
11 Fitness Function

12 Results: In 41 runs LLC reduced
by factor of four

9 Optimise GCC and Linker

10 C++ as XML

● Does the mutated code compile?
● Does the mutant run with new cmd line?
● Is output the same as unmutated code’s?
● Fitness is difference L3 load + stores

22 compiler and linker command line options.

Magpie represents source code as 13,810 lines of
XML created by srcml. The mutations were:
literal numbers, StmtReplacement,
StmtInsertion, StmtDeletion,
ComparisonOperatorSetting,
ArithmeticOperatorSetting, NumericSetting,
RelativeNumericSetting.
100 local searches each with 100 steps.

Data and instruction pass through cache
hierarchy. Experiments on Intel I7 three levels
of cache. Already many cores are linked via last
level cache (LLC), here L3.

Genetic Improvement uses evolution to modify
existing software. Typically GI is applied to
human written source code but it can be
applied to anything. Eg C, Java, Java byte code
assembler, LLVM IR and machine code. Non-
program software could include comments,
documentation, specifications. Improvements
can mean faster, less energy, less network
bandwidth, cheaper, fewer bugs, fairer, more
secure, better use of hardware, e.g. GPU.

William B. Langdon, David Clark
Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK Email: w.langdon@cs.ucl.ac.uk

Genetic Improvement of Last Level Cache

EuroGP 2024, Aberystwyth. 3-5 April 2024.
Springer

25.11.2013

8 Optimise VIPS parameters

5

Second experiment shows improvement due to
Magpie optimising VIPS vips-fatstrip-height

 What is Cache for?1

Computation needs data but typically reading
data from memory takes hundreds of clock
cycles. Originally the cache system tried to
keep the CPU busy by keeping a copy of data
that is likely to be needed close to the CPU.
Nowadays cache is increasingly important to
pass data between compute cores.

3 What is Genetic Improvement?

2 Cache is automatic

Cache is outside direct programmer’s control,
i.e., it is totally automatic. It guesses which
data will be needed next based on which data
the CPU needed recently. E.g. A[1]+B[2] may
suggest A[2] and B[2] will be needed soon and
the cache may pre-load them or if already in
cache, keep them in cache.

The cache algorithm may be secret and the
cache will differ between computers.

Data layout and order of code execution can
both impact cache effectiveness and so
dramatically change performance.

It is hard to optimise software to get the best
of the cache system.

4 Why? Future is hybrid, parallel.
LLC joins compute cores

7 VIPS benchmark

5 Cache will be vital

6
If you can measure it,
you can evolve it

Linux perf reports cache statistics.
Fitness = LLC cache load plus stores.
Evolve using Magpie.

github.com/bloa/magpie

13 Conclusion

Multiple Magpie local search runs simultaneously
optimised parameters and code. Substantial
improvement due to tuning single command line
parameter despite noise.

VIPS 90,000 line C++ part of PARSEC. Profile with
perf and GDB reduced to 37 files (7000 LOC) used
in thumbnail creation.

Cache is the bottleneck.
It needs to be automatically programmed.
Evolution can program cache.

The future is hybrid:
 DSP, FPGAs, multicore, GPU.
 In four years 2018-2022, core count 4x
 If continues by 2028: 131072 cpu per laptop.

Compute is cheap, data is expensive.

github.com/bloa/magpie

3264 x 2448

128 x 96
thumbnail

Five command line options.

Core 4 Core 5 Core 7Core 6Core 0 Core 1 Core 3Core 2 Core 4 Core 5 Core 7Core 6Core 0 Core 1 Core 3Core 2

Core 0 Core 1 Core 3Core 2 Core 0 Core 1 Core 3Core 2Core 4 Core 5 Core 7Core 6 Core 4 Core 5 Core 7Core 6

InstructionData 1InstructionData 1InstructionData 1InstructionData 1InstructionData 1InstructionData 1InstructionData 1

Level 2 cache Level 2 cache Level 2 cache Level 2 cacheLevel 2 cache Level 2 cache Level 2 cache Level 2 cache

InstructionData 1 InstructionData 1InstructionData 1InstructionData 1InstructionData 1InstructionData 1InstructionData 1InstructionData 1

Level 2 cache Level 2 cache Level 2 cache Level 2 cacheLevel 2 cache Level 2 cache Level 2 cache Level 2 cache

InstructionData 1

Level 2 cache Level 2 cache Level 2 cache Level 2 cache

InstructionData 1InstructionData 1InstructionData 1InstructionData 1

Level 2 cache Level 2 cache Level 2 cache Level 2 cache

InstructionData 1InstructionData 1InstructionData 1InstructionData 1

Level 2 cache Level 2 cache Level 2 cache Level 2 cache

InstructionData 1InstructionData 1InstructionData 1InstructionData 1

Level 2 cache Level 2 cache Level 2 cache Level 2 cache

InstructionData 1InstructionData 1InstructionData 1InstructionData 1

Last Level Cache Last Level Cache

Last Level Cache Last Level Cache

