Acceleration of Genetic Algorithms for
Sudoku Solution on Many-core Processors

N N BN R e

Yuji Sato*!,
Naohiro Hasegawa*1,
Mikiko Sato*2

*1: Hosei University, *2: Tokyo University of A&T

Outline

= Background
= Sudoku Solution Accuracy by GA

= Accelerating Genetic Computation with
Many-core Processors (GPU/ MCP)

m Evaluation Tests
= Conclusion

Background: Objective

= Evolutionary Computation
+ Parallel Processing
+ Many-core architecture

- Practical processing time

Bench mark: Sudoku puzzle

= As the first step towards that objective,
we take the problem solving Sudoku
puzzles and investigate acceleration of
the processing with a GPU/ MCP.

3

The reasons for this approach (1)

= Sudoku puzzles are popular
throughout the world.

A

The reasons for this approach (2)

= Genetic computation is suitable for
parallelization.

= Therefore, increasing the number of
core-processors may make the
processing time for GAs equal to that
for backtracking algorithms.

5

The reasons for this approach (3)

m GPUs are designed for the processing
of computer graphics in games.

= But, research on General-Purpose
computation on Graphics Processing
Units (GPGPU) has begun, and GPUs
can be used to support solving a logical
game.

Ldokir Soliition hv GA: 6
VMUUINNU JUTULIVIEIT My N7\
n example of Sudoku puzzles
[= 3 3 2 A row contain all
numbers{l...9} 6lda|2lsl1|l7lo|28
. g(1|5|3|2(9]7(4|6
b 3'(1 2/o]7]al6[a]3]1]5
1]6 a(2(8|1|7|b]|6(3(4
3 &._ﬁ_g A region contain ; ; :i g i : ? 1_: g
9 ! 4 - E - all numbers{l...9} ~Tslolalalalzls
J|6|4l2|5(1]18(9)|7
I 118|2|7(9(6]4|5(3
A column contains
all numbers{l1...9}

Fig. 1. An example of Sudoku puzzles, 24 positions contain a given
number, the other position should be solved. A Sudoku puzzles is
completed by filling in all of the empty cells with numerals 1 to 9.

Research Example
conventional design of the chromosome

An example of crossover point e e

lolal3[sfu]s[2]ol7]#[1[e]ulsln]ulu]u]ola|8]7]s]a]s]r]w]o]2]8]a]7 0]s]3]0]# e 5 6 a n]e e]8]" = =[#]6]#[8]#]s]4]s]3]

elale]s]elslelelelsTufz]s]o]o]s e 4ol 8] 7 e elel1]a]nl2]afufn]a]e]3]e]1]7]s]6[3]2]9]4]8]" = = [#[e[#[8]#]#]4]#]3]

Fig. 4. An example of conventional design of the chromosome and the
crossover operation. The chromosome is defined as one-dimensional array
of 81 numbers that is divided into nine sub blocks and the crossovers

noints can onlv annear hetween <iih hlocke
P\JII IV WBALL Wi Il] vtluluvuu NWwiILVVOWVUVUIIL VJUN NIWVVINW:

6143517928
8|1 |5(||3|2|9)7|4]|F6
219(7)/8|6|4)3 (1|5
9| 2|81 |7|5)6([3]4
47| 1}/6|3|2]5]|8(9
5|3|6|J|9|4]|8)1([7]2
7|15|9|6|8|3fj1([6]2
3|6 |41 |4|2J8]|5]|7
18|29 |6 54|93

The problem addressed here

= This design generate chromosomes
comprises highly fit schema of long
length that is constructed from cell rows
or columns Iin sub-blocks, and this
highly fit schemata (BBs) are easy to be
destructed by the crossover operation.

Basic Concept

= Genetic operations that emphasize
preservation of BB.

= Improve local search function.

Method of Applying GAs

(

Definition of Chromosomes

| 234567389 |

[123673 I‘\ _ !l - B,,..I 23456 |

g] 7

L f"l 11,3,5,6,7,8,9} I

2 5 i

| 456789 |~ | [1]6

3 “-E___l_l 11,2,3,4,7,9} I

6
| 125679 [—~3] |4 8

g 9 4 3

I 1,2,3,4,5,6,7.8} I—/ "I 11,2,5,7,9} I

We define this 9 x 9 two-dimensional array as the GA
chromosome. Fill in the cell that do not contain given
values with random numerals.

The fithess function

F0) =220.09+ 2h ()
6,(0) =[x h(x)=|x

The score is the number of different elements in
a row (g;) or column (h;), and the sum of the row

and column scores is the score for the individual.

11

12

The fithess function

1

9+ 27

9.

Score of the row that constitute

the sub-blocks

9

8

Crossover

Parentl ‘ Parent 2
1 1 21 2 2 2 |29 RowsScore

131124222'@

1i[1|1 2

o
2?_ 24 | 25 /25
xl Column Score

Child1 hlld 2
/

1112y12

212|227 [1]2

(row) 1 1 1 (26 _1 2_ 2_ (Column)
27 27 25

Fig. 3. An example of the crossover considered the
rows or the columns that constitute the sub-blocks.
The child inherits the ones with the highest score.

Crossover

]

N

rtratinn
IVIUALCALI VI]
Swap mutation inside the sub block
(7)4(6)7
811/5/8
3/2/9(2
5121913

GY:initial placement

Fig. 5. An example of the swap mutation. Two numbers

14

Inside the sub block are selected randomly if the numbers

are free to change.

ocal Search
Multiple Offspring Sampling (MOS)
11 (1
2 |2
parents 1111 children
1
1 2 |2 2|2 (2
111 111 1 1
» 11]2]2 » 11212 » 1 2
2 1 2
1122 1122
CrosSover 11212 | selecttwo of them
mutation |1 |2 |2
, >

16

The experimental parameters

Population size] 150

Number of child candidates/Parents] 2
‘Crossover rate] 0.3

Mutation rate] 0.3
‘Tournament size] 3

17

Fvaluation Experiments

e V I \P\J IT1T 1IN0 10D

The puzzles used for evaluations

= We selected two puzzles from each
level of difficulty in the puzzle set from a
book.

= For comparison with the conventional
examples, we also used the particularly
difficult Sudoku puzzles introduced by
Timo Mantere In reference.

(- < o[™
(@) <t =) =}
._”u Y 0 M~
ﬁﬂu — =T o
= o |o [eof [
mw M? ™| 1 —| ©)
> < 3-) T7) N
) MBE — | <
o = | 1 ™M o
S
©
D
)) <} ™
=3 o co| M| I~ =}

— —| o 7] eN| 0
mw m ~| o co| N
N O ~ EE T
N — O | ~| |[=r 0| ©
S 2 ,,.H, — |~ =)
eE

I

1

9
3

\v
No.29(30)

7
)

)
21314]9
8|11|7(2

6

1

No.27(29)

@)
IU

QO
>
Q
(D)
)
©
e h
(b))
&
| -
(D)
)
<
|

-

mw ™ o |

dd <t D ™

© ~ o |

3 SRE

S S e

> | =t ar]

O S = 3 <

S m oN| o

rmv No <t Te) ap)

©

D

L

- > o ©| v N

7p) e oN| =t

n_.v “ =) o™

I7H — | M~ | -

= o~

mw_ m m | & 0| <
Pl =] 0N

Q. m N —

mw 0 R <

. |

e =

1

6

2

3| |6

)

4

2

9
6
1

used for e
cult level
23
1
3
9 5
] 3
1
(]
3
4
Ji 3

aluation
22
3 117
115 9 8
(4]
1 7
9 2
5 4
2
5 (1] 3 4
34 2

Super difficult Sudoku’s. Available via WWW.

http://lipas.uwasa.fi/~timan/sudoku/EA_ht_2008.pdf#sea
rch="CT20A6300%20Alternative%20Project%20work%
202008’ (cited 8.3.2010).

Generations

22

80000 +——

60000 +——

®—mut+cross+LS

40000

2
ults 3

Benchmark test

Table. 1 The comparison of how effectively GA finds solutions
for the Sudoku puzzles with different difficulty ratings.

mut+cross+LS mut+cross Swap mutation

Difficulty rating || Givens

Count |[Average| Count |Average| Count |Average
Easy (No. 1) 38 100 62 100 105 100 223
Easy (No. 11) 34 100 137 100 247 96 6627
Medium (No. 27) 30 100 910 100 2274 86 26961
Medium (No. 29) 29 100 3193 100 6609 66 42141
Difficult (No. 77) 28 100 9482 100 20658 39 77573
Difficult (No. 106)| 24 96 26825 74 26428 9 94314

25

Experimental results
Comparison with previous research

Table. 3 Our result and the result represented in [7]

Sudoku puzzle Our proposed GA Mantere-2008 [7]
100, 000 trials 100, 000 trials

Al Escarcot 83 /100 5/100

[Population size] *1: 150, *2: 11

Our approach: GA (+ Local Search)
Mantere etc. : GA + Cultural Algorithm

Comparison with previous research

26

_ Improve efficiency Speed up

Mantere etc.

Our GA

Cultural Algorithm (CA) Small population size

Properly GA design + LS Parallel processing on GPU

27

Experimental results

= The results show the proposed genetic
operation was relatively improved the
optimum solution rate.

= On the other hand, the processing time
was still completely poor compared to
the backtracking algorithm.

Accelerating Genetic Computati
with GPU: GTX460 specification
Board ELSA GLADIA GTX460
#Core 336 (7 SM X 48 Core / SM)

Clock 675 MHz
Memory 1 GB
Shared memory / SM 48 KB
#Register / SM 32768
#Thread / SM 1024

The parallelization of genetic computing must be implemented
with full consideration given to the feature.

3|

0p)

29

Parallel processing for individuals

= The genetic computing programs
running in the SMs using threads are
executed in parallel, and the execution
of the same program in each SM with

rllffnrnnf mlhal \I::Il 1S |c hnncldnrnd to
CATIFIINGOIT T IL 1] U1 IJINVANL

serve as a measure against initial value
dependency.

Parallel nrm‘pqqmn for o gen

1 W W W W W 1 1 1

manlpulatlon

D

swap mutation

sssign
64 zaP3| 5171928 9
s|1]|5)3]2]09 Kl ¢ Thread 1
2l9l7ls|6als]|1]s5
9 2|8]|1|7]5]6]3,4
4 | 771161 3 VZ 51 8| 9 Thread 2

Z— V

5 3l6]oTals|l1]7]2
7159683016/ 2
3;6 sl 1hal2[s]g]7 ¢Thread3
11s|l2lol6l5|a]oTs

An example of the swap mutation within a sub-block
and the thread assignment.

o

Estimated execution time

= Single-core :

Texe XN X G
= Parallel processing for individuals :
oxe X Nl x G (48 < < N)

= Parallel processing for manipulation :
[(1 —K)+ K/ T e X Nlax G
(O<k<1,0< <3

31

The system architecture for
multi-core processors
Multi-thread Program POSIX

Process Thread
Interface
User

Operating System Thread
Kemel (Thread management) i
i o /Dfspatch
_________________ 1 i A
v

[Core#0 J [Core#t1] [Core#Z 1 [Core#:i }
Hardware
Lovel Multi-core processor

(Intel Core i7)

on GPU

CPU

generates and executes

Grid

Block 0

Thread 0
Thread 1

Thread 3N -1

Block 6

Thread 0
Thread 1

Thread 3N -1)

allocated

allocated

056

Shared Memory

surt]\

056

Shared Memory

\
swer |\

B evolved
I_nlltlal individuals
Individuals

evolved
individuals

Initial
| Constant Memory | ngivigual

Global Memory

GPU

C 33

7 blocks / grid
3 x N threads / block

34

MCP: Intel Corei7 920 (2.67GHz, 4 cores)

G GPU: Phenom T X4 945 (3 GHz, 4 cores)
OS Ubuntu 10.04
C Compiler gcc 4.4.3 (optimization " —03")

CUDA Toolkit

3.2RC

Evaluation Tests: 35

Test Data

= The evaluation results for problems
classified as Super Difficult-1 (SD1),
Super Difficult-2 (SD2), and Super
Difficult-3 (SD3).
(Super difficult Sudoku’s. Available via WWW:.
http://lipas.uwasa.fi/~timan/sudoku/EA_ht_ 20
08.pdf#search="CT20A6300%20Alternative%

20Project%20work%202008' (cited
8.3.2010).)

36

Evaluation Tests:

Acceleration Effect

= Table 6. The acceleration effect of using the
GPU/MCP (SD2, Givens: 23)

Count [%] Average Execution
Gen. time
Java 83 45,468 7m50s 678 | X 74
C 86 44,250 1m 265320 | x14
Core i7
4Thread: 8 100 5,992 12s 12
GTX460
4SM: 7 97 22,142 6s 391

Cutoff set: 100,000 generations, Population size: 150

37

Evaluation Tests:

Minimum Time (GPU)

= Table 13. The minimum numbers of generations and
the execution times required to solve SD1 through
SD3

Sudoku Minimum Gen. Execution time
SD1 83 25 ms
SD2 158 47 ms
SD3 198 76 ms

Evaluation Tests:

Scalability (MCP)

m Table 7. The number of generations until the correct

solution was obtained, the execution time, and the

rate of correct answers (SD2, Givens: 23)

38

Count [%0] Average Execution
Gen. time
#Th: 1 82 42,276 28s 41
#Th: 2 98 25,580 22s 48
#Th: 4 100 13,261 21s 47
#Th: 8 100 5,992 12s 12

Fvalua

ation Te:

Scalability (GPU)

= Table 10. The number of generations until the correct

solution was obtained, the execution time, and the

rate of correct answers (SD2, Givens: 23)

39

Count [%] Average Execution
Gen. time
#SM: 1 50 70,067 20s 199
#SM: 2 69 58,786 16s 958
#SM: 3 82 41,757 12s 630
#SM: 4 93 31,254 9s 260
#SM: 5 95 28,709 8s 287
#SM: 6 97 22,065 6s 368
#SM: 7 97 22,142 6s 391

40

EFvall

=
O

lon Tests:

\'

ua
Appropri

te Population Size (GPU)

SD

= Area for individual data
1 byte (char) Xx 81 x N x 2
= Area for selection : 4 bytes (int) x N
or crossover : 4 bytes (float) x N/2

] or

§

| ")

bt . 1 lavibAs fAlhAavr v O1 NI
nutation : 1 byte (char) X 81N
—> Total: 249N

= Maximum number of N which can be stored
l In the 48 KB shared memory : 192

I

ion Tests: H

| n |
pulation Size

a
Appr P

m Table 14. The execution time and the correct solution

Sl)

(@
=
(D

© (@D

late P

W

rates for when the number of individuals is set to 192.

Sudoku Count [%] Average Execution
Gen. time
SD1 100 9072 2s 751
SD2 100 13,481 4s 530
SD3 100 22,799 6s 862

- 5%
- 29%
-21%

ion Tests: 42

| n Test
pulation Size (MCP)

I

\/

E
Ap

=

© (@

late P

O ¢
=

a
P

O Q

able 12. The result on increasing the number of individuals (SD2)

Count [%] | Ave. Gen. | Exec. Tim | Best Gen.

100 100 8,641 11s 63 644
150 100 5,992 12s 12 243
200 100 7,115 19s 20 229
300 100 9,441 38s 29 123

400 08 15,441 84s 76 86

43

MCP v.s. GPU

= These experiments show that the
GPU can find solutions faster than
the multi-core processor by making
use of a higher degree of
parallelization.

44

MCP v.s. GPU

= At the same time, it Is more difficult to
use a GPU than a multi-core processor
which can execute programs in parallel
without having to worry about limitations

m Ni |mhnr nf fhrn::nlc or ch::rnrl maoamanr\/
1 TIVAIITIINI\OUI 11 \» CAN\A 1 \o A III\JIIIUI]

capacity.

45

Conclusion

= We have used the problem of solving
Sudoku puzzles to show that parallel
processing of genetic algorithms in a
many-core processor can solve difficult

nrnhlame in nractical time
PIUUl\JIII\) 1n1i rJlu\JLl\Jul CITI IN

46

Conclusion

= Specifically, we implemented parallel genetic
computing on the NVIDIA GTX 460 and Intel
Core i7, and showed that execution
acceleration factors of from 7 to 25 relative to
execution of a C program on a CPU are
attained and a correct solution rate of 100%
can be achieved, even for super-difficult
problems.

47

= We want to try another parallel GA
Implementation on many-core
processors.

= We need to investigate another
approach to avoid initial value
dependency.

= We want to show that EC (+ GPU) can

solve super difficult Sudoku puzzles in
one second.

= Thank you for your attention!

