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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 
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Abstract

Spectrum Based Fault Localisation (SBFL) techniques rely on risk assessment formulæ to
convert program execution spectrum into risk evaluation values, which are in turn used to rank
program statements according to their relative suspiciousness with respect to the observed
failure. Recent work proved equivalence and hierarchy between different formulæ, identifying
a few groups of maximal formulæ, i.e., formulæ that do not dominate each other. The holy
grail in the field has been to come up with the greatest formula, that is, the one that dominates
all known formulæ. This paper proves that such a formula does not exist.
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1 Introduction

Spectrum Based Fault Localisation (SBFL) is an automated debugging aid technique that assigns risk eval-
uation values to program statements. The values are calculated from the spectrum data, obtained during test
execution. The most widely adopted form of the spectrum data is in the form of a tuple σ = (ep, ef , np, nf ),
collected per program statement: ep and ef represent the number of tests that execute the statement and
pass and fail respectively, while np and nf represent the number of tests that do not execute the statement
and pass and fail respectively. A risk assessment formula R is a formula that converts the spectrum data
into the risk evaluation value, based on which program statements are either ranked for humans [14] or
assigned probabilities of being mutated for the purpose of automated program repair [16].

A large part of the literature focuses on designing and empirically evaluation different formulæ [1, 3, 9,
17]. More recently, Genetic Programming (GP) has been applied to automatically evolve risk evaluation
formulæ [20].

Empirical evaluation of formulæ using known faults has been the de facto standard way of comparing
performance of different formulæ. However, Recent work showed that theoretical comparison of formulæ
is possible [11] and proved equivalence and hierarchy between formulæ groups [18].

A formula R1 is better than another formula R2 when it can be proved that R1 always ranks the faulty
statement higher than or equal to R2, regardless of the program, the test suite, and the fault. The proved
hierarchy between formulæ can be summarised as a forest of directed trees [18]. There are multiple hierar-
chical trees, at the tops of which exist non-dominated, maximal groups. Formulæ from different maximal
groups do not dominate each other. That is, R1 outperforms R2 for certain combinations of program, test
suites, and faults, whereas R2 outperforms R1 for others.

Subsequently, the formulæ evolved by GP has been proved to be equivalent to the best known formulæ
designed by human [19].

While the theoretical framework provided an alternative to empirical evaluation of different formulæ, there
were limitations. First, the hierarchy was only proved within the set of 50 studied formulæ, and not the
entire set of all possible formulæ. Second, it did not provide any insights into the existence of the greatest
formula, i.e. one that would outperform all other formulæ.

This paper proves that the greatest formula, i.e. one that is better than all other formulæ, does not exists.
The paper also proposes a novel visualisation technique that can present SBFL formulæ in an intuitive way.

2 Background

2.1 Spectrum-Based Fault Localisation

2.1.1 Basic concept

Spectrum-Based Fault Localisation (SBFL) refers to a group of techniques that use program spectra to find
the location of the fault in the given program that causes certain tests to fail. Program spectra can be best
described as a summary of a set of program executions [5]. For the SBFL techniques, the most widely used
type of program spectra is the combination of code coverage and the test results, on which this paper focuses
too. Suppose SUT has n statements, and the test suite contains m test cases: the program spectrum for
SBFL can be described as a matrix of n rows and 4 columns. Each row corresponds to individual statement
of SUT, and contains the tuple (ef , ep, nf , np). Members ef and ep represent the number of times the
corresponding program statement has been executed by tests, with fail and pass as a result respectively.
Similarly, nf and np represent the number of times the corresponding program statement has not been
executed by tests, with fail and pass as a result respectively1. SBFL techniques subsequently use a risk

1The sum of ef , ep, nf , and np should be m.
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evaluation formula, which is a formula based on the four counters, to predict the relative risk of each
statement containing the fault. Compared to the case in which the developer investigates the structural
elements in the order from s1 to s9, the ranking according to Tarantula produces 66.66% reduction in
debugging effort (i.e. the developer will encounter s7 6 elements earlier).

Structural Test Test Test Spectrum Tarantula Rank

Elements t1 t2 t3 ef ep nf np

s1 • 0 1 2 0 0.00 9

s2 • 0 1 2 0 0.00 9

s3 • 0 1 2 0 0.00 9

s4 • 0 1 2 0 0.00 9

s5 • 0 1 2 0 0.00 9

s6 • • 1 1 1 0 0.33 4

s7 (faulty) • • 2 0 0 1 1.00 1

s8 • • 1 1 1 0 0.33 4

s9 • • • 2 1 0 0 0.50 2

Result P F F

Table 1: Motivating Example: the faulty statement s7 achieves the 1st place when ranked according to the
Tarantula risk evaluation formula in Equation 1.

For example, Table 1 illustrates how the Tarantula metric [7], defined in Equation 1, can be applied to a
small exemplar program spectrum. Suppose the structural element s7 contains the fault. The coverage
relationship between structural elements and the given test suite T = {t1, t2, t3} is given in the second
column, with the corresponding test results. The Spectrum column contains the program spectrum data
for T ; the column Tarantula contains the resulting risk evaluation metric values. Finally, the column Rank
contains the ranking of structural elements according to the Tarantula metric values. The faulty statement,
s7, is assigned with the highest Tarantula metric value, and therefore ends up in the first place.

Tarantula =

ef
ef+nf

ep
ep+np

+
ef

ef+nf

(1)

2.1.2 Risk evaluation formula

Based on Section 2.1.1, a SBFL risk evaluation formula is a function from program spectrum to suspicious-
ness score, such as Tarantula in Equation 1. More formally, it is defined as follow:

Definition 2.1. A risk evaluation formula R is a member of set R = {R|R : I × I × I × I → Real}
(where I denotes the set of non-negative integers and Real denotes the set of real numbers), which maps
Ai =< eif , e

i
p, n

i
f , n

i
p > of each statement si to its risk value.

These formulæare either designed by human [9, 11] or by Genetic Programming [20]. Table 2 contains
several of the most widely studied formulæ. Interestingly, Jaccard [6] and Ochiai [12] were first studied in
Botany and Zoology respectively but have been subsequently studied in the context of fault localisation [2,
11]. Tarantula was originally developed as a visualisation method [8, 9] but also increasingly considered
as an SBFL risk evaluation formula independent from visualisation [7,13]. AMPLE [4] and three different
versions of Wong metric [17] have been introduced specifically for fault localisation. Lately, Genetic
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Programming (GP) has been applied to SBFL: instead of being manually designed, risk evaluation formulæ
were evolved by GP from given fault datasets [20].

Table 2: SBFL formulæ

Name Formula expression

ER′1

Naish1


−1 if ef < F

np if ef = F

Naish2 ef − ep
ep+np+1

GP13 ef (1 + 1
2ep+ef

)

ER5

Wong1 ef

Russel & Rao ef
ef+nf+ep+np

Binary


0 if ef < F

1 if ef = F

GP02 2(ef +
√
np) +

√
ep

GP03
√
|e2f −

√
ep|

GP19 ef
√
|ep − ef + nf − np|

Naish1 and Naish2 metrics are recent additions to SBFL techniques that showed an interesting research
direction: these metrics are designed with accompanying proof that shows they produce optimal ranking,
as long as the fault is located in a specific program structure (two consecutive If-Then-Else blocks,
called ITE2) [11]. It was the first attempt at theoretical analysis of SBFL formulæ. Subsequently, Xie et
al. [18] proved the hierarchy between formulæ, showing that there exist multiple hierarchy trees. Some
formulæ were proven to be equivalent to others (i.e. belong to the same node in the hierarchy tree) with
respect to the ranking of the faulty statement. The formulæ at the top are called maximal because they
dominated others (i.e. always produce higher ranking for the faulty stataement than the other) in the tree.
However, no globally maximal formula is known; all the known maximals did not dominate each other.
Some of the GP evolved formulæ [20] were proven to be maximal, but not globally maximal.

2.2 Theoretical framework

With the development of more and more risk evaluation formulæ, people began to investigate their perfor-
mance. The most commonly adopted effectiveness measurement is referred to as Expense metric, which
is the percentage of code that needs to be examined before the faulty statement is identified [20]. A lower
Expense of formula R indicates a better performance. Recently a theoretical framework [18] has been
developed to compare the performances of different formulæ against any combinations of programs, faulty
statements, and consistent tie-breaking schemes 2. The consistent tie-breaking scheme, and the relation-
ships between different formulæ, are defined as follows:

Definition 2.2 (Consistent tie-breaking scheme). Given any two sets of statements S1 and S2, which con-
tain elements having the same risk values. A tie-breaking scheme returns the ordered statement listsO1 and

2In practice, a tie-breaking scheme may be required to determine the order of the statements with same risk values.
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O2 for S1 and S2, respectively. The tie-breaking scheme is said to be consistent, if all elements common
to S1 and S2 have the same relative order in both O1 and O2.

Let R1 and R2 be two risk evaluation formulæ in R, and E1 and E2 denote the Expenses with respect to
the same faulty statement for R1 and R2, respectively. We define two types of relations between R1 and
R2 as follows.
Definition 2.3 (Better). R1 is said to be better than R2 (denoted as R1 → R2) if, for any program, faulty
statement sf , test suite, and consistent tie-breaking scheme, E1 is less than or equal to E2.
Definition 2.4 (Equivalent). R1 and R2 are said to be equivalent (denoted as R1 ↔ R2), if, for any
program, faulty statement sf , test suite and consistent tie-breaking scheme, E1 is equal to E2.

It follows from the definition that R1 → R2 means R2 is not more effective than R1. As a reminder, if
both R1 → R2 and R2 → R1 hold, then it follows that R1 ↔ R2; if R1 → R2 holds but R2 → R1 does
not hold, R1 → R2 is said to be a strictly “better” relation.

In the theoretical framework, there are several assumptions, which are listed as follows:

1. A test oracle exists, that is, for any test case, the testing result of either fail or pass, can be decided.

2. We exclude two types of faults that SBFL is not designed for. The first type includes omission faults.
We assume that for all observed failures, the execution of a faulty statement sf is the cause. In other
words, a statement cannot cause a failure by not being executed. A more generalised statement would
be that SBFL techniques cannot localise omission faults (i.e. statements forgotten by the programmer,
such as a missing null check). The second type includes the non-deterministic faults. SBFL techniques
expect the same test input to produce the same program spectrum with every execution.

3. The fault is executed by the test suite. Being a type of dynamic analysis, SBFL techniques cannot
localise faults in statements that are not covered by the test suite.

4. For each fault that needs to be localised, the test suite contains at least one passing test case and one
failing test case.

As a reminder, our analysis only focuses on statements that are covered by the given test suite, since only
these statements are possible to be the faulty statement that triggers the observed failure. And thus the
statements that is never executed by any test case in the given test suite should be ignored or assigned
with the lowest risk values. Moreover, our analysis only consider programs with single fault. For readers
who are interested in the justifications, validity and impacts of the above assumptions, please refer to the
previous work [18].

In order to compare two risk evaluation formulæ in R under the above definitions of relations, the previous
work [18] have provided a theoretical framework, which divides all statements into three mutually exclusive
subsets, as follows.
Definition 2.5. Given a program with n statements PG =< s1, s2, ..., sn >, a test suite of m test cases
TS = {t1, t2, ..., tm}, and a risk evaluation formula R, which assigns a risk value to each program state-
ment. For each statement si, a spectrum vector σ(si) =< eif , e

i
p, n

i
f , n

i
p > can be constructed from TS,

and R(eif , e
i
p, n

i
f , n

i
p) is a risk evaluation formula that assigns a risk value to statement si. For any faulty

statement sf , it is possible to define the following three sets of statements:

SR
B = {si ∈ S|R(eif , e

i
p, n

i
f , n

i
p) > R(eff , e

f
p , n

f
f , n

f
p), 1 ≤ i ≤ n}

SR
F = {si ∈ S|R(eif , e

i
p, n

i
f , n

i
p) = R(eff , e

f
p , n

f
f , n

f
p), 1 ≤ i ≤ n}

SR
A = {si ∈ S|R(eif , e

i
p, n

i
f , n

i
p) < R(eff , e

f
p , n

f
f , n

f
p), 1 ≤ i ≤ n}
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That is, statements in SR
B have higher risk values than sf , and thus are all ranked above any statements

in SR
F ; statements in SR

F have the same equal risk value as that of sf and, thus, are all ranked in the
middle of the ranking list, together with sf (tie-breaking scheme is needed to further distinguish them);
and statements in SR

A have lower risk values than sf and, thus, are all ranked below any statements in SR
F .

In the current framework, two results have been developed for establishing the relationship between two
risk evaluation formulæ. They are as follows:

Theorem 2.6. Given any two risk evaluation formulæ R1 and R2 from R, if, for any program, faulty
statement sf ,and test suite, it holds that SR1

B ⊆S
R2
B ∧ S

R2
A ⊆S

R1
A , then R1 → R2.

Theorem 2.7. LetR1 andR2 be two risk evaluation formulæ from R. If, for any program, faulty statement
sf , and test suite, it holds that SR1

B = SR2
B ∧ S

R1
F = SR2

F ∧ S
R1
A = SR2

A , then R1 ↔ R2.

With the theoretical framework, Xie et al. have investigated 30 formulæ, among which six equivalent
groups of formulæ (namely, ER1 to ER6) have been identified and two of them are maximal groups of
formulæ to the investigated formulæ [18]. The detailed and complete proofs that formulæ within each
group share the same set subdivision can be found in the previous work [18]. The definition of limited
maximality, i.e. maximality with respect to S, is as follows:

Definition 2.8. Limited Maximality. A risk evaluation formula R1 from a subset of formulæ, S ⊂ R, is
said to be a maximal formula of S if for any element R2 ∈ S, R2 → R1 implies R2 ↔ R1.

Table 3: Definition of investigated formulas

Name Formula as R(eif , e
i
p, n

i
f , n

i
p) R(eif , n

i
p) with (P, F )

ER′1

Naish1


−1 if ef < F

np if ef = F


−1 if ef < F

np if ef = F

Naish2 ef − ep
ep+np+1 ef − P−np

P+1

GP13 ef (1 + 1
2ep+ef

) ef (1 + 1
2(P−np)+ef

)

ER5

Wong1 ef ef

Russel & Rao ef
ef+nf+ep+np

ef
F+P

Binary


0 if ef < F

1 if ef = F


0 if ef < F

1 if ef = F

GP2 2(ef +
√
np) +

√
ep 2(ef +

√
np) +

√
P − np

GP3
√
|e2f −

√
ep|

√
|e2f −

√
P − np|

GP19 ef
√
|ep − ef + nf − np| ef

√
|F + P − 2ef − 2np|
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3 Maximal and Greatest Formulæ

The existing definition of a maximal formula in Definition 2.8 only concerned a subset of formulæ, S, out
of all possible formulæ, R. The subset S contained only 50 formulæ, 30 manually designed ones and 20
GP-evolved ones. The five identified maximal groups are only with respect to these 50 formulæ. Now,
let us generalise our analysis by replacing S with R. This will, in turn, lead to the investigation of the
“greatest” formula.

3.1 Preliminaries

3.1.1 Spectral Coordinate

Let us first present some definitions and lemmas. Given a test suite TS, let T denote its size, F denote
the number of failed test cases and P denote the number of passed test cases. From the definitions and the
earlier assumptions, it follows that 1 ≤ F < T , 1 ≤ P < T , and P + F = T , as well as the following
lemmas:

Lemma 3.1. For any σ(si) =< eif , e
i
p, n

i
f , n

i
p >, it holds that eif + eip > 0 ∧ eif + nif = F ∧ eip + nip =

P ∧ eif ≤ F ∧ eip ≤ P .

Lemma 3.2. For any faulty statement sf with σ(sf ) =< eff , e
f
p , n

f
f , n

f
p >, if sf is the only faulty statement

in the program, it follows that eff = F ∧ nff = 0.

For a given pair of program and test suite, the values of F and P are constants. Thus for each statement si,
it follows that σ(si) =< eif , P − nip, F − eif , nip > after Lemma 3.1, which can be denoted as σ̄(si) =<

eif , e
i
p >. That is, program spectrum contains two independent parameters in a specific context (i.e. a pair

of a program and a test suite), and not four.

Consequently, it is possible to formulate R = {R|R : If×Ip → Real}, where If denotes the set of integers
within [0, F ] and Ip denotes the set of integers within [0, P ], such that R(eif , n

i
p) = R(eif , e

i
p, n

i
f , n

i
p)). In

the subsequent discussion, when two formulæ from R are compared, it is assumed that they are being
applied to the same program and test suite. Thus, in the context of such comparisons, symbols R and R
can and will be used interchangeably, as are symbols R and R.

Given any values of P and F , the input domain of any formula R is shown as the grid in Figure 1a,
where both ef and ep are non-negative integers and 0 ≤ eif ≤ F and 0 ≤ eip ≤ P . Given a pair of test
suite and program, each point (ef , ep) on this grid is associated with a group of statements that have the
corresponding ef and ep values. Note that the number of statements that associated with each point (ef , ep)
is independent of the formula, but solely decided by the pair of program and test suite.

A formula R maps each point (ef , ep) to a real number that is the risk value of all statements associated
with this point, as shown in Figure 1b. Any assignment of risk values is independent of the number of
statements associated with each point (ef , ep), but solely decided by the definition of R.

3.1.2 Analysis of SBFL Space

Lemma 3.2 allows us to limit the region of the input domain A in which the faulty statement can be.

Definition 3.3 (Faulty Border). Let us call the sequential points < (F, 0), (F, 1), ..., (F, ep), ..., (F, P ) >
(0 ≤ ep ≤ P ) the Faulty Border, which is denoted as E. Figure 1b illustrates a potential E.

Immediately from the above definition, for any given formula R, it follows that the risk values of all points
on E are solely decided by their values of ep. And immediately after Lemma 3.2, the faulty statement sf
is associated with the point (F, efp) of E, where 0 ≤ efp ≤ P , as stated in the following lemma.

Lemma 3.4 (Location of faulty statement sf ). The faulty statement sf must be associated with a point
(F, efp) on E. And efp can be any value between [0, P ].

RN/14/14 Page 6
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ef
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(a) Spectral Coordinate σ̄ for SBFL formulæ
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e p

R
is

k 
V

al
ue

 →

(ef,ep)
Faulty Border

(b) Mapping from σ̄ to risk values by formula R

Figure 1: Visualising the SBFL Space

Lemma 3.4 reflects a phenomenon in software testing called “Coincidental Correctness Test” (CCT). Ide-
ally, the faulty statement sf will produce ep = 0, as executing sf should result in a failure. CCTs are the
tests that execute sf but still pass. The number of CCT is equal to efp , i.e. the value of ep for sf . There can
be an arbitrary number of CCTs in a given test suite, and so is the value of efp .

As a reminder, points (F, eip) other than the one associated with sf on E are associated with correct state-
ments, where nif = F ∧0 ≤ eip ≤ P ∧ eip 6= efp . Depending on the adopted formula, the risk values of such

points can be either greater than, equal to, or smaller than that of point (F, efp), i.e. the point associated
with sf .

Lemma 3.5. For a given program and a test suite, the point of E, with which sf is associated, may also be
associated with other correct statements si having (F, eip) = (F, efp). These statements share the same risk
values as that of sf , regardless of the selection of the formula.

Lemma 3.5 reflects another common phenomenon in software testing, that is, correct statements si may still
have eif = F , and their eip could be either greater than, equal to or smaller than efp of the faulty statement
sf and so are their risk values. An example of the faulty border can be found in Figure 2.

3.2 Maximality in R

First, let us present the definition of the maximality with respect to R.

Definition 3.6. Maximality. A risk evaluation formula R is said to be a maximal formula in R if, for any
formula R′ ∈ R such that R′ 6= R ∧R′ → R, it also holds that R′ ↔ R. Let M be the set of formulas that
are maximal with respect to R.

Definition 3.7. Ranking. Given a formula R, use oi,jp =< nip, n
j
p, op > to denote the relation between

the risk scores of two distinct points (F, nip) and (F, njp) on the faulty border. Given that nip < njp, op can
be either “>” (i.e., R(F, nip) > R(F, njp)), “<” (i.e., R(F, nip) < R(F, njp)), or “=” (i.e., R(F, nip) =

R(F, njp)).

Let PR denote the set of oi,jp based on Definition 3.7. PR effectively captures the ranking between the
statements that belong to E, by collecting the relations between risk scores of each pair of distinct points

RN/14/14 Page 7
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ep

R
is

k
V

al
ue
→

0 1 2 3 4 5 6 7 8 ... P

Figure 2: Example of faulty border of R

on the faulty border. Let UR denote the set of points outside the faulty border which have risk scores higher
than or equal to those of some points (F, eip) on the faulty border, for formula R.

With all the above preliminary, let us now turn to the analysis of the maximality for all formulæ in R.

Lemma 3.8. For any formula R ∈ R, if UR 6= ∅, then R /∈M.

Proof. The proof shows that, if UR 6= ∅, then there exists R′ ∈ R such that R′ → R but R9 R′. First, let
us construct R′ ∈ R such that R′ → R. Assume that UR is non-empty. Let R′ be defined as follow:

R′ =


R if ef = F

R− (C1 − C2 + 1) otherwise

where C1 is the highest risk value of R for all points outside E, while C2 is the lowest risk value of R for
all points on E. By the definition of R′, any point outside E has risk value lower than those of the points
in E, which means all statements associated with points outside E have risk values lower than that of sf .

Let UR′ denote the sets of points outside the faulty border which have risk values higher than or equal to
those of some points (F, eip) on the faulty border, for formula R′. By definition, R′ assigns identical risk
values to points on the faulty border as R, while ensuring that UR′ = ∅.

• Consider the statements associated withE: these statements will be assigned to the same set division
by both R and R′, for any pair of program and test suite.

• Consider the statements associated with points outsideE. For formulaR′, since these points (includ-
ing those in UR) always have risk values lower than that of sf on E, the corresponding statements
belong to SR′

A . However, for formula R, since UR 6= ∅, some statements corresponding to points
outside E belong to either SR

B , S
R
F , and SR

A .

RN/14/14 Page 8
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void foo(double x, double y, double z) {
s1 : if(z <= 0){
s2 : // s2

} else {
s3 : if (z <= 12) {
s4 : // s4

} else {
s5 : // s5

}
s6 : if (z <= 3) {
s7 : // s7

} else {
s8 : if (2 ∗ x − y < 0) { //faulty, should be

: if (x − y < 0)
s9 : // s9

} else {
s10 : // s10

}
}
}

s11 : return; // s11
}

(a) Source Code

s1

s2 s3

s4 s5

s6

s7 s8

s9 s10

s11

z ≤ 0
z > 0

0 < z ≤ 12
z > 12

0 < z ≤ 7
z > 7

z > 7 ∧ 2x− y < 0
z > 7 ∧ 2x− y ≥ 0

(b) Control Flow

Figure 3: Sample program: the faulty statement sf is s8.

Summarizing the above two cases, we have SR′
B ⊆ SR

B and SR
A ⊆ SR′

A . Following Theorem 2.6, R′ → R.

Let us now turn to show that R9 R′, by illustrating that it is possible for R′ to produce a smaller Expense
value than R. Since UR 6= ∅, there exists L, a set of points on E whose risk values evaluated by R are not
higher than any point in UR. To show thatR′ can produce a smaller Expense value thanR, it is sufficient to
show that σ̄(sf ) ∈ L while UR 6= ∅. However, both L and UR are specific to the choice of R. In order not
to lose generality, therefore, let us show that it is possible to construct a program and a test suite such that
σ̄(sf ) can be placed anywhere on E, and another statement σ̄(si) can be placed anywhere in If × Ip −E,
independently from each other3. Figure 3 illustrates such a program: the feasibility of the construction of
the test suite is described in Example 1 in Appendix.

With such a program and a test suite, any statement associated with points outside UR always have the
same relative ranking to sf in R and R′. For all statements associated with UR, formula R′ will rank them
below sf . However, with R:

• statements that are associated with UR and have risk values higher than that of sf , are always ranked
before sf by R.

• statements that are associated with UR and have risk values equal to that of sf , will be tied together
with sf by R. However, it is possible to have a consistent tie-breaking scheme which ranks parts or
even all of these statements before sf .

It is always possible to have statements associated with UR ranked before sf . Consequently, the Expense
of R′ is smaller than that of R. Therefore, R→ R′ does hold.

3Given a specific R such that UR 6= ∅, this allows us to place σ̄(sf ) ∈ L and σ̄(si) ∈ UR.
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In conclusion, if R assigns point (ejf , e
j
p) outside E with risk value higher than, or equal to, that of at least

one point (F, nip) on E, there always exists another formula R′ for which R′ → R holds but R→ R′ does
not hold. Therefore, following Definition 3.6, R cannot be a maximal formula.

Given two distinct risk evaluation formulæ, R1 and R2, let PR1 and PR2 denote the set of oi,jp for all pairs
of distinct points (F, eip) and (F, ejp) on the faulty border (where eip < ejp), for R1 and R2, respectively.
Let UR1 and UR2 denote the sets of points outside the faulty border which have risk values higher than, or
equal to, those of some points (F, eip) on the faulty border, for formula R1 and R2, respectively.

Lemma 3.9. If UR1 = UR2 = ∅ and PR1 = PR2 , it follows that R1 ↔ R2.

Proof. Consider the following two cases.

• For statements associated with the faulty border E, since PR1 = PR2 , then for each pair of these
statements, the relation between their risk values is always the same inR1 andR2. As a consequence,
these statements have the same relative order with respect to sf (which is associated with one point
on the faulty border) between R1 and R2, and hence belong to the same set-division for R1 and R2

with any pair of program and test suite.

• For statements associated with points outsideE, since both UR1 and UR2 are empty, these statements
always have risk values lower than that of the faulty statement sf (which is associated with one point
on the faulty border), therefore these statements belong to both SR1

A and SR2
A .

In summary, we have SR1
B = SR2

B , SR1
F = SR2

F and SR1
A = SR2

A . Following Theorem 2.7, R1 ↔ R2.

Lemma 3.10. If UR1 = UR2 = ∅ but PR1 6= PR2 , we have R1 9 R2 and R2 9 R1.

Proof. Since PR1 6= PR2 , there must exist at least one pair of points on the faulty border ((F, eip), (F, e
j
p))

(where eip < ejp), such that < eip, e
j
p, op1 >∈ PR1∧ < eip, e

j
p, op2 >∈ PR2 ∧ op1 6= op2. It is sufficient to

consider the following two cases because other cases can be transformed to these two cases by swapping
R1 and R2:

• Consider the case that R1(F, e
i
p) < R1(F, e

j
p) and R2(F, e

i
p) > R2(F, e

j
p).

With the program shown in Figure 3, it is possible to construct a test suite, such that e4f , e5f , e9f and
e10f are smaller than F . (As a reminder, it always holds that e2f = e7f = 0). While for s1, s3, s6, s8
(sf ) and s11, whose ef values are all equal to F , we have efp = eip < e1p = e3p = e6p = e11p = ejp4.
Then, for R1, we have s1, s3, s6 and s11 ranked before sf and other statements ranked after sf .
However, for R2, we have sf ranked at the top of the whole list. Therefore, the Expense of R2 is
lower than that of R1.

On the other hand, it is also possible to construct another test suite, such that e4f and e5f are both
smaller than F , but e9f is equal to F . (Correspondingly, e10f = 0). For s1, s3, s6, s8 (sf ), s9 and s11,

whose ef values are all equal to F , we have e9p = eip < e1p = e3p = e6p = efp = e11p = ejp5. Then, for
R1, s1, s3 s6, sf and s11 are tied together at the top of the whole list, before s9. However, for R2, s9
is ranked at the top, immediately followed by s1, s3 s6, sf and s11 that are tied together. Therefore,
with a consistent tie-breaking scheme, the Expense of R1 is lower than that of R2.

In summary, for the case that R1(F, e
i
p) < R1(F, e

j
p) while R2(F, e

i
p) > R2(F, e

j
p), it is always

possible to find examples to demonstrate R1 9 R2 and R2 9 R1

4For the feasibility of this test suite, please refer to Test Suite A in Example 5 of the Appendix.
5For the feasibility of this test suite, please refer to Test Suite B in Example 5 of the Appendix.
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• Consider the case that R1(F, e
i
p) < R1(F, e

j
p) and R2(F, e

i
p) = R2(F, e

j
p).

With the program shown in Figure 3, it is possible to construct a test suite, such that e4f = F

(correspondingly, e5f = 0), while e9f and e10f are smaller than F . Then, for s1, s3, s4, s6, s8 (sf ), and

s11, whose ef values are all equal to F , it follows that e4p = eip < e1p = e3p = e6p = efp = e11p = ejp6.
Then, for R1, s1, s3, s6, sf , and s11 are tied together at the top of the ranking, before s4. However,
for R2, s1, s3, s4, s6, sf , and s11 are tied together at the top of the entire ranking. Since the number
of tied statements are different, the Expense now depends on the tie-breaking scheme, without any
guarantee of clear dominance of one formula. For example, if the original order of the statements is
used as the tie-breaker, R1 yields a lower Expense value than R2; if the reverse of the original order
is adopted, the opposite would follow.

On the other hand, it is also possible to construct another test suite, such that e4f , e5f , e9f and e10f are
smaller than F . Then, for s1, s3, s6, s8 (sf ) and s11 whose ef values are all equal to F , we have
efp = eip < e1p = e3p = e6p = e11p = ejp. (For the feasibility of this test suite, please refer to Test Suite
A in Example 5 of the Appendix.) Then, for R1, we have s1, s3, s6 and s11 tied together at the top of
the whole list before sf , and other statements ranked after sf . However, for R2, we have s1, s3, s6,
sf and s11 tied together at the top of the whole list. Since the number of tied statements are different,
the Expense now depends on the tie-breaking scheme, without any guarantee of clear dominance of
one formula. For example, if the original order of the statements is used as the tie-breaker, R2 yields
a lower Expense value than R1; if the reverse of the original order is adopted, the opposite would
follow.

In summary, for the case that R1(F, e
i
p) < R1(F, e

j
p) while R2(F, e

i
p) = R2(F, e

j
p), it is possible to

demonstrate that R1 9 R2 and R2 9 R1.

In conclusion, for any two formulæ whose UR1 and UR2 are both ∅, but PR1 6= PR2 , it follows that
R1 9 R2 and R2 9 R1.

With above preliminaries, let us now turn to the complete analysis of the maximal and greatest formulæ of
R.

Proposition 3.11. A formula R is a maximal formula of in R if and only if UR is empty.

Proof. First, it holds that if R is a maximal formula, then UR = ∅. This follows immediately after
Lemma 3.8.

Second, let us turn to proving that if UR = ∅, R is a maximal formula. Assume that UR = ∅. Then, for any
distinct formula R′, let PR′ denote the set of oi,jp for all pairs of distinct points (F, nip) and (F, njp) on the
faulty border (where nip < njp) and UR′ denote the sets of points outside the faulty border which have risk
values higher than or equal to those of some points (F, nip) on the faulty border, for formula R′. There are
following cases.

• Consider the case that UR′ 6= ∅. As illustrated in the proof of Lemma 3.8, it is always possible to
construct another formula R′′, such that UR′′ = ∅, R′′ → R′ and R′ 9 R′′. If PR′′ = PR, after
Lemma 3.9, R′′ ↔ R, and, consequently, R′ 9 R. Otherwise, if PR′′ 6= PR, after Lemma 3.10,
R9 R′′ and R′′ 9 R. As a consequence, R′ 9 R.

• Consider the case that UR′ = ∅. Similar to the above analysis, if PR′ = PR, after Lemma 3.9,
R′ ↔ R. Otherwise, if PR′ 6= PR, after Lemma 3.10, R9 R′ and R′ 9 R.

In summary, if UR = ∅, then for any formula R′, we have either R′ ↔ R or R′ 9 R. After Definition 3.6,
R is a maximal formula.

6For the feasibility of this test suite, please refer to Test Suite C in Example 5 of the Appendix.
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With Proposition 3.11, which is a necessary and sufficient condition for a maximal formula of R, there is
a simple method to convert any given non-maximal formula into a maximal formula, which is effectively
described in the proof of Lemma 3.8. Given any formula R which has a non-empty UR (i.e. R is non-
maximal according to Proposition 3.11), we can always convert R into a maximal formula R′, where R′

assigns identical risk values to points on the faulty border as R, but assigns, to all points in UR, a constant
C whose value is smaller than the risk value of any point on the faulty border.

Now, let us re-visit the five maximal formulæ of the 50 investigated formulæ. After Proposition 3.11, it is
possible to show that two of them (ER′1 and ER5) are maximal but not greatest formulæ, while three of
them (GP2, GP3 and GP19) are not maximal with respect to R, as follows:

Corollary 3.12. ER′1 and ER5 are maximal formulæ of R.

Proof. For any formula R in ER′1 or ER5, UR = ∅. After Proposition 3.11, formulæ in ER′1 and ER5 are
maximal formulæ of R.

Corollary 3.13. GP2, GP3 and GP19 are not maximal to all formulæ in R.

Proof. Consider the program in Figure 3. The following three test suites can be constructed:

1. For GP2:

Construct a test suite that satisfies the following: F = 2, P = 9, s8 (sf ) satisfies eff = 2 = F ∧ efp =

5 < P , and s9 satisfies e9f = 1 < F ∧ e9p = 4 < efp . Then, following the definition of GP2 (which is
2(ef +

√
np) +

√
ep), the following risk evaluation values are obtained: GP2(s8) = 13, which is smaller

than GP2(s9) = 14. Since sf is on E, this shows that there can exist points outside E with risk values
higher than that of the point on E. Following Proposition 3.11, GP2 is not the maximal with respect to R7.

2. For GP3:

Construct a test suite that satisfies the following: F = 2, P = 30, sf satisfies eff = 2 = F ∧ efp =

25 < P , and s9 satisfies e9f = 1 < F ∧ e9p = 25 = efp . Then, following the definition of GP3 (which

is
√
|e2f −

√
ep|), the following risk evaluation values are obtained: GP3(sf ) = 1, which is smaller than

GP3(s9) = 2. Since sf is on E, this shows that there can exist points outside E with risk values higher
than that of the point on E. Following Proposition 3.11, GP3 is not the maximal to all formulæ in R8.

3. For GP19:

Construct a test suite that satisfies the following: F = 5, P = 50, sf satisfies eff = 5 = F ∧ efp = 1 < P ,

and s4 satisfies e4f = 4 < F ∧ efp < e4p = 49 < P . Then, following the definition of GP19 (which is
ef
√
|ep − ef + nf − np|), the following risk evaluation values are obtained: GP19(sf ) = 5

√
5, which is

smaller than GP19(s4) = 12
√

5. Since sf is on E, this shows that there can exist points outside E with
risk values higher than that of the point on E. Following Proposition 3.11, GP19 is not the maximal to all
formulæ in R9.

With Proposition 3.11, it becomes possible to identify maximal formula with respect to R. Furthermore,
within these maximal formulæ, we are interested in whether there exists the greatest formulæ and have the
following conclusion.

7The feasibility of this scenario is analysed in Example 2 of the Appendix.
8The feasibility of this scenario is analyzed in Example 3 of the Appendix.
9The feasibility of this scenario is analyzed in Example 4 of the Appendix.
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3.3 Greatest Formulæ in R: The Non-Existence Proof

A greatest formula in R is the formula that is better than any other formulæ in R. It is formally defined as
follows:

Definition 3.14. Greatest Formula. A risk evaluation formula R is said to be a greatest formula in R if,
for any formula R′ ∈ R ∧R′ 6= R, it holds that R→ R′.

Let us now turn to the greatest formula, or, in fact, proving the lack of thereof.

Proposition 3.15. There is no formula which is greatest against the set of all formulæ, R.

Proof. Assume that there exists a greatest formulaRg. Let PRg denote the set of oi,jp for all pairs of distinct
points (F, eip) and (F, ejp) on the faulty border (where eip < ejp) and URg denote the sets of points outside
the faulty border which have risk values higher than or equal to those of some points (F, eip) on the faulty
border, for formula Rg. After Proposition 3.11, URg = ∅.

Consider the two maximal groups of formulæER′1 andER5, which have been proved to be non-equivalent
to each other [18]. Let UER′

1
and UER5 denote the sets of points outside the faulty border which have risk

values higher than or equal to those of some points (F, eip) on the faulty border, for formulæ in ER′1 and
ER5, respectively. Let PER′

1
and PER5 denote the set of oi,jp for all pairs of distinct points (F, eip) and

(F, ejp) on the faulty border (where eip < ejp), for formulæ in ER′1 and ER5, respectively. According to
Corollary 3.12, it follows that UER′

1
= UER5 = ∅ and PER′

1
6= PER5 . Thus, there are three possible cases

for PRg , as follows:

• Case 1: PRg = PER′
1
. Then it follows that, for ER5, UER5 = URg = ∅ ∧ PER5 6= PRg .

• Case 2: PRg = PER5 . Then it follows that, for ER′1, UER′
1

= URg = ∅ ∧ PER′
1
6= PRg .

• Case 3: PRg 6= PER′
1

and PRg 6= PER5 . Then it follows that, both for ER′1 and ER5, UER′
1

=
URg = ∅ ∧ PER′

1
6= PRg ∧ UER5 = URg = ∅ but PER5 6= PRg .

For any of the above cases, it is possible to construct another formula R′ such that UR′ = URg = ∅ and
PR′ 6= PRg . After Lemma 3.10, we have R′ 9 Rg and Rg 9 R′. After Definition 3.14, Rg cannot be the
greatest formula.

4 Visualising the Insights

The spectral coordinate σ̄, introduced in Section 3.1, provides an intuitive way to visualise SBFL formulæ.
Since neither the size of the test suite nor the exact number of passing and failing test cases is known, we
normalise the visualisation with P = 100 and F = 100. In addition, without affecting generality, we flip
the P axis so that the visualisation depicts np instead of ep: this is because, intuitively, np correlates better
with the risk value of a statement (the higher np is, the more suspicious the corresponding statement is,
because it means that test cases are more likely to pass when not executing the statement). The grids on the
plots are separated by the margin of 5.

Figure 4 contains visualisations of Naish2 and GP13, two equivalent formulas10. The visualisation provides
an intuitive understanding of the equivalence. Both formulas assign any points outside the faulty edge E
with lower risk value than the points on E. Along E, the risk value slowly increases monotonically as np
increases: therefore, given the same spectrum data, both formulæ will rank the statements that belong to E
in the identical order.

10An interactive visualisation tool is available at http://www0.cs.ucl.ac.uk/staff/s.yoo/sbflvis/.
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ef
np

Naish2

(a) Visualisation of Naish2

ef
np

gp13

(b) Visualisation of GP13

Figure 4: Visualisation of two equivalent SBFL formulæ, Naish2 and GP13

Figure 5 contains visualisations of Tarantula and Jaccard. The Tarantula plot provides an intuitive under-
standing on why it is not a maximal formula: to many points with np ≈ P and ef ≈ 0, Tarantula assigns
significantly high risk values: unless the faulty statement satisfies np = 0, it may be ranked below some of
these points.

The visualisation of Jaccard provides another intuitive understanding into a recent observation in SBFL
literature. Qi et al. [15] reported that, when used in conjunction with automated bug patching technique
GenProg [16], Jaccard outperformed Naish2 by leading GenProg to more generated patches, despite being
dominated by Naish2. The fact that Jaccard is dominated by Naish2 can be seen by the fact that some
points outside E can be assigned with higher risk value than other points on E. However, when the faulty
statement has sufficiently high np, the difference in risk values between the faulty statement and others can
be much larger with Jaccard than in Naish2 (which only allows very small change of risk value along E).
Moon et al. introduced a new evaluation metric for SBFL, called Locality Information Loss (LIL), which
explained that the bigger difference is more helpful when risk values are used as mutation rates [10]. The
visualisation supports this explanation.

5 Conclusions and Future Work

Spectrum Based Fault Localisation (SBFL) has received significant amount of attention over the past
decade. The focus of the research mainly has been the design of new risk evaluation formulæ that would
outperform the existing ones. The evaluation has been of empirical nature, until theoretical analysis began
recently. This paper presents the proof that there does not exist the greatest formula, i.e. the one that is
better than all other formulæ.

The proof has a significant implication on the research of SBFL. Pursuing the greatest formula is no longer
a viable research goal. Concerning SBFL, the future work will be encouraged to consider specialisation,
i.e. designing formulæ that are effective in certain contexts, such as a specific project or a particular type
of faults. In the wider context, the proof illustrates the limitations of the spectrum based approaches, and
encourages fault localisation techniques to consider signals other than program spectrum.
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Figure 5: Visualisation of SBFL formulæ: Tarantula and Jaccard
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Appendix

Analysis of the Example Program

In the proof, the program in Figure 3 has been used as an example. The program accepts three independent
real numbers: x, y and z. The statement s8 contains a fault: the correct predicate should be “if(x-y
<0)”, not “if(2x-y<0)” and, therefore, is denoted by sf . Figure 6 shows the corresponding regions of
failure inducing inputs in the space of all possible inputs.

Figure 6: Sample program

First, consider statements s9 and s10:

• Any test case ti = (xi, yi, zi) such that zi > 7 ∧ (xi, yi) ∈ Fail9 will cover s9 and fail. Let the
number of such test cases be e9f .

• Any test case ti = (xi, yi, zi) such that zi > 7 ∧ (xi, yi) ∈ Pass9 will cover s9 and pass. Let the
number of such test cases be e9p.

• Any test case ti = (xi, yi, zi) such that zi > 7 ∧ (xi, yi) ∈ Fail10 will cover s10 and fail. Let the
number of such test cases be e10f .

• Any test case ti = (xi, yi, zi) such that zi > 7 ∧ (xi, yi) ∈ Pass10 will cover s10 and pass.Let the
number of such test cases be e10p .

Since s9 and s10 are the true and false branches of the if statement in sf , only one of these two
statements are executed by any test case. Consequently, e9f = n10f , n9f = e10f , e9p = n10p , and n9p = e10p .
There is no constraint in selecting test cases from each of the above four regions, and generating test cases
from these regions is independent from each other. Therefore, by adjusting the number of test cases in each
region, it is possible to have values of e9f , e9p, e10f and e10p .

Next, consider statement s8 (i.e. sf ). It is possible to have any number of passing (i.e. efp ) and failing (i.e.
eff = F ) test cases by adjusting the above four sets of test cases, because we have e9f+e10f = eff = F and

e9p+e
10
p = efp .

Then, let us consider statement s7. Any test case ti =< xi, yi, zi > such that 0 < zi ≤ 7 will cover s7 and
pass: e7p is equal to the number of such test cases, while e7f = 0. It is possible to have any number of such
test cases. Therefore, by adjusting this number, it is possible to assign any value to e7p.
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Now, consider statements s6, s11 and s3, whose ef values are identical to each other, and so are their ep. It
can be seen from Figure 3 that e6f = e11f = e3f = eff = F and e6p = e3p = e11p = (efp+e7p). As a reminder,

according to the above analysis, efp and e7p can be assigned with any values independently.

Next, consider statements s4 and s5. As shown in Figure 3, any test case ti =< xi, yi, zi > such that
0 < zi ≤ 12 will cover s4. These test cases can be further categorised as following:

• Any test case ti =< xi, yi, zi > such that 0 < zi ≤ 7 will definitely continue to cover s7 and thus
always pass. The number of these test cases is equal to e7p.

• Any test case ti =< xi, yi, zi > such that 7 < zi ≤ 12 while < xi, yi >∈ Pass9 ∪Pass10 will also
pass. Let us denote the number of these test cases as e4p.

• Any test case ti =< xi, yi, zi > such that 7 < zi ≤ 12 while < xi, yi >∈ Fail9 ∪ Fail10 will
always fail. The number of these test cases is e4f .

It is not difficult to find that e4f is the size of the subset of failing test cases that cover sf and satisfy
7 < zi ≤ 12. Consequently, it follows that e4f ≤ F . On the other hand, e4p = e7p + e4p, where e4p is the size

of the subset of passing test cases that cover and satisfy 7 < zi ≤ 12. Thus, it also follows that e4p ≤ efp .
As a reminder, the values of e7p and e4p can be decided independently. Therefore, e4p can be either smaller
than, equal to or greater than efp .

While for s5, any test case ti =< xi, yi, zi > such that zi > 12 will cover s5. These test cases can be
further categorised as following:

• Any test case ti =< xi, yi, zi > such that zi > 12 while < xi, yi >∈ Pass9 ∪ Pass10 will always
pass. The number of these test cases is e5p.

• Any test case ti =< xi, yi, zi > such that zi > 12 while < xi, yi >∈ Fail9 ∪ Fail10 will always
fail. The number of these test cases is e5f .

Note that e5p is the size of the subset of passing test cases that cover sf and satisfy zi > 12, while e5f is the

size of the subset of failing test cases that cover sf and satisfy zi > 12. Thus, it follows that e5f ≤ e
f
f = F

and e5p ≤ e
f
p .

It should be noted that e4f and e5f are not independent. There is a constraint that e4f+e5f = eff = F .
However, there is no similar constraint on e4p and e5p.

Next, let us consider s2. As shown in Figure 3, any test case ti =< xi, yi, zi > such that zi ≤ 0 will cover
s2 and pass: e2p is equal to the number of such test cases, while e2f is always 0. It is possible to have any
number of such test cases. By adjusting this number, it is possible to assign any value to e2p.

Finally, let us consider s1. The structure of the program dictates that e1f = eff = F and e1p = (e3p+e
2
p) =

(efp+e7p+e
2
p) = P . As analyzed above, it is possible to assign, independently, any values to efp , e7p and e2p.

Consequently, e1p (i.e. the number of total passed test cases P ) can be any value that is no less than efp .

Feasibility of Test Suites Used in Proofs

This section presents the analysis of the feasibility of the example test suites used in the proofs.
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Example 1. With the program in Figure 3, the proof in Proposition 3.11 requires the construction of a test
suite such that efp and e4p are any values, and e4f < F . According the above discussion, for sf , we can

assign any value to efp ; while for s4, e4f can be any value within [0, F ] and e4p can be either smaller

than, equal to or greater than efp . Therefore, it is always possible to construct such a test suite.

Example 2. With the program in Figure 3, the proof for GP2 in Corollary 3.13 requires the construction
of a test suite such that F = 2, P = 9, s8 (sf ) has eff = 2 = F and efp = 5 < P , and s9 has

e9f = 1 < F and e9p = 4 < efp . According to the above analysis, we can assign any value to efp and

any value to P that is no less than efp . And for s9, we can have any value of e9f within [0, F ] and any

value of e9p within [0, efp ]. Therefore, it is always possible to construct such a test suite.

Example 3. With the program in Figure 3, the proof for GP3 in Corollary 3.13 requires the construction of
a test suite such that F = 2, P = 30, sf has eff = 2 = F and efp = 25 < P , and s9 has e9f = 1 < F

and e9p = 25 = efp . Similar to the analysis in Example 2, it is always possible to construct such a test
suite.

Example 4. With the program in Figure 3, the proof for GP19 in Corollary 3.13 requires the construction
of a test suite such that F = 5, P = 50, sf has eff = 5 = F and efp = 1 < P , and s4 has e4f = 4 < F

and efp < e4p = 49 < P . According to the above analysis, for sf , we can assign any values to eff (i.e.

F ) and efp ; while for s4, e4f can be any value within [0, F ] and e4p can be either smaller than, equal to

or greater than efp ; and P can be any value that is no less than either e4p or efp . Therefore, it is always
possible to construct such a test suite.

Example 5. Let us denote the ep values of any two points on the faulty border E as eLp and eHp , where
eLp < eHp . For the given program in Figure 3, the proof in Lemma 3.10 requires construction of two
test suites, which are referred to as Test Suite A, Test Suite B and Test Suite C in the following
discussion.

Test Suite A: we have e4f , e5f , e9f and e10f smaller than F , e1f = e3f = e6f = eff = e11f = F , efp = eLp
and e1p = e3p = e6p = e11p = eHp . According to the above analysis, e4f , e5f , e9f and e10f can all be less
than F simultaneously. And the ef values for s1, s3, s6, sf and s11 are always equal to F . Besides,
for sf , it is always possible to have any value of efp ; while it is always possible to have any equal
value of ep that is larger than efp for s1, s3, s6 and s11. Therefore, this test suite is feasible.

Test Suite B: we have both e4f and e5f smaller than F , e1f = e3f = e6f = eff = e9f = e11f = F ,

e9p = eLp and e1p = e3p = e6p = efp = e11p = eHp . As discussed above, it is always possible to have both
e4f and e5f smaller than F . And it is also possible to assign the same value of ef (i.e. F ) to s1, s3, s6,
sf , s9 and s11. Moreover, s1, s3, s6, sf and s11 are possible to have the same ep value that is higher
than s9. As a consequence, this test suite is always feasible.

Test Suite C: we have e9f and e10f smaller than F , e1f = e3f = e4f = e6f = eff = e11f = F , e4p = eLp

and e1p = e3p = e6p = efp = e11p = eHp . As discussed above, it is always possible to have both e9f and
e10f smaller than F . And it is also possible to assign the same value of ef (i.e. F ) to s1, s3, s4, s6, sf
and s11. Moreover, s1, s3, s6, sf and s11 are possible to have the same ep value that is higher than
s4. As a consequence, this test suite is always feasible.
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