Linear Genetic Programming
GPGPU on the Xbox 360

Why/do GPGPU?

B GPUs exceed Moore’s Law, which states that general
computing power doubles every 18-24 months. .

B In contrast, graphics hardware doubles in speed every
6 months, whereas Intel PC CPUs do not meet
expectations of Moore’s Law.*

.oday’s high-end GPUs also exceed the floating poin
ormance of the host CPU. ;

Why do GPGPU on Consoles?

B Current generation video game consoles have
considerable GPU and CPU power, which can be
harnessed for research.

B At [aunch, they are basically graphics
supercomputers with cutting edge hardware.

ILE. o Xbox 360, launched on Nov. 22, 2005, was
e first PC (or console) to feature°

A Few Firsts

B First implementation of a research-based GP
system on a commercial video game pIatformf“f

B First time linear GP (LGP) has been
implemented in a GPGPU application.

First instance of XBox 360 being used for any
iGPGPU purpose.

Xbox 360: Under:the Hood

B Custom built IBM PowerPC-based CPU with three
3.2GHz core processors sharing a 1Mb L2 cache.

B CPU core also has an associated complement of
SIMD vector processing units.

B CPU cache, cores, and vector units are customiz
for graphics-intensive computation, and the GPU
is able to read directly from the CPU L2 cache.

box GPU by ATl houses 48 parallel shaders witf
ified architecture and 10 MB of embedded |
$EDRAI\/I)

f DR

GPGPU Summary

B GPGPU applications tend to use pixel GPU
shaders (rather than vertex shaders): (Vertex Processors

m typically more pixel shaders
m pixel shader output fed directly to memory
B In terms of traditional data structures and

execution: | Rasterizer)
B GPU textures are analogous to arrays.
m the shader program is like a Kernel
program.
m rendering effectively executes the program. < Pixel Shaders ><

CPU funs the main program, and sends data
~ in texture form to the GPU when parallel
processing is required.

Textures

CPU

(GPU Memory)

The XNA Framework

B n 2006, Microsoft launched XNA’s Not |
Acronymed (recursive acronym “XNA”) '
Game Studio Express 1.0 |

/ :
B Game Studio 2.0 and 3 CTP have now been
i: released.

A allowed, for the first t|me access to |

Tools for Homebrew Development on
the Xbox 360

B The following are required for GPGPU on the Xbox 360'

m C# Studio Express (Game Studio Express 1.0 and Refresh) |
or Visual Studio 2005 product (Game Studio 2.0)

B XNA Game Studio (XNA Framework)

B nVidia’s FX Composer (not absolutely required)

m Xbox 360 with hard drive and XNA Game Launcher
installed.

®m Membership in Creator’s Club and internet access to Xba
Live.

Windows PC with XP SP2 or \{ista variant installed.

1)
»)
e
{

Design Considerations for. Xbox 360

B Microsoft is currently the only console vendor allowing
access to GPUs. I

B Accelerator is not compatible with the XNA framework, so
shaders are implemented in HLSL.

B XNA programs run by repeatedly updating the Update and
Draw methods (like a video game). .

XNA’s “content pipeline” does not permit dynamic loadin ;;
or switching of shader programs to the GPU (so treating
ishadeér programs as individuals to be subject to operators

10t p055|ble)

Design Considerations (continued...)

B With XNA, GPU cannot implement scatter, thus: j

B Results must be rendered to a texture on an internal target buffer
(rather than the screen). 5 QT

B Content is read back to the calling program from the internal target.

B Array data stored on textures must be referenced using texture
coordinates with an appropriate mapping.

B Xbox 360 GPU and Pixel Shader 3.0 have additional specifications |
(availéble by querying Xbox 360 with XNA GraphicsDevice class): |
B Shader program can consist of 2048 instructions. |

; 'm Flow control of depth 4 (maximum of 4 instructions can be called
within one another).

Supports 16 simultaneous textures.

_);i:mum texture height and width of 8192.
" 4 &

GP Individual Representation (Textures)

B Eight chromosomes in an instruction, each set of 4 placed on - 4
different texture.

B First Texture holds {op, target, id, ptr}. i
Second Texture holds {f,, src,, f,, src,}.

B Each instruction perform an operation on the contents of two
sources (fitness case or register content), placing result in target:

il

/ target = srcl1 op src2

_.® op«= [0, 3] corresponding to ADD, SUB, MUL, or DIV

m src, and src, can specify either fitness cases or registers, and thus ta

~ values in [0, MAX(classification features or regression inputs, '
2gisters)] i

d =,[0, population size] labels the individual

T
— -‘"ﬂ—_

es as a pointer te

GP.Individual Textures

B XNA HalfVector4 surface format was used, each chromosome (channel) j
was a 16 bit float.

B The two textures represent a whole population, with each individual belngq
a column of texels, and each texel in the column being an instruction.

B Width of the textures (in texels) is the number of individuals .
Height is the number of instructions in an individual.

Current state of an individual’s four registers (following an instruction) ©
are kept in a third texture’s texels (at the same coordinates) as 4 floats.

i width = population size

{regs, regy, regs, regs} {op, target, id, ptr}

fy, srcq, fa, sres 0.13,0.84, 0.56, 0.12

registers

potential
chromosomes

{op, target, id, ptr}

texel _j

{op, target, id, ptr}

texel J

chromosomes
mutation texture

height = # of instructions

chromosomes
original
chromosomes

Mutation Textures

.

Individual Textures

GPU-side Shader. Program: Mutation

B For every channel (all 4) of each pixel of the
instructions (2 textures) i

ma "mask” texture, with channels containing values
[0.0 ... 1.0], is applied.

/
B |[f the mutation threshold is > mask texture
. amount for a particular channel

m an appropriate replacement value for the channel isj
given by randomly generated replacement textures (
'-x‘tures corresponding to instruction tex ures)

—

GPU-side Shader. Program: Fitness

B This was a long shader program, which evaluated each | J
instruction in an individual (of length 16 instructions) .

B Experiments showed that fitness evaluation, at least in *--';if
the form used in these experiments, was best left to
CPU-side processing.

B Further fitness shader optimization may improve GP
side speeds.

There are considerations for running the fitness shad
on the XBox 360 vs. nVidia GeForce 8800:

I XBox microcode compiler issues with loops inside other)
DOPS relying on instructions bf;he outer Ioop

CPU-side GP Program

GPGame() //constructor
provide seedings for each trial
Initialize()
prompt for user input using on-screen keyboard
declare and populate HalfVector4[] data arrays for all textures
Update(GameTime)
check for exit key pressed on control pad
parse user keyboard input until completed
Draw(GameTime) // evaluates fitness case over population
// each pass evaluates an instruction over all individuals
for passes in fitnessEffect
/ run Fitness.fx HLSL program (see above)
resolve render target to texture, get array data from texture
// do for each fitness case
adjust all individual’s fitnesses; fitCase++
if at the end of a generation
fitness-proportionate generational selection
run Mutate.fx HLSL program (on two texture sets)
if at the end of a trial
* trial++; round =0;
add best fitness to growing List for output
dke not yet done
ay fitness, timer, and population t

Experimental Set-up

B CPU-only version of the implementation was also created, implementing j
all shader functionality with appropriate C# code.
B Two benchmark problems: | Qj

B Ecoli problem from the UCI machine learning repository was chosen for

classification, using 75% of the training set that retained the class distribution
of the entire data set.

B The sextic polynomial x6 — 2x* + x? introduced by Koza was implemented for
reg/ression, using float inputs in the range [0, 1] for 50 fitness cases.

Windows PC specifications:
m OS: Windows Vista Business PC
- 'm |DE: Visual C# 2005 Express with XNA Game Studio Express 1.0 (Refresh)
‘m CPU: AMD Athlon 64 Processor 3500+ (2.21 GHz),
- Memory: 1023 MB of RAM

aphics Card: ASUS EN8800GTX video.caid with nVidia GeForce 8800 GT’
Joon board (using128 parallel stream processors with unified shader

e

Parameterization

Function Set ADD, SUB, MUL, DIV (on floats) |
Fitness fitness-proportionate roulette wheel i
Population 10, 1000, or 4000 individuals

Mutation threshold = 0.1

Tournament generational, 50 rounds

Fitness Cases Classification: 251 training cases,

7 float features, 8 integer categories
Regression: 50 cases, x = [0, 1]
Fitness Metric Classification: correct classification,
based on Reg[0] mapping to category
Regression: 'SOJhits, where a hit is
Absolute(Reg[0] —y) <= 0.01

Intra-Platform CPU!vs. GPU,
Performance: PC

2 Shaders Classification

W 15hader

8
]
&2
o
=
™=
3

=
=
=
-]
2

o
=1
=
-9
=

4000 10

Population Size

Intra-Platform CPU!vs. GPU
Performance: Xbox:360

Classification

.=
et
£

o
E
-
a2

[~
-
=
(-8
2

=]
=1
=
(-1
(W)

4000 10
Population Size

Inter-Platform CPUComparison

Classification

.2
ot
£

o
E
™=
B

[~
™=
=
(=9
(W)
.

=
2
=

=)
=1
=
-9
L=
[=
-9

4000 10

Population Size

Inter-Platform GPU Comparison

Classification

2
:
=
£
=
;
g
=
2
=
&
4

4000 10

Population Size

Projected inter-Platform GPU Comparison

Classification Regression
2822

La

2
ot
£

]
E
=
32

]
™
=
-9
)
-

o=
2
=
=)
=1
=
-9
2
[=
=9

Conclusions

B The main goal of this work was to show how to implement
a GP system on a commercial video game console (Xbox
360) using GPGPU.

B First time (to our knowledge) that GPGPU, or genetic
programming, has been implemented on a commercial
video game console for research purposes.

B First instance of a Linear GP implementation using GPGP ";

Xbox 360 to offers tightly coupled CPU and GPU graphics
verformance.

{ Tl

emanted in XNA at the front of the hardware marke

S e

Acknowledgements

We would like to acknowledge the support of:
B PRECARN postdoctoral fellowship

B Memorial University of Newfoundland

“

