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Motivation

* GPUs

massively parallel execution of tasks on
hundreds of cores

* Multi-core CPUs
coarser grain
fewer, more powerful and complex cores




Motivation

* GPU-based code is overwhelmingly faster
than single-threaded sequential code

* Most papers describing GPU-based parallel
algorithms report only this comparison; the
power of multi-core CPUs is underexploited

* What about the performance of multi-core
CPU implementations ?




Goal

* Comparing performances of GPU-based and
multi-core CPU-based parallelization of a bio-
inspired metaheuristic

* OpenCL chosen as development
environment, since it can produce code for
both GPUs and multi-core CPUs

* Based on our previous implementations, we
chose PSO parallelization as a test-bed




Why is PSO so attractive ?

Not the best metaheuristic at all ...

However...
Easy to implement
Fast-converging
Effective for many practical problems

and (last but not least)
Very well parallelizable




Why is PSO so attractive ?

Parallelization opportunities offered by many
fitness functions

Functions based on cumulative sums of
independent computations

Functions implying operations on large
matrices,

etc...




Previous GPU-PSO implementations

* Three-kernel synchronous (information Sciences, 2011)
Any topology allowed
Any problem size
Large overhead (three memory swaps)

* Single-kernel asynchronous (Gecco 2011)
Ring topology, radius =1
Limited number of particles
Fastest possible (no swaps)




Previous work on GPU-PSO
Single-kernel vs. Multi-kernel

Synchronous multi-kernel PSO
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Previous work on GPU-PSO
Single-kernel vs. Multi-kernel

Asynchronous single-kernel PSO
(ring topology, radius=1)
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Previous work on GPU-PSO
Single-kernel vs. Multi-kernel

* Single-kernel (all computations in local memory)
No (limited) need for synchronization
No data exchange between GPU and CPU
Limited local resources
Small maximum number of particles in a swarm

* Multi-kernel (need for 3 data swaps)
Virtually no resource-related limitation
Any swarm size possible (up to several hundreds)

Large memory overhead due to the need for
synchronization after each kernel is run




New implementation

* Single kernel

* Synchronization at the end of each cycle

One can schedule as many threads as necessary
* Suitable for both CPUs & GPUS | nsaor
* Virtually no limits to
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GPU

* Massively parallel architecture

* Hundreds or thousands of
simple cores

* Simple instruction set
Synchronization primitives
* Deep memory hierarchy

* Private, local, global,
constant memory

* Each one has a different role

Fermi Streaming Multiprocessor (SM)




Multi-core CPU

2] ° Parallel architecture
| °2to12cores

Complex instruction set

Vectorized instructions
(SSE, AVX)

| - Shallow memory hierarchy

Global and local memory
share the same chips




Vectorization instructions

* A single instruction operates on multiple data

* OpenCL natively supports vector data types

The OpenCL compiler has auto-vectorization
capabilities, but manually optimized vectorization still
offers better results

* GPU/CPU comparison:

Intel i7, with 8 cores and AVX SIMD instructions, can
process 64 floats in parallel

Nvidia Geforce GTX560 Ti can process 384 floats in
parallel

6 times as many as the CPU




Vectorization
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Tests

A set of 5 commonly (ab)used functions was
used as benchmark:

Sphere -100, +100]N
Elliptic -100, +100]N
Rastrigin -5.12, +5.12]N
Rosenbrock -30, +30] N
Griewank -600, +600] N

Our goal was to compare execution speed
Algorithm equivalence was also checked




Tests

2 multi-core CPUs:
Intel i7 2630M (high-end laptops)
Intel i7 2600K (medium/high-end desktops)

were compared to 3 GPUs:
nVidia GT540M (medium/high-end laptops)
nVidia GT560Ti (medium/high-end desktops)
ATl Radeon HD6950 (medium-end laptops)




Tests

We tested the scaling properties of our GPU-
based and CPU-based implementations

With respect to problem size
* 32,64, 128 dimensions

With respect to swarm size:

* 32,64, 128, 256,512, 1024, 2048, 4096, 8192
particles

Other PSO parameters

C1=C2=1.19315
w=0.72134




Results: 64D Griewank
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Results: 32D, 128D Griewan
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Results: general remarks

Scaling properties are not surprising:

Initial ‘flat’ segment, followed by linear increase
after maximum degree of parallelism is reached

Peculiarities:

nVidia GT540M is sometimes the fastest for small
sizes and problem dimensions, for its slightly
higher clock frequency

The gap between i7 and i7M narrows as problem
complexity and swarm size increase: no
explanation related to code or processor;
possibly caused by other hardware components.




Results: GPU/CPU comparison

GPUs are generally faster than multi-core
CPUs, however:

Not necessarily for small swarm sizes (32-64
particles are enough for most real-world
problems)

PSO is highly parallelizable, as are highly
parallelizable the fitness functions we have used
In our tests

Tests were generated up to huge swarm sizes,
much larger than usually necessary in typical
real-world applications




Results: GPU/CPU comparison

The spread is larger for high-dimensional
problems

For larger dimensions even a cheap GPU as
the GT540M has similar performances as a
high-end Intel i7 processor

In any case GPUs were never more than 6
times faster than CPUs




Results: GPU/CPU comparison

Taking development costs into consideration:

Writing parallel code is more expensive, and
may take more time than it saves

If the cost of parallelization is acceptable AND
the algorithm is intrinsically parallel, then
GPUs are preferable

Results obtained by multi-core CPUs can be
close to GPUs’ when GPUs cannot be used
(e.g., if the graphics card must also do its
traditional job...)




Some publicly-available GPU
code developed at the IBIS Lab

* CUDA-PSO (ftp://ftp.ce.unipr.it/pub/cagnoni/CUDA-PSO/index.html)

Three-kernel implementation and some benchmark
functions

* libCUDAOptimize

(http://sourceforge.net/projects/libcudaoptimize/)

PSO, DE, Scatter Search plus benchmark functions
and utilities (not yet online but coming soon)

* libCUDANN (http://sourceforge.net/projects/libcudann/)
Multi-layer perceptron training (BP algorithm)
* OpenCL PSO probably also available soon.
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