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This paper presents the emergence of the cooperative behavior for multiple agents by
means of Genetic Programming (GP). Our experimental domains are multi-agent test
beds, i.e., the robot navigation task and the Tile World. The world consists of a simulated
robot agent and a simulated environment which is both dynamic and unpredictable. In
our previous paper, we proposed three types of strategies, i.e, homogeneous breeding,
heterogeneous breeding, and co-evolutionary breeding, for the purpose of evolving the
cooperative behavior. We use the heterogeneous breeding in this paper. The previous
Q-learning approach commonly used for the multi-agent task has the difficulty with the
combinatorial explosion for many agents. This is because the state space for Q-table
is so huge for the practical computer resources. We show how successfully GP-based
multi-agent learning is applied to multi-agent tasks and compare the performance with
Q-learning by experiments. Thereafter, we conduct experiments with the evolution of
the communicating agents. The communication is an essential factor for the emergence
of cooperation. This is because a collaborative agent must be able to handle situations
in which conflicts arise and must be capable of negotiating with other agents to reach
an agreement. The effectiveness of the emergent communication is empirically shown in
terms of the robustness of generated GP programs.

19.1 Introduction

This paper applies GP in order to evolve multiple agents and shows that the coop-
erative behavior emerges as a result of evolution. There are three main motivations
for us to realize GP-based multi-agent learning.

First, there have been many approaches to adaptive agents. For instance, rein-
forcement learning, i.e., Q-learning, is often used for multi-agent tasks [Tan93], [Sen
et al.95]. However, most of these straightforward approaches scale poorly to more
complex multi-agent learning problems, because the state space for each learning
agent grows exponentially in the number of its partner agents engaged in the joint
task [Ono97],[Rosca96]. On the other hand, GP searches for the combination of
input variables so as to reduce the computational complexity. We will explain the
comparative study in Section 4.

Secondly, many breeding strategies, e.g. homogeneous strategy, heterogeneous
strategy, and co-evolutionary strategy, are proposed and compared for the multi-
agent learning method. Thus, we can use a different strategy for a particular task
by using evolutionary learning. For instance, [Bull97] described the key feature of
the co-evolving strategy as “genetic joining” i.e., hereditary endosymbioses, and
observed that it worked best in terms of mean performance due to their reduction
in the effects of the partner variance (see [Iba96],[Iba97] and [Bull97] for the details
of the comparative studies).
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The third motivation comes from the communication issue. The communication
is an essential factor for the emergence of cooperation. This is because a collab-
orative agent must be able to handle situations in which conflicts arise and must
be capable of negotiating with other agents to reach an agreement [Chu-Carroll et
al.95]. [Benda et al.88] introduced the following three types of relationship between
agents:

1. Communicating agents (Type A), i.e., one agent is capable of requesting data
from another agent.

2. Negotiating agents (Type B), i.e., in addition to the above data request, agents
can negotiate with each other about their movements.

3. Controlling agents (Type C), i.e., an agent can exert control over another agent.

However, it is not easy to design agents with the above communication protocols
by humans, because many factors, such as synchronization, communication costs,
and transmission channel, have to be considered beforehand. There have been
relatively few studies on the adaptive agents with such higher-level communication
as types B and C. GP is suitable for representing these communication protocols. In
Section 5, we use ACL (Agent Communication Language) to show the evolvability
of communicating agents.

The rest of this paper is structured as follows. Section 2 describes the exper-
imental domains used in this paper, i.e., the robot navigation task and the Tile
World. Section 3 explains different breeding strategies for multi-agent learning. In
section 4, GP performance is compared with Q-learning. We introduce communica-
tion commands in section 5 and conduct experiments with communicating agents.
Section 6 discusses our approach, followed by some conclusions in Section 7.

19.2 Example Tasks

There are some benchmark problems for the multi-agent research. We use two
target tasks in this paper.

First task is a robot navigation domain. Consider a robot navigation task for four
agents (Fig.19.1). The world consists of a rectangular grid (i.e., 10 x 10), on which
agents (denoted as Ai, + = 0,1,---) and some obstacles (#) can be placed. Each
object occupies one cell of the grid. The agent can move up, down, left, and right
unless doing so would cause it to run into the world’s boundaries or an obstacle.
The agents’ goal is to find the optimal path in a grid world, from given starting
locations to their respective goals (denoted as Gi in the figure). A possible optimal
path for AO is shown in the figure as a dotted line. The goal of the multi-agent
team is for each agent to move quickly to their respective goal locations without
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Figure 19.1
The Robot Navigation.

colliding with other agents and walls. In Scenario RN1, the obstacles are the other
agents alone. This is an example of loosely-coupled interactions [Sen et al.95].

In order to apply GP to evolving an agent’s program in the robot navigation, we
use the basic terminal and nonterminal sets shown in Table 19.1! . In the table, a
symbol without any argument is a terminal symbol.

What is required by a GP tree program is to tell how to move an agent, i.e.,
right, left, up, down and stay. Thus, the wrapper (i.e., the mapping between the
output of a parse tree and the action to be taken) is applied to the output of the GP
tree so as to decide the agent’s move. The mapping between vectors and actions
is determined as follows: If the norm of the vector # is less than or equal to the
parameter Radius, then STAY where you are. Otherwise, move 1 step RIGHT, UP,
LEFT or DOWN depending on the direction of 7, i.e., when 7 is between [—F,+7].
[+Z, 437, [+25,+57] and [+3F, + 7], respectively. We set the Radius parameter
to 1.0. For instance, if the output of a GP tree is a vector (150)7 then the agent’s
move is UP as the result of the wrapper.

The second experimental domain is the Tile World, which is a multi-agent test
bed that consists of simulated robot agents and a simulated environment which is
both dynamic and unpredictable [Pollack et al.90], [Hanks et al.93]. The world also
consists of a rectangular grid, on which agents (denoted as Ai, i = 0,1,---), some
tiles (T), some obstacles (#), and some holes (\/) can be placed (see Fig.19.2(a)).
Each object occupies one cell of the grid. The agent can move up, down, left,
and right unless doing so would cause it to run into the world’s boundaries or an
obstacle. When a tile is in a cell adjacent to the agent, the agent can push the tile
by moving in its direction. The agents’ goal is to push all tiles into the holes. The

1 The usage of these symbols is motivated by the study reported by [Luke et al.96]. Luke studied
evolving teamwork by GP for a pursuit game, in which the world is a continuous 2-dimensional
area.
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Table 19.1

Basic GP Terminals and Functions (Robot Navigation).

Name #Args. Description

Goal 0 The directional vector by which to move the agent toward
its goal.

last 0 The last vector of the GP output for the agent. If this is
the first move, then returns a random vector.

Ag:i 0 The directional vector by which to move the agent toward
the i-th nearest agent.

V1 0 A unit vector, i.e., ((1))

Rand O A random vector.

+ 2 Add two vectors.

- 2 Subtract two vectors.

*2 1 Multiply the magnitude of a vector by 2.

/2 1 Divide a vector by 2.

->90 1 Rotate a vector clockwise 90 degrees.

inv 1 Invert a vector, i.e., if the input is v, then return —v.

if dot 4 Evaluate the first and second arguments. If their dot
product is greater than 0, then evaluate and return the
third argument, else evaluate and return the fourth ar-
gument.

if>= 4 Evaluate the first and second arguments. If the magni-

tude of the first argument is greater than the magnitude
of the second argument, then evaluate and return the
third argument, else evaluate and return the fourth ar-
gument.

simple interaction is shown in Fig.19.2(a). This is an example of strongly-coupled
interactions (i.e. the constraints on movement are so severe) [Goldman et al.94].
For either agent to accomplish its goal, it would need to carry out a large number of
movements to perform its own task. For example, for A0 alone to fill holes with two
tiles, it needs to move 17 steps (assuming Al is not on its way). Similarly, Al alone
would need to move 26 steps to finish its task. However, if they work together, they
can finish their task by going 12 steps (see [Iba96] for how GP evolved this optimal
behavior). We have chosen the same basic terminal/functional symbols shown in
Table 19.1 for this task, except that Hole and Tile terminals are used in stead of
Goal terminal. The Tile terminal returns the vector from the agent to the nearest

tile and the Hole returns the vector from the agent to the nearest hole.
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Figure 19.2
The Tile World.

19.3 Fitness Assignment and Breeding Strategies

Fitness functions need to be designed carefully so that they satisfy the following
requirements:

Requirement 1 Give a high score to a GP program which makes each agent
achieve its own goal.

Requirement 2 Give a higher score to a GP program which finishes the whole
task quickly.

Requirement 3 If any agents have not achieved the goals after the execution of
a GP program, give a higher score when they have contributed
to their goals more.

In order to meet the above requirements, we use the following fitness derivation for
a GP tree T. This algorithm includes three user-defined parameters, i.e., Bonus, Cr,
and Speed U P. The meaning of these parameters is explained later.

Step 1 Set Step Time := 51, Fitness := 0.0.
Step 2 Evaluate T' and move agents according to the result of the wrapper.

Step 3 If an agent achieves its goal, then
Fitness := Fitness + Bonus x FT, (19.1)

where FT is the number of agents that have achieved the goals at this
step.
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Step 4 If all agents achieve their goals, then
Fitness := Fitness + Speed UP x Step_Time, (19.2)

and return Fitness.
Step 5 Step Time := Step Time — 1.
Step 6 If Step_Time is zero, then

Fitness := Fitness (19.3)
+Cr x Y {d(st(ag), gl(ag)) — d(cr(ag), gl(ag))},

ag€AG
where AG is the set of remaining agents. Return Fitness.

Step 7 Go to Step 2.

Initially, the maximum number of evaluations is set to 51 (Step 1). In Step 3, the
value of Bonus is added to the fitness if an agent achieves its goal, which satisfies
Requirement 1. If all agents achieve their goals, i.e., the task is completed, the
fitness value is increased with the remaining Step Time (Step 4). This meets
the above Requirement 2. In Step 6, d(z,y) means the distance of z and y.
st(ag), cr(ag), and gl(ag) are the original position, the current position, and the
destination (i.e., the goal for the robot navigation task and the nearest tile for the
Tile World) for an agent ag. Thus, {d(st(ag),gl(ag)) — d(cr(ag), gl(ag))} equals
the motion distance of an agent ag toward its goal. Therefore, the equation (19.3)
means that the fitness is more increased if the remaining agents have been moved
nearer to their destination after the execution of the program, which satisfies the
above Requirement 3.

We have chosen the Bonus, Speed_U P, and Cr parameters as 3000.0, 80.0 and
100.0, respectively. Since we use the tournament selection, (see Table 19.2), the
absolute values of these parameters are not important. However, the Bonus pa-
rameter should be larger than the second term of the equation (19.3), so that GP
searches for a program which completes the task at first. The task completion is
defined as follows:

1. For the robot navigation task, each agent reaches its own goal.

2. For the Tile World task, all tiles are put into the holes.
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19.4 Comparison with Reinforcement Learning

This section compares the performance of multi-agent Q-learning and GP for the
robot navigation domain (see Appendix 19.A for the details of multi-agent Q-
learning).

Let us take a straightforward approach for the navigation task (Fig.19.1(a)). The
simple table entry x for Q-table, i.e., Q_large, would be as follows:

T € {(me, 9z Gy, A1z, A1y, A2z, A2y A3z, A3y, la“St)}a (194)
where me is the agent number (i.e., 0,1,2,3), (gZ) is a relative vector to its own goal,

and (Zz) is a relative vector to the other three agents. The variables gz, gy, @iz, @y

range from -9 to 4+9. last is the last move of the agent, i.e., STAY, RIGHT, LEFT,
UP, and DOWN. Therefore, the size of this state space is

5x 4 x 188 ~ 10™. (19.5)

This number is so huge for the practical computer resources that Q-learning often
fails in the task for many agents. [Ono97] proposed a remedy called Modular Q-
learning, in which each learning modular focused on one agent and its particular
partner. However, the effectiveness of this method relies on the modular decompos-
ability of the problem, which is not known beforehand.

An alternative way is to shrink the search space. For instance, since the minimum
distance seems more important for avoiding the collision, we can choose the following
state representation QQ_small:

z € {(9z, gy, aming, amin,, last)}, (19.6)

where (amin,,amin,) is a relative vector to the nearest agent. The same sort of
perceptual representation was chosen for a different problem [Tan93]. However,
this state space representation requires the problem-specific knowledge, which is
not always available.

During each trial, a sequence of actions is executed so as to update Q-table.
The trial is terminated either when the task is completed, i.e., when all agents are
moved to their goals, or when a fixed number of actions are tried. For the sake of
comparison, we set this number to be 51, which is equal to the Evals value described
in Section 2. After each trial, all agents are displaced at the initial positions and
the next trial is started again with the updated Q-table. One trial in Q-learning
corresponds to one fitness evaluation of a GP individual. Thus, the Q-learning
performance of N trials is comparable with that of GP at the generation of g,
provided that the following equation is satisfied:
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Table 19.2
The Experimental Setup for sgpcl.1.

GP Parameters

max_generation 100
population _size 2000
steady_state 0
grow_method GROW
tournament_K 6
selection_method TOURNAMENT
max_depth_after_crossover 17
max_depth_for_ new_trees 5

max_mutant_depth

crossover_any _pt_fraction 0.7
crossover_func_pt_fraction 0.1
fitness_prop_repro_fraction 0.1
N = POPsize X G, (197)

where popsi,. is the population size of GP. We regard N/pops;.. as the generation
of Q-learning.

With these preparations, we have conducted the experiment with the previous
scenario RN1 by using GP and Q-learning. The Q-learning parameters were set at
B =08, v=0.9 and T = 0.4 (see [Tan93] for details). Fig.19.3 plots the best
standard fitness (i.e., that which was derived from eqs.(19.1),(19.2), and (19.3))
with generations, averaged over 20 runs. The fitness values of GP-based agents
are also shown. We used the heterogeneous breeding by GP with the parameters
shown in Tablel9.2. Q-learning (Homo.) represents that agents share the Q-table,
whereas each agent uses a different Q-table in case of Q-learning (Hetero.). As
can be seen from the figure, the agents gave poorer results with Q-learning. At
most three agents learned to reach their goals with Q-learning. We played with
Q-learning parameters in several other ways, only to observe the similar result.

The difficulty of Q-learning seems to be due to the above-mentioned represen-
tational issue. The appropriate design of the state space is difficult for this task
because of its high dimensionality. Although the total set of sensor inputs, i.e., GP
terminals, is provided, yet it is not easy to distinguish between essential terminals
and useless ones. A part of terminals may be combined to construct an effective
Q-table, but its combination is not known beforehand. On the other hand, in case of
GP, essential terminals are expected to be adaptively chosen and functionally com-
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bined as a result of the tree evolution. Thus, we think the superiority of GP-based
multi-agent learning has been confirmed by this experiment.

19.5 Evolving Agents with Communication

19.5.1 Evolving Controlling Agents

For the navigation task, we use communication commands such as SEND or RE-
CEIVE, by which an agent can tell another agent to stop or move. The SEND i
functional symbol takes two arguments and returns its second value (i.e. a two-
dimensional vector). As a side effect, SEND_i sends its first argument to the i-th
nearest agent as a command. The RECEIVE function returns the evaluated result
of the command message, if any, which has been sent to itself by the SEND i com-
mand. The message list is an FIFO (i.e., first in, first out) queue. If no message
is sent, then the RECEIVE function returns its argument by default. The function
symbols introduced for the communication are shown in Table 19.3. SEND_ Y,
SEND_iS, and SEND_iR macros send commands such as YIELD (i.e., the receiver
moves to one of its adjacent empty cell), STOP (i.e., the receiver stays at its current
position) and RANDOM (i.e., the receiver moves randomly). These commands are
commonly used for the motion control. Thus, in addition to the SEND 4 and RE-
CEIVE primitives, we introduce these macros for the sake of improving efficiency.

We have conducted comparative experiments so as to confirm the effectiveness
of the communication. The heterogeneous strategy was applied for evolving agents
without communication (i.e., with GP functions and terminals shown in Table 19.1)
and for evolving communicating agents (i.e., Table 19.1 and Table 19.3). The used
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Table 19.3

GP Functions for Communication (Controlling Agents).

Name #Args. Description

Send 3 2 Send its first argument to the i-th nearest agent as a
command. Return its second argument.

Send Y 1 Send the YIELD command to the i-th nearest agent. Re-
turn its argument.

SendiS 1 Send the STOP command to the i-th nearest agent. Re-
turn its argument.

Send:R 1 Send the RANDOM command to the i-th nearest agent.

Return its argument.

Receive 1 Receive a message as a command. If no message is re-
ceived, return its argument by default.

parameters are shown in Table 19.2. We chose 6 training and 3 testing scenarios,
which are similar to Fig.19.1(b). They were modified to constitute a variety of
examples in several ways, by rotating or widening a passage. The total number of
the training and testing data were 24 and 9, respectively. The fitness of a program
is the averaged fitness over the various training cases.

Fig.19.4(a) shows the result of experiments. The figure plots the best fitness value
with generations, averaged over 10 runs. The fitness value of 4x Bonus(= 12000.0) is
given to a GP tree which completes the task i.e., moves all agents to the goals. Thus,
on the average, GP reaches a solution around 60 generations for the communicating
agents, whereas agents without communication could not solve the task after 100
generations. Note the superiority of the communicating agents for the testing cases
as well as for the training cases.

The poor performance of non-communicating agents results from the lack of ap-
propriate generalization. They could adapt to a certain situation and memorize it
as a specialized cognitive map. But they failed to generalize it so as to cope with
multiple cases. For instance, the following programs were acquired in one run:

Agent0: (if>= Agl V1 Goal (inv Goal))

Agentl: (if>= Agl (%2 V1) Goal (inv Goal))
Agent2: (if>= Agl (%2 (*#2 V1)) Goal (inv Goal))
Agent3: (if>= Agl V1 Goal (inv Goal))

These programs realize a form of cooperation, in the sense that an agent moves to
its goal if the other agents are further than some threshold (i.e., (if>= Agl ***)).

456 ' Advances in Genetic Programming |11, Chapter 19’



Std. Fitness

12000 erer. g Commy

10000 /_,_—/ﬁ Training
w/o Comm.

8000

6000 /_,

4000

fw. Comm]

2000

>Test
wZo. Comm |

0 20 20 60 80 10p Ceneration
Figure 19.4
Experimental Results (Robot Navigation Task).

If the nearest agent is close, it gives way by moving in the direction opposite to its
goal (i.e., (inv Goal)). Although this strategy succeeded in some limited situations,
the agents failed to solve a complicated task.

On the other hand, agents with communication were able to solve the various
tasks. For instance, the programs shown in Table 19.4 were acquired in one run at
the generation of 56. These programs scored the standard fitness of 13520.0, which
means that they solved most of the training cases. Fig.19.5 shows the emergent
behavior of these agents for Training #3. The key features of these programs are
as follows:

1. Agent0 and Agent2 are receivers, which always give way if they receive a message.

2. Agent3 is a receiver if the nearest agent is far, i.e., | Agl |>| V1 | = Receive.
It sends a yield message otherwise, because (if>= Agl V1 (Receive Goal) V1)
returns V1 and (if>= V1 V1 (Send1.Y Goal) **¥*) always returns the third argument
(Send1.Y Goal).

3. Agentl moves to its goal if the nearest agent is further than the goal. Otherwise,
unless it has received any message, it sends a yield message to its nearest agent. If
it has received any message, execute the received command.

As can be seen in the behavior of A3 from Step9 to Stepl9 (Fig.19.5), if an
agent receives a message, it stops moving or gives way. As a result of this effective
communication, agents cooperate with each other to avoid the deadlock situation
in the narrow path.
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Emergent Behavior with Communication.
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Table 19.4

Acquired Trees for Heterogeneous Strategy.

Agent Name Tree
AgentO0: (Receive Goal)

Agentl: (if>= Goal Agl (if>= (Receive Goal) (Sendl.Y Goal)
(if>= (if>= Goal Goal (Receive Goal) Goal) (Send1 Goal
Goal) (*2 (Receive Goal)) (Receive Goal)) Goal) Goal)

Agent2: (Receive Goal)

Agent3: (if>= (if>= Agl V1 (Receive Goal) V1) V1 (Sendl.Y
Goal) (if>= Agl Goal Goal (Receive Goal)))

The above experimental results have shown that the communicating agents com-
plete the training tasks more effectively, i.e., the evolved program is more robust.
It is also suggested that the GP-based adaptive learning resulted in establishing the
effective job separation among the communicating agents.

19.5.2 Evolving Negotiating Agents

A number of researchers in DAI use various protocols developed in economics and
game theory to evaluate the multi-agent interaction. In the simplest case, the agent
requesting a service offers a specific reward for the completion of a task. The task
may be completed by a set of agents, who need to negotiate how to divide the reward.
Dividing the total amount equally might not be fair if the agents made different
contributions. If there are many agents (or sets of agents) that may complete the
task, the requester might try to minimize its cost by seeking multiple bids or holding
an auction. There are a number of alternatives that have different properties and
may be applicable or preferred in different situations [Genesereth et al.97].

We use ACL (Agent Communication Language) for the Tile World in order to
evolve the negotiation among agents. ACL consists of three parts, i.e., its vocabu-
lary, an inner language called KIF (Knowledge Interchange Format), and an outer
language called KQML (Knowledge Query and Manipulation Language). The vo-
cabulary of ACL is listed in a large and open-ended dictionary of words appropriate
to common application areas. Each word in the dictionary has an English descrip-
tion used by humans in understanding the meaning of the word. The dictionary
is open-ended to allow for the addition of new words within existing areas and in
new application areas. Full specifications are available, and parts of the language
are making their way through various standards organizations (see [Genesereth et

al.97] for details).
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Now consider the modified Tile World shown in Fig.19.2(b). Agent 0’s goal is to
fill hole HO, while agent 1’s and 2’s need to fill holes H1 and H2, respectively. To
fill its hole, agent 1 needs to do 17 steps. Agents can cooperate and help each other
to reduce the cost of achieving their goals. There are several kinds of joint plans
that the agents can execute for the reduction.

We use ACL-like commands shown in Table 19.5 for agents to negotiate with
each other. The experimental results have shown that the effective communication
emerged among the agents so that they negotiate with each other to reduce the cost
of achieving their own goals. For instance, the programs shown in Table 19.6 were
acquired in one run. We observed that Agent0 and Agent2 negotiated with each
other while Agentl tried to achieve its goal by itself.

The above result shows that GP has formed a 3-agent coalition, i.e., {{Agent0,
Agent2}, {Agent1}}. This coalition structure means that there are two coalitions,
one consisting of Agent) and Agent2, and the other consisting only of Agentl.
When two agents form a coalition, they are coordinating their actions. The utility
of an agent from a joint plan that achieves his goal is defined as the difference
between the cost of achieving his goal alone and the cost of his part of the joint plan
[Zlotkin et al.91]. In general, n-agent coordination mechanisms can be used when
any sub-group of agents may engage in task exchange to the exclusion of others.
[Zlotkin et al.94] showed that a simple and rational coalition was formed by means
of cryptographic techniques. However, this method assumes certain characteristics
of the task domain, i.e., sub-additivity. The sub-additive task domain means that,
by combining sets of tasks, we may reduce (and can never increase) the total cost, as
compared with the sum of the costs of achieving the sets separately. Unfortunately,
many task domains do not have this property. In some case, there is no knowing
whether the domain has this property or not. The above experimental result has
shown that a certain coalition was established by means of GP, which requires no
particular conditions for the coalition formation. Therefore, we believe GP-based
multi-agent learning can provide an effective coordination method for a broader
range of task domains. Further research will consider the applicability and feasibility
of GP in this direction.

19.6 Discussion

19.6.1 Evolving Other Types of Communicating Agents

In this paper, we introduced communication commands of types B for the robot
navigation domain (Section 5.1) and C for the Tile World (Section 5.2). Other
types of communication can be defined as well. For example, [Werner et al.91]
presented a simulation, in which a population of artificial organisms evolved low-
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Table 19.5

GP Functions for Communication (Negotiating Agents).

Name #Args. Description

Propose.s 1 Send a proposal to the i-th nearest agent. The proposal
is that the sender gives some of the sender’s reward (the
ratio is given by the first argument) to the receiver if
the receiver achieves the sender’s goal. Return the Tile
vector.

Accept_t 0 Accept the i-th nearest agent’s proposal and send the
acceptance message. Return the Hole vector.

Reject_s 0 Reject the i-th nearest agent’s proposal and send the re-
jection message. Return the Tile vector.

Table 19.6
Acquired Trees for Negotiating Agents.

Agent Name Tree

AgentO: (+ (inv (if>= last (- (4+ (if>= (Propose_2 0.3259680) last
(Accept_2) (if>= (Accept_1) (Propose2 0.3260016) (Re-
ject_2) Ag0)) (Accept_2)) (- Agl (if>= last (if>= Ag0 (Re-
ject_0) (Reject_2) (Reject_0)) (Propose 0 0.3261200) (Pro-
pose_0 0.217209)))) (- (- (Accept_0) (Accept_2)) (Accept.0))
(+ Hole (+ Tile (+ Hole (- Agl (Reject_0))))))) (->90 Tile))

Agentl: (if_dot Tile (if-dot last (->90 (if>= (+ Agl Ag0) Tile Hole
Agl)) (inv (Reject_1)) Hole) [-1.076370,-0.553187] last)

Agent2: (if_-dot (if-dot Agl Tile Ag2 (inv (if>= Ag0 (if>= (Pro-
pose_0 0.3563) Agl (+ (if>= (Reject_0) Ag0 Ag0 Agl) Ag0)
(if>= (if>= (Reject_0) (+ Agl (Propose_2 0.02550)) (- (Pro-
pose_0 0.979331) (Accept_0)) (- Ag0 (Accept_0))) (Accept_0)
(if>= (Propose_1 0.541944) Ag0 (if>= (Accept_0) (Reject_0)
(Propose_00.582183) (Accept_0)) (Propose_0 0.918706)) (Pro-
pose_2 0.235540)) (Accept-1)) (+ Agl (4 (if>= Agl (Pro-
pose_1 0.980090) (if>= (Propose_1 0.289795) Ag0 (Propose_1
0.000803) Ag0) (Reject0)) (if>= (+ (Accept_1) (Accept_1))
(Reject_0) (if>= (Reject_0) (Propose_1 0.093556) (Accept_0)
(Accept_0)) (if>= (Propose_1 0.966526) (Propose_1 0.947458)
(Reject.0) Ag1))))) ) Ag2 (2 (/2 Tile)))
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level communication protocols for mate finding. They showed how the organisms
generated and interpreted meaningful signals as a result of evolution. For the pursuit
problem, we used a communication command of type A and empirically confirmed
the evolvability of the communicative cooperation of this type [Iba97]. In this
experiment, agents were assumed to have a limited visibility. In most cases, agents
without communication were unable even to get closer to the prey. On the other
hand, the communicating agents succeeded in enclosing the prey.

The effective communication and its learnability for a specific task remain to be
seen in DAL We have shown the emergence of communication among agents so as
to increase the robustness of a generated GP program. The evolvability of various
types of communication for other problem domains is our future research concern.

19.6.2 Q-learning and Genetic Programming

The previous result has shown the difficulty with Q-learning approach for the multi-
agent task. The state space for Q-table may become so huge in case of many agents.
This paper presented a GP-based approach to avoid the above problem. We have
also proposed an extension of multi-agent reinforcement learning with GP. This is to
integrate GP-based adaptive search with Q-learning so as to shrink the search space.
The established system is called QGP, i.e., Q-learning with Genetic Programming.
The salient features of QGP are as follows:

1. GP searches for the combination of input variables, i.e., constructs an effective
Q-table entry.

2. Q-learning updates Q-values for each Q-table, i.e., a GP individual. These values
are inherited from generation to generation.

3. The fitness of GP is derived from the reinforcement reward given by Q-learning.

We showed how successfully QGP was applied to the robot navigation task
[Ibag8]. Our QGP is based upon a selectionist approach [Steels97], in the sense
that a structure comes into existence by variation or construction and is tested as
a whole for the fitness (i.e., the reinforcement reward) in the environment. We
believe that QGP leads to the effective integration of two learning paradigms, i.e.,
Q-learning and GP.

19.6.3 Related Work

[Teller94] realized an indexed memory in GP and studied the evolution of agents
with mental models. He evolved programs that could solve a problem of pushing
blocks up against the boundaries of a world. [Andre95] extended this idea to realize
MAPMAKER, a method for the automatic generation of agents that discovered
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information about their environment, encoded this information for later use, and
created simple plans utilizing the stored mental models. He applied his method
to a “gold” collection problem, in which one part of a program made a map of
the world and stored it in memory, and the other part used this map to find the
gold. These works are closely related to our robot navigation domain, because both
tasks require the effective map making and its usage. However, their work did not
necessarily aim at the multi-agent cooperation.

As for multi-agent learning, Koza used GP to evolve sets of seemingly simple rules
that exhibit an emergent behavior. The goal was to genetically breed a common
computer program, when simultaneous executed by all the individuals in a group
of independent agent, i.e., the homogeneous breeding, that causes the emergence
of beneficial and interesting higher-level collective behavior [Koza 92]. [Fogarty et
al.95] studied the evolution of the multiple communicating classifier systems in the
heterogeneous environment of a distributed control system for a walking robot.

They introduced the “symbiosis” analogy to realize a macro-level operator to the
evolution of heterogeneous species and showed the effectiveness of their approach
empirically. But they failed to observe the evolution of a “superorganism” by their
experiments. They also investigated the evolution of multiple fuzzy controllers in
the homogeneous environment of a distributed control system for a communication
network. Haynes proposed an approach to the construction of cooperation strate-
gies based on GP for a group of agents [Haynes et al.95],[Haynes et al.96]. He
experimented in the predator-prey domain, i.e., the pursuit game, and showed that
the GP paradigm could be effectively used to generate apparently complex coopera-
tion strategies without any deep domain knowledge. [Luke et al.96] examined three
breeding strategies (clones, free and restricted) and three coordination mechanisms
(none, deictic sensing, and named-based sensing) for evolving teams of agents in the
Serengeti world, a simple predator/prey environment. The terminal and function
symbols in Table 19.1 have been partly motivated by the study reported by this
work. They studied evolving a teamwork by GP for the pursuit game, in which the
world is a continuous 2-dimensional area.

19.7 Conclusion

This paper described the emergence of cooperative behavior based on GP and
showed the following points:

1. The effectiveness of GP-based method was shown by the comparative experiment
with Q-learning.

2. GP was successfully applied to multi—agent test beds, i.e., the robot navigation
task and the Tile World. We have confirmed that the cooperative behavior emerged
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by means of GP.

3. The evolvability of communicative cooperation has been shown. The robustness
of a generated GP program was increased with the emergent communication.

The experimental results showed the effective emergence of cooperation in many
difficult situations. A more general way to validate the evolutionary scheme is our
future concern. Another important topic is to apply our approach to a real-world
problem. We have attempted to evolve a robust robot programming in a real world
situation [Ito et al.96]. This research focused on the robustness of a single robot.
We are currently working on the extension of this framework to realize the evolution
of a group of robots.

19.A Multi-agent reinforcement learning

This appendix briefly explains multi-agent reinforcement learning (see [Tan93] for
details).

Each agent uses the one-step Q-learning algorithm. Given a current state z and
an available actions a;, a Q-learning agent selects each action a with a probability
given by the Boltzmann distribution:

eQ(mvai)/T
eQ(z,a:)/T’

pla;|z) = (19.8)

EkEactions
where T is the temperature parameter that adjusts the randomness of decisions.
The agent then executes the action, receives an immediate reward r, moves to the
next state y.

In each time step, the agent updates Q(z,a) by recursively discounting future
utilities and weighting them by a positive learning rate [3:

Q(z,a) <= Q(z,a) + f(r + 7V (y) — Q(z,0a)). (19.9)
Where 7(0 <y < 1) is a discount parameter, and V(z) is given by:
V(z)= p ax Q(z, b). (19.10)

Q(z,a) is updated only when taking action a from state z. Selecting actions stochas-
tically by p(a; | z) ensures that each action will be evaluated repeatedly. In gen-
eral, the Q(x,a) value is kept as a multi-dimensional table, which we call a Q-table.
Two types of multi-agent reinforcement learning algorithms have been proposed
[Wei393], i.e., heterogeneous learning and homogeneous learning. In the former
case, each agent uses and updates a different Q-table, whereas all agents share a
common )-table in the latter.
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For the robot navigation task, the reward » is defined by following the same
principle described in Section 3. According to Requirement 1, the bonus reward
is given when an agent is moved to a goal. When the task is completed, the reward
proportional to the remaining time steps is provided, which meets Requirement
2. If an action causes an agent to get closer to its goal, a little reward is given,
which satisfies Requirement 3.
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