
Dissipative Polynomials
Workshop on Landscape-Aware Heuristic Search

GECCO 2021 https://doi.org/10.1145/3449726.3463147

W. B. Langdon

9.7.2021

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.ucl.ac.uk/crest/
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Dissipative Polynomials
Workshop on Landscape-Aware Heuristic Search

GECCO 2021

W. B. Langdon

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.ucl.ac.uk/crest/
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Computation as Information Flow
 Computer operators, eg addition, are irreversible.

Meaning input state cannot be inferred from outputs.
● Information is progressively lost.
● Functions are dissipative.

 Most information about changes before a long sequence
of operations is lost.

 Most errors (run time or syntax) make no difference
 If genetic programming trees are deep enough the GP

landscape becomes smooth

W. B. Langdon 3

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Information Funnel

Computer operators are irreversible. Meaning input state
cannot be inferred from outputs. Information is lost

W. B. Langdon 4

Information funnel

More information
enters than leaves

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Genetic Programing
 Genetic programming example:

symbolic regression,
binary functions (add and multiply),
for simplicity no (protected) division.

 Addition and multiplication give a polynomial
 Study genetic programming landscape by uniformly

sampling
 Simulate impact of GP crossover by random crossovers

between large GP trees
 Use incremental evaluation [EuroGP 2021] to trace

impact of changes.
 Fitness change (number of different test cases) falls

monotonically as we move away from mutation
 Difference in RMS fitness may go up or down with

distance from change site but in most cases falls to zero.
5

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Experiments: Genetic Programming
 Ordinary GP with pure functions without side effects
 Same argument holds for functional programming
 Imperative programming (e.g. C, Java) is dominated by

side effects (i.e. memory) but suggest that
● in deeply nested real programs in many (but not all)

cases
● impact of bugs passes through many irreversible steps
● where its impact is diluted before reaching an

observable output (e.g. a print statement)
● With many steps, bug’s impact may be totally invisible

 Without side effects GP tree can be evaluated in any
order and the result (at every node) is identical.

W. B. Langdon 6

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Top Down = Bottom Up

Left: Conventional top-down recursive evaluation of
(SUB 0.026 (DIV(SUB (MUL -0.826 -0.718) X) X)). X=10.

Blue integers indicate evaluation order, red floats are
node return values.

Right: an alternative ordering, starting with leaf -0.826
and working to root node.

Both return exactly the same answer. 7

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Incremental Evaluation
 Mum and child are identical except for mutated or

crossed over subtree
 Use same test cases for mum and child
 Fitness evaluation of mum and child are identical except

for the changed code and parts of tree which
(recursively) calls the changed code.

 Use bottom up evaluation to trace changes along chain
of nodes from crossover point to root node

 If on a test case, changed code returns identical value
then the calling function will return an identical value

 If mum and child evaluations become identical at any
point along calling chain to the root node, they will
remain identical to the root node and the mutant’s
evaluation is identical to that of the original tree.

W. B. Langdon 8

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Genetic difference ≠ phenotypic difference
 If by chance inserted & removed subtrees are identical:

● mum and child are identical and so have the same fitness

 If inserted subtree evaluates to same value as removed
subtree on every test case:

● mum and child (at root node) evaluate to same value on
every test case

● genetic difference => identical fitness

 What if the inserted subtree evaluates to different values
to that given by remove subtree?

● If we evaluate both child and mum starting at the change,
there is a progressive fall in the number of test cases where
the change is visible as we move towards the root node.

W. B. Langdon 9

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Evaluate both trees from change up
 Mum and child are identical above change, so use mum
 Fitness evaluation is identical except on route from

change to root node.
 Evaluate both mum and child up this path.
 If they evaluate to identical values at any point then they

evaluate to same value on the rest of the tree, including
the root node:
● semantic difference => identical fitness.

W. B. Langdon 10

Evaluate mum in red. Evaluate child in blue.
Inserted code (DIV (DIV 0.979 X) X) in blue.
Here incremental evaluation proceeds 38 levels
up the child tree before both mum and child
evaluations are identical on all 48 test cases.

Functions lose information and so can give same
output even with different inputs.

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Incremental Fitness Evaluation

W. B. Langdon 11

Subtree to be inserted (black) is evaluated on all test cases and values are
transferred to evaluation of mum. Use incremental evaluation, so differences
between original code (white subtree) and new (unborn) are propagated up 1st
parent (mum) until either all differences are zero or we reach the root node.

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Interpret mum and child together

Evaluating the subtree to be removed from the mum (white) and the subtree to
be inserted (black) on all (48) test cases. The interpreter proceeds up the
mum's tree until either the evaluation on all test cases in the mum and the
child are the same or it reaches the root node.

12

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Evaluate both trees from change up
Changed code in red. Can stop fitness evaluation early as
mum and child are phenotypically identical, due to information
loss.

13

Example of bloated tree (chosen as it has no zeros, ie no “introns”).
Bloat due to information loss.
Node size gives number disrupted test cases.
Node colour gives change in evaluation value (log scale).

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Side Effect Free: Disruption Falls Monotonically

14

Deeper disruption tends to have less impact on fitness

Deeper than 144
No impact at all

Deeper than 44 ½ tests observe no impact

Deeper than 13
3 tests see no impact

At each GP node: 32 bits + 32 bits => 32 bits
Information funnel. Information is lost.

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Random sample 25001 nodes depth 383

15

Deeper disruption tends to have less impact on fitness

Changed code (red)
Blue nodes at least one test case is different.
Change does not reach root node.

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Random sample 25001 nodes

16

Deeper disruption tends to have less impact on fitness (fun 4 depth 491)

Changed code (red)
Blue nodes at least one test case is different.
Change does not reach root node.

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Random sample 25001 nodes
Example where some of shallow disruption reaches root node (depth 390)

Changed code (red)
Blue nodes at least one test case is different.

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Monotonic fall in disrupted test cases
Only one of ten examples fails to reach zero disruption

W. B. Langdon 18

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

 Average difference evaluation of mum v. child
Only one of ten examples fails to reach zero disruption

W. B. Langdon 19

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Random Polynomial 4

● Removed subtree X
● Insert subtree (MUL (ADD (ADD (MUL 0.581 (MUL (ADD X 0.837) (ADD (ADD (MUL 0.255

-0.622) X) (ADD X 0.113)))) (MUL X -0.801)) 0.965) (MUL X (MUL (ADD (MUL 0.758 (MUL
(ADD X (MUL (MUL -0.07 (MUL (ADD (ADD (MUL (MUL -0.399 X) -0.285) X) 0.185) X)) (MUL
(MUL 0.255 (ADD (MUL (MUL 0.14 (ADD X -0.015)) -0.619) (ADD X -0.106))) (ADD (ADD X X)
X)))) X)) X) -0.546)))

● Note both are equal to zero at x=0

High order
polynomial
(rescaled).
Non-zero at
origin.

8th order
inserted
polynomial.
Zero at origin

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Plots

Random Change 4 (replacement tree)

Replacement subtree
and nearby original tree.

Evaluation of white
nodes is identical.

Evaluation of blue nodes
differs in new code.

Lowest blue node differs
on 1000 test cases (but
not test case x=0).

21W. B. Langdon

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Impact of Change 4
Three levels (ADD -0.801) above crossover disruption

The new functionality (dashed line) closely follows the original for x < 0.2
At 19 points (+) they are identical.

Once identical on a test case, will remain identical on that test case.
22

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Impact of Change 4
Five levels (ADD -0.011) above crossover disruption

At 31 points (+) evaluation of old and new code is identical.

23W. B. Langdon

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Impact of Change 4
Nine levels (ADD X) above crossover disruption

For 205 of 1001 points (+) evaluation of old and new code is identical.
After transiting a total of 113 irreversible functions (32 bit floating point
53 additions and 60 multiplications), the replacement of X with a subtree
of 67 nodes makes no difference at all.

24

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Exponential Fall in Disruption 1501 tests

● Average number of disrupted tests where change is eventually
totally concealed.

● For our polynomials, bigger test values are more disruptive
(harder to hide). 25

Flat region 1-10

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

● Exponential decay in number of disrupted test cases
suggests effectiveness of test suite of n tests rises only
slowly with number of tests, Log(n)

● But can this be proved
● Some mutations not being totally concealed

● Can we characterise them?
● Should we use them more or less in GP?
● Can we characterise the tests needed to find them

● How much does this generalise to other types of GP
● Can lessons on mutations and testing be used in

Software Engineering

W. B. Langdon 26

Issues

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

1) More fitness test cases have only small effect, log(n)
● 1000 test cases only marginally more effective than 48

2) Deeper crossover or mutation may have less effect
● Design your new crossover & mutation operators

3) Some functions lose information faster, eg division
● Some tests more effective, here |x| > 1

4) If no disruption gets to root, crossover/mutation no effect
● fitness identical => GP pop converges & evolution stops

5) If on some test cases, disruption does not reach root,
crossover/mutation has less impact on fitness:

● Information loss gives smoother fitness landscape.

6) Software is not fragile because progressive information
loss dissipates many errors on many tests.

W. B. Langdon 27

Conclusion Deep nesting hides errors

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

Genetic Programming

W. B. Langdon

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://www.ucl.ac.uk/crest/
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

The Genetic Programming Bibliography

14543 references, 13000 authors

Co-authorship community.
Downloads

A personalised list of every author’s
GP publications.

blog

Googling GP bibliography, eg:
Evolutionary Medicine site:gpbib.cs.ucl.ac.uk

Make sure it has all of your papers!
E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

Downloads by day

Your papers

http://gpbib.cs.ucl.ac.uk/blog.html
http://gpbib.cs.ucl.ac.uk/blog.html
http://www.cs.ucl.ac.uk/cgi-bin/staff/W.Langdon/WBT.cgi
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P005888/1
https://www.ucl.ac.uk/crest/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

