
Controlled
Redundancy
Avoiding Test Suite Wear-Out

Abstract
It is advantageous for a test suite to have high controlled redundancy; that is,
to contain many disjoint minimised subsets, each of which satisfies testing
criteria with different test inputs. A highly latent test suite denotes a rich source
of test cases from which to select. High controlled redundancy can help to
avoid ‘test suite wear out’, in which iterative testing increasingly applies the
same test cases to the same code, thereby revealing less and less with each
successive iteration. This paper introduces a theory of controlled redundancy.
It empirically explores the relationship between controlled redundancy and
fault detection ability and introduces a search-based algorithm for improving
controlled redundancy.

1. Introduction
Test suite reduction techniques aim to reduce the size of large test suites by
removing the redundant test cases. However, since testing can only show the
existence of faults instead the lack of them, redundancy in testing should be
encouraged rather than discouraged, if the cost remains manageable [1, 2].

However, if the redundancy of a test suite is simply defined as the amount
of unnecessary test cases, increasing redundancy becomes trivial and, more
importantly, pointless. For example, suppose there are two separate test suites
for a single program, S1 and S2. Both S1 and S2 contain 100 test cases, and both
test suites are redundant in a sense that a subset (gray area) of each achieves
the given test objective, which is measured as Q.

If we focus on the redundant parts, two test suites show different quality.
The redundant test cases in S1 can only achieve one third of the given test
objectives, whereas those in S2 are capable of achieving it for the second
time, and another one third of the test objectives. Between these redundant
test suites, the redundancy in S2 is more useful. We call this quality controlled
redundancy; redundancy in a test suite becomes more useful if the redundant
part is guided to achieve the test objective independently. Higher controlled
redundancy means a good pool of test cases that can achieve the given test
objective in various ways.

2. Definition
Intuitively, controlled redundancy measure is defined as the maximum number
of times that a group of disjoint subsets of a test suite can achieve the test
objectives. More formally, let T be a test suite with n test cases, t1,..., tn. Let
R be the set of m test requirements, r1,..., rm. Let fR : 2T →{0, 1} be a function
that determines whether a subset of T satisfies the set of test requirements in
R; it returns 1 if the subset satisfies R, 0 otherwise. Let P be a partitioning of T,
{P1,..., Pk }, such that any two members of P are disjoint and ∪Pi = T. Finally,
let S be the set of all subsets of T that satisfy R respectively: S = {T’ | T’ ∈
2T ∧ fR(T’) = 1}. Then the controlled redundancy ρ of T with respect to test
requirements R and a partitioning P can be defined as following.

3. Measurement
We set the test objective to statement coverage and measure controlled
redundancy by repeatedly applying test suite reduction algorithm [3]. Each
iteration of the algorithm takes the remaining test cases and reduces it to the
next partition. For each iteration, the statement coverage achieved by each
partition is measured.

0 20 40 60 80

0
20

40
60

80
10

0

Times that reduction technique has been applied

A
ve

ra
ge

 m
ax

im
um

 s
ta

te
m

en
t c

ov
er

ag
e(

%
)

●
● ●

● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ●

●

●

●

●

●

●

flex
grep
sed
space
gzip
printtokens

Figure 2. Greedy test case reduction technique is repeatedly applied to test suites of
programs in Software Infrastructure Repository (SIR) [4]. Notice that only 4 subsets are
possible for the program space and that coverage drops dramatically for all test suites
considered. Test suites that were generated just to meet the coverage criteria do not provide
much redundancy. Test suites generated by utilising program specifications show more
redundancy.

References

1. G. Rothermel, M. J. Harrold, J. Ostrin,
and C. Hong. An empirical study of the
effects of minimization on the fault
detection capabilities of test suites.
In ICSM, pages 34–43, 1998.

2. G. Rothermel, M. Harrold, J. Ronne,
and C. Hong. Empirical studies of test
suite reduction. Journal of Software
Testing, Verification, and Reliability,
4(2), December 2002.

3. M. J. Harrold, R. Gupta, and M. L.
Soffa. A methodology for controlling the
size of a test suite. ACM Trans. Softw.
Eng. Methodol., 2(3):270–285, 1993.

4. H. Do, S. G. Elbaum, and
G. Rothermel. Supporting controlled
experimentation with testing
techniques: An infrastructure and its
potential impact. Empirical Software
Engineering: An International Journal,
10(4):405–435, 2005.

5. S. Yoo and M. Harman. Test data
augmentation : generating new test data
from existing test data. Technical Report
TR-08-04, King’s College London, 2008.

 Test suites for space and printtokens are generated so that no more
test cases were added once the full coverage is achieved. Naturally, they have
little redundancy. Test suites for other programs are generated from their
specifications, resulting in higher redundancy in structural coverage.

4. Enhancement
In order to enhance the controlled redundancy of a test suite, the test suite
must be augmented with additional test cases that help the achievement of
test objectives. We use a search-based test data augmentation technique
in order to generate these additional test cases with low cost [5]. Random
test data generation has been used to produce test suites with uncontrolled
redundancy, using the same amount of computational resource as the search-
based approach. The effectiveness of the augmented test suites is evaluated by
measuring structural coverage and mutation score.

Shin Yoo
King’s College London
Strand, London WC2R 2LS, UK
Shin.Yoo@kcl.ac.uk

ISSTA 2008
International Symposium
on Software Testing and Analysis
Seattle, WA, July 20-24 2008

Mark Harman
King’s College London
Strand, London WC2R 2LS, UK
Mark.Harman@kcl.ac.uk

Shmuel Ur
IBM, Haifa Research Lab
Haifa University Campus
Haifa, 31905, Israel
Ur@il.ibm.com

Results in Figure 3 show that after enhancing controlled redundancy, test
suites can maintain over 80% coverage for several number of partitions.
The lack of full coverage observed in triangle1 and triangle2 is due
to the specific behaviour of the test data augmentation algorithm used in the
experiment. More recent version of the same algorithm now can achieve 100%
coverage for these programs.

Enhanced controlled redundancy has a positive impact on mutation score.
For all programs except triangle2, the test suites with enhanced controlled
redundancy show increase in mutation score ranging from 3 to 30. For
triangle2, the lack of full coverage had a negative impact on mutation score.

5. Conclusions
Redundancy can be measured and controlled with respect to specific test
objectives. If a test suite is redundant with respect to a specific test objective,
it is possible to achieve the test objective in more than one way, which can
increase the quality of testing. When a given test suite is not redundant enough,
test data augmentation can generate additional test data from the existing ones
with less cost than test data generation.

ρ = |S ∩ P |

Q
20 Test Cases

S1

Q / 3
80 Test Cases

Q
20 Test Cases

Q
40 Test Cases

S2

Q / 3
40 Test Cases

Figure 1. Test suite S1 and S2 contains 100 test cases respectively. Both are redundant; it
requires only 20 test cases (gray area) to achieve the test objectives, which is measured by
Q. However, the redundant parts of two test suites show different quality. Redundant test
cases in S1 only achieves one third of the test objectives, whereas those in S2 are capable of
achieving the test objectives once again, and then another one third achievement. Between
these two redundant test suites, S2 has better redundancy.

Figure 3. Comparison between the branch coverage from the original test suites and the
augmented test suites (Hill Climbing). After applying test data augmentation, coverage
drops much slower (triangle1, triangle2) or remains at 100% (remainder,
complexbranch).

●

●●●●●●●●●●●●●●●●●●
●
●
●
●

●
●●

●
●
●
●
●●●●●●

●

●●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Times that reduction technique has been applied

Av
er

ag
e

m
ax

im
um

 b
ra

nc
h

co
ve

ra
ge

(%
)

Triangle1

● Hill Climbing
Random
Original

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●
●●

●

●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Times that reduction technique has been applied

Av
er

ag
e

m
ax

im
um

 b
ra

nc
h

co
ve

ra
ge

(%
)

Remainder

● Hill Climbing
Random
Original

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●

●
●●●

●●●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Times that reduction technique has been applied

Av
er

ag
e

m
ax

im
um

 b
ra

nc
h

co
ve

ra
ge

(%
)

ComplexBranch

● Hill Climbing
Random
Original

●

●●●●●●●●●●●●●●●
●
●

●●●
●●

●

●

●

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Times that reduction technique has been applied

Av
er

ag
e

m
ax

im
um

 b
ra

nc
h

co
ve

ra
ge

(%
)

Triangle2

● Hill Climbing
Random
Original

