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10:00–11:00 Bill Langdon

• Tutorial based on Foundations of Genetic Programming

Slides for whole book available via ftp://cs.ucl.ac.uk/genetic/

papers/fogp slides/

• Will assume familiarity with Chapter 2 “Fitness Landscapes”.

Chapter 2 can be down loaded from http://www.cs.ucl.ac.

uk/staff/W.Langdon/FOGP/intro pic/landscape.html.

• 7. and 8. The genetic programming search space.

Plus new material on rates of convergence and limits.

• 11. Bloat: as genetic programming convergence; evolution

of tree shapes; theory leads to prediction size<O(time2).

Experimental test.

• Conclusions

WWW links and references.
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Scaling of Program Fitness Spaces

• Genetic Programming stochastic search for programs

• What is known about the space of all programs

• Above threshold, proportion of functions of each type inde-
pendent of length

• Experimental evidence, tree based GP

• Proof linear, e.g. machine code GP

• summary tree based GP (slide 30)

• So what?
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Number of programs v. size, various problems
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Distribution of Binary Trees by size and height
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Distribution of Binary Trees by size and height
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Proportion of NAND trees:

2 input logic function
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Fitness Sextic Polynomial
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Artificial Ant
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Linear Model of Computer
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• Input and output registers part of memory.

• Memory initialy zero (except input register).

• Linear GP program is a sequence of instructions.

• CPU fetches operands from memory.

• Performs operation.

• Writes answer into memory (overwriting previous contents).

• Programs stops after l instructions.

• Final answer in output register.
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Why Interest in Random Programs?

• Consider all programs, of a chosen length.

• Create a large number of random programs, measure their

properties

• We are sampling the search space of all possible programs

• Bigger sample ; better estimate of actual

• We are interested in Markov processes because analysis (rather

than experiment) can give provable general results a) in the

limit and b) the rate at which practical systems approach this

limit.
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Why are Random Programs Markov?

• A Markov process only depends on current state

• When a program is check pointed, its state is saved

It can be restarted, without ill effect, if its state (i.e. content
of memory) is restored and it restarts from the same point.

I.e. what happens later only depends on current memory

• At each time step t a Markov process is in a state, i

Randomly chose another state j for the next time step, t+1.

Process is Markov if probabilities associated with each transi-
tion do not change with time, only depend on current state.

Matrix M = probability of transition from state i to j.

M does not change with time.

• Executing a random program is a Markov process, whose
state is the contents of the computer’s memory.
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Proof Linear: Model of Computer

• State of computer given by contents of memory

• All memory, registers but exclude PC

• N memory bits ⇒ 2N states

• Execution ≡ state → next state

• In general state 6= next state but allow state = next state

• Computer designed so all states accessible

• Symmetric instruction set, state ⇀↽ next state
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Proof Linear: Execution of computer program

• state0 given by inputs

• Program = sequence of instructions, change state

• program l states long

• terminates at state statel−1

• program itself need not be linear

branches, loops, function calls OK provided executes random

instructions
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Instructions as Transformation Matrices

• |probability vector| = 2n v = 0,0, . . . ,1,0, . . . ,0︸ ︷︷ ︸
2n elements

• At any time t in one state i⇒ vt
i = 1 and vt

6 i = 0

• Each instruction = 2n × 2n matrix

• vt+1 = vtN

• Every Nij = 0 or 1, N is stochastic∗

∗Row stochastic matrices have the property that each of their elements are
not negative and the elements in each row add up to one. “Stochastic”
does not mean they are random!
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All Programs

• All possible programs of l

average vector u = Mean of all v

ut+1 = utM where M is average instruction matrix

• u is Markov, M is stochastic

At least one Mii 6= 0

period of state i = 1 i.e. it will be aperiodic [Feller, 1970]

Greatest common divisor (g.c.d) of all states = 1

• All states can be reached ⇒M irreducible

• Irreducible ergodic Markov chain ⇒ limt→∞ ut = u∞

independent of the starting state (i.e. the program’s inputs)
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An Illustrative Example

• Two Boolean registers R0 and R1

• Each initialy loaded with an input

• Program’s answer is given by R0
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An Illustrative Example: Instruction Set

• There are 22 = 4 states (R1RO = 00,01,10,11)

• There are eight instructions

Eight transformation (4× 4) matrices

R0 ← AND
1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

R1 ← AND
1 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1

R0 ← NAND
0 1 0 0
0 1 0 0
0 0 0 1
0 0 1 0

R1 ← NAND
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0

R0 ← OR
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1

R1 ← OR
1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1

R0 ← NOR
0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 0

R1 ← NOR
0 0 1 0
0 1 0 0
1 0 0 0
0 1 0 0
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• Example R0 ← AND

R1 = 1, R0 = 0 u = (0 0 1 0)

v = uM = (0 0 1 0)×


1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 = (0 0 1 0)

R1 = 1, R0 = 0

I.e. AND(0,1) = 0, so R0 is set to 0 while R1 is unchanged

• If we use each of the instructions with equal probability the

Markov transition matrix is the average of all 8, i.e.

M = 1/8


4 2 2 0
2 4 0 2
2 0 4 2
0 2 2 4
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An Illustrative Example: Limiting Probabilities

• The limiting distribution u∞ = 1/4(1,1,1,1) is given by the

eigenvector corresponding the largest eigenvalue (which al-

ways has the value 1).

The eigenvalues λ and corresponding eigenvectors E of M

are

λ00=1/2( 0 −1 1 0 )
λ01=1/2(−1 0 0 1 )
λ10=1 ( 1 1 1 1 )
λ11=0 ( 1 −1 −1 1 )

Note since M is symmetric the other eigenvalues are also

real.
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Rate of Convergence and the Threshold

• The Rate of convergence is dominated by the second largest

(absolute magnitude) eigenvector of M , λ2

• The smaller λ2 is the faster the actual distribution of func-

tions converges to the limiting distribution

• I.e. the smaller is the threshold

• Threshold size ≈ −1/ log |λ2|

Convergence rate depends crucially on type of computer and

size of its memory [Langdon, 2002a].
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Extend to Functions

We have proved distribution of outputs tends to limit.

Formally need to extend this to the distribution of functions.

There is a limiting distribution of program functionality.

Uniform distribution of outputs 6⇒ uniform distribution of func-

tions.
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Functions Example

One Boolean register. (N = 1 so 2N2N

= 4 possible functions).

Suppose our machine has 4 instructions:
CLEAR, NOP, TOGGLE, SET.

Two outputs (0 and 1) both equally likely.

CLEAR
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

NOP
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

TOGGLE
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

SET
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

M

1/4


2 0 0 2
1 1 1 1
1 1 1 1
2 0 0 2


The limiting distribution (eigenvector with eigenvalue=1) of the
functions is

1/2 (1 0 0 1).

I.e. 50% CLEAR and 50% SET (not uniform).
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What is the Limiting Distribution?

The limit depends upon the computer type. If we restrict our-
selves, the eigenvalues and eigenvectors of the Markov matrices
may already be known or maybe we can discover them.

1. Cyclic. Increment, decrement and NOP. Reversible but not
universal [Langdon, 2002a; Langdon, 2003a].

2. Bit flip. Flip biti and NOP. Reversible but not universal
[Langdon, 2002a; Langdon, 2003a].

3. Any non reversible . [Langdon, 2002a; 2002b; 2003a].

4. Any reversible [Langdon, 2003b].

5. CCNOT (Toffoli gate). Reversible and universal [Langdon,
2003b].

6. The “average” computer [Langdon, 2002a; 2002b; 2003a].

7. AND, NAND, OR, NOR. Not reversible but universal [Lang-
don, 2002a; 2002b; 2003a].
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Program Outputs Limiting Distribution

In general the distribution of outputs of any computer will con-

verge to a limiting distribution but programs may need to be

exponentially long.

The cyclic computer shows not only is the upper bound expo-

nential but that it can be reasonably tight in that exponentially

long programs can be required for the distribution to be close to

the limit. l > 0.8 3
4π22

2N

However bit flip, average and four Boolean computers show in

some cases the output distribution of much smaller programs is

close to the limit.

l ≤ 1
4(N + 1)(log(m) + 4) bitflip

l ≤ (15 + 2.3 m)/log I average

l ≤ 1
2N(log(m) + 4) four Boolean.
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Non Reversible Programs –

Limiting Fitness Distribution is Zero

Linear systems, where the inputs are not write protected, on

average loose information. This means in the limit the fraction

of programs implementing interesting functions goes to zero.

I.e. almost all non reversible linear programs return one of 2m

constants.

In general programs need to be exponentially long for fitness

distributions to converge. In cyclic computers the upper bound

is tight but in some cases (e.g. AND NAND OR NOR) programs

can be much smaller and still be close to the limiting distribution.
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Reversible Program –

Limiting Fitness Distribution is Gaussian

In the limit of long programs, with large reversible computers

both every output and every possible (i.e. reversible) function

are equally likely.

With a Hamming distance fitness function, fitness follows a Nor-

mal (Gaussian) distribution. This means almost all programs

have near average fitness.

And the fraction of solutions is exponentially small (but bigger

than zero).

CCNOT gates show reversible programs need not be desperately

big before the their fitnesses is Normally distributed [Langdon,

2003b].
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Distribution of Reversible Program
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Convergence of Effect of Mutation

In general the effect on the outputs of a single point mutation

falls at least as quickly as l−1 but the bound on the convergence

threshold length is exponential in the number of fitness tests
[Langdon, 2003a].

However in two cases (cyclic and bit flip), if we consider changes

in fitness, the impact of mutation on fitness is independent of

program size. I.e. convergence is instantaneous rather than re-

quiring exponentially long programs.

The fitness impact of point mutation on the “average” computer

falls as l−1 but the bound on the convergence threshold length

is exponential in the size of the computer.

The cyclic and bit flip computers are simple enough to allow

analysis of the time to solution (quadratic or faster).
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Summary: Big Random Tree Programs

• Above a threshold, distribution of performance is indepen-

dent of tree size.

• Most trees are asymmetric. The chance of finding a leaf near

the root is ≈ 50%.

• Even if instruction set is symmetric, some functions are more

likely than others.

• Solutions to problems where the function set requires them

to be bushy will be rare.

• The number of solutions grows exponentially with size.
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So what?

• Generally random instructions “lose information”.
Unless inputs are protected, almost all long programs are
constants.
Write protecting inputs linear GP like tree GP.

• “Random Trees” a few inputs near root. May be good for
Data Mining, where some inputs are more important.
Other cases each input is equally important. Need bushy
trees. E.g. parity more common in full trees.

• Depth limit promotes near full trees rather than random
Size limit promotes random trees

• Density of solutions indication problem difficulty

• No point searching above threshold?

• Predict where threshold is? Ad-hoc or theoretical.
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Conclusions

• Size and shape of search space

• Experimental evidence, tree based GP

• Proof linear

• Proof tree (in FoGP book)

• Number of solutions grows exponentially with size
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Bloat

• Bloat as convergence in GP

• Evolution of Size and Shape

• Prediction that size O(generations2) or less (binary trees)
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Convergence

Genetic Algorithms Genetic Programming

Geneotype

2. Crossover and Mutation

1. Fitness Selection

Phenotype

3. Converges after many generation

Mutation and selection balanced

Geneotype

2. Crossover and Mutation

1. Fitness Selection

Genotype continues to change

Phenotype converged

Phenotype

3. After many generations

W. B. Langdon 34



Fitness Selection Acts on Phenotype

GeneotypePhenotype GeneotypePhenotype

GA 1-to-1 mapping genotype-

to-phenotype

GP 1-to-many mapping

Spread of phenotypes (unequally) reduced

1:1 mapping, identical

reduction in genotypes

Complex mapping, uneven

reduction in genotypes
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Crossover and Mutation Spread the Genotype

GeneotypePhenotype GeneotypePhenotype

fixed mapping, spread of

phenotype

Most genotype slightly

changed,
map to (nearly) original ellipse.
Some more diverse, new

(small) ellipses,
map to new phenotype ellipses.
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Genetic Programming Phenotype Convergence

Genotype continues to change

Phenotype converged
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GP Convergence Genotype Continue to Change

Some GP genotypes resist crossover and mutation more and

“breed true”. I.e. more of their offspring have the same pheno-

type. If it is fit, these genotypes quickly dominates.

Population convergences to contain just the descendents of one

phenotype-genotype mapping (a bit like GA).

Genotype cluster does not stabilise but continues to evolve from

a single point. The population’s ancestor, i.e. the individual

program where most of its genetic material came from.

Since each fit child’s genotype tends to be bigger than its parents

there is a progressive increase in size, which we know as bloat.
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What is Bloat

• Tendency for programs to increase in size without a corre-

sponding increase in fitness

• In the absence of counter measures always(?) happens

• Trees and linear

• Often size decrease in first 1..3 generations

• Steady increase (max, average, standard deviation) after

≈ 10 generations

• No limit to increase??

W. B. Langdon 39



Experimental Evidence
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Convergence of Phenotype

Sextic Polynomial, Phenotype of Best of Generation, Run 100
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Plot of output of evolved program from a range of inputs (ex-

cludes training points)

Note similarity of behaviour (i.e. phenotype) of nearby genera-

tions
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Fitness Needed for Bloat

Expected change in frequency of a gene ∆q in the population

from one generation to the next = covariance of the gene’s fre-

quency in the original population with the number of offspring z

produced by individuals in that population, divided by the average

number of children z

∆q = Cov(z,q)
z

[Price, 1970]

Holds if genetic operations are random with respect to gene.

Applies to program size in GP with crossover and mutation op-

erators which have no size bias [Langdon et al. , 1999]

With tournaments t, fitness is given by ranking r in the popula-

tion (of size p). If p� 1 [Price, 1970] can be approximated:

E∆size ≈ t
zCov((r/p)t−1, size) [Langdon and Poli, 1998a]
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Covariance of Size and Fitness
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Linear Increase in Depth (Standard Crossover)
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Evolution of Shape
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Sub-quadratic Growth in Binary Trees

• Predicted limt→∞ program size = O(t2)

• Measured bloat O(t1.2−1.5) t ≤ 50 generations

• Test O(t2) 600 generations, size 106

• Theory

• Experiments

• Conclusions
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Theory

• If program size� problem and fitness level dependent thresh-

old, distribution of fitness does not change with length

• Above threshold, number of programs with fitness f of size

l is distributed ∝ total number of programs of size l

• Total number of programs grows exponentially with size

• Most programs are near mean depth = 2
√

π(internal nodes)

(ignoring terms O(N1/4) [Flajolet and Oldyzko, 1982], cf.

slide 45
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Rate of Bloat

• In a variety of problems linear increase in mean depth, cf. slide 44

and [Daida, 2003; Daida et al., 2005].

∆depth = 0.5 . . .2.2 per generation

Variable between problems and individual runs

• If population remains near ridge, size can be predicted from

depth

– If limt→∞ depth ≈ 2
√

π bsize/2c

limt→∞ size = O(depth2) = O(gens2)

– Fitting a power law to ridge (50–500) yields

size = O(gens1.3)
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Experiments

• Hundreds of generations, size = million on rapidly bloating

populations

– symbolic regression quartic polynomial [Koza, 1992]).

W. B. Langdon 49



Results

• 9 of 10 bloat (1 trapped at local optima in generation 7)

At least 400 generations

3 runs reach 1,000,000 limit before 600 generations

In all runs most new generations do not find better fitness
I.e. changes in size and shape are due to bloat

• Each population close to the ridge and moves up it,

• Depth varies widely between runs. However mean of all ten
runs increases ≈ 2.4 levels per generation

• The size power law varies widely. On average starts near 1.0
(generations 12–50) and steadily rises to 1.9 (12–400).
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Evolution of Tree Shape: Quartic
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Evolution Power Law Coefficient: Quartic
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Discussion

• Ridge divides search space in half. In fact the region searched
is much less than 50%. Cf. also [Daida, 2003].

• Can predict when program size or depth restrictions will be
effective

In practise limits are quickly reached

but may be beneficial in some problems

Even Parity v. Santa Fe artificial ant

• Other genetic operators and non-tree GP have different bloat
behaviour

• Benchmarks here simple but subtree crossover ineffective on
programs of 106

Many smaller trees? Different genetic operators?
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Bloat Conclusions

• Bloat explained as evolution towards popular tree shapes
Subtree crossover leads to growing ≈ 1 level per generation

• Predict average evolution of size, depth and shape

Continuous limg→∞mean size = O(generations2.0)
Discrete mean size ≤ O(generations2.0)

(Wide variation in population and between runs)

New type of GP fitness convergence in discrete case

Memory O(gens1.2−2.0) or ≤ O(gens) (DAGs)
Run time O(gens2.2−3.0) or = O(gens2.0) (DAG caches)

• Understanding bloat provides insights into GP dynamics
Understand GP biases ; new operators, better biases

• GP theory developed, tested, Works! (in part)
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Conclusions

• GP as search in the space of all possible programs. Big space!

For both tree (proof in FoGP book) and linear GP, space
converges (in practise rapidly) with increase in program size.

• Most trees are randomly (fractal) shape; not short and bushy
full trees. So asymmetric “data-mining” functions more com-
mon than symmetric (parity like).

Many trees have fitness > 0. Trees are like linear systems
which write protect their inputs.

• Most unprotected irreversible linear programs are useless.

Fitness of reversible linear programs is Gaussian.

Number of solutions grows exponentially with size.

GP is not random search!
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• Bloat

We considered bloat as the way in which GP evolution con-

verges. Note phenotype shows convergence, the geneotype

does not.

Bloat is so fast that common size and depth restrictions have

an impact in almost all cases

Sub-quadratic growth predicted and tested

See gp-bibliography.bib for many other papers on other as-

pects of bloat
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Links

Foundations of Genetic Programming covers many other topics

Slides for whole book available via ftp://cs.ucl.ac.uk/genetic/

papers/fogp slides/ Chapter 2. on Fitness Landscapes and Glos-

sary are online.

GP C++ code cs.ucl.ac.uk/genetic/gp-code/. Also ntrees.cc

for tree counting, uniform random tree sampling rand tree.cc

and 3916 solutions to Santa Fe ant trail problem.
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http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/
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