
Garnett Wilson and Wolfgang Banzhaf

Memorial University of Newfoundland,
St. John’s, NL, Canada

� GPUs exceed Moore’s Law, which states that general
computing power doubles every 18-24 months.

� In contrast, graphics hardware doubles in speed every
6 months, whereas Intel PC CPUs do not meet
expectations of Moore’s Law.*

* according to survey of nVidia and ATI graphics cards
compared to Intel CPUs from 2002 to late 2005, and
separate survey up to 2006 based on nVidia GPUs.

� Today’s high-end GPUs also exceed the floating point
performance of the host CPU.

�Current generation video game consoles have
considerable GPU and CPU power, which can be
harnessed for research.

�At launch, they are basically graphics
supercomputers with cutting edge hardware.

� E.g. Xbox 360, launched on Nov. 22, 2005, was
the first PC (or console) to feature:

� CPU multi-processing (CMP) with more than 2 cores
(using 3 cores)

� GPU-unified shader architecture (no distinct vertex and
pixel shader engines).

�First implementation of a research-based GP

system on a commercial video game platform.

�First time linear GP (LGP) has been

implemented in a GPGPU application.

�First instance of XBox 360 being used for any

GPGPU purpose.

�Custom built IBM PowerPC-based CPU with three
3.2GHz core processors sharing a 1Mb L2 cache.

�CPU core also has an associated complement of
SIMD vector processing units.

�CPU cache, cores, and vector units are customized
for graphics-intensive computation, and the GPU
is able to read directly from the CPU L2 cache.

�Xbox GPU by ATI houses 48 parallel shaders with
unified architecture and 10 MB of embedded
DRAM (EDRAM).

� 512 MB of DRAM in the system.

� GPGPU applications tend to use pixel
shaders (rather than vertex shaders):
� typically more pixel shaders

� pixel shader output fed directly to memory

� In terms of traditional data structures and
execution:
� GPU textures are analogous to arrays.

� the shader program is like a Kernel
program.

� rendering effectively executes the program.

� CPU runs the main program, and sends data
in texture form to the GPU when parallel
processing is required.

� GPU renders to a texture in its memory
(rather than to the screen).

� the output texture data is consumed by the
main (CPU-side) program.

� In 2006, Microsoft launched XNA’s Not

Acronymed (recursive acronym “XNA”)

Game Studio Express 1.0

� Integrated with C# in Visual Studio variants.

�Game Studio 2.0 and 3 CTP have now been

released.

�XNA allowed, for the first time, access to

the GPU on a video game console.

� The following are required for GPGPU on the Xbox 360:
� C# Studio Express (Game Studio Express 1.0 and Refresh)

or Visual Studio 2005 product (Game Studio 2.0)

� XNA Game Studio (XNA Framework)

� nVidia’s FX Composer (not absolutely required)

� Xbox 360 with hard drive and XNA Game Launcher
installed.

� Membership in Creator’s Club and internet access to Xbox
Live.

� Windows PC with XP SP2 or Vista variant installed.

� To maximize texture representations, a graphics card
capable of supporting at least Pixel Shader v. 3.0.

� LAN connection between PC and Xbox 360.

� Microsoft is currently the only console vendor allowing
access to GPUs.

� Accelerator is not compatible with the XNA framework, so
shaders are implemented in HLSL.

� XNA programs run by repeatedly updating the Update and
Draw methods (like a video game).

� XNA’s “content pipeline” does not permit dynamic loading
or switching of shader programs to the GPU (so treating
shader programs as individuals to be subject to operators is
not possible).

� Hard drive I/O was not possible as of XNA 1.0 Refresh, so
data must be output to screen. Means of input for the
Xbox 360 include controller and USB keyboard.

� With XNA, GPU cannot implement scatter, thus:
� Results must be rendered to a texture on an internal target buffer

(rather than the screen).

� Content is read back to the calling program from the internal target.

� Array data stored on textures must be referenced using texture
coordinates with an appropriate mapping.

� Xbox 360 GPU and Pixel Shader 3.0 have additional specifications
(available by querying Xbox 360 with XNA GraphicsDevice class):
� Shader program can consist of 2048 instructions.

� Flow control of depth 4 (maximum of 4 instructions can be called
within one another).

� Supports 16 simultaneous textures.

� Maximum texture height and width of 8192.

� Eight chromosomes in an instruction, each set of 4 placed on
different texture.

� First Texture holds {op, target, id, ptr}.

� Second Texture holds {f1, src1, f2, src2}.

� Each instruction perform an operation on the contents of two
sources (fitness case or register content), placing result in target:

target = src1 op src2

� op = [0, 3] corresponding to ADD, SUB, MUL, or DIV

� src1 and src2 can specify either fitness cases or registers, and thus take
values in [0, MAX(classification features or regression inputs,
registers)]

� id, id = [0, population size] labels the individual

� ptr, ptr = [0, instructions] serves as a pointer to the current instruction

� Boolean flags f1, f2, indicate whether to load from fitness cases or
registers for src1 and src2, respectively.

� XNA HalfVector4 surface format was used, each chromosome (channel)
was a 16 bit float.

� The two textures represent a whole population, with each individual being
a column of texels, and each texel in the column being an instruction.

� Width of the textures (in texels) is the number of individuals .

� Height is the number of instructions in an individual.

� Current state of an individual’s four registers (following an instruction)
are kept in a third texture’s texels (at the same coordinates) as 4 floats.

�For every channel (all 4) of each pixel of the

instructions (2 textures)

� a "mask" texture, with channels containing values

[0.0 … 1.0], is applied.

� If the mutation threshold is > mask texture

amount for a particular channel

� an appropriate replacement value for the channel is

given by randomly generated replacement textures (2

textures corresponding to instruction textures)

� This was a long shader program, which evaluated each
instruction in an individual (of length 16 instructions) .

� Experiments showed that fitness evaluation, at least in
the form used in these experiments, was best left to
CPU-side processing.

� Further fitness shader optimization may improve GPU-
side speeds.

� There are considerations for running the fitness shader
on the XBox 360 vs. nVidia GeForce 8800:
� XBox microcode compiler issues with loops inside other

loops relying on instructions of the outer loop.

� Prevents looping over instructions within loop over fitness
cases, for instance.

GPGame {

GPGame() //constructor

provide seedings for each trial

Initialize()

prompt for user input using on-screen keyboard

declare and populate HalfVector4[] data arrays for all textures

Update(GameTime)

check for exit key pressed on control pad

parse user keyboard input until completed

Draw(GameTime) // evaluates fitness case over population

// each pass evaluates an instruction over all individuals

for passes in fitnessEffect

run Fitness.fx HLSL program (see above)

resolve render target to texture, get array data from texture

// do for each fitness case

adjust all individual’s fitnesses; fitCase++

if at the end of a generation

fitness-proportionate generational selection

run Mutate.fx HLSL program (on two texture sets)

if at the end of a trial

trial++; round = 0;

add best fitness to growing List for output

if all trials are not yet done

display fitness, timer, and population texture output

}

� CPU-only version of the implementation was also created, implementing
all shader functionality with appropriate C# code.

� Two benchmark problems:
� Ecoli problem from the UCI machine learning repository was chosen for

classification, using 75% of the training set that retained the class distribution
of the entire data set.

� The sextic polynomial x6 – 2x4 + x2 introduced by Koza was implemented for
regression, using float inputs in the range [0, 1] for 50 fitness cases.

� Windows PC specifications:
� OS: Windows Vista Business PC

� IDE: Visual C# 2005 Express with XNA Game Studio Express 1.0 (Refresh)

� CPU: AMD Athlon 64 Processor 3500+ (2.21 GHz),

� Memory: 1023 MB of RAM

� Graphics Card: ASUS EN8800GTX video card with nVidia GeForce 8800 GTX
GPU on board (using128 parallel stream processors with unified shader
architecture)

Function Set ADD, SUB, MUL, DIV (on floats)

Fitness fitness-proportionate roulette wheel

Population 10, 1000, or 4000 individuals

Mutation threshold = 0.1

Tournament generational, 50 rounds

Fitness Cases Classification: 251 training cases,

7 float features, 8 integer categories

Regression: 50 cases, x = [0, 1]

Fitness Metric Classification: correct classification,

based on Reg[0] mapping to category

Regression: 50 hits, where a hit is

Absolute(Reg[0] – y) <= 0.01

CPU to GPU (both 1 and 2 shaders) mean trial time ratios on PC with

standard error, based on 10 trials of 50 generations for classification (left)

and regression (right) benchmarks. Ratios of greater than 1 show GPU use is

faster, less than 1 that CPU is faster.

CPU to GPU mean trial time ratios on Xbox 360 with standard error, based

on 10 trials of 50 generations. Ratios of greater than 1 show GPU use is

faster, less than 1 that CPU is faster.

PC CPU to Xbox 360 CPU mean trial time ratios with standard error, based on

10 trials of 50 generations. Ratios of greater than 1 show the Xbox 360 CPU

use is faster, less than 1 that the PC CPU is faster.

PC GPU to Xbox 360 GPU mean trial time ratios with standard error, based on

10 trials of 50 generations. Ratios of greater than 1 show the Xbox 360 GPU

use is faster, less than 1 that the PC GPU is faster.

PC GPU to Xbox 360 GPU mean trial time ratios with standard error, normalized to

current generation of GPUs, based on 10 trials of 50 generations. Ratios of

greater than 1 show the Xbox 360 GPU use is faster, less than 1 that the PC GPU is

faster.

� The main goal of this work was to show how to implement
a GP system on a commercial video game console (Xbox
360) using GPGPU.

� First time (to our knowledge) that GPGPU, or genetic
programming, has been implemented on a commercial
video game console for research purposes.

� First instance of a Linear GP implementation using GPGPU.

� Xbox 360 to offers tightly coupled CPU and GPU graphics
performance.

� Use of XNA ought to allow programmers to take advantage
of the next Microsoft console launch, putting research
implemented in XNA at the front of the hardware market
at that point.

We would like to acknowledge the support of:

�PRECARN postdoctoral fellowship

�Memorial University of Newfoundland

