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This chapter presents an immune version of Genetic Programming (GP). This is a GP
version that conducts progressive search controled by a dynamic fitness function. The new
fitness function is based on analogy with a model of the biological immune system, such
that the programs are viewed as lymphocyte clones that compete to recognize most of
the examples, viewed as antigens. The programs are reinforced with rewards for matched
important examples and stimulated to match different examples. Examples recognized
by a small number of programs are considered important. The motivation for using the
immune dynamics for GP navigation is to maintain a high population diversity and to
achieve enhanced search performance. Empirical evidence for the efficacy of this immune
version on practical inductive machine learning and time-series prediction tasks is provided.

15.1 Introduction

Genetic Programming (GP) [Koza, 1992; Iba and Sato, 1992; Banzhaf et al., 1998] is
a stochastic search method suitable for addressing inductive learning tasks. Inspired
by evolutionary processes in natural living organisms, the GP system maintains a
population of programs to accomplish robust search. The search is considered robust
when it locates a global, or nearly global, solution reliably. Such a behavior is not
guaranteed, however, since the population is often trapped in local optima. If there
are no intrinsic forces to push continuously the population on the search landscape,
the system converges prematurely to a sub-optimal solution.

Recent studies into the principles of the biological immune system [Farmer et
al.,1986; Bersini and Varela, 1991; Smith et al.,1993] provide innovative ideas about
how to improve the search control and counteract early convergence to inferior
solutions. They inspire us to develop an immune version of GP using the micro-
mechanisms of the traditional GP and the dynamics of the immune system in order
to achieve enhanced macroscopic performance. The motivation is the close similar-
ity in the behavior of the immune system and the GP system: 1) they both perform
search for generalizations of recognized patterns, that is, antigens or examples; and
2) they both use similar search mechanisms involving pattern matching, heuristic
selection and modification of their hypothesis, namely antibodies or programs.

We employ an idiotypic network model of the immune system [De Boer and
Hogeweg, 1989] and elaborate a dynamic fitness function which may be used in any
GP implementation [Koza, 1992; Iba and Sato, 1992; Banzhaf et al, 1998]. The
fitness function sustains progress in the sense of improving search by driving the
programs to compete continuously via mutual behavioral interactions, and to pursue
evolution of a program that recognizes most of the examples. This fitness function
consists of two dynamic models that exert influence on each other: 1) a model for
propagating programs recognizing more important examples, and stimulating the



programs to match examples from different subsets; and 2) a model for changing the
importance of examples in dependence of the number of programs that recognize it.

The fitness function navigates the search through the interactions by encourag-
ing complementary programs considered as a network. The network connectivity
is a source of diversity. The diversity is a spontaneous macroproperty that en-
ables continuous search influenced by the importance of the examples. Program
reinforcements by rewards for matched important examples occasionally provoke
network perturbations which contribute to moving the population on the landscape
and enable avoidance of premature convergence.

We perform comparative studies of the evolutionary search performance of an
immune version of the GP system STROGANOFF [Iba et al, 1992, 1993, 1994],
which differs from the original only in the use of the dynamic fitness function.
STROGANOFF is implemented with programs representing multivariate, high or-
der polynomials [Tba et al, 1992, 1993, 1994] but uses the micromechanisms of
inductive GP (iGP) [Nikolaev and Slavov, 1998]: proportional selection, biased
context-preserving mutation, and biased crossover. The results are analysed using
two kinds of measures: 1) estimates of the learning accuracy by the mean squared
error attained by the trees in the population, and 2) estimates of the population
diversity by the number of clusters in the population. Empirical investigations show
that the search control by immune dynamics improves the performance of GP on
practical inductive machine learning and time-series prediction tasks.

This chapter presents the immune version of GP in section 15.2, and the counter-
parts from biological immune networks, and the elaborated dynamic fitness function.
Section 15.3 describes the micromechanisms of iGP. In section 15.4 we study the
performance of immune GP on machine learning and time-series prediction prob-
lems from practice. Finally, a discussion is made and conclusions are derived.

15.2 Immune Version of the GP System

GP systems are suitable for inductive learning as they allow rapid exploration of
huge search spaces. The search space of a problem may be considered a fitness
landscape on which the search is navigated [Jones, 1995]. The fitness function
determines the landscape ruggedness, and has a great impact on the GP system
performance. When the fitness function supports diversity in the population, the
GP system usually has the capacity to flow continuously on the landscape and to
improve. The presented research suggests that such robust GP performance can
be achieved not only by stimulating the programs to recognize more unmatched
examples, but also by stimulating the programs to recognize examples from different
subsets. We show that this could be fulfilled with a formula describing the dynamics
of an idiotypic network model of the biological immune system.



15.2.1 Biological Idiotypic Networks

The biological idiotypic networks recognize and learn foreign antigens [Farmer et al.,
1986; Perelson, 1989]. An idiotypic network consists of lymphocyte clones that are
pairs of a lymphocyte cell and one type of antibody on its surface. A lymphocyte has
attached only one type of antibody, which may recognize different antigens. Pattern
recognition occurs when a region from the antibody structurally binds a region from
the antigen with complementary shape. Biological theory [Jerne, 1974] reveals that
the lymphocytes make protective antibodies which not only recognize antigens, but
also recognize other types of antibodies to preserve their own specificity. The portion
of the antibody with which it matches another antibody is called idiotype, hence
the antibody interactions lead to formation of idiotypic networks.

The idiotypic network acquires an immune response! against external antigens
by concentration-proportional clonal selection and differentiation (somatic hyper-
mutation) mechanisms. This kind of immune learning includes the following phases
[Perelson, 1989]: 1) generation of lymphocyte cells with encoded diverse antibody
types from the gene segments in the bone marrow; 2) stimulation of the lymphocyte
clones that bind a large amount of structurally related antigens to secrete free an-
tibodies and to reproduce; 3) differentiation of some activated lymphocyte clones;
and 4) clonal selection of lymphocyte clones.

The concentration of lymphocyte clones increases proportionally to their involve-
ment in response to antigens, but it is also influenced by the antibody interactions.
Lymphocyte clones participate in idiotypic interactions that can be stimulatory or
suppressing [De Boer and Hogeweg, 1989]. In this way, the clones control their abil-
ities to learn, and they self-regulate by mutual interactions. The stimulation of the
lymphocyte clones suggests that cell activation through cross-linking of antibody
will increase insofar as the concentration of its complementary antibody increases.

15.2.2 Computational Counterparts in GP

Motivated by the powerful learning abilities of the immune idiotypic networks, we
incorporate their principles in GP in order to achieve robust search navigation.
The idea is to simulate the way in which the immune system fosters lymphocytes
that match more antigens while at the same time stimulating the lymphocytes to
complement each other. A slighly more specific interpretation of complementarity
is assumed here. We use complementarity to encourage competition between the
programs for evolving one program that matches most of the examples, rather than
programs which together cover the examples.

1Immune response to antigen means that there is at least a partial match between an antibody
receptor region and a complementary shaped antigen.



We develop an immune version of a traditional inductive GP system. The novel-
tly is in the elaboration of a dynamic fitness function by analogy with the biological
immune system counterparts as follows: a lymphocyte clone corresponds to a pro-
gram; the concentration of a lymphocyte clone is the fitness of the program; the
interaction between two antigens is the complementarity in the recognition potential
of two programs; the antigens correspond to examples; the antigen concentration is
the importance of an example; the clonal selection process is associated with fitness
proportional selection.

15.2.3 The Dynamic Fitness Function

The dynamic fitness function includes two models that influence each other: 1)
a model of the program dynamics; and 2) a model of the examples’ dynamics.
The fitness of a program should increase when it recognizes more examples, as the
concentration of a lymphocyte increases when it detects more antigens.

The fitness function for control of the immune version of inductive GP is elab-
orated upon a dynamic model describing the changes in the concentrations of the
lymphocyte clones [De Boer and Hogeweg, 1989]. The program dynamics Fj"* is
formed from a permanent quantity for initial supply, plus an amount proportional
to the previous fitness F}* and proliferation due to arousal by recognized examples
and evoked excitory interactions, without a constant death rate:

F*' = Z + F'- (p - Prol(Ag}, 1d})—d )

where: Z is influx constant, d is turnover constant and p is proliferation constant;
Ag? is the antigen score of the i-th program at generation n;
Id? is the total anti-idiotype excitation of program i;
Prol is the proliferation function.
The proliferation Prol of a program ¢ in the next generation according to this
difference equation model depends not only on the recognized examples Ag, but
also on the extent of its interactions Id}* with the other programs:

Ag? +1d?

Prol(Agl, Id7) = ——%i = "1 _
rollAg, 1) = T

where p; is a free constant parameter. The original proliferation function of the
immune system is bell-shaped [De Boer and Hogeweg, 1989] but we use here only
the exciting part of the bell-shaped curve. In this way programs with high idiotypic
interactions are propagated to survive.

The antigen score of a program should account how many examples it matches and
also it should depend on the importance of these eliciting examples. This is because
the antigen of a lymphocyte clone depends on the number and on the specificity of
the structurally related antigens that it binds. We define the antigen score Ag; of



program ¢ as linearly proportional to the importance I7' of the examples R which
it matches, 1 < j < R, among all Ng examples, R < Ng:

R
J=1,i#]

where the binding B;; of a program ¢ is 1 if the program recognizes the example j
and 0 otherwise. Such a definition holds for discrete program outcomes, while for
continuous outcomes it should be redefined (see section 15.4.4).

Our suggestion is that the program fitness dynamics should be in interplay with
the dynamics of the examples. This resembles the objective of the biological im-
mune system to recognize all antigens if possible. During the acquisition of an
immune response, the idiotypic network topology changes to accommodate lym-
phocyte clones that match exceptional antigens. Making an association with the
iGP system behaviour, if more programs recognize an example then it should be-
come less attractive. Therefore, when a small number of unmatched exceptional
examples remain, they have to reinforce these programs in the population which
cover them, and so provoke perturbation of the search process. The importance
I} of an example e is defined as proportional to the number of programs in the
population that correctly recognize it plus a term for constant recruitment ~,:

N
I =12 (0= Y Bie F/(Fie - N)) + 7
j=1

where « is a free constant parameter.

Specifying the program interactions A;; is essential for driving the programs to
compete and for supporting diversity. In the immune network the lymphocyte
clones should be complementary in shape to antigens in order to defeat them. In
context of inductive GP, this complementarity could be regarded as a behavioral
characteristic. The programs will have complementary behaviour if the affinity
accounts for the difference in their mutual learning potential. Two programs are
considered behaviorally complementary when they recognize examples from disjoint
sets. We define the affinity A;; between two programs ¢ and j as the set difference
between the subset of examples which i recognizes and the subset which j recognizes:

Ay = |Ef — EY|

where E* is the subset of examples correctly recognized by program i at generation
n from all provided examples E: Ej' C E, E} C E.

The network comprises all programs in the population. We realize that the net-
work is symmetric A;; = Aj; for 1 <4,j < N, and also that the programs do not



recognize self A;; = 0. The affinity A;; stimulates the programs to: 1) recognize
more examples; and 2) match slightly overlapping sets of examples. Therefore,
the fitness function with this affinity contributes for breeding distinct, non-similar
programs. Such program interactions entail diversity in the population.

The idiotypic influence among the programs should estimate their mutual be-
havioral complementarity through the affinity interactions. The biological immune
system uses such a factor to self-regulate so that the lymphocyte clones have to-
gether the power to detect and eliminate all the available antigens. We define the
anti-idiotype excitation Id} to favor a program s if its interaction A;; with the other
1 < j < N programs in the population is high:

R
I} = (1/(Ng-N))- Y Ay F}
j=1,i#j

The evolution of the network topology determines the ability of the immune al-
gorithm to conduct efficient search. It is important to reason how the network
connectivity will correspond to the phases of evolutionary search. The GP system
usually starts with a random initial population and the global excitation is large.
When GP performs global search, the interactions should be relatively high indi-
cating exploration of large landscape areas. During local search the wiring should
be low as GP exploits landscape areas in the vicinities of the reached local optima.
This holds even if there are a number of optima peaks located by the system.

In the experiments below we use reference values for the parameters in the fitness
function as follows: Z = 0.1, d = 0.5, p1 = 0.25, p = 1.1, 7. = 0.001, and
o = 1.025. The initial fitness of the programs is calculated by solving the above
difference equation for a steady state F? = FZ-”H, which leads to the formula:
F) =Z(p1+1)/(p1 + 1+ d +dp1 — p).

15.3 Micromechanisms of the Inductive GP

The immune inductive GP is developed with programs representing multivariate
trees [Iba et al., 1992, 1993, 1994]. We use the following micromechanisms fitness
proportional selection, context-preserving mutation and crossover operators, biased
by the size of the programs [Nikolaev and Slavov, 1998]. Size proportional biasing of
the application of the genetic operators is necessary in evolutionary algorithms with
variable-length genomes to counteract the tree bloat phenomena [Langdon and Poli,
1998]. Such biased applications of the operators act as forces that guard against
degenerated behavior by deporting the system to unseen landscape areas.



15.3.1 Inductive Learning and Regression

The GP method is useful for addressing inductive learning tasks. The problem of
these tasks can be formulated as a multivariate regression problem. Given instanti-
ated vectors of several independent variables, that is patterns x; = {x;1, Zs2, ..., Ti1 },
and corresponding values r; € R of the dependent variable y;, as predefined exam-
ples E; = {(x4,yi)|y: = r; € R}, the goal is to find a function mapping y = f(x).
This is a general definition since solving regression problems implies abilities for
solving classification problems as well, where the dependent variable is discrete,
often categorical: E; = {(x;,v:)|y: = d; € N'}. In essence, GP is an evolutionary
search paradigm suitable for learning a functional description that best approxi-
mates the dependent variable. The intention is to use this function for predicting
real values associated with unknown example vectors.

15.3.2 Multivariate Trees

High-order multivariate polynomial regression models can be represented by trees
with functions in the internal nodes, and independent variables in the leaves [Iba
et al, 1992, 1993, 1994]. A multivariate tree hierarchy of non-linear polynomial
combinations may capture very accurately the dependencies in the examples.

There are three important implementation issues in the construction of evolu-
tionary GP systems with multivariate trees: 1) how to find the coefficients in the
polynomials; 2) what kind of polynomials to use and with which variables; and 3)
how to avoid overfitting with the provided examples.

Recent research on learning by inductive GP demonstrated results of high ac-
curacies using binary multivariate trees with second-order polynomials [Iba et al.,
1992, 1993, 1994]. The advantage of such trees is that they enable evaluation and
finding of complex, high-order models for acceptable time by composing simple,
second-order models with coefficients that are computed relatively fast. We adopt
the multivariate tree regression model consisting of cascaded quadratic polynomials
from the polynomial theory of complex systems [Ivakhnenko, 1971]:

5
y(x) :Z a;zi(X) = agzo(X) + a121(X) + ag22(x) + azz3(x) + a424(x) + asz5(x)
i=0
of terms: zy(x) = 1, 21(x) = z1, 22(X) = 29, 23(X) = 179, 2z4(x) = 22, and
z5(x) = x2. Considering the functions z; as a vector z =(2o(x), 21(x), z2(x), 23(x),
24(x), 2z5(x)), we may write:

y(x) = a’z(x)

A multivariate tree has such polynomials in the lowest functional nodes with
leaf children, and independent variables in the leaves. Higher in the tree the same



components are employed, where the variables may be outcomes of lower level poly-
nomials: z(zy) or z(y) = y1y2. Using these trees, polynomial approximation may
be pursued by attempts to reduce the deviation when modelling data. According to
the Group Method of Data Handling (GMDH) [Ivakhnenko, 1971] the polynomial
coeflicients at each node of the tree-like multilayer program structure are calculated
in stepwise manner by the matrix formula:

a=(Z"2)"'Z"y

where Z is the 6 x 6 matrix of vectors z; = {zp0, 2i1,...,2i5}, ¢+ = 1..Ng, and y is
the output vector. This is known as a solution of the general least-squares fitting
problem by the method of normal equations. The normal equations we solve using
LU-decomposition [Press et al., 1992].

Following the GMDH algorithm, the evaluation of a tree-like polynomial starts
from the lowest functional nodes, and then proceeding up to the tree root. The
output vector at each step is used as independent variable vector for finding the
coefficients in the next step higher in the tree. When a tree is modified, the coefli-
cients must be recalculated to reflect the modification by mutation or crossover [Iba
et al, 1993]. The recent implementations save some computations by using the old
coeflicients from the subtrees not affected by the genetic operators.

15.3.3 Context-Preserving Mutation

Inductive GP uses a context-preserving mutation operator [Nikolaev and Slavov,
1998]. It transforms a multivariate tree so that only the closest to the chosen
mutation point neighboring vertices are affected. The elementary constituent sub-
mutations are: 1) substitution of a functional node by another one, or random
substitution of a terminal; 2) insertion of a node as a parent of a subtree so that
the subtree becomes leftmost child of the new node; and 3) deletion of a node only
when no subtree below is to be cut.

The biased mutation operator for inductive GP performs context-preserving mu-
tation with probability p,, = m -|g|2, where m is a free parameter [Goldberg et al.,
1989]. This operator usually modifies large programs.

15.3.4 Crossover by Cut and Splice

The biased crossover for inductive GP splices two multivariate trees with probability
p. = ¢/ \/m , where c is a free parameter, and |g| is size of tree g, or swaps them.
The cut points are selected randomly. This operator produces offspring with larger
size than their parents if the parents are of very small size.

The proper values for the free parameters m and c are identified with the auto-
correlation function. These free parameters m and c¢ serve as knobs with which one
may regulate carefully the search efficiency [Nikolaev and Slavov, 1998].



15.4 Practical Induction by Immune Dynamics

15.4.1 Traditional and Immune Versions of iGP

The evolutionary performance of the immune version of GP is studied here in com-
parison with the traditional GP system STROGANOFTF [Iba et al., 1993, 1994] that
uses the multivariate tree representation from the previous section. STROGANOFF
was implemented with the micromechanisms of inductive GP given above [Nikolaev
and Slavov, 1998]: biased context-preserving mutation, biased crossover by cut and
splice, and a stochastic complexity (MDL) fitness function with an improved com-
plexity component:

Fypr = k- S? +log(ng +ny) +ny +ny - logT +ny +nyp-logF

where n, are the leaves in the tree, n; are the functional nodes, T" are all terminals,
F are all functions, k is a balancing parameter, and S? is the mean squared error:

Np
S? = (1/Ng)- Z lyi — y(x:)[?

where y; is the true outcome given with the i-th example, and y(x;) is the estimated
outcome from the program given the i-th input vector x.

The only difference between STROGANOFF and the immune version is that the
fitness in the immune iGP is calculated with the difference equation for Fi”"'l.

15.4.2 Performance Measures

The evolutionary performance of the traditional and the immune versions of induc-
tive GP is evaluated with two kinds of measures: 1) estimates of the learning accu-
racy, and 2) estimates of the population diversity. The learning accuracy provides
quantitative evidence for the development of the learning process. The diversity is
a macroproperty that enhances the GP system potential to find highly fit programs.

The diversity can be analyzed with the number of clusters in the population
[Bersini, 1997], computed using the K-means clustering algorithm [Hartigan and
Wong, 1979]: split the current population of multivariate trees into groups by max-
imizing the tree-to-tree distance between them. The tree-to-tree distance here is
the minimal number of context-preserving mutations necessary to produce one of
the trees from the other [Nikolaev and Slavov, 1998].

With the experiments below we show that the immune version attains fitter pro-
grams and maintains higher population variety than the traditional inductive GP
on machine learning and time-series prediction problem instances. All of the plots
in the figures that follow are from the best runs, taken among the 1000 runs which
were performed with each the immune iGP and STROGANOFF.



15.4.3 Machine Learning

Machine learning considers computational induction as a problem of finding a func-
tion f from provided {(x1,¥1), (X2,%1), .-, (XN, yc)} examples. The task is to ac-
quire such a function that will distinguish correctly unseen examples of the same
classes. The dependent variable assumes discrete values, often denoting only several
categories y; = d; € N, which are called classes.

The Glass recognition task is assumed as a benchmark machine learning problem.
The goal is to learn the configuration of glass pieces collected after a car accident
[Merz and Murphy, 1998]. The Glass data set includes |E| = 214 examples of 9
numeric features F; = {(x;,v:)|zi1 =71 € R,...,259 = 19 € R}, each associated
with one of 6 classes: y; = 1,y2 =2,...,y6 = 6.

We compare inductive GP with the Non-linear Decision Trees algorithm (NDT)
[Ittner and Schlosser, 1995] since it produces multivariate binary tree classifiers with
quadratic polynomials of features in the nodes as inductive GP. This means that
NDT is similar to inductive GP in that it also makes non-linear partitioning of the
feature space. NDT differs in that it performs top-down induction of decision trees
having the classes in their leaves. Several polynomials generalizing the examples
are extracted from the decision tree by traversing it from the root to the leaves,
while GP generates one polynomial. The NDT algorithm outperforms some of the
best machine learning approaches [Ittner and Schlosser, 1995].

The presented results are derived using 10-fold cross validation: 10 disjoint sub-
sets of 21 examples were formed, then the algorithms were trained 10 times using
the outside 214 — 21 examples of each partition and tested on the remaining 21 ex-
amples. We study the learning accuracy with the percentage of correctly recognized
examples by the best tree. The best tree accuracies can be obtained from Table 15.1
by summation of the accuracies in the second column with the standard deviations
in the third column. For example, the best tree found by the immune iGP from all
1000 runs was with 72.11% accuracy. One can see in Table 15.1 that the accuracies
of the NDT trees deviate less, but the iGP may discover more accurate trees. An
advantage of the two GP systems is that they derive smaller trees. NDT tends to
overfit the examples due to the recursive partitioning of the examples.

Table 15.1

Learning accuracy of the best multivariate trees produced by the NDT, the immune iGP
and the traditional STROGANOFF with the Glass recognition data

Approach Best Tree Accuracy  Standard Deviation  Best Tree Size
NDT 67.43% +2.53% 29
Immune inductive GP 68.22% +3.89% 24

STROGANOFF 67.78% +3.66% 25




The learning performance of the immune inductive GP and STROGANOFF may
be analyzed with the curves given in Figure 15.1a,b. The mean squared error of the
best tree recorded with the immune GP is occasionally perturbed by the system
dynamics, which enables its progressive improvement. We note that after phases
of local search between generations 350 — 540, 560 — 690, 720 — 770, the system
conducts global search into different directions across the fitness landscape.
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The reasons for such perturbations may be discovered by an experimental analysis
of the changes in the examples’ importance during a typical run of the immune
iGP. We conducted an experiment with the immune iGP and selected a particular
important example, in order to investigate how it is approached by the programs
in the population in the sense of whether depending on its importance they are
attracted to match it. Figure 15.1b shows the interplay between the changes of
the importance of the selected important example and the number of programs
in the population that recognize it. This figure displays that there is an inverse
relation between the example’s importance and the number of the programs in the
population recognizing it. When more programs tend to recognize the example its
power decreases, in the interval 20 — 200 generation. After that, between 220 — 400
generation, the programs begin to avoid this example since its importance has
become low which means that it is no more so attractive. This causes again an
increase of the example’s importance, between generations 220 — 600, as there are
a small number of programs in the population that match it. Next, they strive to
recognize it and decrease the example’s importance again. Therefore, the changes in
the importances of the examples really drive the programs to match more powerful
examples and so contribute to reorientation of the evolutionary search.

The population diversity maintained by the immune iGP and STROGANOFF
can be analyzed with the two plots in Figure 15.2. In Figure 15.2a we observe
that the immune version of inductive GP sustains higher population diversity than
STROGANOFF measured by the number of clusters of programs. Since the number
of clusters is measured with the tree-to-tree distance characteristics between the
tree-like programs in the population, one may assume that this is an estimate of the
syntactic variety in the population during evolutionary search. It is interesting to
note that the number of clusters during evolutionary search conducted by immune
iGP slightly decreases when this system performs local search. This is evident
from the horizontal line segments which correspond to the local search periods in
Figure 15.1. The performance of the traditional inductive system STROGANOFF
maintains almost 25% less clusters of programs.

Another measure of the diversity is the mean anti-idiotype excitation among the
programs in the population (Figure 15.2b). The mean affinity shown in this figure
presents the diversity from a different, semantic perspective as it estimates the va-
riety in the recognition potential of the programs, or whether there are programs in
the population with non-similar learning capacity. Figure 15.2b demonstrates that
the mutual interactions between the programs in the immune iGP are occasionally
perturbed. These could be considered search perturbations caused by changing the
importances of some examples. The search obviously is kind of a shaken and next
improves. This claim can be explained with the varying sloping down affinity curve
on Figure 15.2b, which falls and raisings delimit approximately the same periods of
local search between generations 380 — 580, 590 — 680, and 700 — 790.
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15.4.4 Time-Series Prediction

Time-series prediction may also be regarded as an inductive problem. The task is to
identify the regularities among given series of points: ..., 2t, zt+1, 2¥+2, ..., sampled
at discrete time intervals. This is accomplished by search for a series description
with only the most relevant from the available points, so that future points of



the series can be predicted. We assume an autoregressive model with non-linear
polynomials, represented as multivariate trees. The available points are considered
coordinates of the independent variable vector and serve as data for learning. The
independent variable vectors x; are created with embedding dimension k, and delay
time 7 = 1 [Farmer and Sidorowich, 1987]:

x; = { ‘,L.t—(k:—l)-'r’ ‘,L,t—(k—Q)-’T’ . J,‘t}

that is window vectors from k nearest previous points starting at a point ¢. Depen-
dent variable is the immediate next point to the starting y; = 2!*. Thus, examples
of the kind E; = {(x;,v:)|y;i = m: € R} are formed. Difficulties in time-series pre-
diction arise from the high dimensionalities of the series. That is why, the choice
of the embedding dimension k£ and delay time 7 are important design issues. We
select empirically? embedding dimension k£ = 10, and delay time 7 = 1.

The immune iGP for time-series prediction is implemented with modified binding
B,; of a program i to recognized examples since the outcome y(x;) is continuous:

Bi; = { 1-52/5% ifSZ-zj < S%

0 otherwise
where Sfj = |yi—y(x,)|? is the squared error between the outcome y(x;) of program
1 given input x, and y; is the true outcome given with example j. The mean squared
error S? is computed with the formula defined in section 15.4.1. The value of S%
is calculated as the average mean squared error from all programs. The rationale
is that the binding B;; should be large enough in order to influence essentially the
fitness function through the fitting error.

We used data series produced with the Mackey-Glass differential equation for
prediction [Mackey and Glass, 1977]. This is an equation for simulating blood
flood caused by the irregularity of the heart beats. Trajectories of 1400 points were
generated with parameters: a = 0.2,b = 0.1, and three differential delays A = 17,
A =23, and A = 30. The initial points in each of the cases were taken randomly.
The first subseries of 1000 points were discarded. We considered the next 100 points
for training, and the remaining 300 points for testing.

The plots in Figure 15.3 provide empirical evidence for the learning performance of
the immune iGP and STROGANOFF. One observes that the immune iGP exhibits
stable evolutionary performance, in the sense that it is able to search progressively.
Despite some degradations in its performance, it continuously improves since the
dynamics sustains the motion of the population on the fitness landscape.

2The theoretical studies advise to select embedding dimensions k corresponding to the concrete
attractor dimensions D with the inequality k > D + 1 [Farmer and Sidorowich, 1987].
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Figure 15.3
Learning accuracy: a) Average and best fitnesses, and b) Mean squared error, recorded with the

immune iGP and STROGANOFF using MazSize GP=29, PopSize=60, and 100 points from the
Mackey-Glass equation series derived with A = 17

The phases of global and local search conducted by the immune version of GP
can be clearly identified. During local search the mean squared error does not
change, shown by the regions with horizontal lines in Figure 15.3b between gen-
erations 490 — 750, 820 — 1250, 1300 — 1500,1540 — 2000. These evidence for local
search are supported by the horizontal slightly oscillating fitness values in the same
generation intervals in Figure 15.3a. When global search is performed near genera-
tions 470, 780,1275, and 1520, the mean squared error sometimes fluctuates (Figure



15.3b), and after that there are sharp falls of the corresponding average and best
fitnesses (Figure 15.3a). These sudden performance changes cause stepwise error
decrease and finding more accurate best programs (Figure 15.3a,b). The traditional
GP climbs on a local peak and remains there (after generation 1050 in Figure 15.3b),
since the locally optimal program takes over the population.

Table 15.2

Learning accuracy, forecast and size of the best trees found by the immune iGP version and
STROGANOFF, on Mackey-Glass equation series derived using: embedding dimension

k = 10, delay time 7 = 1, and three differential delays A (the errors are in units of 1le — 5)

Mean Squared Error 51-2

Best Tree TRAIN Error

differential delay A=17 A =23 A =30

Immune inductive GP 5.458376 8.137821 9.015442

STROGANOFF 5.870631 8.458412 9.527129
Best Tree TEST Error

Immune inductive GP 6.236278 8.852356 9.798612

STROGANOFF 6.762336 8.817821 10.153613

Best Program Tree Size

Immune inductive GP ny =10,n, =11 ny=11,n, =12 ny=13,n, =14
STROGANOFF ng=9,n,=10 ny=11,n; =12 ny=12,n; =13

In Table 15.2 we show the accuracies of the best trees from 1000 runs recorded
with series derived with a slightly large embedding dimension, which amplifies the
noise in the examples, but facilitates the comparison with other GP approaches
to the same problem instance [Iba et al., 1993; Zhang et al., 1997; Mulloy et al.,
1996]. We generated three series with different differential delays A and, thus, we
produced three Mackey-Glass equation series of different complexities [Farmer and
Sidorowich, 1987]. The first 17, respectively 23 and 30 points in each series, were
randomly generated. The most frequently changing curve and hence most difficult
to learn is the one obtained with A = 30. It is visible that the immune version of
iGP identifies solutions with higher approximation accuracy as well as predictability
both on the training and on the testing subseries. The immune GP is stable as it
shows abilities to search better in cases of data series with different complexities.

The lowest section of Table 15.2 displays the program sizes, given by the number of
functional nodes ny and terminal leaves n; of the best multivariate tree found. The
differences in the program complexities justify the accuracy deviations between the
training and testing errors. The trees evolved by the traditional GP have a smaller



number of functional nodes and terminal leaves, but they have lower accuracies. An
advantage of the immune GP is in the high quality of the attained multivariate trees,
and so suggest that the trees evolved by the immune GP are better approximators.
Therefore, the experiments indicate that the immune iGP usually discovers best
multivariate trees of larger size, which fit better the examples than predict. This,
however, can be regulated by tuning the stoping criterion in the sense of number of
generations to evolve.
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Population diversity: a) Clustering, recorded with the immune iGP and STROGANOFF using
MazSize GP=29, PopSize=60, and 100 data points from the Mackey-Glass equation series derived
with A = 17; and b) Mean anti-idiotype excitation



We demonstrate in Figure 15.4a the changes of the population diversity. The
numbers of clusters are taken during the same run for time-series prediction as
above, in order to explain why the GP system behavior has the performance char-
acteristics displayed in figures 15.3a and 15.3b. It seems that the immune version of
iGP enforces the programs to occupy different fitness landscape areas, and keeps the
population distributed. Initially, in the phase of global search the number of clus-
ters is relatively high. During local search phases the number of clusters slightly
diminishes and stays unchanged between 550 — 750 and 900 — 1150 generations.
When the GP system performs global search the number of clusters increases and
fluctuates. The traditional inductive GP has been deceived in the vicinity of some
local optima after generation 1500 and further can not discover better solutions.

The network of programs in the immune version of iGP remembers examples by
switching between different combinations of programs. That is why, the popula-
tion diversity can be estimated by the evolution of the network connectivity since
it influences the distribution of the search effort on different landscape areas. We
evaluate the strength of idiotypic interactions with the affinities between the pro-
grams (Figure 15.4b). The high mean affinity in Figure 15.4b is an indication for
the high diversity supported by the immune GP. It is interesting to observe that
the affinity decreases between generations 550 — 750 and 900 — 1150, which makes
us certain that search perturbations really occur during these periods.

15.5 Discussion

Understanding the intrinsic dynamics of the immune inductive GP is important for
control of the evolutionary search carried by them.

The dynamics of the immune version of GP has three aspects [Farmer et al.,
1990]. The first aspect is the net topology dynamics. In our implementation we
assumed that the network is symmetric and completely connected, but these are
simplifications. The choice of programs for interaction should be suggested by an
appropriate reformulation of the affinity formula. Theoretically, the network should
comprise programs interacting with a small number of other programs. The affinity
formula should not stimulate, however, formation of very sparse networks since they
make it impossible for perturbations to occur.

The second aspect is the parameter dynamics. The large number of free para-
meters in the fitness formula creates difficulties for finding and tuning their values.
The stability of the results is sensitive to these values, and the problem is whether
the selected reference parameter values are the most relevant ones.

The third aspect is the concentration model dynamics of the lymphocyte-like
programs. This dynamics is very difficult to analyze because of the bell-shaped
character of the activating proliferation function.



15.6 Relevance to Other Works

The time-series prediction problem have been also addressed by many other GP
systems [Oakley, 1994; Zhang et al., 1997; Mulloy et al., 1997]. All these GP sys-
tems use static fitness functions: Oakley [1994] uses the sum of squared errors,
while Mulloy and colleagues [1997] use an adjusted version of the sum of squared
errors. The Minimum Description Length (MDL) fitness function of Zhang, Ohm,
and Muhlenbein [1997] is close to this which was employed in STROGANOFF in
that it balances between the fitness and the program size, leading to high quality
approximations. These static fitness functions, however, lack of intrinsic power to
push the GP system to improve continuously its evolutionary search performance.
This is because the static fitness functions do not have a reinforcing effect to coun-
teract premature convergence to suboptimal programs.

An essential difference in the design of the above GP systems, the immune GP
system and the STROGANOFF system is that the last two produce polynomials
represented as specific cascaded multivariate trees. The polynomial coefficients in
these specific multivariate trees are directly computed as least-squares solutions by
the method of normal equations, which avoids the need to evolve them. Thus,
the GP systems like STROGANOFF achieve very accuracte results trying only to
evolve the basis polynomials which constitute the target polynomial.

Empirical investigations of the performance of the immune version and the GP
version STROGANOFF have been presented [Iba et al., 1993]. The accuracies
of the programs induced by the immune GP are slightly better than these of
STROGANOFF. This is reasonable since the inductive learning problems that were
used are known as hard benchmark instances for learning. The most significant re-
sult is that the immune dynamics reduces the probability of GP to become stuck in
local optima. This impacts the GP system abilities to move continuously the pop-
ulation on the fitness landscape. Our hypothesis is that this robust performance
of the immune version of GP, is due to two factors: 1) the rewarding program in-
teractions; and 2) the reinforcing examples’ importance changes. These provoke
occasional network perturbations, and so contribute to the search reorientation to-
ward different fitness landscape areas.

The presented fitness function is a dynamic model that distributes the population
into niches [Horn and Goldberg, 1996]. This dynamic function makes coexistent in
the population programs from different niches on the fitness landscape, which is a
kind of fitness sharing. Fitness sharing means that the fitness of a program decreases
if there are similar, slightly behaviorally different programs than it. In the immune
GP the fitness sharing is implicit, and it is achieved through resource sharing with
the affinity interactions. The immune dynamics via such affinity interactions en-
courages competition between the programs to cover more example resources from
distinct resource niches, and does not divide the reward. Therefore, the immune



GP exhibits implicit niching like the classifier system of Horn and Goldberg [1996].
The immune GP differs in that the programs partially recognize the examples and
mutually compete till one program individually attains a complete solution.

15.7 Conclusion

This chapter has proposed an inductive GP system navigated by a fitness function
based upon a network model of the biological immune system. Viewing the learning
as immunity phenomena, it is an attempt to employ the immune idiotypic networks
as inductive computational mechanisms. The immune version of GP is not specific
to any genetic mutation or crossover operators, and can be used for improving any
traditional GP system. The implementation of the immune GP version is more
sophisticated but features more learning power.

It has been reported that the immune GP system outperforms STROGANOFF
in solving benchmark machine learning and time-series prediction tasks. We are
inclined to think that the robust evolutionary behaviour will be retained if the same
micromechanisms and dynamic fitness function are used. Because of computational
efficiency reasons the immune GP will be particularly useful for machine learning
tasks with close categorical examples distribution, and for time-series prediction
tasks with close series size and embedding dimension to these studied here.

Further research should be directed toward deeper understanding of the compu-
tational properties and principles of this connectionist immune version of inductive
Genetic Programming. Theoretical analysis should be made to clarify what this
computer immune system can do.
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