
Acceleration of Genetic Algorithms forAcceleration of Genetic Algorithms for
Sudoku Solution on Many-core Processors

Yuji Sato*1,
Naohiro Hasegawa*1,

Mikiko Sato*2

*1: Hosei University, *2: Tokyo University of A&T

O li
0

Outline

Background
Sudoku Solution Accuracy by GA
Accelerating Genetic Computation withAccelerating Genetic Computation with
Many-core Processors (GPU/ MCP)
Evaluation Tests
ConclusionConclusion

B k d Obj i
1

Background: Objective

Evolutionary Computation
+ Parallel Processing
+ Many-core architecture

Practical processing timePractical processing time

B h k S d k l
2

Bench mark: Sudoku puzzle

As the first step towards that objective,
we take the problem solving Sudoku
puzzles and investigate acceleration of p g
the processing with a GPU/ MCP.

3
The reasons for this approach (1)

Sudoku puzzles are popular
throughout the world.

4
The reasons for this approach (2)

Genetic computation is suitable for
parallelization.
Therefore increasing the number ofTherefore, increasing the number of
core-processors may make the
processing time for GAs equal to thatprocessing time for GAs equal to that
for backtracking algorithms.

5
The reasons for this approach (3)

GPUs are designed for the processing
of computer graphics in games.
But research on General-PurposeBut, research on General Purpose
computation on Graphics Processing
Units (GPGPU) has begun and GPUsUnits (GPGPU) has begun, and GPUs
can be used to support solving a logical
game.

Sudoku Solution by GA: 6Sudoku Solution by GA:
An example of Sudoku puzzles

Fig. 1. An example of Sudoku puzzles, 24 positions contain a given
number, the other position should be solved. A Sudoku puzzles is
completed by filling in all of the empty cells with numerals 1 to 9completed by filling in all of the empty cells with numerals 1 to 9.

Research Example 7Research Example
conventional design of the chromosome

Fig. 4. An example of conventional design of the chromosome and the g p g
crossover operation. The chromosome is defined as one-dimensional array
of 81 numbers that is divided into nine sub blocks and the crossovers
points can only appear between sub blockspoints can only appear between sub blocks.

Th bl dd d h
8

The problem addressed here

This design generate chromosomes
i hi hl fit h f lcomprises highly fit schema of long

length that is constructed from cell rows
l i b bl k d thior columns in sub-blocks, and this

highly fit schemata (BBs) are easy to be
d t t d b th tidestructed by the crossover operation.

B i C t
9

Basic Concept

Genetic operations that emphasize
preservation of BB.

Improve local search functionImprove local search function.

Method of Applying GAs 10Method of Applying GAs
Definition of Chromosomes

We define this 9 x 9 two-dimensional array as the GA
chromosome Fill in the cell that do not contain givenchromosome. Fill in the cell that do not contain given
values with random numerals.

Th fit f ti
11

The fitness function

9 9

f (x) = gi(x)
i=1

9

∑ + hj(x)
j=1

9

∑
j

gi(x) = xi hj(x) = xj

The score is the number of different elements in
a row (gi) or column (hj), and the sum of the row (gi) (j),
and column scores is the score for the individual.

Th fit f ti
12

The fitness function
6 4 7 2 1 7 9 2 8

8 1 5 3 5 9 7 4 6
7
8 238 1 5 3 5 9 7 4 6

2 3 7 8 6 4 3 1 5

9 2 8 1 7 5 6 3 4 9

8
8

23

9 2 8 1 7 5 6 3 4

4 7 1 6 3 2 5 8 9

5 3 6 9 4 8 1 7 2

9
9
9

27
5 3 6 9 4 8 1 7 2

6

3 4 8

9
Score of the row that constitute
the sub-blocks3 4 8

8 9 4 3

the sub blocks

13

Crossover

2727

27

26

Fig. 3. An example of the crossover considered the
th l th t tit t th b bl k

27 27 25

rows or the columns that constitute the sub-blocks.
The child inherits the ones with the highest score.

Mutation
14

Mutation
Swap mutation inside the sub block

Fig. 5. An example of the swap mutation. Two numbers
inside the sub block are selected randomly if the numbers y
are free to change.

Local Search: 15Local Search:
Multiple Offspring Sampling (MOS)

1’ 1 11 1 1
2 2’ 2
1 1’ 1parents children

1 1 1
1 1 1

1 1 1
2 2 2

1 1 1’
2’ 2 2

1’ 1 1
2 2’ 2

p

1 1 1 1 1 1 1 1 1 1 1’ 1

2 2 2
2 2 2
2 2 2

1 2 2
1 2 2
1 2 2

1 2 2
1 2’ 2
1’ 2 2

1 2 2
1 2’ 2
1’ 2 22 2 2 1 2 2

crossover
1 2 2

1 2 2
1 2 2’

1 2 2

select two of them
1 2 2’
1’ 2 2’

mutation

Th i l
16

The experimental parameters

[Population size] 150
[Number of child candidates/Parents] 2
[Crossover rate] 0 3[Crossover rate] 0. 3
[Mutation rate] 0. 3
[Tournament size] 3

Evaluation Experiments 17Evaluation Experiments
The puzzles used for evaluations

We selected two puzzles from each
level of difficulty in the puzzle set from a
book.
For comparison with the conventional
examples we also used the particularlyexamples, we also used the particularly
difficult Sudoku puzzles introduced by
Timo Mantere in reference.

The puzzles used for evaluations18The puzzles used for evaluations
- Easy level

The puzzles used for evaluations19The puzzles used for evaluations
- Intermediate level

The puzzles used for evaluations20The puzzles used for evaluations
- Difficult level

The puzzles used for evaluations21The puzzles used for evaluations
- Super Difficult level

Super difficult Sudoku’s. Available via WWW: p
http://lipas.uwasa.fi/~timan/sudoku/EA_ht_2008.pdf#sea
rch='CT20A6300%20Alternative%20Project%20work%
202008' (cited 8.3.2010).

Experimental results 22Experimental results
Benchmark test

Experimental results 23Experimental results
Benchmark test
Table. 1 The comparison of how effectively GA finds solutions
for the Sudoku puzzles with different difficulty ratings.p y g

Experimental results 25Experimental results
Comparison with previous research

Table 3 Our result and the result represented in [7]
Sudoku puzzle Our proposed GA

100, 000 trials
Mantere-2008 [7]
100, 000 trials

Table. 3 Our result and the result represented in [7]

100, 000 trials 100, 000 trials
AI Escarcot 83 /100 5/100

[Population size] *1: 150, *2: 11[Population size] 1: 150, 2: 11

O r approach: GA (+ Local Search)Our approach: GA (+ Local Search)
Mantere etc. : GA + Cultural Algorithm

26
Comparison with previous research

Improve efficiency Speed up
Mantere etc. Cultural Algorithm (CA) Small population size

Our GA Properly GA design + LS Parallel processing on GPU

E i t l lt
27

Experimental results

The results show the proposed genetic
operation was relatively improved the
optimum solution rate.p
On the other hand, the processing time
was still completely poor compared towas still completely poor compared to
the backtracking algorithm.

Accelerating Genetic Computation28Accelerating Genetic Computation
with GPU: GTX460 specifications

Board ELSA GLADIA GTX460
#Core 336 (7 SM X 48 Core / SM)
Clock 675 MHzClock 675 MHz
Memory 1 GB
Shared memory / SM 48 KBy
#Register / SM 32768
#Thread / SM 1024

The parallelization of genetic computing must be implemented
with full consideration given to the feature.

29
Parallel processing for individuals

The genetic computing programs
running in the SMs using threads are
executed in parallel, and the execution p ,
of the same program in each SM with
different initial values is considered todifferent initial values is considered to
serve as a measure against initial value
dependencydependency.

Parallel processing for genetic30Parallel processing for genetic
manipulation

An example of the swap mutation within a sub-blockAn example of the swap mutation within a sub-block
and the thread assignment.

E i d i i
31

Estimated execution time

Single-core：
Texe x N x G

Parallel processing for individuals：Parallel processing for individuals：
Texe x N/α x G (48 < α < N)exe

Parallel processing for manipulation ：

[（１ k) + k/β] T N/ G[（１－ k) + k/β] Texe x N/α x G
(0 < k < 1, 0 < β < 3)(β)

The system architecture for 32The system architecture for
multi-core processors

(Intel Core i7)

Accelerating Genetic 33Accelerating Genetic
Computation with GPU

7 blocks / grid
3 x N threads / block3 x N threads / block

Evaluation Tests: 34Evaluation Tests:
Execution Environment

CPU MCP: Intel Corei7 920 (2.67GHz, 4 cores)
GPU: Phenom ⅡX4 945 (3 GHz, 4 cores)

OS Ubuntu 10.04

C Compiler gcc 4.4.3 (optimization " –O3")

CUDA Toolkit 3.2 RC

Evaluation Tests: 35Evaluation Tests:
Test Data

The evaluation results for problems
classified as Super Difficult-1 (SD1),
Super Difficult-2 (SD2), and Super p (), p
Difficult-3 (SD3).
(Super difficult Sudoku’s Available via WWW:(Super difficult Sudoku s. Available via WWW:
http://lipas.uwasa.fi/~timan/sudoku/EA_ht_20
08 pdf#search='CT20A6300%20Alternative%08.pdf#search= CT20A6300%20Alternative%
20Project%20work%202008' (cited
8 3 2010))8.3.2010).)

Evaluation Tests: 36Evaluation Tests:
Acceleration Effect

Table 6. The acceleration effect of using the
GPU/MCP (SD2 Gi 23)

Count [%] Average Execution

GPU/MCP (SD2, Givens: 23)

Count [%] Average
Gen.

Execution
time

Java 83 45,468 7m 50s 678 x 74
C 86 44,250 1m 26s 320

Core i7
#Thread: 8 100 5,992 12s 12

x 14

GTX460
#SM: 7 97 22,142 6s 391

C ff 100 000 i P l i i 150Cutoff set: 100,000 generations, Population size: 150

Evaluation Tests: 37Evaluation Tests:
Minimum Time (GPU)

Table 13. The minimum numbers of generations and
the execution times required to solve SD1 throughthe execution times required to solve SD1 through
SD3

Sudoku Minimum Gen. Execution time
SD1 83 25 ms
SD2 158 47 msSD2 158 47 ms
SD3 198 76 ms

Evaluation Tests: 38Evaluation Tests:
Scalability (MCP)

Table 7. The number of generations until the correct
solution was obtained the execution time and thesolution was obtained, the execution time, and the
rate of correct answers (SD2, Givens: 23)

Count [%] Average ExecutionCount [%] Average
Gen.

Execution
time

#Th: 1 82 42,276 28s 41#Th: 1 82 42,276 28s 41

#Th: 2 98 25,580 22s 48

#Th: 4 100 13 261 21s 47#Th: 4 100 13,261 21s 47

#Th: 8 100 5,992 12s 12

Evaluation Tests: 39Evaluation Tests:
Scalability (GPU)

Table 10. The number of generations until the correct
solution was obtained the execution time and thesolution was obtained, the execution time, and the
rate of correct answers (SD2, Givens: 23)

Count [%] Average ExecutionCount [%] Average
Gen.

Execution
time

#SM: 1 50 70,067 20s 199
#SM: 2 69 58,786 16s 958
#SM: 3 82 41,757 12s 630
#SM 4 93 31 254 9 260#SM: 4 93 31,254 9s 260
#SM: 5 95 28,709 8s 287
#SM: 6 97 22 065 6s 368#SM: 6 97 22,065 6s 368
#SM: 7 97 22,142 6s 391

Evaluation Tests: 40Evaluation Tests:
Appropriate Population Size (GPU)

Area for individual data：
1 byte (char) x 81 x N x 2

Area for selection： 4 bytes (int) x Ny ()
Area for crossover： 4 bytes (float) x N/2
Area for mutation： 1 byte (char) x 81NArea for mutation： 1 byte (char) x 81N

Total: 249N
Maximum number of N which can be stored
in the 48 KB shared memory： 192

Evaluation Tests: 41Evaluation Tests:
Appropriate Population Size

Table 14. The execution time and the correct solution
rates for when the number of individuals is set to 192rates for when the number of individuals is set to 192.

Sudoku Count [%] Average Execution [] g
Gen. time

SD1 100 9072 2s 751
SD2 100 13 481 4s 530

- 5%
29%SD2 100 13,481 4s 530

SD3 100 22,799 6s 862
- 29%
- 21%

Evaluation Tests: 42Evaluation Tests:
Appropriate Population Size (MCP)

Table 12. The result on increasing the number of individuals (SD2)

Count [%] Ave. Gen. Exec. Tim Best Gen.

g ()

100 100 8,641 11s 63 644

150 100 5 992 12s 12 243150 100 5,992 12s 12 243

200 100 7,115 19s 20 229

300300 100 9,441 38s 29 123

400 98 15,441 84s 76 86

MCP GPU
43

MCP v.s. GPU

These experiments show that the
GPU can find solutions faster than
the multi core processor by makingthe multi-core processor by making
use of a higher degree of
parallelization.

MCP GPU
44

MCP v.s. GPU

At the same time, it is more difficult to
use a GPU than a multi-core processor
which can execute programs in parallel p g p
without having to worry about limitations
in number of threads or shared memoryin number of threads or shared memory
capacity.

C l i
45

Conclusion

We have used the problem of solving
Sudoku puzzles to show that parallel
processing of genetic algorithms in a p g g g
many-core processor can solve difficult
problems in practical timeproblems in practical time.

C l i
46

Conclusion

Specifically, we implemented parallel genetic
ti th NVIDIA GTX 460 d I t lcomputing on the NVIDIA GTX 460 and Intel

Core i7, and showed that execution
l ti f t f f 7 t 25 l ti tacceleration factors of from 7 to 25 relative to

execution of a C program on a CPU are
tt i d d t l ti t f 100%attained and a correct solution rate of 100%

can be achieved, even for super-difficult
blproblems.

Future works
47

Future works

We want to try another parallel GA
implementation on many-core
processors.p
We need to investigate another
approach to avoid initial valueapproach to avoid initial value
dependency.
We want to show that EC (+ GPU) can
solve super difficult Sudoku puzzles insolve super difficult Sudoku puzzles in
one second.

Thank you for your attention!a you o you atte t o

