
A Trillion Genetic Programming Instructions per Second

4.7.2022

W. B. Langdon, UCL

http://arxiv.org/abs/2205.0325

Goal build a genetic programming system which can 
run unconstrained for 100,000 generations, even a 
million generations, in a reasonable time on available 
hardware.

GP trees bloat, these are huge.

http://arxiv.org/abs/2205.03251


Cheats and how you can used them

W. B. Langdon, UCL

http://arxiv.org/abs/2205.0325

2

http://arxiv.org/abs/2205.03251


To come Clean

 Up to 1.1 1012 GP operation per second is for fastest run.
● <4 days, 73,000 generations, max GP tree 2,000,000,000
● Turning off statistics saves 70%.

 Average across whole run.
 Used 16 cores via Posix threads (C++ code allows up to 96)
 AVX-512 Intel vector instructions doing 16 test case in parallel
 Equivalent to 1012 because optimised code avoids doing work.

 Slides for possible discussion areas
1. Converting Singleton’s GPquick for SIMD interpreter
2. Importance of no side effects
3. Multi threaded crossover and fitness evaluation 
4. Incremental fitness evaluation in deep trees
5. Evaluating fitness before crossover
6. Fatherless crossover 33



Single Instruction Multiple Data (SIMD) 
GPquick using AVX-512

 Since about 2005 CPU clock speeds not doubling, but Moore’s 
law still giving extra transistors. These are used to give cheap 
parallel computing

 Intel AVX introduced in Xeon Phi accelerator cards (much like 
GPU [1])

 SSE 128, 256 or AVX 512 now included in many servers and 
desktops. (ARM ≤ 2048 bits)

 SIMD vector instructions do one operation on whole vector
● Eg 512 bits = 16 floats
● multiply 16 pairs of numbers
● giving 16 answers, in one clock tick

 Given other non-parallel code, can in practice get speed up 
overall of > 3 (rather than 16)

W. B. Langdon, UCL 4

http://gpbib.cs.ucl.ac.uk/gp-html/langdon_2008_eurogp.html


 GPquick

 C++ code written by Andy Singleton [1]
 Implements Keith & Martin’s Advances in GP (1994) [2]
 Using known branching factor of each internal node, GP trees 

are flatten into byte array of opcodes
● 8 bit opcode limits size of function set + terminal set ≤ 255

 Compact linear representation one byte per tree node (allows 
trees of 2 billion nodes)

 Top down recursive interpreter:
● traverse tree in byte order once per test case

 Originally steady state, now separate generations are used [3].

5

http://gpbib.cs.ucl.ac.uk/gp-html/singleton_byte.html
http://gpbib.cs.ucl.ac.uk/gp-html/kinnear_keith.html
http://gpbib.cs.ucl.ac.uk/gp-html/langdon_2020_small_mem_ga_2pages.html


 GPquick using AVX-512
 Instead of processing tree once per test case, process each 

opcode once doing all test cases in parallel.
 Tree processed only once (gives savings if tree too big for 

cache).
 For simplicity reduce number of test cases from 50 to 48 (ie 3 

times 16).
 Top down recursive evaluation uses implicit stack (32 bits) 

replaced by (cache aligned) explicit stack 48 floats wide.
 Explicit stack (one per thread) allocated at start up.

● Stack depth sets maximum tree depth
● either user defined pMaxDepth or 100+10(pMaxExpr)1/2

● average height of binary tree = 2√2πn + O(n1/4)
 Rewrote interpreter per opcode functions to use AVX and 

external stack

W. B. Langdon, UCL 6



 AVX-512 AddEval    _mm512_add_ps()

 Eval recursive call for each of function’s arguments
 For loop i+=16 to process whole test set, leave answer on stack

W. B. Langdon, UCL 7



 SSE-256 ConstEval    _mm256_store_ps()

 ≤ 250 constants available. 
 Copy from constlist [index by opcode] to stack

W. B. Langdon, UCL 8



 AVX-512 XEval    _mm512_store_ps()

 OPDEF GPquick macro used to define parts of its interpreter
 Copy all X values for all test cases on to stack
 _mm512_store_ps or memcpy
 Increment explicit stack pointer and return

W. B. Langdon, UCL 9



Multi-core GPquick using POSIX threads
 24 cores, each with AVX (24 x 16 = 384 flops per tick)
 Parallel both interpreter and crossover
 Ensure repeatability (and hence test ability)

● All pseudo random number operations done in sequential code
● Tournament selections made and crossover points chosen and 

stored before starting next generation 

W. B. Langdon, UCL 10



Absence of Side Effects
 Most tree genetic programming evolves expressions without 

side effects.
● Exceptions include:

● genetic programming with memory [1, 2]
● evolving agents, eg 

● Sante Fe Ant [3] and robot soccer [4]

 Without side effects expression can be evaluated in any order
● View expression as tree and evaluating the expression as 

processing each node in the tree. As long as we deal with the 
whole tree and ensure we pass intermediate values correctly, 
we are free to process the nodes in any order.

 Use flatten representation to navigate up tree as well as down

W. B. Langdon, UCL 11

http://gpbib.cs.ucl.ac.uk/gp-html/fairs94_teller.html
http://gpbib.cs.ucl.ac.uk/gp-html/langdon_book.html
http://gpbib.cs.ucl.ac.uk/gp-html/langdon_1998_antspace.html
http://gpbib.cs.ucl.ac.uk/gp-html/Andre_1999_ETD.html


No side effects so Top Down = Bottom Up

Left: Conventional top-down recursive evaluation of 
(SUB 0.026 (DIV(SUB (MUL -0.826 -0.718) X) X)). X=10.

Blue integers indicate evaluation order, red floats are 
node return values. 

Right: an alternative ordering, starting with leaf -0.826 
and working to root node. 

Both return exactly the same answer. 12

https://www.ucl.ac.uk/crest/


Trees are huge, Still not fast enough:
Avoid work

 Earlier work, eg
● Simon Handley stored whole evolved population as single 

graph (DAG) [1].
● Possible to cache subtree evaluations
● Needs huge memory, forever chasing pointers? 
● Did not exploit population convergence

 99% are the same, why do we recalculate the same fitness 
value over and over again?
● Regression tests: compare with original run
● Note where failed disruption propagation occurs [2], ie where 

disrupted and original evaluations becomes identical.
 Incremental Fitness Evaluation, EuroGP 2021 [3]

W. B. Langdon, UCL 13

http://gpbib.cs.ucl.ac.uk/gp-html/Handley_1994_DAGpcp.html
http://gpbib.cs.ucl.ac.uk/gp-html/langdon_2022_GECCO2.html
http://gpbib.cs.ucl.ac.uk/gp-html/langdon_2021_EuroGP.html


Genetic difference ≠> phenotypic difference
 Mum and child are identical except for inserted & 

removed subtrees.
 If by chance inserted & removed subtrees are identical:

● mum and child are identical and so have the same fitness

 If inserted subtree evaluates to same value as removed 
subtree on every test case:

● mum and child (at root node) evaluate to same value on 
every test case

● genetic difference but mum and child have identical fitness

 What if the inserted subtree evaluates to different values 
to that given by remove subtree?

● If we evaluate both child and mum starting at the change, 
there is a progressive fall in the number of test cases where 
the change is visible as we move towards the root node.

W. B. Langdon 14

https://www.ucl.ac.uk/crest/


Evaluate both trees from change up
 Mum and child are identical above change.
 Fitness evaluation is identical except on route from 

change to root node.
 Evaluate both mum and child up this path.
 If they evaluate to identical values at any point then they 

evaluate to same value on the rest of the tree, including 
the root node:
● semantic difference => identical fitness.

15

Evaluate mum in red. Evaluate child in blue. 
Inserted code (DIV (DIV 0.979 X) X) in blue. 
Here incremental evaluation proceeds 38 levels 
up the child tree before both mum and child 
evaluations are identical on all 48 test cases.

Functions lose information and so can give same 
output even with different inputs. 

https://www.ucl.ac.uk/crest/


Evaluate both trees from change up
New code in red. Can stop fitness evaluation early as mum 
and child are phenotypically identical on all test cases. 

16

● Evaluate from crossover point towards root.
● White nodes would have been evaluated anyway.
● Coloured nodes evaluated twice (once for mum and once for child).
● Do not reach root node, so grey nodes not evaluated.
● In deep trees incremental evaluation can be orders of magnitude faster.

● Evaluation times very variable, giving thread imbalance

https://www.ucl.ac.uk/crest/


Fitness a thousand times faster:
Bottleneck is memcpy in crossover, so do

Fitness First
 Avoid useless crossovers and mutations
 If a child does not have children; do not create it [1].
 Fitness of child can be calculated exactly from parents’ code
 Do this before creating child !
 Early in GP run with typical strong selection, 60% of population 

does not have any children (but trees may be small). 
 Saving depends on degree of convergence and number of 

parents:
● Two parents and 7-tournament, 60% have no children [GPTP 2021]

● For 2 parents 100% convergence, e-2 14% have no children.
● 1 parent 100% convergence, e-1 37% have no children.

 (No longer order of magnitude speed ups, worth having?)

17

http://gpbib.cs.ucl.ac.uk/gp-html/poli_2006_AIJ.html
http://dx.doi.org/doi:10.1007/978-981-16-8113-4_8


Fatherless Crossover:
Less memory + Faster crossover?

 Father donates small subtree
 Mother donates rest (ie most) of code.
 Where trees are huge, donated code is tiny in comparison and 

can be saved before crossover on heap (< 1 megabyte)
 Fathers no longer needed and can be deleted. 
 Effectively gives 1 parent crossover. 
 In converged population e-1 (37%) do not have children.
 Even without fitness first, some saving as more parents have 

only one child [next slide]

 With fitness first, memory usage can be below population size!

W. B. Langdon, UCL 18



 Regular GPquick Crossover

 Two parents (mum left, dad right). One child (lower).
 Subtrees chosen uniformly at random (mum white, dad black)
 One child created

● Root of child copied from 1st parent (mum, red).
● Subtree from 2nd parent copied (dad, black).
● Remainder of 1st parent copied (brown).

19W. B. Langdon, UCL



Faster [in place] crossover: avoid copy

 Even in multi-core threaded code, all mothers eventually have 
one child left to create. (20 – 54% of population.)

 Where trees are huge, almost all the code for the child already 
exists in mum’s buffer. 

 On average half of it is exactly in place. 
 For mum’s last child, reuse her buffer. 
 If subtrees are different sizes (73%), use memmove to shuffle 

on average half of the buffer up or down.
● GCC memmove faster than memcpy.

 If inserted code is same size as removed code, need only 
overwrite removed code (memcpy from heap).

W. B. Langdon, UCL 20



In place crossover avoids copy

W. B. Langdon, UCL 21

On average 54% children created in parent’s buffer 
(with fitness 1st and fatherless crossover) 



● Avoid “false sharing”. 
● pad struct to avoid threads using same cache line 
● cache align data shared by threads, eg aligned_alloc()

● Dont malloc/new/delete in threaded code (gcc high overhead)
● pthread_mutex_t faster than expected. Use on debug output
● Ensure evolution path does not depend on thread timing,      

eg by doing all stochastic choices in main thread
● Only crossover and fitness function optimised
● When bit shifting in C/C++

● used unsigned int
● force evaluation order by bracketing everything 

● gcc 10.2.1 supports __float128
● 128 bit float operations are really very slow
● 10.5 times slower than double is considered good

Implementation

22



● Don’t collect unwanted statistics (70% speedup)
● Non-overlapping generations dont need more memory [1].
● In place crossover for 20% to 54% children (convergence etc)
● pthreads speedup typical 14x (16 threads)
● AVX typical speed up 3-4 fold (not 16 fold)
● With large trees incremental fitness more than 100x speed up 

possible by not doing work
● Not just genetic programming: eg Galaxy TSP needs huge 

chromosomes
● Study of GP convergence lead to information theory of widely 

applicable failed disruption propagation giving rise to software 
robustness and investigation of optimal test oracles [GECCO 
2022 Monday GP1 11:10 and poster].

W. B. Langdon, UCL

Conclusions

23

http://gpbib.cs.ucl.ac.uk/gp-html/langdon_2022_GECCO2.html
http://gpbib.cs.ucl.ac.uk/gp-html/langdon_2022_GECCOcomp.html


Genetic Programming

W. B. Langdon

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.ucl.ac.uk/crest/
https://link.springer.com/book/10.1007/978-1-4615-5731-9
https://link.springer.com/book/10.1007/978-3-662-04726-2
http://www.gp-field-guide.org.uk/


Table of GP parameters



 Some text

25W. B. Langdon, UCL



Crossover disruption fails to propagate to 
root node for test case x=2

Original code (best generation 5)
● Crossover removes “x” and inserts “(- x x)”
● On test case x=2, Eval 2 replaced by eval 0
● Protected division “(% x x)”

● was eval 1
● now “(% x 0)” eval 1

● Change has no impact at % or above %
● Disruption fails to propagate to root node
● No change in fitness

No side effects.
Static environment.



Information Funnel

Computer operators are irreversible. Meaning input state 
cannot be inferred from outputs. Information is lost

Information funnel

More information 
enters than leaves

W. B. Langdon, UCL 27



Evolve Large Open, Lung Like, Open Architecture

28

● Make code is shallow.
● Shallow code does not 

suffer failed disruption 
propagation.

● Instead fitness disruption 
caused by mutations and 
crossover do have impact.

● Fitness can direct evolution.
● Suggest large porous code
● All code near organism’s 

environment.
● Communication between 

code internally & externally 
eased by globals, side 
effects, pipes, TCP/IP etc. 

http://arxiv.org/abs/2112.00812

http://arxiv.org/abs/2112.00812


The Genetic Programming Bibliography

15589 references, 15000 authors

Co-authorship community.
Downloads 

A personalised list of every author’s 
GP publications.

blog

Googling GP bibliography, eg:
Development and learning site:gpbib.cs.ucl.ac.uk

Make sure it has all of your papers!
E.g. email W.Langdon@cs.ucl.ac.uk   or   use | Add to It | web link

Downloads by day

Your papers

http://gpbib.cs.ucl.ac.uk/blog.html
http://www.cs.ucl.ac.uk/cgi-bin/staff/W.Langdon/WBT.cgi

