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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 
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Abstract

Search Based Software Engineering has high potential for optimising non-functional proper-
ties such as execution time or power consumption. However, many non-functional properties
are dependent not only on the software system under consideration but also the environment
that surrounds the system. This results in two problems. First, systems optimised in offline
environment may not perform as well online. Second, the system needs to be taken offline
and re-optimised when the environment changes. This paper introduces the novel concept of
amortised optimisation to solve both problems, and presents an open source implementation.
We evaluate the framework to optimise block matrix multiplication algorithm.
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1 Introduction

Non-functional properties have been the focus of many Search Based Software Engineering (SBSE)
work [1]. The inherent dynamic nature of SBSE, i.e. measuring the fitness from actual executions of
the subject of optimisation, makes it a powerful tool to deal with non-functional properties. Testing of
temporal behaviours have received considerable amount of interests [2–5]; other properties like Quality of
Service [6, 7] and security [8–10] are emerging fields of research.

Most of existing literature on non-functional properties concerns what can be called offline optimisation: we
define an optimisation problem to improve a specific non-functional property, obtain one or more solutions
by using meta-heuristic optimisation algorithms, which are then deployed. This approach overlooks an im-
portant and challenging element of non-functional properties: environmental dependency. Non-functional
behaviours of software systems are hard to predict precisely because they are heavily affected by the var-
ious environmental factors ranging from operational profiles of input data to the hardware that runs the
system. By performing the optimisation offline, we detach the subjects from their environments and tailor
our solution to the specific environment in which we optimise. This raises two issues about the optimality
of the resulting solutions:

• Sampling Bias: It is often practically infeasible to capture the precise behaviour of the production
environment, which can be infinitely varied (e.g. different combinations of hardware components)
or not reproducible in development stage (e.g. realistic user load for web applications). As a result,
offline approach will introduce bias towards the limited environment used for optimisation.

• Lack of Persistent Adaptivity: Even when the result of the initial optimisation meets the expecta-
tion, we cannot rule out the possibility of changes in the production environment that degrade the
non-functional behaviour of the deployed system (e.g. upgraded hardware with different character-
istics). As a result, the system should be taken off the production environment and re-optimised.

One way to overcome these problems is to provide built-in adaptivity in the deployed software, so that
the optimisation can take place in the production environment after the deployment. Since we will be
optimising in the real environment, there cannot be any sampling bias. Because the adaptivity is built-in,
there is no need to take the system offline to optimise for changed environment; the system will continue
to adapt to changes.

We present an SBSE programming library called NIA3CIN: Non-Invasive, Autonomous, and Amortised
Adaptivity Code Injection. NIA3CIN introduces a new approach to meta-heuristic optimisation, which is
amortised optimisation. It makes a set of design choices, to deal with common concerns over introducing
optimisation-based adaptivity into production stage software system. Following is a list of commonly
expected questions and our responses:

• Will it make my system slow? No. NIA3CIN does not run computationally expensive optimisation
alongside your system. The optimisation cost is amortised: each run of your system serves as one
fitness evaluation. What little overhead that NIA3CIN introduces involves relatively simple book-
keeping (e.g. comparing the fitness of the neighbourhood for local search or performing genetic
operations).

• It must be hard to make my system self-adaptive. No. NIA3CIN is designed to be as non-invasive
as possible. As long as the developer is aware of how to measure the property to be optimised, using
NIA3CIN involves only a couple of code annotations and a few method calls.

• Can it make my system do wrong things? No - as long as the developer does not use NIA3CIN
to optimise functional behaviours (e.g. finding the correct constant that is critical to the functional
correctness of the computation). NIA3CIN will operate within the search space defined by the de-
veloper, and can be turned off entirely.
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As a proof of concept, we evaluated NIA3CIN with a simple block matrix multiplication algorithm, whose
ideal block size depends on the hardware details. We executed the algorithm, equipped with NIA3CIN, and
optimised the block size. Results show that NIA3CIN can produce significant performance improvement
without human intervention.

The rest of the paper is structured as follows. Section 2 introduces the concept of amortised optimisation.
Section 3 discusses the internal implementation of NIA3CIN, while Section 4 goes through a case study.
Section 5 discusses related work. Section 6 concludes with the outlook for future work.

2 Amortised Optimisation

2.1 State-Based Approach

To achieve the design goals outlined in Section 1, we suggest amortising the execution of meta-heuristic
optimisation so that the optimisation can take place in situ. Each execution of the target system (that
requires optimisation) serves as a single fitness evaluation, which is similar to many traditional optimisation
approaches. However, instead of having a tight optimisation loop wrapped around the fitness evaluation
(i.e. the execution of the target system), NIA3CIN performs only one step of the loop and stores the current
status in the persistence layer. Consider the optimisation loop as a state transition system: whenever the
target system requires to use the value to be optimised, NIA3CIN is invoked and executes one or more state
transitions, based on the current status of the optimisation. The returned value is used for the execution
of the target system, which at the same time serves as a fitness evaluation for NIA3CIN. Global states and
other information, such as the number of remaining fitness evaluations, are stored in a separate persistence
layer and loaded each time NIA3CIN is invoked.

Sstart G M

E
B

eval > 0/init(x); return(x)

eval > 0 ∧ |N | > 1/x← N.next(); return(x)

|N | = 1/x← N.next(); return(x)

eval < 0/x← N.next(); return(x)

T/generate(x,N)

¬localOptima/x← best(N)

localOptima/x← rInit()

eval < 0/return(knownBest)

Figure 1: State-based model of amortised hill climbing algorithm: return(x) decreases the remaining
number of fitness evaluations, eval, by 1.

2.2 An Example: Hill Climbing

This paper presents an amortised version of hill climbing as a case study. Figure 1 is the outline of the
state-based amortisation. Each state is defined as follows:

• Start: When NIA3CIN is invoked for the first time for the variable x, this is the starting state. If the
remaining number of fitness evaluations, eval, read from the persistence layer is greater than 0, then
NIA3CIN sets x to the initial value given by the developer, returns it, and marks the next state as G.
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• Generate neighbours: This is the intermediate state that populates the neighbours queue, N , with
the neighbouring solution of the current x. Once the queue is populated, NIA3CIN executes the
transition to E.

• Evaluate: While eval > 0 and N contains more than 1 candidate solutions, NIA3CIN returns the
next neighbouring candidate solution. When the state reaches the final candidate solution in N ,
NIA3CIN returns it and marks M as the next state.

• Move: This is the state that is reached after evaluating all neighbouring candidate solutions in N .
If the optimisation has reached a local optimum, NIA3CIN applies a random restart to x and moves
to G. If the current position is not a local optimum, then NIA3CIN sets x to the best neighbouring
solution and moves to G. From G, the next iteration of the hill climbing algorithm starts.

• Best: NIA3CIN stores the best solution observed so far in the persistence layer. Whenever it runs
out of allocated fitness evaluations, it will fall back to returning the known best value of x. Note that
the fall-back transition only happens from E and S, i.e., NIA3CIN can go over budget to finish one
complete iteration of hill climbing.

3 Implementation & Usage

An implementation of NIA3CIN is available at https://bitbucket.org/ntrolls/niacin/ as
an open source project. Currently the project supports hill climbing algorithm for Java; it also contains the
case study that this paper considers. For an annotated variable (your input representation), NIA3CIN will
search for a value such that either maximise or minimise the value returned by another annotated method
(your fitness function). Current implementation of NIA3CIN uses Java annotation to interface user code
non-invasively with optimisation code. Following is the list of the modifications required by the users of
NIA3CIN:

1. Mark the setter method for the input variable to the optimisation (i.e. the phenotype) with @Input
annotation: this is the method that sets the value of the variable that NIA3CIN will try to opmitise
by searching for its value.

2. Write a method that returns a measure of your optimisation (i.e. the fitness function). For example,
this method can return the time that an execution of a particular method has taken, or the memory
that a particular data structure has consumed. Mark the method with @Optimize annotation.

3. When creating an instance of a class for which you want to apply NIA3CIN, call Niacin.
initialize() to initialise NIA3CIN.

4. Immediately before the section of code you are interested, call Niacin.start(this): this is
the point when NIA3CIN injects a new value for the variable using the setter method annoated with
@Input.

5. Immediately after the section of code you are interested, call Niacin.end(this): this is the poin
when NIA3CIN calls the method annotated with @Optimize to obtain the fitness value for this run.

The annotations allow a few basic properties to be defined for the methods:

• @Input annotation supports:

– name: the name describing this variable

– initvalue: the initial value to be used with this variable

– stepvalue: the step increase/devrease amount when changing this variable (this is for local
search heuristics such as hill climbing)
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– bound: the minimum and the maximum value for this variable, in the format of "min,max".

• @Optimize annotation supports:

– direction: either Optimize.Direction.MIN for minimisation or Optimize.Direction
.MAX for maximisation.

– type: the return type of the fitness method
– name: name of the fitness value ("fitness").
– trials: the number of fitness evaluation allowed for this optimisation (default is 100).
– method: the type of meta-heuristic algorithm to be used with this optimisation (default is
Metaheuristic.Type.HC).

4 Case Study

4.1 Blocked Matrix Multplication (BMM)

As a proof of concept, we applied NIA3CIN to tune parameters for blocked multiplication algorithm for
square matrices, which is shown in Algorithm 1 and 2. Algorithm 1 breaks down the matrices into blocks,
and invokes Algorithm 2 for each of them. This takes advantage of well known compiler optimisation
techniques: having nested loops around a smaller region of memory locations exploits pipelining and
caching to speed up the computation.

Algorithm 1: Blocked Matrix Multiplication
Input: Size of matrices, n, n-by-n matrices A and B
Output: matrix C, which equals to A ·B
(1) n blocks← d n

BLOCK SIZE e
(2) for bi = 0 to bi < n blocks
(3) i← bi ∗BLOCK SIZE
(4) for bj = 0 to bj < n blocks
(5) j ← bj ∗BLOCK SIZE
(6) for bk = 0 to bk < n blocks
(7) k ← bk ∗BLOCK SIZE
(8) DO BLOCK(n, A, B, C, i, j, k)

Algorithm 2: DO BLOCK
Input: Matrix size, n, matrices A, B, and C, block indeces i, j, and k
Output: Updates matrix C
(1) M ← (i + BLOCK SIZE > n?n− i : BLOCK SIZE)
(2) N ← (j + BLOCK SIZE > n?n− j : BLOCK SIZE)
(3) K ← (k + BLOCK SIZE > n?n− k : BLOCK SIZE)
(4) for i = 0 to i < M
(5) for j = 0 to j < N
(6) cij ← C[j + i ∗ lda +j +i ∗ lda]
(7) for k = 0 to k < K
(8) cij+ = A[i · lda + k + i · lda + k] ·B[j + k · lda + j + k · lda]
(9) C[j + i · lda + j + i · lda] = cij

The key to the increased performance is the size of the block. However, this information depends on details
of the hardware environment such as the cache size of the CPU. Hardcoding a fixed block size may produce
optimal performance on one machine, but if the code is moved and executed on another machine, there is
no guarantee that the same performance will be retained.
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4.2 Applying NIA3CIN to BMM

We discuss sections of blocked matrix multiplication here: the complete source code is available from the
online repository [11]. First, we initialise NIA3CIN when we create the instance of a BMM class:

public BlockedMatrixMultiplication()
{
Niacin.initialise(BlockedMatrixMultiplication.class);

}

The variable we want to optimise with is the size of the block. We annotate the setter method as following:

@Input(name = "block_size", initvalue = "8", bound = "1, 128")
public void setBlockSize(int size)
{
this.BLOCK_SIZE = size;

}

For fitness, we use the number of floating point multiplications we do per millisecond.

@Optimize(name = "rate", type = Double.class, direction = Optimize
.Direction.MAX)

public Double getRate()
{
return new Double(rate);

}

Now let us look at the actual method that implements Algorithm 1. At the beginning, we notify NIA3CIN
to inject the new value to be tried. We also mark the system clock time when this method begins.

public void square_dgemm(int M, int N, int K, double[] A, double[]
B, double[] C)

{
Niacin.start(this);
long start = System.currentTimeMillis();
...

At the end of the same method, we first calculate our fitness, which is the number of floating point multi-
plications performed per millisecond. Then we notify NIA3CIN that the fitness value is ready to be read
back.

...
long elapsed = System.currentTimeMillis() - start;
rate = ((double) M * N * K) / (double) elapsed;

Niacin.end(this);
}

4.3 Results

We have applied NIA3CIN to an implementations of BMM for matrices of double type. Figure 2 shows
the results from 20 runs of BMM for double. A run is 80 consecutive executions of BMM algorithm
with NIA3CIN, but NIA3CIN has the budget of only only 50 fitness evaluations. After spending the first
50 executions, NIA3CIN should fall back to the known best value. Figure 2(a) is a boxplot that shows how
the block size changes throughout a run, across 20 runs. Since all runs start with the same initial block size
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Figure 2: Changes in block size and fitness (i.e. number of multiplications per millisecond) from 20 runs
of BMM for double. Each run consists of 80 executions of BMM; the first 50 run uses NIA3CIN to
optimise the block size, after which it uses the best size known so far.

of 4, the block size remains small until hill climbing finds the locam optima. Random resets follow, which
explains the large variance in the middle section. Eventually each run decides on a value. Figure 2(b) is
a boxplot that shows how the fitness changes througout a run, also across the same 20 runs. Once hill
climbing starts random resets, fitness also starts varying but multiple convergences take place throughout
the optimisation stage. On average, the performance improved by more then two times.

5 Related Work

Langdon and Harman improved non-functional property of a non-trivial C++ program using Genetic Pro-
gramming (GP) [12]. The GP modified several lines in the source code of the original program, making it
70 times faster on average while being as good as the original semantically. The GP-based improvement is
much more profound than changing the value of a variable, as it actually patches the source code. However,
it also required a significant amount of computation time for off-line optimisation. As far as we know, this
is the first time the optimisation of a non-functional behaviour is completely amortised and injected into
the target system.

6 Conclusion and Future Work

This paper introduces the concept of amortised optimisation and presented an implementation called
NIA3CIN. We observe that any optimisation loop can be reconstructed as a state-based model, which can
be executed step by step: this allows us to amortise the execution of the optimisation itself. We presented
a case study that requires hardware dependent parameter tuning, for which NIA3CIN successfully delivers
performance improvement.

Future work include more serious evaluation of NIA3CIN approach as well as extension of the technique.
The more frequently a program is used, the more benefit we can harvest by making it more efficient. At
the same time, the more frequently a program is used, the more fitness evaluation it provides for NIA3CIN,
making the optimisation stronger. We note that cloud computing, where many users execute the same
software system in a large scale, fits this profile very well. The extension will mainly consider two things.
First, NIA3CIN can only handle side-effect free variables whose value will may affect non-functional
properties but not the functional correctness. Handling variables that can potentially affect functional
correctness will require more careful approach. Second, concentrated and highly connected server farms
for cloud computing will provide an ideal ground for population-based optimisation; here, each machine
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will asynchronously perform fitness evaluations, results of which can be either shared in peer to peer
fashion, or by a central host that controls the entire optimisation.
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