
Babel Pidgin: SBSE Can Grow and Graft Entirely

New Functionality into a Real World System

Mark Harman, Yue Jia, and William B. Langdon

University College London, CREST centre, UK

Abstract. Adding new functionality to an existing, large, and perhaps
poorly-understood system is a challenge, even for the most competent hu-
man programmer. We introduce a ‘grow and graft’ approach to Genetic
Improvement (GI) that transplants new functionality into an existing
system. We report on the trade offs between varying degrees of human
guidance to the GI transplantation process. Using our approach, we suc-
cessfully grew and transplanted a new ‘Babel Fish’ linguistic translation
feature into the Pidgin instant messaging system, creating a genetically
improved system we call ‘Babel Pidgin’. This is the first time that SBSE
has been used to evolve and transplant entirely novel functionality into
an existing system. Our results indicate that our grow and graft approach
requires surprisingly little human guidance.

1 Introduction and Backgroud

Despite much progress in software development environments, programming still
includes many human activities that are dull, unproductive and tedious. In this
paper we propose a new SBSE approach to software development: Grow and
Graft, in which a new feature is grown (using genetic programming) and sub-
sequently grafted into an existing system. This grow and graft development
approach aims to reduce the amount of tedious effort required by human pro-
grammer in order to develop and add new functionality into an existing system.

Our approach is inspired by the recent trend in Search Based Software Engi-
neering (SBSE) called ‘genetic improvement’ [2,8,10,11,14,15]. Genetic
Improvement (GI) uses existing code as ‘genetic material’ that helps to au-
tomatically improve existing software systems. It has been used to repair broken
functionality [10,14], and to achieve dramatic scale-ups for sets of small bench-
marks [11,15], and also for a 50k LoC genome matching system [8], for graphic
shaders [14] and for a CUDA stereo image processing system [7]. Related work
on loop perforation has also reported dramatic speed-ups [13]. GI has also been
used to port one system to a new version on a different platform [6].

Recently, it has been demonstrated [12] that GI can be used to transplant code
[3] from one version of a system to another. In this previous transplantation work
[12], code from several versions of MiniSAT (the ‘donor’) were transplanted into
a specific version of MiniSAT using GI. The aim of this transplantation was to
improve execution time for a specific task (Combinatorial Interaction Testing).

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 247–252, 2014.
c© Springer International Publishing Switzerland 2014

248 M. Harman, Y. Jia, and W.B. Langdon

Our approach to software transplantation is to grow code for new functional-
ity, rather than to improve existing non-functional properties of the system (such
as execution time). We provide empirical evidence that grow and graft is, indeed,
achievable on a large real-world system. Specially, we report on two grafting op-
erations, carried out to insert new functionality into Pidgin, a 200kLoC C/C++
instant messaging system which has several million users worldwide.

In our first illustrative operation, we grafted a simple human-written ‘count-
down’ code fragment. This graft augments Pidgin with the new feature that all
the user’s messages include the time remaining to the SSBSE 2014 challenge
deadline. This example simply serves to illustrate the application of our grafting
approach. We then report on a more challenging transplantation, in which we
grew and grafted a new feature that augments Pidgin with a ‘Babel Fish’ that
simultaneously translates the user’s English language instant messages into Por-
tuguese and Korean. This new functionality is sufficiently anachronistic that we
can be relatively sure that no human has hitherto developed it. Nevertheless, it
might be useful for improving communications between users who happen to be
American, Brazilian and Korean; the general and co-program chairs of SSBSE
2014 and the chair of the SSBSE 2014 challenge track, for example.

1. Grow: First, we use Genetic Programming (GP) to grow, in isolation, frag-
ments of code partly guided by ‘suggestions’ provided by the developer. The
suggestions consist of the names of library functions the developer believes may
be important and partial ordering constraints on when they should be called.
The human may also provide a few necessary conditions for correctness that
the programmer knows, from his or her intuition, ought to hold in any correct
solution. Our approach thus does require a small contribution from the human
to capture functionality (with tests) and to constrain the search space with high
level humanly-intuitive suggestions; the rest is entirely automated. However the
programmer is not required to choose any specific variable names, nor assignment
statements nor expressions, nor to construct any specific calls, nor to determine
where any of the statements should reside within the system to be improved.

2. Graft: The working prototype grown by GP is a fragment of code that
implements the desired functionality, but which does so entirely in isolation. The
remaining challenge is to find a way to incorporate our GP-grown fragment into
the larger real-world system. This is the task of the second, ‘grafting’, phase
of our Grow and Graft approach. Grafting the donor fragment involves two
activities: finding a viable host insertion location (or locations), and identifying
the expressions that serve as parameters between the donor and the host.

This is the first time that either the SBSE or GP community has reported the
successful evolution of entirely new functionality in a real world software system.
Previous work has either concentrated on improving non-functional properties
or repairing existing broken functionality rather than growing genuinely new
functional behaviour. We believe that the ability to extend existing real world
systems in this way may open many exciting possibilities: Future work can use
Grow and Graft to invent software development approaches that blend a small
amount of human intuition with a large amount of automated search.

Babel Pidgin: SBSE Can Grow and Graft Entirely New Functionality 249

2 Grafting an SSBSE Challenge Deadline Countdown

A small fragment of C code count down() was written by hand, in complete
isolation from Pidgin, and by a programmer unfamiliar with Pidgin. The code
fragment takes the current time and returns a string containing the number of
days to the SSBSE Challenge Deadline. In this case, the grow phase is trivial,
since we need only a single line of code and this is supplied by the programmer.
We can thus focus on and explain our fully automated grafting process that
transplants [3] the new functionality into Pidgin.

We grafted the countdown into the Pidgin Timestamp 2.10.9 plugin. We used
this plugin as a template into which the code is grafted. In the pidgin plugin there
is only one variable of type time t, but there are five variables of type char*. We
implemented a simple grafting tool that instantiates each possible value of the
template, inserting it before each line of the existing Timestamp 2.10.9 code.
There are 14 possible insertion points and 7 possible value substations, so the
search space is 7 × 14 = 98, of which 69 compiled and ran without error and 2
also passed all test cases. The grafting process took 13 seconds on a 2.66 GHz
2-core machine with 1Gb RAM.

In this case, grafting is an enumerable search problem. However, for larger
systems, grafting may, itself, be an SBSE challenge. Grafting was made easier
by the Pidgin plugin mechanism, which reduced the graftable search space. We
needed only to graft code into the plugin, rather than the whole system. In
general, any form of modularity could also be used to reduce the graft space.

3 Growing and Grafting Babel Fish into Pidgin to Create
Babel Pidgin

We seek to grow a new functionality (which we christen ‘Babel Fish’) and then to
transplant this into the Pidgin plugin Text Replacement 2.10.9 using grafting,
as we did in Section 2.

Growing the Babel Fish requires Genetic Programming (GP). Our GP system
is strongly typed and evolves imperative language code statement sequences, the
statements of which are either function calls or assignments. The GP system
takes a grammar and a source template as input. The grammar specifies a list of
data types and functions suggested by the developer as likely to be useful. For
growing a Babel Fish we (the programmer in this example) provided the GP with
the names of the GoogleTranslateAPI call for Portuguese and Korean together
with the names of string processing library functions (concat and strlen). Of
course, this is a significant help to the GP, which could hardly be expected to
‘discover’ that it should call GoogleTranslate, for example. Nevertheless, such
suggestions clearly also denote the most trivial application of human intuition.

The GP system applies a single-point crossover operator with a probability
of 0.8. After crossover, one of three mutation operators is applied (selected with
uniform probability). The three mutation operators are variable replacement,
statement replacement and statement swapping.

250 M. Harman, Y. Jia, and W.B. Langdon

We use an aggressive elitism selection process that replicates the best indi-
vidual and inserts it into the new population between 1 and 250 times with a
Coupon Collector Distribution (with expected mean of 197 so, typically, 197 in-
sertions). Our approach to elitism aims to ensure sufficient retention of promising
code schema in the gene pool. The population size is 500 and the GP terminates
when best fitness remains unchanged for 20 generations. All experiments were
repeated 30 times to allow for inferential statistical comparison of results.

We experimented with 8 different
Category Description of fitness component

1 Essential Compiles using gcc
2 Essential Must not crash
3 Essential No system warnings appear
4 Essential Correct output

5 Necessary Portuguese-trans gets correct string
6 Necessary Korean-trans gets correct string
7 Necessary concat gets correct string
8 Necessary Output contains Portuguese-trans
9 Necessary Output contains Korean-trans
10 Necessary Output is different from input

11 Inclusion Call to Portuguese-trans
12 Inclusion Call to Korean-trans
13 Inclusion Call to get text buffer
14 Inclusion Call to set text buffer
15 Inclusion Call to buffer start
16 Inclusion Call to buffer end
17 Inclusion Call to strlen
18 Inclusion Call to concat

19 Ordering buffer start before get text
20 Ordering buffer end before get text
21 Ordering Portuguese-trans after get text
22 Ordering Korean-trans after get text
23 Ordering Portuguese-trans before set text
24 Ordering Korean-trans before set text

Fig. 1. The 24 Fitness Components Used

fitness functions, composed of subsets
of 24 equally-weighted fitness compo-
nents drawn from those defined in
Figure 1 on the lefthand side of this
page. We do this in order to under-
stand the trade off between human
(programmer) effort and automated
(GP) effort. In an ideal world, the
GP would do all the work. However,
since traditional GP has tended to
grow only simple and small functions
rather than whole programs [5,9] this
may be unrealistic. It may also be un-
necessary; the programmer need only
offer a few simple and (to a human)
naturally intuitive suggestions of
criteria she or he expects to be im-
portant in any correct solution. Natu-
rally, we would prefer that the human
would be required to provide the least

information possible to guide the GP, since we wish to place the least possible
software development burden on human shoulders.

In order to experiment with this human-machine tradeoff, we categorised our
fitness functions into four distinct categories: (E)ssential, (N)ecessary, (I)nclusion
and (O)rdering. Essential fitness captures the implicit test oracle [4] required by
any implementation of any program and therefore requires no human guidance.
Necessary fitness consists of properties that the programmer knows will be neces-
sary in any correct solution for the problem in hand. The Inclusion category lists
the names of library functions that the programmer believes may prove useful.
Finally, the Ordering category is a mechanism through which the programmer
specifies partial ordering constraints on the calls made during execution.

Even if the programer were to be asked to provide all of this information,
then the (human) effort required would be relatively low. Certainly, human effort
would be lower than that required were the human asked to write the program
extension from scratch, and to work out how it should interface to the existing
system, and to determine where it should be located.

Babel Pidgin: SBSE Can Grow and Graft Entirely New Functionality 251

3.1 Results from Growing and Grafting Babel Fishes

Figure 2 (on the left) presentsFitness Components successful mean fitness
name used growths (p val. evaluations

(see Fig. 1) compares to E) (N = 30)
E 1..4 0 (p=N/A) 10,500
EI 1..4,11..18 0 (p=N/A) 10,833
EO 1..4,19..24 0 (p=N/A) 11,333
EN 1..4,5..10 2 (p=0.306) 15,483
EIO 1..4,11..24 1 (p=0.500) 13,366
ENI 1..4,5..10,11..18 8 (p=0.030) 16,266
ENO 1..4,5..10,19..24 7 (p=0.044) 14,516
ENIO 1..24 9 (p=0.020) 15,800

Fig. 2. Results for Babel Fish Growth

the results of our experiments on 8
different fitness functions. In order
to more rubustly analyse the results
we use a nonparametric two-tailed
binomial test to compare the num-
ber of successful transplants that
we achieved using the essential fit-
ness, E, with each and all of those
we achieved using fitnesses EI to

ENIO in Figure 2. We use the Hochberg correction in order to account for the
fact that we are performing five different inferential statistical tests. With an α
level of 0.05, this corrected statistical test indicates that the result for ENIO is
significantly different to that for E (with a Vargha-Delaney Â12 effect size 0.64).
The p values for ENO and ENI are also smaller than 0.05, but are not considered
significant after the Hochberg correction has been applied.

As we expected ENIO, which provides the most guidance to the GP, performs
the best: almost a third of its runs result in a successful Babel Fish transplant into
Pidgin. This result is statistically significantly better than the results obtained us-
ing the essential fitness E alone, which provides insufficient guidance. The results
for other fitness choices are also encouraging.They indicate that the growand graft
approach can augment existing real world systems with new functionality, guided
by only very modest (and easily obtained) human intuition. Our results provide
evidence that the most powerful form of guidance comes from assertions that cap-
ture necessary conditions for correctness. Simply adding these simple and intuitive
necessity constraints (N) to the essential fitness components (to give EN) leads to
successful transplants. However, of all the fitness components with which we ex-
perimented, we speculate that defining such necessary constraints would tend to
require themost programmer knowledge and effort. It is therefore encouraging that
simply using Inclusion and Ordering constraints (EIO fitness in Figure 2) is suffi-
cient to guide the search to a successful transplant. We believe that this result is
exciting because it provides an existential proof that a real world systems can be
augmented with new functionality with the most meagre of human guidance.

Figure 2 reports results for growth. The graft phase is entirely automated.
There are 23 possible insertion points and 2 possible value substitutions, giving
a graft space of 46. We use the Babel Fish whose growth was guided by EIO
fitness to illustrate graft performance over all our evolved Babel Fishes. Since
it was grown with least human effort, it is encouraging that, like all our Babel
Fishes, it has at least one successful graft point. Of the 46 graft attempts, 2 failed
to compile, 3 crashed, 24 executed without crashing, but failed the functionality
test, while 17 were grafted entirely successfully (and thus equally good). The
grafting tool enumerated all 46 solutions in 24s. Computationally and concep-
tually, grafting is surprisingly easy and effective.

252 M. Harman, Y. Jia, and W.B. Langdon

4 Conclusions

We have demonstrated that Genetic Improvement can be used to grow code
features in isolation, largely oblivious of the system into which they are subse-
quently to be grafted. Surprisingly little human guidance and domain knowledge
is required. Future work will investigate further the minimal human guidance re-
quirement for Grow and Graft Genetic Improvement (GGGI).

Acknowledgement. This work is part supported by the DAASE [1] andGISMO
projects [2].

References

1. Harman, M., Burke, E., Clark, J.A., Yao, X.: Dynamic adaptive search based soft-
ware engineering (keynote paper). In: ESEM, pp. 1–8 (2012)

2. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge: Constructing the pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In: ASE, pp. 1–14 (2012)

3. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engi-
neering (keynote paper). In: WCRE (2013)

4. Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: A comprehensive survey of trends
in oracles for software testing. Tech. Rep. Research Memoranda CS-13-01, Depart-
ment of Computer Science, University of Sheffield (2013)

5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

6. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: IEEE World Congress on Computational Intelligence, pp. 1–8. IEEE (2010)

7. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software. In: Eu-
roGP (to appear, 2014)

8. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation (TEVC) (to appear, 2014)

9. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer (2002)
10. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software

repair. Software Quality Journal 21(3), 421–443 (2013)
11. Orlov, M., Sipper, M.: Flight of the FINCH through the java wilderness. IEEE

Transactions Evolutionary Computation 15(2), 166–182 (2011)
12. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement

& code transplants to specialise a C++ program to a problem class. In: EuroGP
(to appear, 2014)

13. Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.C.: Managing per-
formance vs. accuracy trade-offs with loop perforation. In: FSE, pp. 124–134 (2011)

14. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM Transactions on Graphics 30(6), 152:1–152:11 (2011)

15. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE
Transactions on Evolutionary Computation (TEVC) 15(4), 515–538 (2011)

	=.24em plus .1em minus .1em Babel Pidgin: SBSE Can Grow and Graft Entirely New Functionality into a Real World System
	Introduction and Backgroud
	Grafting an SSBSE Challenge Deadline Countdown
	Growing and Grafting Babel Fish into Pidgin to Create Babel Pidgin
	Results from Growing and Grafting Babel Fishes

	Conclusions

