

TMBL Kernels for CUDA GPUs
Compile Faster Using PTX

Tony E Lewis
George D Magoulas

Two Major Approaches
to GPU Acceleration of GP

Data parallel
Compile new GPU code for each new batch

Population parallel
Write one GPU interpreter to process all batches

The Aim of the Work:
To Minimise the Weakness of Data-parallel

Data parallel
Evaluation: very fast

Compilation: long

Population parallel
Evaluation: fast

Compilation: none

The Problem: Compilation Stops
Small Datasets Getting Top Speed

Two Strategies to Ease Load for Compiler;
This Talk is about the First

1. PTX
Write the individuals in a lower level language

2. Alignment
Exploit similarities between individuals

Compilation Creates a GPU-ready Binary from
C Source Code

Compilation Uses Two Slow Steps;
This Work Eliminates the First

Compilation Uses Two Slow Steps;
This Work Eliminates the First

PTX is a Bit Like Assembly

C Example

slot0 = -1.64101672f;

slot4 += slot3;

slot1 -= testcase0;

slot0 *= slot3;

slot2 = (
 (slot3 == 0.0f) ?
 0.0f :
 slot2/slot3
);

PTX Example

mov.f32 %slot0, 0fBFD20CD6;

add.f32 %slot4, %slot4, %slot3;

sub.f32 %slot1, %slot1, %testcase0;

mul.f32 %slot0, %slot0, %slot3;

div.full.f32 %slot2, %slot2, %slot3;
setp.eq.f32 %divPred, %slot3, 0f00000000;
selp.f32 %slot2, 0f00000000, %slot2, %divPred;

Take a Step Back:
What is the Reason For Doing This Work?

Take a Step Back:
What is the Reason For Doing This Work?

Long Term Fitness Growth

Thought Experiment:

Thought Experiment:
Toy Blocks

Thought Experiment:
A Tower of Blocks

The Same Problem Is Faced by a GP Tree

How Can We Encourage
Long Term Fitness Growth?

How Can We Encourage
Long Term Fitness Growth?

Encourage tweaks:

Mutations that can easily change behaviour
without ruining existing functionality

A Representation to Encourage Tweaks

Linear form not node-based

Registers not stack

Iterated execution not point of execution

Instructions that modify not overwrite

Long programs

The Result: TMBL

Tweaking a Tower of Blocks Leads to a TMBL:
Pursuing Long Term Fitness Growth in Program Evolution

Tony E Lewis,George D Magoulas
2010, IEEE Congress on Evolutionary Computation (CEC)

(pages 4465-4472)

takesatmbl.wordpress.com

PTX is a Bit Like Assembly

C Example

slot0 = -1.64101672f;

slot4 += slot3;

slot1 -= testcase0;

slot0 *= slot3;

slot2 = (
 (slot3 == 0.0f) ?
 0.0f :
 slot2/slot3
);

PTX Example

mov.f32 %slot0, 0fBFD20CD6;

add.f32 %slot4, %slot4, %slot3;

sub.f32 %slot1, %slot1, %testcase0;

mul.f32 %slot0, %slot0, %slot3;

div.full.f32 %slot2, %slot2, %slot3;
setp.eq.f32 %divPred, %slot3, 0f00000000;
selp.f32 %slot2, 0f00000000, %slot2, %divPred;

...but PTX isn't Exactly Like Assembly

Doesn't directly correspond with resulting binary

Eg. Many registers get compiled to few

Will PTX Code Evaluate Slower?

Maybe Yes:
Competing with the CUDA compiler's developers

Maybe No:
We know our code better than the compiler does:

Can guarantee non-divergent branches
Can use non-divergent instructions (a=b?c:d)

Results:
Load time is small

Results:
Evaluation Speed is Improved

Results:
Compile Time is Considerably Reduced (~5.8x)

Conclusions

Complexity

Maintainability

Effectiveness

Possibility of going further

EPSRC

Reviewers

You

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

