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This chapter describes the application of a grammatically-based Genetic Programming system to
discover rainfall-runoff relationships for two vastly different catchments.  A context-free grammar
is used to define the search space for the mathematical language used to express the evolving
programs.  A daily time series of rainfall-runoff is used to train the evolving population.  A
deterministic lumped parameter model, based on the unit hydrograph, is compared with the
results of the evolved models on an independent data set.  The favourable results of the Genetic
Programming approach show that machine learning techniques are potentially a useful tool for
developing hydrological models, especially when the relationship between rainfall and runoff is
poor.

5.1  Introduction

Many problems of interest to natural resource scientists may be expressed in the form of
a time series model.  This chapter describes a geographic problem, represented at the
catchment scale and daily time scale, which attempts to relate the rainfall incident on a
catchment to the stream flow at the exit from the catchment.  The produced function has
the form 

�
(r1,r2,..rn), where r1 .. rn are rainfall variables from current and/or previous

days. 
�

 represents the current days streamflow.  The difficulties involved with producing
�

 are clear when we consider the numerous complex features that directly and indirectly
contribute to the measured behaviour. The response of the catchment (especially
Australian catchments) is highly capricious, depending not only on the catchment
characteristics (e.g. topography, area), vegetation characteristics and antecedent
conditions, but the meteorological conditions (e.g. areal distribution of rainfall) in a
highly non-linear and unpredictable fashion.  Developing models that describe this
relationship help in understanding the overall behaviour of the catchment and support
the development of more process-based models and catchment classification schemes.
Additionally, many natural resource models use streamflow as an input.  Although
reliable rainfall records often exist for a catchment, only limited streamflow data is
generally available.
 This chapter compares the performance of a variant of Genetic Programming (GP)
(Koza, 1992) to a traditional hydrological model which predicts the rainfall-runoff
relationship for specific catchments.  Rainfall-runoff models have been previously
developed using other machine learning techniques, such as neural networks (Minns
and Hall,1996), however the form of these models was not easily translated into
interpretations of catchment process and behaviour.  The advantage of using a symbolic
learning system, such as GP, is that the resulting model may be interpreted in terms of
the process and behaviour of the catchment.  This can often help in understanding the



underlying processes that drive the catchment response and can be used to classify and
generalise differing catchments.  GP has been previously applied to time series
prediction (Mulloy, Riolo and Savit, 1996) however no previous work, to the authors
knowledge, has applied GP to the problem of predicting rainfall-runoff relationships.

5.2 The Genetic Programming System CFG-GP

A variant of genetic programming, context-free grammar GP (CFG-GP), (Whigham,
1996) uses a grammar to define the space of legal sentences that can be explored during
evolution.  The system allows a transparent definition of language bias by instantiating
the way in which terminals of the language may be legally combined.
 A formal grammar is a production system which defines how nonterminal symbols may
be transformed to create terminal sentences of a language.  A grammar is represented by
a four-tuple (N, Σ, P, S), where N is the alphabet of nonterminal symbols, Σ is the
alphabet of terminal symbols, P is the set of productions and S is the designated start
symbol.  For example, the following grammar, Gmath, defines a language for generating
all possible mathematical expressions using the operators +, -, *, /, and a set of random
real numbers, represented by the symbol, ℜ.

Gmath =
{S,
 N = {M},
 ∑={+,-,*,/,ℜ},
 P =
   {
     S → M
     M → + M M  - M M  * M M  / M M ℜ
   }
}

The initial random population is generated using the grammar by selecting random
productions which match the current nonterminals in the derivation, starting with S,
and limited by some maximum depth of derivation tree. A derivation step represents the
application of a production to some string which contains a nonterminal. In general, a
series of derivation steps may be represented by a syntax tree or derivation tree.  These
trees have genetic operators applied to them in a manner similar to normal GP program
trees, except that crossover sites between derivation trees must use matching
nonterminal sites.



Figure 5.1
A Derivation Tree for the expression * 5 2, generated using the grammar Gmath.  S,M and ℜ are nonterminals
symbols, while  *, 5 and 2 are terminal symbols  of the language.

For example, using Gmath, the expression string * 5 2 could be generated from the
following derivation steps:

S ⇒ M ⇒ * M M ⇒ * ℜ M ⇒ * 5 M ⇒ * 5 ℜ ⇒ * 5 2                 Equation  5.1

The corresponding derivation tree for this sequence is shown in Figure 5.1.  Crossover
and mutation operators are applied directly to these trees.
 Two search operators are used to modify the evolving rainfall-runoff model; the
crossover operator is used as the search operator for each generation, mixing elements of
potentially useful partial solutions in an attempt to build a better solution; a hill-
climbing mutation is used as a fine-tuning operator that allows the random constants
within the final best solution to be modified in an attempt to move towards a more
optimal solution.

Figure 5.2
Crossover between derivation trees d1 and d2.  The subtrees t1 and t2, with root node nonterminal B, are swapped
to produce two new derivation trees (i.e. new programs).  Crossover always swaps subtrees with the same root
nonterminal.



 Crossover applies 2 (parent) individuals and creates 2 (offspring) individuals.  Each
crossover operation is defined by two parameters: the probability of crossover occurring
and the nonterminal B ∈ N where crossover will be applied.  Assuming that the
crossover operator has been selected, two programs with derivation trees d1 and d2 are
selected from the current population using a proportional fitness selection.  Crossover,
as shown in Figure 5.2, is then performed as follows:

1. Randomly select a subtree t1 from d1 with root node B.
2. Randomly select a subtree t2 from d2 with root node B.
3. Swap t1 and t2 thereby creating two new derivation trees d1* and d2*.
4. Insert d1* and d2* into the next-generation population.

If d1 or d2 do not contain the nonterminal B then no crossover is possible and the
operation is aborted.  The benefit of using derivation trees to represent the population
now becomes clear; by defining crossover to swap subtrees at the same nonterminal
guarantees that the space of possible programs is constrained to be part of the language
defined by the grammar.
 The rainfall-runoff grammar Gflow (see Section 5.4) defines mathematical expressions
which are initially seeded with variables relating to current or previous rainfall, and
random real numbers.  These real numbers are used as constants throughout the
evolution, and are combined into the partial solutions that are evolved.  A final solution
that uses one or more of these constants may be improved (based on the training data) by
slight modifications of these constants.  The hill climbing mutation applies small
random changes to the constants of the best final program (derivation tree) and
maintains the new solution only if it improves the final performance based on the
training data.  This mutation is applied a fixed number of times and may be considered
as a fine tuning of the evolved solution.
 A proportional fitness measure is used to select programs (i.e. derivation trees) each
generation for crossover and reproduction.

5.3 Rainfall Runoff Modelling

One of the traditional approaches to hydrograph modelling (Jakeman, Littlewood, and
Whitehead, 1990) is to use the concept of the Instantaneous Unit Hydrograph (IUH).
The IUH is defined as the hydrograph produced by the instantaneous application of a
unit depth of rainfall to a catchment.  The shape of the IUH is similar to a single peak
hydrograph with a rapid rise and a slower decay.  The fundamental assumption in the
IUH model is that the precipitation input is equal to the integrated streamflow output.
The non-linear relationship between rainfall and streamflow has led to the development



of the concept of effective rainfall, which is determined by applying a non-linear filter to
the raw rainfall data.  This effective rainfall i s then equated with the integrated
streamflow for the specified catchment.
 The IHACRES model applied in this paper is based on IUH principles.  The model
defines a unit hydrograph for total streamflow by defining separate unit hydrographs for
the quickflow and the slowflow components.  The model is defined by six parameters,
four of which are determined directly from the raw rainfall , streamflow and temperature
(or a surrogate), while the other two (the non-linear parameters) are calibrated using a
trial and error search procedure, optimising the model to fit the observed rainfall -runoff
relationship.  The fundamental conceptualisation in the non-linear module of the model
is that catchment wetness varies with recent past rainfall and with evapotranspiration. A
'catchment wetness index' is computed for each time step on the basis of recent rainfall
and temperature. The percentage of rainfall which becomes effective rainfall i n any time
step varies linearly between 0% and 100% as the catchment wetness index varies
between zero and unity. An alternative conceptualisation of the catchment wetness index
is that it represents the proportion of the catchment at a given time step which
contributes eventually to streamflow, but it is important not stretch the physical
interpretation of catchment wetness index too far. Conceptualisation of spatiall y
distributed processes in both the non-linear and the linear modules is severely restricted
by the spatiall y lumped nature of the model.  An advantage of this approach is that the
model needs only a small number of parameters.  Additional detail s about the model are
contained in (Littlewood and Jakeman, 1994).  It is worth noting that this model is
considered to be one of the standard approaches to rainfall -runoff modelli ng, and has
been used successfully for a number of years.



5.4 CFG-GP Setup

The grammar, Gflow, used by CFG-GP to develop the rainfall -runoff models allowed
simple mathematical functions to be evolved, and was defined as follows.

Gflow =
{S,
  N = {EQU, NL, EXPN},
  ∑={+,-,*,/,exp,r0,r1,r2,r3,r4,r5,av5,av10,av15,

          av20,av25, av30, av40, av50,av60,av100,ℜ},
  P =
   {

S → + EQU NL
NL → * EQU EXPN
EXPN → exp EQU
EQU → + EQU EQU  - EQU EQU
EQU → * EQU EQU  / EQU EQU
EQU → exp EQU
EQU → r0  r1  r2  r3  r4  r5
EQU → av5  av10  av15  av20  av25
EQU → av30  av40 av50  av60  av100
EQU → ℜ

   }
}

The terminal symbols r0,r1,..r5 represent the rainfall for the current day up to the last 5
days rain.  The av5, av10, .. av100 terminals are the average rainfall for the last 5, 10, ...
100 days, respectively.  The terminal ℜ is a random floating point number between -10.0
and 10.0 which is generated for each occurrence of ℜ when the initial population is
created.  These random constants are potentiall y modified using the hill climbing
mutation once the best, final generation, solution has been found using crossover.  The
exponential function is represented by the terminal string “exp” .  The grammar has a
structural bias to form equations that are composed of a linear component and a non-
linear (exponential) component.  This is shown by the production S → + EQU NL,
which forces all programs to have the minimal structure of A + B * exp(C), where A, B
and C are climate variables or a random real number.  The production EQU → exp EQU
allows the exponential function to be included with any part of the evolved mathematical
expression.  The language bias merely forces the use of the exponential function at least
once in the final solution.



Table 5.1
CFG-GP Parameter Settings used for all experiments.

CFG-GP Parameter Value

POPULATION SIZE 1000
GENERATIONS 50
GRAMMAR Gflow

MAX. TREE DEPTH 15
CROSSOVER ⊗ = {EQU} 90%
HILL CLIMB MUTATION 1000 times
FITNESS MEASURE Minimise RMSE

Table 5.1 shows the CFG-GP setup parameters which were used to develop both
catchment models.  The crossover operator is applied only to the nonterminal EQU, with
a probability of 90%.  Hence approximately 10% of the population is passed unchanged
into each subsequent generation.  This ensures that good solutions are not prematurely
removed from the population and that the building blocks that are useful are maintained.
The root mean square error (RMSE) was used as the fitness measure.  If Pt is the
predicted runoff value at time t, At is the actual runoff value at time t, and there are N
points in the training data ( N > 1),  then RMSE is defined as follows (Chatfield,  1984):

( )
RMSE

P A

N

t t
=

−
−

∑ 2

1
                                       Equation 5.2

 The CFG-GP system used the same training data as IHACRES to evolve the rainfall-
runoff models.  For IHACRES, the training data was used to calibrate the constants
which appear in the IHACRES conceptual model.  In the case of CFG-GP, the training
data was used to both evolve suitable constants and to develop the underlying structure of
the model itself.  Comparison of results will only refer to the simulation (test) runs which
use previously unseen data for the same location.  The CFG-GP system was run 100 times
for each catchment, with the best equation on the training data selected as a candidate for
the final solution.  The best candidate solution on the unseen data was selected as the
resulting equation.  The RMSE is used to compare the IHACRES and CFG-GP models
for the simulation period.  As an additional measure of performance the error in predicted
total discharge (i.e. the sum of streamflow) for the simulation period is also calculated.
However, this error is not used as part of the CFG-GP fitness function.



5.5 Catchment Descriptions and Results

In order to test the modelling approaches two very different catchments were chosen.
The first catchment was the Teifi catchment at Glan Teifi in Wales, United Kingdom.
The second catchment was located within the Namoi River catchment in northeastern
New South Wales, Australia.
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Figure 5.3
Location of Glan Teifi Catchment.

5.5.1 The Glan Teifi Catchment

The Teifi catchment is a rural catchment draining 893.6 km2 with an average annual
rainfall of 1368 mm. This station was maintained and operated by the UK Environment
Agency and the data can be obtained from the Institute of Hydrology, Walli ngford, Oxon,
U.K.  Compared with the Namoi catchment, the number of rain days per annum is much
greater at Teifi but the maximum daily rainfall i s only about half the value for the Namoi.
The other major difference between the catchments is that runoff percentages (i.e. total
runoff/total rainfall * 100) are very much higher at Glan Teifi. .  The calibration run for
Teifi was done from 27th July, 1982 to 31st July, 1985 and the simulation run was done
from 23rd July, 1979 to the 27th July, 1982.  For the calibration period the runoff
percentage was 66.7% and for the simulation period the runoff percentage was 74.95%.
The measured rainfall and streamflow for the Teifi catchment between July 1979 and July
1982 is shown in Figure 5.4 (rainfall events are shown as black columns).  It is worth
noting that the Glan Teifi catchment has a strong seasonal signal and that there appears
to be a strong relationship between rainfall and runoff.
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Figure 5.4
Measured Rainfall and Runoff at Glan Teifi.

5.5.2 Results

The simulated streamflows determined by IHACRES and CFG-GP are shown in Figures
5.5 and 5.6.  The daily error for each model, calculated as (predicted flow - actual flow),
is shown in the right-hand graphs for each figure.  A visual comparison with the
measured streamflow (Figure 5.4), indicates that both approaches have captured the
basic response of the catchment, however IHACRES appears to have better represented
the extreme streamflow events.  The root mean square error (RMSE) for IHACRES was
0.0139 and for CFG-GP was  0.0142.  The total discharge for the simulation period was
measured as 35,600 cumecs, with IHACRES predicting 34,776 cumecs (2.3% error) and
the evolved CFG-GP solution predicting 33,295 cumecs (6.4% error).  The CFG-GP
equation which was evolved for the Teifi catchment was defined as follows.

                                        +(+(r1,+(av40,*(av10,av100))),*(
                        *(av5, +(-17.121983,*(av5,av40))),exp(-3.739896)))          Equation 5.3

This may be simplified to give:

                                       r1 + av40+ (av10 * av100) +
                          (av5 * (-17.121983 + (av5 * av40)))* 0.0237                    Equation 5.4



Equation 5.4 shows that the catchment was influenced by antecedent conditions that
could extend for several months into the past (the av100 variable represents the average
rainfall for the last 100 days).  Note also that the constant exponential expression in
Equation 5.3, namely exp(-3.739896), means that the resultant equation for runoff is
only a linear function of r1 (previous days rain) ,av5, av10, av40, and av100.  There is
no non-linear component.

1/7/79 1/7/81 1/7/821/7/80

Figure 5.5
IHACRES Modelled Runoff at Glan Teifi for the test (unseen) time period.  The Error (Predicted Value - Measured
Value) is shown in the right-hand graph.
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Figure 5.6
CFG-GP Modelled Runoff  at Glan Teifi for the test (unseen) time period.  The Error (Predicted Value - Measured
Value) is shown in the right-hand graph.
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Figure 5.7
The Manilla River at Barraba, N.S.W.

5.5.3 The Namoi River Catchment

The Namoi River catchment (see Figure 5.7) was chosen to be as different as possible
from the Teifi catchment.  Using the Department of Land and Water Conservation (the
gauging authority) naming convention the catchment is referred to as 419030 or the
Manill a Rv at Barraba (30° 23’ 24” S and 150° 37’ 08” E). This catchment is approx.
568 km2 and drains the southern part of the Nandewar Range. Within the catchment
there are three reliable long-term raingauge stations with average annual rainfall s of
686mm, 704mm and 727mm. These stations have a reasonable spread of location and
altitude and the average of the three values has been used as the catchment rainfall .
More sophisticated techniques do exist for determining catchment rainfall but given that
there were only three rainstations such sophisticated approaches are inappropriate. For
very large rainfall events (greater than 100mm) there was a strong relationship between
rainfall and runoff but as the size of the event decreased the relationship between
rainfall and runoff became more random. The rainfall i n this part of the country is
strongly summer dominated, which influenced the selection of the calibration and
simulation periods.  The calibration run was done from 13 November 1965 to 10 March
1966 and the simulation run was done from 4 November 1966 to 13 March 1967.  This
short time period for calibration was necessary because IHACRES could not converge
when longer periods were chosen.  This was due to the requirement that the start and
end points should be selected to be at low flow periods.  When the calibration period was
chosen with several low flow periods this assumption was violated and meant that the
model would not converge.  In spite of this catchment having a comparatively high
rainfall (by Australian standards at least) and our selection of the high rainfall months,
the runoff percentage over the calibration period was only 6.12% and the simulation
period was 8.24%.



Figure 5.8
Measured Rainfall and Runoff at Barraba.

5.5.4 Results

The measured rainfall and subsequent streamflow for the simulation period in the
Barrada catchment is shown in Figure 5.8.  As can be seen from this data, for large
events there is a strong relationship between rainfall and runoff.  For smaller events,
however, there is not a significant relationship between the rainfall and runoff.
The simulated streamflows determined by the two approaches are shown in Figures 5.9
and 5.10.  The error for each model (predicted value - measured value) is shown in the
graphs on the right-hand side of each figure.  The RMSE for the IHACRES approach
was 0.0474 and for CFG-GP was 0.0439.  The total discharge for the simulation period
was measured as 187 cumecs, with IHACRES predicting 330 cumecs (76% error) and
the evolved CFG-GP solution predicting 99 cumecs (47% error).    For the purposes of
our comparison (based on RMSE) these results are similar.

  The evolved equation found by CFG-GP was:

                              +(/(/(/(/(r0,-1.911790),-0.474622),-4.164400),
                                    -(/(-1.542888,5.944119),-(av10,r0))),                       Equation 5.5
                                        *(r0,exp(/(0.251564,av10))))

which may be simplified to

                     (r0/-3.7) -0.26-av10 - r0 - (r0 * exp(0.251564 / av10))           Equation 5.6
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Figure 5.9
IHACRES Modelled Runoff at Barraba for the test (unseen) time period.  The Error (Predicted - Measured Value)
is shown in the right-hand graph.
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Figure 5.10
CFG-GP Modelled Runoff at Barraba for the test (unseen) time period.  The Error (Predicted - Measured Value) is
shown in the right-hand graph.

 It is worth noting that Equation 5.6 uses the current days rainfall (r0), and the average
of the last 10 days rainfall (av10).  Additionally, Equation 5.6 has the nonlinear term
(exp(/(0.251564,av10)), which is a function of av10.  A comparison of equations 5.4
and 5.6 shows that the two catchments have been modelled in very different ways.  The
Welsh catchment has been modelled using long term averages in a linear combination,
whereas the Australian catchment has been modelled using short average times and the
current day in a nonlinear fashion. This would suggest that the underlying processes that
are driving the water movement throughout both catchments are quite different.
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Figure 5.11
CFG-GP Modelled Runoff after using 1000 days of training data, applied to the previous 3 months test (unseen)
time period. The Error (Predicted - Measured Value) is shown in the right-hand graph.

 When an attempt was made to calibrate over different consecutive seasons for the
Barraba data, the IHACRES model was not able to find coeff icients to suit all seasons,
and therefore could not converge.  This accounts for the short calibration and simulation
periods of only 4 months that has been used for testing these models.  However, the
CFG-GP approach, because it makes no assumption about underlying relationships, was
able to be calibrated over successive seasons and therefore use more information about
the catchment response to rainfall .  When CFG-GP was calibrated using a period of
1000 days the resultant model achieved significantly better results on the original
simulation data set (RMSE = 0.0237).  Additionally, the predicted total discharge
changed to 157 cumecs (16% error), which is superior to either previous solution.  The
response of this modelled streamflow, and the associated errors, are shown in Figure
5.11.  The evolved equation was:

                                             +(exp(+(/(exp(-4.874963),-0.796608),
                                        /(/(r0,-1.864706),+(-3.018028,-4.418388)            Equation 5.7

                                                 ))),*(-3.240420,exp(-1.181253)))

which may be simplified to give

                                               exp(0.0096+ (r0/13.35)) - 0.994                    Equation 5.8

The interesting comparison between Equations 5.6 and 5.8 is that using the larger dataset
for calibration (training) resulted in a solution that was a nonlinear function solely of
(r0), which represents the current days measured rainfall .  No average rainfall value was



found to be useful.  This implies that the Barrada catchment has a very quick response
between rainfall and runoff, and no significant seasonal signal.

5.7 Discussion

The previous examples of applying CFG-GP to modelli ng rainfall -runoff has been
encouraging.  The use of a simple, non-linear mathematical grammar has allowed the
system to produce equations that capture some measure of the underlying response of the
catchment.  The linear, strongly seasonal model evolved for the Teifi catchment has a
natural interpretation with the underlying climatic and topographic characteristics of this
catchment.  The non-linear, weakly seasonal model evolved for the Namoi catchment also
corresponds with the perceived behaviour of this Australian landscape.
 The grammar, Gflow, had only a weak bias towards forming certain types of mathematical
expressions.  Future work will i nvolve extending the set of useful mathematical functions
(power and logarithmic functions are often used in natural system modelli ng) and
exploring other language forms which may have more direct interpretation with natural
processes.

5.8 Conclusion

In the present work we have compared the results obtained with a deterministic lumped
parameter model, based on the unit hydrograph approach, with those obtained using a
stochastic machine learning model.
 For the Welsh catchment the results between the two models were similar.  Since rainfall
and runoff were highly correlated the deterministic assumption underlying the IHACRES
model was satisfied.  Therefore IHACRES could achieve a satisfactory correlation
between calibration and simulation data.  It is also interesting to note that for this
catchment the runoff ratio was approximately 70% which suggests that a relationship
does indeed exist between the rainfall and runoff.  The CFG-GP approach does not
require any causal relationships but achieved similar results.
 The behaviour of the studied Australian catchment was found to be quite different from
the Welsh catchment.  The runoff ratio was very low (7%) and hence the a priori
assumptions of IHACRES (and other deterministic models) were a poor representation of
the real world.  This was demonstrated by the inabilit y of  IHACRES to use more than
one seasons data for calibration purposes and only able to use data from a high rainfall
period.  Since the CFG-GP approach did not make any assumptions about the underlying
physical processes, calibration periods over more than one season could be used.  These



led to significantly improved generali sations for the modelled behaviour of the
catchment.
 In summary, either approach worked satisfactoril y when rainfall and runoff were
correlated.  However, when this correlation was poor, the CFG-GP had some advantages
because it did not assume any underlying relationships.  In these circumstances the use of
evolutionary algorithms warrants further consideration.
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