

Evolving Differential Equations with Developmental Linear Genetic Programming and Epigenetic Hill Climbing William La Cava¹ Lee Spector² Kourosh Danai¹ Matthew Lackner¹ ¹University of Massachusetts – Amherst ²Hampshire College

Abstract

Impacts and Future Work

Classical genetic programming (GP) solves problems by applying the Darwinian concepts of selection, and reproduction to a survival population of computer programs. biological Here extend the we to incorporate epigenetic analogy regulation through both learning and Using inheritable evolution. mechanisms Lamarckian as inspiration, we propose a system that allows for updating of individuals in the population during their lifetime while simultaneously preserving both genotypic and phenotypic traits during reproduction.

Addition of an Epigenetic Layer to GP

Selection

 $f_1 = x * y + z$

Larmarckian Epigenetics

We represented two characteristics of epigenesis in this implementation: 1) dependence on environmental factors by use of the EHC, and 2) inheritability by of evolution epilines with their corresponding genotypes. Unlike previous methods, our system allows offspring to inherit both the learned phenotypic traits of their parents as well as the genotypic underpinning. With this system we demonstrate higher success rates and lower solution bloat for a number of symbolic regression problems, with equivalent or lower computational effort required. We hope this work will provide the basis for further investigation into how epigenetic learning and evolution can interact to improve genetic programming for many applications. Namely, further work should address various levels of epigenetic inheritability, as well as the contributions of environmental factors or inheritance to the improvement in success.

The implementation is made simple through the use of syntax-free, developmental, linear genetic [1]. programming (DLGP) The representation allows for arbitrarilyordered genomes to be syntactically valid programs, thereby creating a genetic programming approach upon which quasi-uniform epigenetic updating and inheritance can be easily applied. Generational updates are made using an in faster bloat, convergence, less and an ability improved find to exact solutions on a number of symbolic regression problems.

Examples

Runtime Settings. All problems used $\{+,-,*,/\}$ operators. The differential equation problems used ephemeral random constants picked uniformly from [-1.0,1.0]. Pagie-1 and Nguyen-7 instead use 1.0, and Nguyen-7 includes log and exp functions. ⁺ Deterministic Crowding. *Age-Fitness Pareto Survival.

Genetic Programming

Fitness

 $=\sum_{n=1}^{N} |f(n)^* - f_i(n)|$

Initial

Population

 $f_3 = y - \frac{4}{(z+3)} + x$

 $f_1 = x * y + z$

 $f_2 = x/3 + y/z$

Setting	MSD	van der Pol	Lotka-Volterra	Pagie-1	Nguyen-7
Target Equation	$\ddot{x} = -1/2(0.75\dot{x} + 3x - F)$	$\ddot{x} = -1.5(x^2 + 1)\dot{x} - x$	$\dot{x} = 3x - 2xy - x^2, \\ \dot{y} = 2y - xy - y^2$	$f(x,y) = \frac{1}{1+x^{-4}} + \frac{1}{1+y^{-4}}$	$f(x) = log(x+1) + log(x^2+1)$
Initial program length	[50, 200]	$[50,\!200]$	$[3,\ 50]$	[10, 100]	$[10, \ 100]$
Method	DC^+	DC^+	DC^+	AFP^*	AFP^*
Pop Size	1000	1000	1000	1000	1000
Max Generations	1000	1000	5000	5000	5000
Initial % Active Genes	100	100	100	50	50

This system identification approach is being used to turbine identify wind dynamics of the National Energy Renewable CART3 Laboratory's turbine (pictured) and for developing bird migration models based on data. In the measured future, we hope to apply it to the design of nonlinear controllers for offshore wind turbines.

Motivation

Today, Lamarckian mechanisms are known to exist in biology and have been demonstrated in many studies. The studies constitute the growing field of epigenetics, a term that refers broadly to the ways in which gene expressions are regulated and inherited [2, 3]. Recent studies have not only Performance Comparisons. A successful run finds a floating-point exact match to the target equation. Results in bold are significant to p < .05 using the non-parametric ranked t-test for mean evaluations and program lengths and Fischer's exact test for success rate.

Problem	Trials	Method	Success Rate	Mean Point Evaluations	Mean Effective Size	
Forced Mass Spring Damper	30	DLGP	83.33%	$1.97\mathrm{E}11$	145.11	A second and a second a second a
	30	DLGP+EHC	100%	1.60 E11	96.65	N N
van der Pol Oscillator	30	DLGP	83.33%	9.91E10	140.06	
	30	DLGP+EHC	100%	$7.21\mathrm{E}10$	101.34	x(t)
Lotka-Volterra \dot{x}	50	DLGP	100%	2.20E10	29.63	
	50	DLGP+EHC	100%	1.66 E10	24.69	Forced Mass Spring Dampe
Lotka-Volterra \dot{y}	50	DLGP	100%	$2.07 \mathrm{E10}$	30.36	4
	50	DLGP+EHC	100%	1.81E10	25.13	
Pagie-1	100	DLGP	13%	2.61E11	68.73	
	100	DLGP + EHC	$\mathbf{27\%}$	$\mathbf{2.62E11}$	40.32	
Nguyen-7	50	DLGP	72 %	4.48E9	68.97	
	50	DLGP+EHC	100 %	$4.56 ext{E8}$	20.25	

Time Step

Source: nrel.gov/wind

Acknowledgements

This work is partially supported by the NSF-sponsored IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant Number 1068864), as well as Grant No. 1017817. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

shown that environmental factors influence gene expression in organisms, but also that epigenetic mechanisms may be inheritable [4, 5].

We present a GP method that captures this understanding of epigenetics as a layer of environmentally influenced, evolving gene regulation that interacts with the genotype to produce the phenotype. This system captures the advantages of Lamarckian updating without changing the genotype, and yet directly preserves inheritable phenotypic improvements in offspring, unlike Baldwinian evolution.

- 1. La Cava W (2014) Develep DOI 10.5281/zenodo.9824
 - Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Annals of the New York Academy of Sciences 981(1):8296
- 3. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1(2):7680
- 4. Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17(1):89–96
- 5. Pogribny I, Raiche J, Slovack M, Kovalchuk O (2004) Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochemical and Biophysical Research Communications 320(4):1253–1261