Next: About this document ...
Up: How Well Does Genetic
Previous: How Well Does Genetic
- 1
-
Ricardo Aler, Daniel Borrajo, and Pedro Isasi.
Genetic programming and deductive-inductive learning: A
multistrategy approach.
In Jude Shavlik, editor, Proceedings of the Fifteenth
International Conference on Machine Learning, ICML'98, pages 10-18,
Madison, Wisconsin, USA, July 1998. Morgan Kaufmann.
- 2
-
Shu-Heng Chen and Chia-Hsuan Yeh.
Using genetic programming to model volatility in financial time
series: The case of nikkei 225 and S&P 500.
In Proceedings of the 4th JAFEE International Conference on
Investments and Derivatives (JIC'97), pages 288-306, Aoyoma Gakuin
University, Tokyo, Japan, July 29-31 1997.
- 3
-
E. William East.
Infrastructure work order planning using genetic algorithms.
In Wolfgang Banzhaf et. al.,
editors, Proceedings
of the Genetic and Evolutionary Computation Conference, pages
1510-1516, 1999. Morgan Kaufmann.
- 4
-
Jacob Eisenstein.
Genetic algorithms and incremental learning.
In John R. Koza, editor, Genetic Algorithms and Genetic
Programming at Stanford 1997, pages 47-56. Stanford Bookstore, Stanford,
California, 94305-3079 USA, 17 March 1997.
- 5
-
Gabriel J. Ferrer and Worthy N. Martin.
Using genetic programming to evolve board evaluation functions for a
boardgame.
In 1995 IEEE Conference on Evolutionary Computation, volume 2,
page 747, Perth, Australia. IEEE Press.
- 6
-
Paul Holmes.
The odin genetic programming system.
Tech Report RR-95-3, Computer Studies, Napier University,
Craiglockhart, Edinburgh, EH14 1DJ, UK, 1995.
- 7
-
John R. Koza.
Genetic Programming: On the Programming of Computers by Means of
Natural Selection.
MIT Press, 1992.
- 8
-
John R. Koza.
Genetic Programming II: Automatic Discovery of Reusable
Programs.
MIT Press, 1994.
- 9
-
D. H. Kraft, F. E. Petry, W. P. Buckles, and T. Sadasivan.
The use of genetic programming to build queries for information
retrieval.
In Proceedings of the 1994 IEEE World Congress on Computational
Intelligence, pages 468-473, 1994.
- 10
-
W. B. Langdon.
The evolution of size in variable length representations.
In 1998 IEEE International Conference on Evolutionary
Computation, pages 633-638.
- 11
-
William B. Langdon.
Data Structures and Genetic Programming: Genetic Programming +
Data Structures = Automatic Programming!
Kluwer, 1998.
- 12
-
Tom M. Mitchell.
Machine Learning.
McGraw-Hill, 1997.
- 13
-
Peter Nordin and Wolfgang Banzhaf.
Complexity compression and evolution.
In L. Eshelman, editor, Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA95), pages 310-317, 1995. Morgan Kaufmann.
- 14
-
Peter Nordin and Wolfgang Banzhaf.
Programmatic compression of images and sound.
In John R. Koza et. al.,
editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 345-350,
1996. MIT Press.
- 15
-
Peter Nordin, Wolfgang Banzhaf, and Frank D. Francone.
Compression of effective size in genetic programming.
In Thomas Haynes et. al.,
editors, Foundations of Genetic Programming,
GECCO'99 workshop, 13 July 1999.
- 16
-
J. Ross Quinlan.
C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.
- 17
-
Justinian Rosca.
Generality versus size in genetic programming.
In John R. Koza et. al.,
editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 381-387, 1996. MIT Press.
- 18
-
Amir M. Sharif and Anthony N. Barrett.
Seeding a genetic population for mesh optimisation and evaluation.
In John R. Koza, editor, Late Breaking Papers at the Genetic
Programming 1998 Conference, 1998. Stanford University Bookstore.
Bill Langdon
2000-04-12