processed and internally stored,
and which operators can be used during the search. It inherits
Enum, a python built-in enumeration class, and currently has two
members: line and AST.

2.1.4 Patch. Patch is a sequence of edit operators, both atomic
operator and custom operator. During search iteration, P�GGImod-
i�es the source code of the target program by applying a patch. To
apply a patch, a sequence of edit operators should be translated into
a sequence of atomic operators. It can be possible since a custom
operator is essentially a list of atomic operators. Then, the atomic
operators modify the source codes in order.

2.1.5 TestResult. TestResult stores the result of the test
suite executions on the patched candidate program. The results
contain whether compilation succeeded, the elapsed execution time,
as well as any other user-de�ned test outputs.

2.1.6 AtomicOperator. AtomicOperator is an abstract class
for P�GGI-provided operators. Currently, there are total four classes
that inherit and specialise it as shown in Figure 2. See Section 2.3
for details of each.

2.1.7 CustomOperator. CustomOperator is an abstract class
that provides a skeleton for a user-de�ned custom operator. Custom
operators should be a sequence of atomic operators as mentioned in
Section 2.1.4. When users implement their own operators, it must
inherit the CustomOperator class and override some methods
to de�ne the intended behaviours. Custom operators can be concep-
tually described as a function, which takes some program elements
as input and outputs a list of atomic operators that operate on them.

2.2 Program Preprocessing
P�GGI pre-processes the target program before manipulating its
source code. There are currently two granularity levels, line and
AST, which correspond to the lexical and the syntactic approaches,
respectively. For the line granularity level, P�GGI transmutes source
code into a list of code lines; for the AST granularity level, it parses
the source code and stores the AST. The line granularity level o�ers
an o�-the-shelf, language agnostic modi�cations, whereas the AST
granularity level provides more structured code modi�cations. In
particular, AST level modi�cations produce patches that are more
syntactically intact, because any modi�cation of a statement AST
node will include its subtree. Figure 3 illustrates this di�erence.
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Figure 2: Simple Class Diagram of P�GGI

1 number = [-3, 4, -5, 6, 7]

2 pos_total = 0

3 for num in numbers:

4 if num > 0:

5 pos_total += num

6 print(num)

(a) Example Code

Line Lexical Syntactic

1 number = [-3,4,-5,6,7] number = [-3,4,-5,6,7]

2 pos_total = 0 pos_total = 0

3 for num in numbers:
for num in numbers:

if num > 0:
pos_total += num

4 if num > 0:
if num > 0:
pos_total += num

5 pos_total += num pos_total += num

6 print(num) print(num)

(b) Modi�cation Points

Figure 3: Comparision of modi�cation points between lexi-
cal and syntactic approaches. Note that 1) lexical modi�ca-
tion points contain indentation whitespace characters, and
2) syntactic statements include physical lines that corre-
spond to its AST subtree.

2.3 Code Manipulation
P�GGI provides atomic operators that are based on the Plastic
Surgery Hypothesis [2], which has been the fundamental assump-
tion for other state-of-the-art repair techniques such as GenProg [8].

Table 1: The list of atomic operators provided by P�GGI,
where the x and y are the indexes of modi�cation points
(note that pos is either before or a�er).

Gr. Operator Description

Li
ne LineReplacement(x, y) Replace x with y (delete x if y is None)

LineInsertion(x, y, pos) Insert(copy) y before or after x

A
ST StmtReplacement(x, y) Replace x with y (delete x if y is None)

StmtInsertion(x, y, pos) Insert(copy) y before or after x

As mentioned in Section 2.1.6, P�GGI provides four atomic oper-
ators for manipulating the source codes of the program: LineRe-
placement and LineInsertion for the line level granularity, StmtRe-
placement and StmtInsertion for the statement level granularity.
See descriptions of each operator in Table 1. The critical di�erence
between Line and AST granularity level is the unit of modi�cation.
For example, if P�GGI attempts to insert the third line somewhere
else, it would copy and insert only the single line that contains the
for in Figure 3, with the risk of a syntax error. However, inserting
the third statement means copying the entire loop with the body,
thereby avoiding the potential syntax error.

Other custom operators can be generated by combining the
atomic operators. For example, a deletion can be instantiated as a
replacement with an empty line, whereas amove can be instantiated
as an insertion followed up by a deletion, as shown in Table 2. Those
operators in Table 2 are already implemented by P�GGI for both
line and AST granularity level.

Another new feature in P�GGI allows the user to set modi�cation
weights for each modi�cation point: this allows the user to focus
modi�cations on speci�c parts of the source code. For example,
the suspiciousness scores obtained by fault localisation techniques
can be used as modi�cation weights to make P�GGI focus on pro-
gram elements that are more likely to be faulty. Once entered, the
weights are normalised and used as the probability distribution of
the roulette wheel selection of modi�cation points by each mod-
i�cation operators. If no weight values are given, P�GGI uses an
uniform distribution.

2.4 Validation & Evaluation
We need to apply the patch to the target program to evaluate a
candidate program. To avoid any unwanted interference with the
original program, P�GGI clones the entire original program into a
temporary directory when a user requests applying the patch and
makes edits in the directory.

After applying the patch, P�GGI executes the given test com-
mand to validate and evaluate the patch. We call a patch is valid
if and only if it produces a syntactically correct program and the
resulting test execution halts within the given time-out limit. The
test results, which are printed out by the test execution, are parsed
by either P�GGI or a user-provided result parser.

P�GGI returns the captured test results to the user so that they
can make use of it for evaluating the patch. For example, test results
can include the number of failing test cases or the information
about memory consumption during the test execution; the user can
write their own �tness function based on these results.
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Table 2: The list of custom operators already implemented in P�GGI, where the x and y are the indexes of modi�cation points.

Operator Translated into Description

LineDeletion(x) [LineReplacement(x, None)] Delete x
LineMoving(x, y, pos=before or after) [LineInsertion(y, x, pos), LineReplacement(x, None)] Move x before or after y
StmtDeletion(x) [StmtReplacement(x, None)] Delete x
StmtMoving(x, y, pos=before or after) [StmtInsertion(y, x, pos), StmtReplacement(x, None)] Move x before or after y

3 GRANULARITY COMPARISON STUDY
To introduce the new features of P�GGI, the AST granularity level
and the capability of accepting modi�cation weights, we have con-
ducted a small study of comparing search landscapes for automated
program repair at di�erent granularity levels. This Section presents
the details of the experimental settings.

3.1 Research Questions
To compare the line and the AST granularity level, we ask the
following research questions.

• RQ1. E�ectiveness: which granularity level is more e�ec-
tive at generating patches?

To answer RQ1, we measure various metrics during the P�GGI
repair runs. Success count is simply the number of successful repair
runs out of the total number of trials. We also compute the ratio
of valid patches, i.e., patches that do not break the syntax of the
program when applied and do not go over the time limit. Finally, we
count the number of unique plausible patches [19] (i.e., the patches
that pass all given test cases) found for each fault.

• RQ2. E�ciency: which granularity level is more e�cient
to navigate and search?

To answer RQ2, we report the number of �tness evaluation that
resulted in plausible patches, as well as the wall clock time required.
For both RQ1 and RQ2, we also undertake qualitative analysis of
successful and unsuccessful repair attempts to gain insights.

3.2 Subjects
We use the latest version of sh2, which is a full-�edged replacement
of the subprocessmodule in Python. The sh project is currently
3,583 LOC and comes with 156 test cases.

The study use seeded faults in sh: ten faulty versions of the
original program have been generated by manually mutating a
single statement. All seeded faults are repairable under the Plastic
Surgery Hypothesis [2], i.e., the correct version can be obtained by
rearranging the statements in the version with the seeded fault.

3.3 Fault Localisation and Test Filtering
We use Ochiai [16, 22] to provide the suspiciousness scores. Ochiai
scores are computed as follows:

Ochiai(ep , ef ,np ,nf ) =
efq

(ef + nf ) ⇤ (ef + ep )
(1)

where ep and ef represent the number of passing and failing
test cases that execute the given program element, respectively,
2 https://github.com/amo�at/sh

and np and nf the number of passing and failing test cases that do
not execute the given element, respectively. The resulting Ochiai
score is expected to be correlated with how likely the given element
is to be faulty. Intuitively, the higher the ef and np are, the more
suspicious the element is. If the test executes the faulty element, it
is more likely to fail (" ef ). Similarly, if the test does not execute
the faulty element, it is more likely to pass (" np ).

For the study, we provide pre-computed Ochiai scores as modi-
�cation weights. First, lines and statements are ranked according
to their Ochiai scores, with ties broken by the max tie breaker (i.e.,
tied elements are placed at the lowest rank). Subsequently, if there
are fewer than or equal to top ten distinctive lines or statements,
P�GGI considers these to form the suspicious set and only targets
elements in this set for modi�cations. If, however, it is not possible
to pick top ten distinctive elements, P�GGI targets all lines and
statements with equal probabilities.

Since the coverage measurement tool we use reports statement
coverage per physical line, Ochiai scores are computed at the line
granularity level. A statement is deemed to be in the suspicious set
if its �rst physical line is in that set. Table 3 presents the number of
total modi�cation points for line and AST granularity level, as well
as the number of suspicious modi�cation points.

The original test suite contains total 156 test cases. However, it
may be that not all test cases are relevant to the fault under repair.
In case where the Ochiai scores have identi�ed top ten suspicious
lines or statements, any passing test cases that do not execute these
have been �ltered out. If we do not have the distinct top ten target
lines or statements, we do not �lter out test cases. Table 4 lists the
number of passing and failing test cases after test �ltering. Note
that the �ltering method we adopted does not eliminate any test
cases for fault 4 and 6.

3.4 Search Algorithm and Fitness Function
Since the test suite of sh contains deterministic test cases only, it
is unnecessary for the search to reconsider previously evaluated
patches. As such, we implement and use Tabu Search [6] by ex-
tending localSearch class of P�GGI. The search maintains a record
of visited solutions, namely the tabu list, and does not go back to
any in the list. The tabu search uses three modi�cation operators:
deletion, insertion, and replacement, to generate neighbouring so-
lutions. Algorithm 1 presents the pseudo code. The tabu is initially
an empty list (Line 1). In each iteration, the search continues to
explore the neighbourhood of the current best patch, until �nding
a patch which is not contained in tabu. Once such a patch is found,
the patch is added to tabu before the search proceeds to evaluate
it (Line 19-20).

https://github.com/amoffat/sh
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Table 3: The number of total and suspicious modi�cation
points at each granularity level. Since AST level statements
can span across multiple physical lines, the number of sus-
piciousmodi�cations points for AST granularity level tends
to be equal or smaller than that of line granularity level.

Fault Index Total mod. points Susp. mod. points
Line AST Line AST

1 3,583 1,706 4 3
2 3,583 1,707 8 5
3 3,583 1,707 9 5
4 3,583 1,707 0 0
5 3,583 1,706 9 6
6 3,583 1,706 0 0
7 3,583 1,707 4 4
8 3,584 1,708 10 8
9 3,584 1,708 10 8
10 3,585 1,708 4 3

Table 4: Number of test cases after �ltering. Note that test
�ltering we use fails to eliminate any test case for fault 4
and 6.

Fault Num. of test cases after �ltering
Passing Failing Total

1 1 3 4
2 6 1 7
3 2 11 13
4 153 3 156
5 8 1 9
6 155 1 156
7 9 1 10
8 8 1 9
9 80 1 81
10 1 7 8

To evaluate each candidate solution, we use a simple �tness
function for program repair. The �tness of a patch P is the number
of failing test cases when we execute the given test cases on the
candidate program (i.e., faulty program with the candidate patch
applied). Note that we use the �ltered test suite for the �tness
evaluation. More formally,

Fitness(P) = |Tf | (2)
where Tf is a set of failing test cases. If the application of patch

breaks the syntax of the program, or the test execution exceeds the
given time budget, we assign the �tness value of + inf .

Because our purpose is comparing the line and the AST granu-
larity level, we conduct the same repair experiment for both levels.
We use three di�erent modi�cation operators: deletion, insertion,
and replacement. In the case of insertion operator, we use insertion
before only, to avoid identical patches that can be generated when
using both insert before and after.

3.5 Con�guration & Implementation
We execute P�GGI against the same fault for 20 times using line
and AST granularity level respectively. In each attempt, the tabu

Algorithm 1: Tabu Search Algorithm
input :A target program T
output :bestPatch, bestFitness

1 tabu [];
2 bestPatch emptyPatch(T );
3 bestFitness �tness(bestPatch);
4 i 0;
5 while true do
6 i i + 1;
7 if i > 2000 or bestFitness == 0 then
8 break;
9 end

10 while true do
11 patch bestPatch.clone();
12 if isNotEmpty(patch) and genRandomFloat([0, 1]) < 0.5

then
13 patch.removeRandomEdit();
14 else
15 editOp = randomChoice(delete , replace , insert );
16 patch.add(editOp.create(T ));
17 end
18 if not patch in tabu then
19 tabu.append(patch);
20 break;
21 end
22 end
23 fitness �tness(patch);
24 if fitness < bestFitness then
25 bestPatch patch;
26 bestFitness fitness;
27 end
28 end

search is given the budget of 2,000 �tness evaluations: the stopping
criterion is either when the budget expires, or when a plausible
patch [19] is found. Test executions time out after 20 seconds.

As described, we use Ochiai formula to compute the suspicious-
ness scores: the coverage data has been collected using a widely
used Python coverage measurement tool, coverage.py 3. The
experiment has been conducted on a PC with Intel Core i7-7700
CPU and 32GB memory running Ubuntu 16.04, using Python 3.6.2.
P�GGI uses astor 4 to manipulate the Python AST.

3.6 Results
This section presents the results from our study. Table 5 shows the
comparative results from two granularity levels.

3.6.1 E�ectiveness (RQ1). Among the total ten faults, we suc-
ceed to �nd the plausible patches for the six faults: 1, 2, 3, 7, 8, and
10. In case of the faults 4, 6, and 9, the �ltered test suites still do
not �nish within the time-out limit of 20 seconds, resulting in test

3https://bitbucket.org/ned/coveragepy
4https://github.com/berkerpeksag/astor

https://bitbucket.org/ned/coveragepy
https://github.com/berkerpeksag/astor
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Table 5: Comparison of the line and the AST granularity level in the automated repair of seeded faults in sh. Results are
averaged from twenty repeated runs. The last column presents the number of unique correct patches in the parentheses.

Fault Index Successful Runs Valid Patch Rate (%) Num. of Evaluations Elapsed Time (s) Plausible Patches
Line AST Line AST Line AST Line AST Line AST

1 1 4 51.24 98.67 1708 976.5 720.81 588.62 1(1) 1(1)
2 20 20 30.21 84.96 602.1 11.3 1,516.91 88.07 19(0) 8(0)
3 1 1 33.31 94.94 2 745 12.68 1,818.60 1(1) 1(1)
4 0 0 0 0 - - - - - -
5 0 0 39.88 99.88 - - - - - -
6 0 0 0 0 - - - - - -
7 2 9 39.20 93.29 792.5 1,041.78 2,718.60 7,107.22 2(0) 4(1)
8 20 20 55.29 99.65 14.65 14.2 15.32 18.90 3(3) 3(3)
9 0 0 0 0 - - - - - -
10 20 19 37.5 56.06 9.6 3.37 13.87 31.10 7(6) 7(1)

failures and +inf �tness for all candidate patches. Consequently,
P�GGI fails to generate any patches for these. For fault 5, P�GGI
�nds no plausible patch at all, even though the actual faulty line
was chosen to be suspicious. We investigate this in more detail in
Section 3.6.3.

To answer RQ1, we �rst compare the success rates shown in Ta-
ble 5. On all repaired faults, which have at least one plausible patch,
except 1 and 7, both granularity levels succeed similar number of
times. However, for fault 1 and 7, P�GGI succeed roughly four times
more frequently at the AST level than at the line level. We posit that
this di�erence stems from the di�erent nature of these faults. Let us
divide the six repaired faults into two categories. The �rst category
includes fault 1, 3, and 7: these faults require speci�c ingredients to
be repaired. The second category includes fault 2, 8, and 10: these
faults can be repaired to pass all tests without requiring speci�c
ingredients, i.e., either by deleting it or replacing it with an ingredi-
ent that does not a�ect the program behaviour (such as inserting
an assignment that is overwritten afterwards without being used).

In the �rst category, except for the fault 3, the AST level achieves
a much higher success rate compared to the line level. We can relate
this results with the number of total ingredients (i.e., modi�cation
points) shown in Table 3. When P�GGI pre-processes a program
at the line granularity level, the number of ingredients is about
twice as large as that of the AST granularity level. Consequently,
the probability of �nding a correct ingredient in the given budget
is lower than that of the line level.

Fault 3 is the sole exception in the �rst category that cannot be
explained by the size of the ingredient space. However, as shown
in Table 4, the fault 3 has twice as many suspicious lines as fault
1 and 7. The larger the number of candidate lines to modify, the
wider the search space becomes, and consequently fault 3 is much
harder to �x than fault 1 and 7. As a result, it has a very low success
rate of 1 out of 20 regardless of the granularity level. To summarise,
the �rst category of faults are harder to �x due to the large search
space (either due to the large number of ingredients or suspicious
targets), although AST granularity level seem to be at least more
successful than the line level in the case of fault 1 and 7.

On the contrary, the repair for the faults in the second category
does not require speci�c ingredients and, as such, their success

does not depend on the size of the ingredients, or even the number
of total modi�cation points. Furthermore, the nature of these faults
means that it is easier to repair them within the given budget,
compared to the faults in the �rst category.

Since the two levels generate a plausible patch for the same
fault sets, we tried to establish the correctness of the found patches.
First, we executed the un-�ltered test suite against all patches: all of
the generated plausible patches passed the entire test suites. Next,
we manually investigated the correctness of the plausible patches
to provide qualitative answers to RQ1. We de�ne a correct patch
as a patch that modi�es the version with the seeded faults to be
semantically equivalent to the original one again. The last column
of Table 5 presents the number of unique correct patches in the
parentheses.

1 @@ -1583,7 +1583,7 @@
2 handler_to_inspect = handler.func
3
4 if inspect.ismethod(handler_to_inspect):
5 - implied_arg = 0
6 + implied_arg = 1
7 num_args = get_num_args(handler_to_inspect)
8
9 else:

Figure 4: Correct patch generated for the fault 7: Replacing
the 736th statement with the 740th statement.

Only the AST granularity level could generate a correct patch
for the fault 7, which is shown in Figure 4. It repairs the faulty pro-
gram to be the same as the original program. Because the required
ingredient (Line 5) originally has a di�erent indentation level from
the target modi�cation point (Line 4), it can be repaired only at the
AST granularity level. The attempt to perform the same insertion at
the line granularity level results in a syntax error, as the insertion
would copy the indentation whitespace character along with the
contents of the line, which results in a violation of the indentation
rule Python uses to organise its code. Note that this would not have
caused any problem in languages such as Java or C.

Manual inspection of patches generated for fault 2, 8, and 10
provides interesting insights into test-based program repair. Fault 2
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1 @@ -741,7 +741,7 @@
2 pipe = OProc.STDERR
3
4 if call_args["iter_noblock"] == "out" or

call_args["iter_noblock"] is True:
5 - pipe = OProc.STDOUT
6 + pipe = OProc.STDERR
7 elif call_args["iter_noblock"] == "err":
8 pipe = OProc.STDERR

Figure 5: Fault 2.

redirects some of the program output to the STDERR as in Figure 5.
There is no test case to check that the program output should be
made to STDOUT. Consequently, P�GGI can replace pipe = OProc

.STDERR with any side e�ect free statement to generate plausible
patches, but fails to generate a correct patch.

Fault 8 and 10 illustrates an interesting contrast between the line
and AST granularity level. Figure 6 and 7 present these faults.

1 @@ -1525,6 +1525,7 @@
2 elif v is False:
3 pass
4 elif sep is None or sep == " ":
5 + processed.append(encode(k))
6 processed.append(encode(prefix + k))
7 processed.append(encode(v))
8 else:

Figure 6: Fault 8.

1 @@ -2574,6 +2574,8 @@
2 raise NotYetReadyToRead
3 if chunk is None:
4 raise DoneReadingForever
5 + else:
6 + raise DoneReadingForever
7 return chunk
8 return fn

Figure 7: Fault 10.

Fault 10 in Figure 7 is generated by inserting two lines of code
(and consequently forces the program to always raise an excep-
tion), whereas fault 8 inserts only one line of code. In both cases,
inserted lines need to be removed for repair. However, fault 10
can be repaired by either removing else: or replacing raise

DoneReadingForever with something without any side e�ects. The
possibility of using the replace-with-no-side-e�ect tactic, combined
with two possible modi�cation points, provides a much productive
search space for fault 10, because P�GGI can simply replace either
line with any of the single line comments.

To summarise, the AST granularity level modi�cations are more
reliable than the line granularity level in terms of �nding both
plausible and correct patches. Furthermore, the statement-level
manipulation can generate a correct patch that cannot be produced
with the line-level manipulation.

3.6.2 E�iciency (RQ2). To compare the e�ciency, we report the
number of �tness evaluations and the wall clock time required until
�nding the �rst plausible patch in each trial. The average values
are shown in Table 5.

For all the faults except 3 and 7, the AST level requires fewer
�tness evaluations to �nd a plausible patch compared to the line
level. On the contrary, the line level spends less time than the
AST level except for fault 1 and 2. Since the AST granularity level
yields a signi�cantly larger number of valid (i.e., syntactically intact)
patches, more AST level patches (including unsuccessful ones) are
evaluated by test execution, resulting in longer overall execution
time of P�GGI. In comparison, the majority of patches created by
the line level modi�cations are syntactically incorrect, and can be
evaluated without invoking test executions.

In summary, the �tness evaluation required to �nd a plausible
patch is generally less at the AST level, but the overall execution
time is longer due to the larger number of test executions.

3.6.3 Case study of fault 5. In the experiment, P�GGI could not
�nd any plausible patch for fault 5. To investigate the cause, we
look at how the fault was generated. Figure 8 shows the di�erence
between the original and the version with fault 5 seeded.

1 @@ -1526,7 +1526,7 @@
2 pass
3 elif sep is None or sep == " ":
4 processed.append(encode(prefix + k))
5 - processed.append(encode(v))
6 +
7 else:
8 arg = encode("%s%s%s%s" % (prefix, k,

sep, v))
9 processed.append(arg)

Figure 8: Fault 5.

The statement at Line 4 was included in the set of suspicious
points. However, this fault is impossible to be repaired because
of the nature of insert operator that we used. The insert operator
employed in this study inserts the ingredient before the modi-
�cation points, but, as shown in the �gure, the deleted statement
(Line 5) must be inserted after the point.

Therefore, we conducted an additional experiment for fault 5
using insert after instead of insert before for a fair comparison
between the line and the AST granularity level. At the AST level, a
plausible patch was generated in �ve out of twenty runs, and they
contained a correct patch. However, no plausible patch was found
at the line granularity level runs.

4 RELATEDWORK
Genetic Improvement (GI) has received much attention [17] since
GenProg demonstrated that Genetic Programming can be harnessed
to automatically patch program faults using only dynamic analysis
(i.e., test executions) as the �tness function [5, 20]. Automated
Program Repair (APR) is now a rapidly advancing area [10, 12–15].
Langdon and Harman showed that the same GP based approach can
be used to improve non-functional properties of software [11]; Petke
et al. showed how software systems can be specialised for certain
classes of inputs [18]. A large portion of existing literature can be
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categorised as Generate and Validate method, i.e., generating many
candidate solutions using either evolutionary or othermetaheuristic
algorithms, and validate whether they are acceptable, usually by
test executions.

P�GGI aims to provide a general framework on which GI tech-
niques can be developed at the API level. There are open source
implementations of GI techniques. For example, ASTOR [13] is a
suite of both Java re-implementations of existing APR approaches
and new ones developed by the authors. While ASTOR does have
some common infrastructure shared by di�erent GI implementa-
tions, the main design purpose is not to expose the infrastructure to
the end user. GIN [21] is a Java framework whose design aim is the
closest to ours, i.e., to be used by the end user. The main di�erences
are 1) the choice of implementation language (we choose Python
as we think it is more appropriate for fast prototyping than Java)
and 2) the suggested use case (we aim to provide API-level usage,
whereas GIN requires the end user to more directly interact with
its own source code). Notably, Haraldson et al. deployed a Python-
based GI implementation that is integrated into a live production
system called Janus Manager [9]. While P�GGI and the work of
Haraldson et al. share the same target language, Python, P�GGI
aims to provide a general framework for GI whereas Janus Manager
is a GI process integrated to a speci�c application.

5 CONCLUSION
We present a new version of P�GGI, a Python general framework
for Genetic Improvement. It has been designed to be used at the API
level: the new version supports AST granularity level modi�cations
for Python, i.e., modi�cations that handle statement nodes in the
AST rather than statements marked by physical lines, which was
what the previous version depended on. We use the new features to
conduct a study of comparing search landscapes at di�erent gran-
ularity levels for Automated Program Repair, using a real world
Python open source project and seeded faults. The results show
that the AST granularity level and the corresponding search land-
scape can be more e�ective (i.e., more frequently results in plausible
patches) because they result in smaller ingredient spaces (i.e., fewer
modi�cation points). However, because the AST granularity level
tends to result in much larger number of syntactically intact candi-
date patches, it may also lead to less e�ciency and longer execution
time due to the higher number of test executions.
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