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Abstract— This paper proposes an evolutionary algorithm
for solving QAPs with parallel independent run using GPU
computation and gives a statistical analysis on how speedup
can be attained with this model. With the proposed model, we
achieve a GPU computation performance that is nearly propor-
tional to the number of equipped multi-processors (MPs) in the
GPUs. We explain these computational results by performing
statistical analysis. Regarding performance comparison to CPU
computations, GPU computation shows a speedup of x4.4 and
x7.9 on average using a single GPU and two GPUs, respectively.

I. INTRODUCTION

Recently, parallel computations using GPUs (Graphics
Processing Units) have become popular with great success,
especially in scientific fields such as fluid dynamics, image
processing, and visualization using particle methods [1].
These parallel computations are reported to see a speedup
of more than tens to hundreds of times compared to CPU
computations. However, GPU computations have only just
started to be used in the evolutionary computation field.

In evolutionary computation, many applications consume
their run time for evaluation of individuals. Thus, in evo-
lutionary computation, the approach in which populations
are managed by CPUs and evaluation tasks are assigned to
GPUs is a good approach though some overhead time for the
transfer of individuals between the CPU and GPU is needed.
A typical example of this approach is reported by Maitre et
al. [2], in which they showed a successful speedup of x60 in
solving a real-world material-science problem.

On the other hand, there are applications where the evo-
lutionary algorithm itself must be performed fast. Typical
examples of such applications are combinatorial optimization
problems such as routing problems and assignment problems.
In this class of problems, computation time for the evaluation
of individuals is not dominant. In this case, it is useful
that evolutionary operations are performed on GPUs using
parallel evolutionary models, such as fine-grained or coarse-
grained models [3], [4]. However with this approach, the
speedup is at most x10.

In a previous study [5], we applied GPU computation to
solve quadratic assignment problems (QAPs) with parallel
evolutionary computation using a coarse-grained model on
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a single GPU. The results in that study showed that par-
allel evolutionary computation with the NVIDIA GeForce
GTX285 GPU produce a speedup of x3 to x12 compared to
the Intel Core i7 965 (3.2 GHz). However, the analysis of
the results was postponed for future work.

In this study, we propose a simplified parallel evolutionary
model with independent run and analyze how the speedup
is obtained using a statistical model of parallel runs of the
algorithm. The basic idea of the parallel independent run is as
follows. A set of small-size subpopulations is run in parallel
in each block in CUDA [1]. The computation time to get
an acceptable solution is different in each block because the
computations are performed probabilistically using pseudo
random numbers with different seeds. If one subpopulation
finds an acceptable solution first, then we stop executions of
all subpopulations. This time is shorter than the average time
where we run all subpopulation until the acceptable solution
is obtained.

In the remainder of this paper, Section II describes a
brief review of GPU computation and its application to
evolutionary computation. Then, the parallel GA model with
independent run to solve QAPs on GPUs is described in
Section III. Section IV describes computational results and
gives analysis. Finally, Section V concludes the paper.

II. A BRIEF REVIEW OF GPU COMPUTATION AND ITS
APPLICATION TO EVOLUTIONARY COMPUTATION

A. GPU Computation with CUDA

In terms of hardware, CUDA GPUs are regarded as two-
level shared-memory machines as shown in Fig. 1. Processors
in a CUDA GPU are grouped into multiprocessors (MPs).
Each MP consists of 8 thread processors (TPs). TPs in a
MP exchange data via fast 16KB shared memory (SM). On
the other hand, data exchange between MPs is performed via
VRAM. VRAM is also like main memory for processors. So,
code and data in a CUDA program are basically stored in
VRAM. Although processors have no data cache for VRAM
(except for the constant and texture memory areas), SM can
be used as manually controlled data cache.

The CUDA programming model is a multi-threaded pro-
gramming model. In Fig. 2, we describe an overview of the
CUDA programming model. In a CUDA program, threads
form two hierarchies: a grid and thread blocks. A thread
block is a set of threads. A thread block has a dimensionality
of 1, 2, or 3. A grid is a set of blocks with the same size
and dimensionality. A grid has dimensionality of 1 or 2.
Each thread executes the same code specified by the kernel



on CPU on GPU
//Code for GPU
Tglobali void kernel() g['l d
block 0 block 1 block 2 block 3 block m-1
Code dependent on block ID|
and thread ID 4 thread 0 thread 0 thread 0 thread 0 thread 0
thread 1

}

//main function for CPU

kernel<<<grid, block>>>();
data copy from main

/|| thread 1 thread 1 thread 1 three_ld 1

! thregad n-1 thréad n-1 thréad n-1 threegld n-1

/

threlad n-1

int main()
{ I’ o]
>
. 2 8 & > 5
data copy from main i S & o & ‘&,6
memory to VRAM 19 = '\\o \\o S \\00
A A S 3
//kernel call H ;%3
dim3 grid(m,1); ;o vE rd ¥ rd
dim3 block(n, 1, 1); )

memory to VRAM

\ ) \GPU

/

Fig. 2. An overview of CUDA programming model

Thread Processor Multi-Processor (30)

Fig. 1. CUDA architecture as a two-level shared-memory machine

function. A kernel function call generates threads as a grid
with given dimensionality and size.

VRAM bandwidth is very high at 159 GB/sec. However,
when accessing VRAM, there is memory latency as large as
100 to 150 arithmetic operations [1]. This VRAM latency
can be hidden if there are a sufficient number of threads by
overlapping memory access of a thread with computation of
other threads. The number of threads that run concurrently on
a multiprocessor is restricted by the fact that shared memory
and registers in a MP are divided among concurrent thread
blocks allocated for the MP. VRAM has a read-only region
of size 64KB [1]. The region is called the constant memory.
The constant memory space is cached. The cache working
set for constant memory is 8 KB per MP [1].

B. Applications of GPU Computation to the Evolutionary
Computation

There are many parallel computations in the scientific
computation fields [1]. For example, cloud tracking [6],
statistical static timing analysis [7], biomedical image anal-
ysis [8], AES cryptography encoding and decoding [9],
medical image construction [10].
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Some studies on GPU computation can be found in the
evolutionary computation field, especially in genetic pro-
gramming (GP), as shown in Banzhaf et al.’s intensive sur-
vey [11]. Langdon et al. showed the feasibility of evaluating
genetic programming populations directly using a GPU [12].
Langdon & Harrison built a SIMD C++ GP system on a GPU
to predict a ten year+ outcome of breast cancer from a dataset
containing a million inputs [13]. Robilliard et al. showed it
is possible to efficiently interpret several GP programs in
parallel [14]. Wilson & Banzhaf implemented a GP system
on a commercial video game console [15].

A few studies on parallel evolutionary computation with
GPU computation are reported. Fok et al. showed early
results using an nVidia GeForceFX 6800 with parallel Evolu-
tionary Programming (EP) [3]. It was found that the speedup
factor of their parallel EP ranges from x1.25 to x5.02,
when the population size is large enough. Wong, M. L. &
Wong, T. T reported on a parallel hybrid genetic algorithm
(HGA) on consumer-level graphics cards [16]. HGA extends
the classical genetic algorithm by incorporating the Cauchy
mutation operator from evolutionary programming.

To evaluate and evolve neural models, Clayton et al.
proposed a Distributed Adaptive Genetic Algorithm (DAGA),
which is suitable to the large population sizes promoted by
the GPU architecture [17]. Wong proposes implementing a
parallel MOEA within the CUDA environment on an nVidia
GPU [18]. The speedups of his parallel MOEA range from
x5.62 to x10.75.

In [2], Maitre, et al. propose a hybrid approach which
combines CPU and GPU. They showed successful speedup
of x60 in solving a real-world material-science problem
(see Section I). Implementing a fast pseudo-random number
generator is important in implementing parallel evolutionary



computation on GPU. Langdon proposed a fast, high-quality
pseudo-random number generator for nVidia CUDA [19].

III. PARALLEL GA MODEL WITH INDEPENDENT RUN TO
SOLVE QUADRATIC ASSIGNMENT PROBLEMS ON GPU
Here, we propose a parallel independent evolutionary

model to solve quadratic assignment problems (QAPs).

A. Quadratic Assignment Problem (QAP)

In QAP, we are given L locations and L facilities and the
task is to obtain an assignment ¢ which minimizes cost as
defined in the following equation.

L L
cost(¢) = Z Z figdo@yo i)

i=1 j=1

(M

where d;; is the distance matrix which represents distance
between locations ¢ and j and , f;; is the flow matrix which
represents flow between facilities ¢ and j. The QAP is an
N P-hard optimization problem [20] and it is considered one
of the hardest optimization problems.

B. Evolutionary Model for GPU Computation for QAP

1) The base GA model for QAP: The base evolutionary
model for QAP in GPU computation is the same as was used
in our previous study [5]. Fig. 3 shows the base evolutionary
model for QAP in this research. Let /V be the population size.
We use two pools P and W of size N. P is the population
pool to store individuals of the current population, and W is
a working pool to store newly generated offspring individuals
until they are selected to update P for the next generation.
The algorithm is performed as follows:

Step 1 Set generation counter ¢ < 0 and initialize P.

Step 2 Evaluate each individual in P.

Step 3 For each individual I; in P, select its partner I;
(j # 1) randomly. Then apply a crossover to the
pair (I; , I;) and generate one child, 1!, in position
iin W.

Step 4 For each I, apply a mutation with probability p,,.

Step 5 Evaluate each individual in W.

Step 6 For each 7, compare the costs of I; and I]. If I is
the winner, then replace I; with I7.

Step 7 Increment generation counter ¢ «— ¢ + 1.

Step 8 If the termination criteria are met, terminate the
algorithm. Otherwise, go to Step 3.

Usually, a crossover operator generates two offspring from
two parents. However, in this model we generate only one
child from two parents. In Step 6, the comparison of costs is
performed like a tournament selection with size 2. However,
each comparison is performed between individuals /; and
I/ which have the same index ¢. Please remember here
that I is generated from I; as one of its parents (the
other parent I; was chosen randomly). Since a parent and a
child have partly similar substrings, this comparison scheme
can be expected to maintain population diversity like the
deterministic crowding proposed by Mahfoud [21].
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Fig. 3. The base evolutionary mode for QAP

From the viewpoint of parallelization, this model also has
advantage because a process for one individual in a gener-
ation cycle can be implemented in a parallel thread easily.
Using one child from two parents was already proposed for
designing the well known GENITOR algorithm by Whitley et
al. [22]. For crossover operators, we performed preliminary
tests using two well known operators, i.e, the order crossover
(OX) [23] and the partially mapped crossover (PMX) [24]
by implementing the GA model both on CPU and GPU. The
results showed the PMX operator worked much better than
the OX operator on QAPs. Thus, in the experiment in IV, we
will use PMX operator.

For mutation operator, we used a swap mutation where
values of two randomly chosen positions in a string are
exchanged. Strings to which the mutation are applied are
probabilistically determined with a mutation rate of p,,.
Applying local search in solving QAP is very common in
evolutionary algorithms [25], [26], [27]. One of the main
purpose of this research is to analyze the effect of the parallel
evolutonary computation on GPUs, we will not apply any
local search in this study.

2) Parallel evolutionary model for GPU computation with
independent run: The NVIDIA GeForce GTX285 GPU
which we use in this study has 30 MPs and each MP has
8 TPs sharing 16KB high speed SM among them. For each
subpopulation, we use the base evolutionary model described
in III.LB. So, we allocate the population pools P and W
described in Fig. 3 to the SM of each MP.

We represent an individual as an array of type unsigned
char, rather than type ¢nt. This restricts the problem size we
can solve to at most 255. However, this does not immediately
interfere with solving QAP because QAP is fairly difficult
even if the problem size is relatively small, and maximum
problems sizes of QAP are at most 150. Let L be the
problem size of a given QAP instance. Then, the size of
each individual is L bytes. So, the size of population pool
P and working pool W is 2L x N where N is the number
of individuals allocated to each MP at the same time; i.e.
subpopulation size. We have only 16KB shared memory per
MP. To maximize both L and N, we chose IV as 128 under
the assumption that L is at most 56. Consequently, for W and
P, our implementation consumes 2L x N = 2 x 56 x 128 =



14336 bytes in SM at most. From the CUDA programming
scheme, we generate p blocks and each block consists of 128
threads.

We stored distance matrix d;; and flow matrix f;; in the
constant memory space so that they can be accessed via
cache. To save the memory space size for these matrices,
unsigned short was used for the elements of these matrices.
We implemented a simple random number generator for each
thread each with a different seed number.

In our previous study [5], individuals in each block are
exchanged among blocks every 500-generation interval as
follows: (1) In the host machine, all individuals are shuffled.
Then, they are sent to the VRAM of the GPU. (2) Each
MP selects a block not yet processed and copies the corre-
sponding individuals from VRAM to its SM, performs the
generational process up to 500 generations, and finally copies
the evolved individuals from its SM to VRAM. (3) The above
process is repeated until all blocks are processed. (4) Then,
all individuals are copied back to the memory of its host
machine and merged. (5) These processes are repeated until
termination criteria are satisfied.

In this study, we evolve subpopulations of each block
independently without exchanging individuals among blocks.
If a subpopulation in a block has found an acceptable
solution, then it sets “FoundFlag” to 1 (the initial value
being set to 0) in VRAM which can be shared by all blocks,
sends the solution to the VRAM, and then terminates the
execution. All subpopulations in other blocks check the flag
at every generation whether the flag is set or not. If they find
the flag is set by another block, then they terminate their
executions, otherwise, they continue. In this way, with this
parallel independent run model, execution of the algorithm
terminates if one of the subpopulations in the blocks find an
acceptable solution.

The subpopulation size of 128 is relatively small for
solving QAP and independent run with this population size
often causes stagnation of evolution in the subpopulations.
To prevent the stagnation in the subpopulation, we introduce
a restart strategy as described in the following subsection.

3) Implementing restart strategy: Restart strategies have
been discussed elsewhere. The delta coding method used by
Mathias and Whitley is an iterative genetic search strategy
that sustains search by periodically reinitializing the popu-
lation [28]. It also remaps the search hyperspace with each
iteration and it is reported that it shows good performance
especially when used with Gray coding. The CHC method
by Eshelman is a safe search strategy where restart of the
search process is done if it gets stuck at local optima by
re-initializing the population with individuals generated by
mutating the best solution obtained so far (also keeping the
best one) [29].

In another study, Tsutsui et al. proposed a search space
division and restart mechanism to avoid getting stuck in local
traps in the framework referred to as the bi-population GA
scheme (bGA) [30]. Although the use of a restart strategy
is a feature of the bGA, its main purpose is to maintain a
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suitable balance between exploration and exploitation during
the search process by means of two populations.

The approach taken in this study is similar to CHC. Let
the best functional value in a subpopulation be represented
by fe—pest- In each generation, we count the number of
individuals whose functional values are equal to f._pest,
and represent the number by Beoynt. If Beount 1s lager than
or equal to N X B,4te, then we assume the subpopulation
is trapped at local solutions and the subpopulation is re-
initialized. According to a preliminary study, we found
that the approach of keeping the best individual during re-
initialization causes 1ill effect. So, in the re-initialization, all
member of the subpopulation are generated anew. We used
B'I‘ate = 06

In a block, each individual is processed as an independent
thread, so to get B.ount, We need to use instructions which
control exclusive and synchronous executions. In this study,
we used atomic instructions which work on the SM. These
instructions are available in a GPU with compute capability
1.2 or later. Since this counting takes some additional over-
head time, the checking current B.yy,: is performed only
every 50 generations. Fig. 4 shows the pseudo code for each
block.

TABLE I shows the effect of the restart strategy. Results
of this table were obtained by emulating a single block run
using a CPU (Intel Core 17965 3.2 GHz). We used a mutation
rate of p,, = 0.1. From this table, we can see a clear effect
as a result of using the restart strategy.

TABLE I
EFFECT OF RESTART STRATEGY

no restart restart
QAP 3 3
Instances % T ave Min  Max % T ave Min Max

— —
tai25b 6 0.07 005 010 |30 0.07 0.05 3.77
kra30a 1027 0.27 0.27 |30 10.03 0.27 61.13
kra30b 0 - - - 30 2520 045 9224
tai30b 0 30 3.96 0.39 1253
kra32 0 30 1070 033 59.52
tai35b 0 30 29.69 253 137.72
ste36b 0 - - - 30 17.00 0.73  45.10
tai40b 1 0.30 0.30 0.30 [ 30 6.96 0.30 20.96
tai50b 0 30 48.07 1.12 14737

#OPT: Number of success run in 30 runs
T . : Average time to find acceptable solutions in success runs in second

IV. COMPUTATIONAL RESULTS AND ANALYSIS
A. Experimental Conditions

In this study, we used a PC which has one Intel Core i7
965 (3.2 GHz) processor and two NVIDIA GeForce GTX285
GPUs. The OS was Windows XP Professional with NVIDIA
graphics driver Version 195.62. For CUDA program compila-
tion, Microsoft Visual Studio 2008 Professional Edition with
optimization option /O2 and CUDA 2.3 SDK were used.
The two GPUs were controlled using thread programming
provided in the Win32 APL.

The instances on which we tested our algorithm were taken
from the QAPLIB benchmark library at [31]. QAP instances



/[Code for GPU
__global__ void kernel()
{

int threadID = POOL_SIZE * blockldx.x + threadldx.x;
get seed of random number generator for threadID from VRAM;
t=0;
initialize string with the seed;
evaluate the string;
for(int t=1; t<MaxGeneration; t++){
_ syncthreads();
reset memory contents related restart;
Evolutionary Code for the thread threadID;

if (this thread (individual) found an acceptable solution){
set FoundFlag in VRAM to 1 using "atomicCAS" instruction;
if(this thread has set)
write the solution (string) to VRAM;
1
i
__syncthreads();
if(FoundFlag in VRAM ==1)
break; //an acceptable solution has found
if(t%50==0){
atomicMin(fc_best, perf);//get minimum value at s_minValue in SM
__syncthreads();
if(perf == *fc_best)/if this thread have minimum functional value
atomicAdd(B_count, 1);//add 1 to B_count in SM
__syncthreads();
if(threadldx.x==0){//check restart condition by thread with id 0
if(*B_count > (int)(POOL_SIZE*B_rate*+0.5))//satisfy?
*restart_flag = 1;
/finform other thread that the restart condition has satisfied

__syncthreads();

if(*restart_flag == 1){//restart?
initialize string of this thread;
evaluate;
__syncthreads();

}

}
else
__syncthreads();

}
//main function for CPU
int main()

{

data copy from main memory to VRAM
/lkernel call

dim3 grid(128,1);

dim3 block(P, 1, 1);

kernel<<<grid, block, SMsize >>>();

copy from main memory to VRAM

Fig. 4. Pseudo code for parallel independent run in CUDA

in the QAPLIB can be classified into 4 classes; i) randomly
generated instances, ii) grid-based distance matrix, iii) real-
life instances, and iv) real-life like instances [25]. In this
experiment, we used the following 9 instances which were
classified as either iii) or iv) with the problem size ranging
from 25 to 50; tai25b, kra30a, kra30b, tai30b, kra32, tai35b,
ste36b, tai40, and taiSOb.

30 runs were performed for each instance. We measured
the performance by the average time to find acceptable
solutions as measured by CPU (wall clock). Acceptable
solutions for all instances except tai50b were set to known
optimal values. For tai50b, we set the acceptable solution be
within 0.06% of the known optimal solution. We represent
the average time over 30 runs as T} .,y Where p is the
number of MPs. We used a mutation rate of p,, = 0.1 in all
experiments.
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B. Distribution of Computation Time on a Single Block

Here we performed 100 runs on one GPU using a single
block until acceptable solutions were obtained. Fig 5 shows
the distribution of the run time until an acceptable solution
was obtained for each instance. Each asterisks indicates the
time in each run and black boxes indicates their average time
(T'1,avg)- Please refer to TABLE II for each value of T 4.4
and its standard deviation. From this figure, if we run the
algorithm using p(p > 1) blocks simultaneously it is clear
that the average runtime is reduced, i.e., T qvg < 11,40y for
p> 1.
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QAP Instances
Fig. 5. Distribution of time to find acceptable solution on a single block
runs

C. Numerical Results

Since our system has two GPUs, we performed two
experiments, one was to use a single GPU with 30 blocks
(p = 30) and the other was to use two GPUs with 60 blocks
(p = 60). In the CUDA programming model, it is possible to
run our algorithm using many blocks such that the number of
blocks is more than the number of equipped MPs. However,
doing this could cause side effects in performance in our
parallel evolutionary model due to hardware resource limits.
The results are summarized in TABLE II.

In the table, gain, indicates T 444/Tp qvg, the run time
gain obtained by p-block parallel runs to single block runs
(please note that the single block runs are taken from the
experiment in IV-B and are an average over 100 runs). For
example, on tai25b, gainsg = 9.56 and gaingy = 10.85,
respectively, showing not so high a gain. However, on kra30a,
gaingg = 25.43 and gaingy = 49.10, respectively. The
values of gain, are different from instance to instance, they
are in the range [10, 35] for p = 30, and [10, 70] for
p = 60, and are nearly proportional to p, except for instances
tai25b and tai40b. In these two instances, the gains are
smaller. Thus, with some exception, we can clearly confirm
the effectiveness of the parallel independent run model.

D. Analytical Estimation of Speed with Parallel Independent
Runs

In this subsection, we analyze the results in IV-C from a
statistical perspective. Let the probability density function of



TABLE 11
RESULTS OF PARALLEL INDEPENDENT RUNS AND STATISTICAL ESTIMATION

Instances tai25b kra30a kra30b
GPU | Noof GPU r GPU r GPU r
blocks p7, ... ¢ gain,(M@P) A, |Tpwe o gain,\MP) 4, |Tpoe o gain,|MP) 4,
1 2.02 1.89 1.00 - - 13425 3679 1.00 - - 369 11336 1.00 - -
GPUx 1
30 0.21 0.06 9.56 ]10.03 0.18 |1.35 1.23 2543 |0.79 0.56 |3.17 2.52 3585292 0.25
GPUx 2 60 0.19 0.02 1085 ]0.00 0.18 J0.70 0.47 49.10 |0.34 0.36 | 1.63 1.48 6959 |1.21 042
Instances tai30b kra32 tai35b
GPU | No of GPU r GPU r GPU r
blocks p Tpag o gaing\MP) A4, |\Tpay o gain,|\M(P) 4, \Tpag o gain,|MP) 4,
1 1431 13.64 1.00 - - 56.18 61.11 1.00 - - 92.08 7590 1.00 - -
GPUx 1
30 0.71 0.46 2024 |0.45 0.25 |2.13 1.80 2635]1.78 0.35]3.67 3.56 2512 |3.25 041
GPUx 2 60 0.46 0.16 3088 |0.16 0.30 J1.12 0.93 50.11 |0.83 0.29 J1.65 1.38 5568 |1.66 -0.01
Instances ste36b tai40b tai50b
GPU | No of GPU r GPU r GPU r
blocks pl7 o 0 gain,|\M@P) 4, |Tpue o gain,|M@P) 4, |Tpos o gain,|M@) 4,
1 70.82  73.23  1.00 - - 19.07 1643 1.00 - - 21255 203.64 1.00 - -
GPUx 1
30 2.57 1.89 2754 ]11.63 094 ]1.15 0.62 1656 |0.46 0.69 |8.75 8.65 2429 |6.19 2.56
GPUx 2 60 1.35 0.77 5240 |0.66 0.70 J0.90 0.16 2127 10.12 0.78 | 428 3.84 49.62 |2.72 1.56

o : standard deviation
I' : Results with Gamma distribution estimation
Values of T, ,,, and M(P) are in second

the run time on a single block be represented by f(¢) and
probability distribution function of f(¢) by F(t), where

Flt) = /0 ).

Here, consider a situation where we run p blocks in
parallel independently and if a block finds an acceptable
solution while other blocks are still running, we stop the
GPU computation immediately as described in III-B.2. Let
the probability density function of the runtime on p blocks
be represented by g(p, t), probability distribution function of
g(p, t) by G(p, t), and the mean time by M (p). Then, g(p,
t) can be simply obtained as follows. Since the probability
that all p blocks cannot find acceptable solutions at ¢ is
(1—F(t))P, the probability distribution function G(p, t) can
be obtained as

2)

and its probability density function g(t) is obtained as
dG(p, 1)
t)=— 4
9(p,t) T )
and M (p) is
M(p) = / t-g(p,t)dt. )
0

We estimated the distributions in Fig. 5 by the normal
distribution and the gamma distribution using the least-square

method. Results showed that the gamma distribution reflected
the distributions well as shown in Fig. 6. As we can see in the
distributions in Fig 5, the distributions are not symmetrical
against mean values i.e., they distribute tighter in smaller ¢
(please note the vertical axis is log scale). This is the reason
that the normal distribution does not reflect the distributions.
By applying Eq. (5) to the estimated distributions in Fig.
6, we calculated M (p) for p = 30 and 60. These results
are shown in TABLE II. Seeing these results, we can see
that they reflect the results obtained by GPU computation
(Tp,avg). However, the values of M (p) are slightly smaller
than the corresponding 7}, 4,4 With the exception of tai35b
(p = 60). We showed the differences of both values by
A,. Although the A, values are different among instances,
we can see larger size instances have larger A, values than
smaller size instances.

Now consider here why these differences arise. In our
estimation in Eq. (3), we assumed that there is no additional
overhead time even if we run p (p > 1) blocks in parallel.
Detailed hardware performance information from the manu-
facturer is not open to us. But we can recognize that some
additional overhead time must arise if we run multiple blocks
simultaneously. One possible scenario we can consider is
overhead caused by constant memory access conflict. In our
implementaion, QAP data (distance matrix and flow matrix,
please see III-A) are stored in the constant memory. The
constant memory has 8KB cache memory for each MP, but
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some access conflict occurs when data are transferred from
constant memory to cache memory.

Although there exist some differences (A,) between real
GPU computation and our statistical analysis values, this
analysis does represent the theoretical elements of speedup
by the parallel independent run.

E. Comparison with CPU Computation

To compare the results of GPU computation and CPU
computation, we measured the CPU computation time of
the same tasks. The CPU was an Intel Core i7 965 (3.2
GHz) processor running Windows XP Professional. For
CPU computation, we used the same evolutionary model
as described in Fig. 3. Other conditions, such as crossover
operator, mutation operator, and restart strategy, are also
the same. A single population was used on the CPU. We
tuned population size for each instance, by testing population
sizes of 64, 128, 256, 512, 1024, and 2048. We used a
population size which shows the shortest mean time to get
an acceptable solution over 30 runs (75,4). We refer to this
CPU computation as Model I. We also show the results of
CPU computation which we refer to as Model II, where
population size is fixed to 128, which is the same as in GPU
computation.

Results are summarized in TABLE III. On tai50b, the
speedup of the GPU is x3.9 and x4.4 compared against
Model I, using a single GPU and two GPUs, respectively.
These results are not so promising. On kra30b however, the
speedup of the GPU is x7.9 and x15.4 compared against
Model I, using a single GPU and two GPUs, respectively,
showing promising results. On average, we got a speedup of
x4.4 and x7.9 compared against Model I, using a single GPU
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and two GPUs, respectively. The speedup values of the GPU
against Model II are larger than or equal to those against
Model I.

TABLE III
COMPARISON BETWEEN GPU COMPUTATION AND CPU COMPUTATION
WITH A SINGLE THREAD

GPU Computaion CPU Computation
speedup to Model I|speedup to Model 1T
Model T Model 1T
QAP GPUx 1 GPUx2 CPU (T,,.)
. X X J (Tag
instances | .
(Tsuw)  (Taog) | CPU - Poplation] vt | o Gpuca | Gput GPus2
(T ) Size | Population
i size 128
tai25b 0.21 0.19 0.82 128 0.82 39 4.4 39 44
kra30a 1.35 0.70 6.64 1024 21.45 49 9.5 15.9 30.7
kra30b 3.17 1.63 25.20 128 25.20 79 15.4 7.9 154
tai30b 0.71 0.46 2.05 512 3.96 29 44 5.6 85
kra32 2.13 1.12 10.70 128 10.70 50 9.5 5.0 9.5
tai35b 3.67 1.65 12.16 512 29.64 33 74 8.1 17.9
ste36b 2.57 1.35 15.07 256 16.99 59 11.1 6.6 12.6
tai40b 1.15 0.90 4.44 512 6.98 39 5.0 6.1 78
taiSO0b 8.75 4.28 18.76 512 48.07 2.1 4.4 55 11.2
Values of T'3gmg: T aag and M(P) are in second

To obtain higher speedup values, we need to improve the
implementation of genetic operators used in each thread in
the blocks. Fig. 7 shows the code of the PMX operator
used in this study. The flow is the same as is used in CPU
implementation. Here, cutl and cut2 are cut-points and have
different values among threads. Thus, the loop numbers in
the for statements in each thread are different from each
other. Further, whether the branch condition holds or not in
each thread is also different from thread to thread. These
differences among threads increase the computation time in
a block because each warp of 32 threads is essentially run
in a SIMD fashion in a MP; high performance can only
be achieved if all of a warp’s threads execute the same
instruction.



//cutl are cut2 are random number in [0,L-1]. cutl < cut2 is assumed.
//unsigned char *parentl, *parent2 are strings of the parents.
//unsinged char *child is a new string to be generated.
for (int j = 0; j <L; j++)
child[j] = parentl[j];
for(int i = cutl; i < cut2 ; i++){
for(intj =0 ;j <L; j+h){
if (parent2[i] == child[j]){
unsigned char tmp = child[i]; child[i] = child[j]; child[j] =tmp;
break;
}
}
}

Fig. 7. Code of the PMX operator for each thread

To use the same cut-points among threads in one gen-
eration may result in some speedup of the execution of
the operator, but we need further consideration of operators
suitable for more efficient GPU computation.

V. CONCLUSIONS

In this paper, we proposed an evolutionary algorithm for
solving QAPs with parallel independent runs using GPU
computation and gave an analysis of the results. In this
parallel model, a set of small-size subpopulations was run
in parallel in each block in CUDA independently. With this
scheme, we got a performance of GPU computation that
is almost proportional to the number of equipped multi-
processors (MPs) in the GPUs.

We explained these computational results by performing
statistical analysis. Regarding performance comparison to
CPU computations, GPU computation showed a speedup of
x4.4 and x7.9 on average using a single GPU and two GPUs,
respectively. We can consider many parallel evolutionary
models for GPU computation. To implement these models
and analyse them remain for future work.
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