
Evolving Human Competitive Spectra-Based
Fault Localisation Techniques

Shin Yoo

University College London

Abstract. Spectra-Based Fault Localisation (SBFL) aims to assist de-
bugging by applying risk evaluation formulæ (sometimes called suspi-
ciousness metrics) to program spectra and ranking statements according
to the predicted risk. Designing a risk evaluation formula is often an in-
tuitive process done by human software engineer. This paper presents a
Genetic Programming (GP) approach for evolving risk assessment for-
mulæ. The empirical evaluation using 92 faults from four Unix utilities
produces promising results1. Equations evolved by Genetic Programming
can consistently outperform many of the human-designed formulæ, such
as Tarantula, Ochiai, Jaccard, Ample, and Wong1/2, up to 6 times. More
importantly, they can perform equally as well as Op2, which was recently
proved to be optimal against If-Then-Else-2 (ITE2) structure, or even
outperform it against other program structures.

1 Introduction

Despite the advances in software testing techniques, faults still prevail in many
software systems and debugging remains a hard task. Fault localisation aims to
guide the programmer towards the program statement that contains the fault,
using the information observed during test execution.

Spectra-Based Fault Localisation (SBFL) is a class of fault localisation tech-
niques that uses program spectra (i.e., a summary of program’s execution trace)
to predict the likelihood of each program statement containing the fault [1–3].
The key element is a risk evaluation formula, or sometimes a suspiciousness met-
ric, that converts the program spectra to relative risk value for each statement.
SBFL subsequently ranks program statements according to the relative risk: the
programmer can investigate the source code following the rank order. The in-
tuition is that the faulty statement will be high in the ranking, reducing the
number of statements the programmer has to check.

The performance of a SBFL technique depends mostly on the quality of the
risk evaluation formula. The majority of the existing, widely studied formulæ are
either inherited from other fields [4, 5] or designed by human intuition [1, 6–9]:
there is no guarantee that one formula is optimal for all classes of faults. Design-
ing a risk evaluation formula that performs universally well against all possible

1 The program spectra data used in the paper, as well as the complete empirical results,
are available from: http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html.

combination of various program structures, test suites, and potential locations
of faults remains a difficult task for a human. The only available methodology
is that of trial and error: to design intuitively and evaluate empirically. Recent
work includes efforts to design a risk evaluation formula that can be proven to
be optimal, but only with respect to the case that the fault is contained within
a specific program structure [8].

We presents an alternative approach: to evolve risk evaluation formulæ from
program spectra directly. Using program spectra from test executions and known
fault locations, we use Genetic Programming (GP) to evolve risk evaluation for-
mulæ. By using a non-biased sample of known faults as the training data for GP,
we try to obtain formulæ that are effective against various program structures.
It is true that the evolved formulæ will be only as good as the input data for the
GP. However, compared to proving optimality of risk evaluation formulæ against
all possible program structures, providing common program structures that con-
tain fault is a significantly easier task. In fact, this bears a strong resonance to
the mantra of Search Based Software Engineering (SBSE) [10], namely:

It is easier to compare solutions and choose the better one than to design
a perfect solution from the scratch.

This paper introduces an evolutionary approach to designing risk evaluation
formulæ for SBFL. GP uses program spectra from four Unix utilities from Soft-
ware Infrastructure Repository [11] and the location information of 92 injected
faults. The contributions of this paper are as follows:

– The paper presents the first evolutionary approach to generating risk evalu-
ation formulæ for SBFL. All existing formulæ have been manually designed,
often relying only on intuition. The introduced approach is evaluated with
empirical studies, using test spectra data from real world Unix utilities.

– The empirical evaluation shows that GP-generated risk evaluation formulæ can
outperform those designed by human. GP-generated formulæ can outperform
some of the widely studied formulæ. Moreover, GP-generated formulæ can
perform equally well or even better than an existing formula that has been
proven to be optimal against a specific program structure. The equal per-
formance provides evidence that GP can match the human design efforts;
the outperformance provides evidence that GP can produce formulæ that
are very effective for structures against no proof of optimality is currently
available.

– All data used for the empirical study in the paper have been made available
online to encourage replication and further research.

The rest of the paper is structured as follows. Section 2 introduces the con-
cept of Spectra-Based Fault Localisation and the role of risk evaluation for-
mulæ. Section 3 explains how we formulate the design of risk evaluation for-
mulæ using Genetic Programming. Section 4 describes the experimental setup.
Section 5 presents and analyses the results from the empirical evaluation. Sec-
tion 6 presents the related work. Section 7 concludes and discusses future work.

2 Spectra-Based Fault Localisation

2.1 Basic Concept

Fault location aims to reduce the cost of debugging by guiding the process of
searching for the location of the fault in the program. Various techniques rely on
different software artefact to aid the developer: delta debugging [12,13] uses the
cause-effect chain between the test input and the failure to guide the developer to
the specific part of test input that causes the failure. Program Dependence Graph
(PDG) has been used to construct a causal inference model for the location of
fault [14].

One branch of fault localisation techniques that have attracted a significant
amount of interest is Spectra-Based Fault Localisation (SBFL). Program spec-
tra is a summary of a set of program executions [15]. For many of the SBFL
techniques, we observe the execution of the test suite for System Under Test
(SUT). Suppose SUT has n statements, and the test suite contains m test cases:
the program spectrum for SBFL can be described as a matrix of n rows and 4
columns. Each row corresponds to individual statement of SUT, and contains
four counters: (ep, ef , np, nf). Counter ep and ef represent the number of times
the corresponding program statement has been executed by tests, with pass and
fail as a result respectively. Similarly, np and nf represent the number of times
the corresponding program statement has not been executed by tests, with pass
and fail as a result respectively2. SBFL techniques subsequently use a risk eval-
uation formula, which is a formula based on the four counters, to predict the
relative risk of each statement containing the fault. Compared to the case in
which the developer investigates the structural elements in the order from s1 to
s9, the ranking according to Tarantula produces 66.66% reduction in debugging
effort (i.e. the developer will encounter s7 6 elements earlier.

Tarantula =

ef
ef+nf

ep
ep+np

+
ef

ef+nf

(1)

For example, Table 1 illustrates how the Tarantula metric [2], defined in
Equation 1, can be applied to a small exemplar program spectrum. Suppose
the structural element s7 contains the fault. The coverage relationship between
structural elements and the given test suite T = {t1, t2, t3} is given in the second
column, with the corresponding test results. The Spectrum column contains the
program spectrum data for T ; the column Tarantula contains the resulting risk
evaluation metric values. Finally, the column Rank contains the ranking of struc-
tural elements according to the Tarantula metric values. The faulty statement,
s7, is assigned with the highest Tarantula metric value, and therefore ends up
in the first place.

2.2 Risk Evaluation formulæ

The effectiveness of a SBFL technique is determined by the risk evaluation for-
mula, such as Equation 1. All existing formulæ are generated by human [8].

2 The sum of ep, ef , np, and nf should be m.

Table 1. Motivating Example: the faulty statement s7 achieves the 1st place when
ranked according to the Tarantula risk evaluation formula in Eq 1.

Structural Test Test Test Spectrum Tarantula Rank
Elements t1 t2 t3 ep ef np nf

s1 • 1 0 0 2 0.00 9
s2 • 1 0 0 2 0.00 9
s3 • 1 0 0 2 0.00 9
s4 • 1 0 0 2 0.00 9
s5 • 1 0 0 2 0.00 9
s6 • • 1 1 0 1 0.33 4
s7 (faulty) • • 0 2 1 0 1.00 1
s8 • • 1 1 0 1 0.33 4
s9 • • • 1 2 0 0 0.50 2

Result P F F

Table 7 contains several of the most widely studied formulæ. Interestingly, Jac-
card [4] and Ochiai [5] were first studied in Botany and Zoology respectively
but have been subsequently studied in the context of fault localisation [3, 8].
Tarantula was originally developed as a visualisation method [1, 7] but also in-
creasingly considered as an SBFL risk evaluation formula independent from vi-
sualisation [2, 16]. AMPLE [6] and three different versions of Wong metric [9]
have been introduced specifically for fault localisation.

Op1 and Op2 metrics are recent additions to SBFL techniques that showed
an interesting research direction: these metrics are proven to produce optimal
ranking, as long as the fault is located in a specific program structure (two
consecutive If-Then-Else blocks, called ITE2) [8]. Although the proof does not
guarantee that Op1 and Op2 are optimal for all locations of faults (and not just
limited to ITE2), the empirical evaluation showed that both Op1 and Op2 are
very strong formulæ.

Table 2. Risk Evaluation formulæ

Name Formula Name Formula

Jaccard [4]
ef

ef+nf+ep Ochiai [5]
ef√

(ef+nf)·(ef+ep)

Tarantula [7]

ef
ef+nf

ep
ep+np

+
ef

ef+nf

AMPLE [6] | ef
ef+nf

− ep
ep+np

|

Wong1 [9] ef Wong2 [9] ef − ep

Wong3 [9] ef − h, where h =

ep if ep ≤ 2

2 + 0.1(ep − 2) if 2 < ep ≤ 10

2.8 + 0.001(ep − 10) if ep > 10

Op1 [8]

{
−1 if nf > 0

np otherwise
Op2 [8] ef − ep

ep+np+1

2.3 Designing Risk Evaluation formulæ

This subsection discusses why Genetic Programming can be an ideal tool for
designing risk evaluation formulæ.

Difficulties in Formal Approaches: Although the optimality proof of Naish
et al. [8] presents a complete approach towards designing a risk evaluation for-
mula, it will require significant human efforts to provide optimality proofs for
a wider range of program structures. Moreover, SBFL can be applied to other
testing criteria such as the existing work in concurrency testing [16], for which
the possibility of optimality proof remains unknown.
Data-driven Iteration: Barring the formal proof of optimality, the most intu-
itive process of designing a risk evaluation formula would be an iterative mod-
ification of a candidate formula, against as a wide range of spectra datasets as
possible, until its performance reaches an acceptable level. Not only the amount
of data will burden the human designer, but this process also is, in fact, how GP
operates, i.e., a data-driven, systematic trial-and-error.
Providing Insights: The goal of using GP for designing risk evaluation for-
mulæ does not have be to replace human designs completely. It can actually be
a powerful tool that the human software engineer can use to explore the design
space with, to identify building blocks of better formulæ, and to gain insights
into the specific domain under consideration.

2.4 Research Questions

Based on the discussions in Section 2.3, this paper investigates the performance
of GP-designed risk evaluation formulæ for structural SBFL.

– RQ1. Effectiveness: How much debugging effort can be reduced by the
GP-generated risk evaluation formulæ compare to existing human-designs?

– RQ2. Design Space: How much diversity is observed among the GP-
generated formulæ? Does GP re-discover human-designed formulæ? How
much problem does GP-bloat cause?

– RQ3. Insights: Are there design insights we can obtain by analysing the
GP-generated formulæ? Do more complex formulæ perform better? Are cer-
tain spectra elements more important than the others?

RQ1 directly concerns the performance of the GP-evolved risk evaluation
formulæ. It will be answered by performing statistical hypothesis testing to the
reduction of debugging effort produced by GP and human generated formulæ.
RQ2 aims to investigate how much diversity can be allowed in the design space.
It will be answered by comparing the GP-generated formulæ, both the whole
and its parts, to the existing ones. Finally, RQ3 is about the design insights we
can expect to learn by evolving risk evaluation formulæ using GP.

3 Genetic Programming for SBFL

3.1 Representation

We use a simple tree-based representation and a set of simple operators on the
ground that they can sufficiently represent most of the existing risk evalua-
tion formulæ. Table 3 presents the GP operators used in the paper. Addition

(gp add), subtraction (gp sub), and multiplication (gp mul) do not require any
treatment, because these operations cannot result in numerical exceptions. The
division operator gp div will return 1 when division by zero error is expected.
Similarly, the square root operator gp sqrt uses the absolute value of the given
input. For terminal symbols, we use the program spectra data {ep, ef , np, nf},
as well as one constant, 1.

Table 3. List of GP operators

Operator Node Definition

gp add(a, b) a + b

gp sub(a, b) a - b

gp mul(a, b) ab

gp div(a, b) 1 if b = 0, ab otherwise

gp sqrt(a)
√
|a|

3.2 Fitness Function

The aim of risk evaluation formula is not only to assign high risk value to the
faulty statement, but also to ensure that the assigned high risk value results
in a high ranking of the faulty statement. That is, the performance of a risk
evaluation formula is measured by the relative position of the faulty statement
when ranked by the formula.

In literature, this relative measurement is often referred to as the Expense
metric [17], which is a normalised ranking of the faulty statement. Given a risk
evaluation formula τ , a program p, and a fault b in p, the Expense metric E is
calculated as in Equation 2:

E(τ, p, b) =
Ranking of b according to τ

Number of statements in p
∗ 100 (2)

Expense is an a-posteriori, evaluative metric: it can be calculated only when
the faulty statement is known. Because we are evolving a risk evaluation formula
from locations of the known faults, Expense can be used as a fitness function. To
avoid over-fitting to the location of a specific fault, we calculate Expense metric
for a candidate formula using multiple faults from different programs and take
the average as the fitness function. For a set of n known faults B = {b1, . . . , bn}
from corresponding n programs P = {p1, . . . , pn}, the fitness value of a candidate
risk evaluation formula τ is calculated as follows:

fitness(τ,B, P) =
1

n

n∑
i=1

E(τ, pi, bi) (to be minimised) (3)

Depending on the risk evaluation formula, multiple statements may get as-
signed the same risk evaluation value and, thereby, tie in the ranking. Because it
is not immediately clear what will be the appropriate tie-breaker for a candidate
formula, we do not break ties and assign the most conservative ranking to all

tied statements, which is equal to the sum of the number of the tied statements
and the number of statements ranked before them [17,18]. In the context of the
fault localisation, this means that we assume the developer has to check all of
the tied statements to locate the fault.

4 Experimental Setup

4.1 Subjects

Table 4 lists the subject programs whose faults are studied in the paper: flex (a
lexical analyzer), grep (a text-search utility), gzip (a compression utility), and
sed (a stream text editor). All four programs are obtained from Software Infras-
tructure Repository (SIR) [11] along with their test suites. Statement coverage
information was collected using the GNU profiler, gcov version 4.3.2 on Linux
version 2.6.27. We use the test suites provided by SIR.

Table 4. Subject Programs from SIR

Subject Number of Tests Lines of Code Executable Lines of Code Number of Faults

flex 567 12,407–14,244 3,393–3,965 47
grep 199 12,653–13,363 3,078–3,314 11
gzip 214 6,576– 7,996 1,705–1,993 18
sed 360 8,082–11,990 1,923–2,172 16

SIR provides a total of 219 (both real and seeded) faults across the five
versions of the four subject programs [11]. We exclude 35 of these faults because
these faults were unreachable when compiled for the experimental environment,
and additional 92 faults because these are not detected by the chosen test suites.
This leaves 92 faults, the distribution of which are listed in Table 4.

4.2 Implementation & Configuration

We use pyevolve [19] version 0.6 to implement the Genetic Programming. The
algorithm was executed using Python runtime version 2.7.3. The population size
was iteratively configured to 40. The initialisation uses the ramping method with
the maximum tree depth of 4: the maximum tree depth was chosen to be able
to express the most of the existing formalæ. The stopping criterion is a fixed
run of 100 generations. The GP is configured with a rank selection operator, a
single point crossover operator with the rate of 1.0, and a subtree replacement
mutation operator with the rate of 0.08.

4.3 Evaluation

The Genetic Programming algorithm was repeated 30 times to cater for its
stochastic nature. Each individual run of the GP uses a random sample of 20
faults out of 92 to evolve a risk evaluation formula; the remaining 72 faults are
reserved for evaluation purposes.

We use Vargha & Delaney’s A-test [20] to compare the Expense metric values
of GP-evolved formulæ to those of existing ones. Vargha & Delaney’s A-test is a
non-parametric statistical test for determining stochastic superiority/inferiority

Table 5. Comparison of mean Expense for 72 faults in evaluation sets. Rows in bold
correspond to GP-results that perform as well as or better than any human-designed
formulæ.

ID GP Op1 Op2 Ochiai AMPLE Jacc’d Tarant. Wong1 Wong2 Wong3

GP01 5.73 9.20 5.30 32.66 10.96 6.10 15.06 22.24 17.10 6.63
GP02 12.04 9.67 5.72 32.60 11.91 6.63 14.92 23.45 19.49 8.92
GP03 14.46 11.35 6.11 29.99 12.18 6.99 15.68 23.55 18.55 8.85
GP04 7.80 9.70 4.46 30.98 8.83 5.03 13.88 22.62 14.64 6.33
GP05 9.35 11.04 5.80 29.95 10.63 6.42 14.46 23.15 18.54 8.53
GP06 12.15 11.11 5.87 28.02 12.51 6.79 15.35 23.12 16.70 7.01
GP07 8.93 11.18 5.94 29.53 12.19 6.85 14.81 23.88 19.74 8.68
GP08 6.32 10.23 6.34 30.91 11.67 7.04 16.21 23.54 19.94 9.05
GP09 9.66 10.58 5.33 31.56 11.40 6.17 14.06 22.58 18.31 8.20
GP10 6.31 11.55 6.31 29.83 12.51 7.16 15.79 22.99 19.74 8.56

GP11 5.83 11.07 5.83 33.52 12.12 6.69 16.77 22.05 18.16 6.96
GP12 12.09 8.84 6.23 32.15 11.65 7.02 16.65 22.91 19.42 9.09
GP13 5.11 9.05 5.11 31.67 10.27 5.90 15.92 22.03 17.00 6.69
GP14 9.91 8.52 5.91 31.69 11.10 6.55 15.88 23.15 18.10 8.65
GP15 5.62 9.54 5.59 33.02 10.23 6.19 15.16 23.85 17.17 8.44
GP16 6.79 8.32 5.71 30.52 10.74 6.41 14.60 23.06 18.36 8.42
GP17 7.67 11.46 6.22 33.62 12.06 6.98 16.85 22.44 17.94 8.59
GP18 9.42 10.78 5.54 34.17 11.46 6.33 15.45 22.17 17.46 8.14
GP19 6.42 9.01 5.11 31.28 10.18 5.78 15.03 22.84 15.26 7.79
GP20 5.69 10.93 5.69 29.34 10.88 6.38 15.23 23.41 19.30 8.42

GP21 10.17 10.13 6.24 29.82 10.86 6.89 15.70 23.01 19.85 9.43
GP22 7.58 8.50 5.91 28.06 10.46 6.60 13.67 23.25 18.60 8.63
GP23 6.14 10.76 5.52 30.86 10.57 6.16 14.69 21.77 16.90 7.25
GP24 9.18 10.15 6.21 28.74 12.53 7.10 15.76 23.41 20.16 8.35
GP25 9.34 10.19 6.29 32.56 12.36 7.18 17.59 22.63 20.19 9.48
GP26 6.38 11.62 6.38 32.83 12.27 7.25 18.28 23.77 16.18 7.69
GP27 9.75 8.53 5.89 33.28 12.01 6.85 16.42 22.99 19.23 7.81
GP28 5.56 9.18 5.25 30.02 11.18 6.15 13.52 22.86 17.17 6.85
GP29 7.16 10.12 6.17 34.17 12.83 7.14 17.00 22.94 20.18 8.88
GP30 10.68 9.10 5.14 30.02 10.17 5.78 14.49 22.79 17.09 8.34

of one sample X over another sample Y : the value of A is the probability that a
single subject taken randomly from group X has higher/lower value than another
single case randomly taken from group Y . For A(X > Y), the value of A closer
to 1 represents a higher probability of X > Y , 0 a higher probability of X < Y ,
and 0.5 no effect (i.e., X = Y).

However, the statistical interpretation of the results should be treated with
caution. There is no guarantee that the studied programs and faults are represen-
tative of all possible programs and faults and, therefore, it is not clear whether
they are legitimate samples of the entire group. On the other hand, if the cost
of designing risk evaluation formulæ is significantly reduced by the use of GP,
the possibility of project-specific formalæ should not be entirely ruled out.

5 Results and Analysis

5.1 Effectiveness

Table 5 contains the mean Expense values for all 30 GP-evolved formulæ and
human-designed formulæ in Table 73. Each row reports the mean Expense values

3 The complete results for individual faults are available from: http://www.cs.ucl.
ac.uk/staff/s.yoo/evolving-sbfl.html.

from 72 faults in corresponding evaluation set. Note that the evaluation set differs
between GP runs, as the training set is sampled randomly to avoid bias.

Rows in bold typefaces represent the GP runs that produced formulæ that
performed as well as or better than all of the human-designed formulæ: this was
observed 6 times out of 30 runs. The human-designed formula that performs
the best is Op2; its relative performance confirms the trend observed in the
previous work [8]. In 5 runs out of the aforementioned 6 (GP10, GP11, GP13,
GP20, and GP26), GP-evolved formulæ always produce the same ranking, and
subsequently the same Expense value, as Op2 and outperforms all other human-
designed formulæ. In GP8, the remaining one run, the GP-evolved formula does
not completely agree with Op2, but the mean Expense value from GP-evolved
formula is lower than that from Op2.

The biggest improvement over human-designed formula is found in GP13
between GP and Ochiai: the expense from GP-evolved formula is less than one
sixth of that from Ochiai. In fact, Ochiai, Tarantula, Wong1, and Wong2 are
outperformed by GP in all runs. Based on this observation, we focus our com-
parative statistical analysis to the better performing formulæ: Op1, Op2, Ample,
Jaccard, and Wong3. Table 6 presents the statistical analysis of the comparison
between GP-evolved formulæ and the five human-designed formulæthat can pro-
duce Expense value below 10. Column A contains Varghar & Delaney’s A test
results, with which we test whether GP-based Expenses are lower than those
based on existing formulæ. Column Count contains a tuple (x/y/z): x is the
number of faults for which GP produces lower Expense than the corresponding
human-designed formula, y is the number of faults for which the Expense values
are equal, and finally z is the number of faults for which GP produces higher
Expense4. Combined with the A-test, these numbers provide a summary of how
GP-evolved formulæ compare to existing ones.

The overall trend in Table 6 is that the results from A-test are mostly close
to 0.5, suggesting that there is no overall difference in Expense values produced
by GP and other formulæ overall. This confirms the results in Table 5: GP-
evolved formulæ perform as equally well as human-designed formulæ. However,
observing the details in Column Count reveals that there exist faults for which
GP outperforms existing formulæ and vice versa. Figure 1 provides a scatterplot
with fault-by-fault comparison between some of GP-evolved formulæ and other
metrics5. GP08 produces lower Expense values for only 3 faults and higher values
for 10, but the mean Expense of GP08 is still lower(Table 5). GP11 performs
exactly as well as Op2 (i.e., the rankings are identical). For GP15 and GP27, the
story is mixed: GP15 comfortably outperforms Tarantula, but GP27 produces
Expense values significantly higher than those from Jacard for a few faults.

Considering that the aim of our approach is to design a formula that will
be repeatedly used, we argue that it is not unrealistic to apply GP to existing
program spectra data repeatedly and choose the best performing outcome: the
cost of multiple GP execution will be amortised over the saved effort in fault lo-

4 Therefore x + y + z is equal to 72, i.e., the size of the evaluation set.
5 Scatterplot comparisons for all GP-evolved formulæ are also available online.

Table 6. Vargha & Delaney’s A-test between GP and the better performing formulæ.
Rows in bold correspond to GP-results that perform as well as or better than any
human-designed formulæ.

ID Op1 Op2 AMPLE Jaccard Wong3
A Count A Count A Count A Count A Count

GP01 0.51 3/63/6 0.50 2/64/6 0.53 25/46/1 0.51 22/47/3 0.50 7/60/5
GP02 0.38 9/16/47 0.35 8/16/48 0.39 22/8/42 0.36 19/10/43 0.39 13/15/44
GP03 0.45 4/52/16 0.42 0/56/16 0.45 21/33/18 0.42 20/33/19 0.44 5/54/13
GP04 0.37 11/9/52 0.34 7/9/56 0.37 16/9/47 0.34 10/9/53 0.37 9/9/54
GP05 0.49 6/53/13 0.47 4/53/15 0.49 19/42/11 0.47 15/41/16 0.50 10/51/11
GP06 0.49 4/48/20 0.47 3/48/21 0.50 6/56/10 0.47 5/48/19 0.48 6/46/20
GP07 0.46 6/38/28 0.44 2/42/28 0.47 19/30/23 0.44 14/31/27 0.46 7/38/27
GP08 0.51 3/59/10 0.50 3/59/10 0.54 25/47/0 0.51 26/46/0 0.52 9/54/9
GP09 0.50 6/51/15 0.48 2/55/15 0.50 17/43/12 0.48 17/42/13 0.50 4/53/15
GP10 0.52 4/67/1 0.50 0/71/1 0.53 23/45/4 0.50 24/44/4 0.51 8/63/1

GP11 0.52 4/68/0 0.50 0/72/0 0.53 24/45/3 0.50 23/46/3 0.52 5/67/0
GP12 0.48 2/53/17 0.47 2/53/17 0.50 19/46/7 0.48 19/45/8 0.49 2/55/15
GP13 0.51 3/69/0 0.50 0/72/0 0.52 23/47/2 0.50 22/48/2 0.50 6/66/0
GP14 0.50 2/59/11 0.49 2/59/11 0.52 20/49/3 0.49 18/49/5 0.50 5/56/11
GP15 0.51 3/63/6 0.50 3/63/6 0.51 21/48/3 0.50 21/48/3 0.52 10/56/6
GP16 0.50 2/58/12 0.49 2/58/12 0.53 22/47/3 0.50 17/50/5 0.52 10/53/9
GP17 0.48 5/50/17 0.45 1/53/18 0.49 22/33/17 0.46 18/35/19 0.48 8/49/15
GP18 0.50 4/61/7 0.48 0/65/7 0.50 21/42/9 0.48 20/43/9 0.50 2/64/6
GP19 0.50 4/49/19 0.49 3/49/20 0.52 20/46/6 0.50 16/46/10 0.51 8/49/15
GP20 0.52 4/68/0 0.50 0/72/0 0.52 23/46/3 0.50 23/46/3 0.53 9/63/0

GP21 0.50 3/61/8 0.49 3/61/8 0.51 22/46/4 0.49 20/46/6 0.51 9/55/8
GP22 0.50 2/67/3 0.49 0/69/3 0.52 22/47/3 0.50 20/49/3 0.52 5/65/2
GP23 0.52 4/63/5 0.50 0/67/5 0.52 23/45/4 0.50 19/47/6 0.52 5/64/3
GP24 0.51 3/56/13 0.50 3/56/13 0.52 20/50/2 0.50 19/49/4 0.51 6/54/12
GP25 0.48 11/46/15 0.47 8/47/17 0.50 17/37/18 0.48 18/36/18 0.50 12/43/17
GP26 0.52 4/68/0 0.50 0/72/0 0.52 23/46/3 0.50 22/47/3 0.51 5/67/0
GP27 0.51 2/58/12 0.50 2/58/12 0.52 21/51/0 0.50 11/51/10 0.51 6/54/12
GP28 0.52 3/60/9 0.51 3/60/9 0.53 22/50/0 0.51 21/49/2 0.52 8/57/7
GP29 0.51 6/45/21 0.49 5/45/22 0.52 19/41/12 0.50 18/39/15 0.52 11/42/19
GP30 0.50 3/60/9 0.49 1/62/9 0.50 18/46/8 0.49 17/46/9 0.51 4/59/9

calisation. Therefore, we answer RQ1 positively: GP-evolved risk evaluation for-
mulæ can reduce debugging effort more effectively than many of human-designed
formulæ, sometimes over 6 times. For many faults, GP-evolved formulæ perform
as equally well as the best known formula, Op2. Finally, for some faults, GP-
evolved formulæ can outperform even Op2.

5.2 Design Space

Table 7 contains the GP-evolved formulæ in their refined forms. The original
solutions were refined by removing syntactic bloats (such as nf − nf) and im-
proving readability. Explicit bloats were only observed only twice among the 30
formulæ. Since we are evolving formulæ rather than programs, GP-trees do not
contain non-reachable nodes. Therefore, it is not clear whether any subcompo-
nents of evolved formulæ can be definitely labelled as bloats, apart from the
explicit, syntactic ones.

The GP-evolved formulæ show strong diversity. There is only one formula
that is evolved twice by the GP: both GP14 and GP24 evolved ef +

√
np.

The same subcomponent is found in GP02, GP22, and GP28. Finally, a sim-
ilar pattern, (aexf + bnyp), where a, b ∈ I, x, y ∈ { 12 , 1,

3
2 , 2, 3}, is also frequently

●
●
●

●

●●

●

●

●●●●●●●●●

●

●
●

●

●

●

●

●

●●●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●●●

●

●●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

GP08

op
2

3

10

59

●
●

●

●●

●

●

●
●●●●●●●●

●

●
●

●

●

●
●

●

●

●●●
●

●●

●

●●

●
●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

GP11

op
2

0

0

72

●

●

●

●●

●

● ●

●●●●●
●
●

●●

●
●

●

●

●
●●

●

●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

GP15

ta
ra

nt
ul

a

61

1

10

●●●

●

●

●●
●

●

●
●●●●●●●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

GP27

ja
cc

ar
d

11

10

51

Fig. 1. Scatterplot comparisons of Expense for faults in evaluation set. Each dot rep-
resents a fault: the x-axis represents Expense produced by GP-evolved formula, and
the y-axis by the specified formula. The solid line represents y = x: dots above the line
correspond to faults which GP-evolved formulæ can rank higher. The upper two plots
show that GP can perform equally or better than Op2. The lower left plot shows that
GP can outperform Tarantula for most of the studied faults; the lower right plot shows
a mixed results for GP against Jaccard.

observed as in GP01/09/12/21 (which contain ef + np), GP08 (2ef + 3np),

GP11/22/25/26 (ae2f +
√
np), GP16 (e

3
2

f + np), and GP18 (e3f + 2np). Interest-
ingly, both ef +np and

√
ef + np are studied in existing literature [8]. However,

GP did not rediscover these two metrics in their exact forms; rather, GP evolved
variations of these formulæ as parts of larger formulæ. Apart from this, GP did
not rediscover any of the existing formulæ.

To answer RQ2, the level of diversity observed in GP-evolved formulæ sug-
gests the possibility that there may exist risk evaluation formulæ that are differ-
ent from, but at least as effective as, the existing formulæ designed by the human.
The observation made in Section 5.1, i.e., the fact that some GP-evolved for-

mulæ can outperform existing ones for certain faults, provides further evidence
that there may exist more effective formulæ for various program structures other
than ITE2. However, the existence of common subcomponents suggest that a
hybrid design approach may be even more successful: such an approach would
introduce existing formulæ or partially-designed subcomponents into the GP
population to assist the evolution.

5.3 Insights

Analysis of GP-evolved formulæ in Table 7 suggests that the most significant
program spectra element, with respect to the faults we have studied, is ef , i.e.,
the number of times a statement has been executed by failing tests. In all of
the 8 GP-evolved formulæ that are equally as effective as Op2 in Table 5, ep
is the element that is either the only component proportional to the risk eval-
uation value, or the component that is the most dominant. The discussion of
common subcomponent in Section 5.2 suggests that np is perhaps the second
most significant element. Similarly, the least significant element appears to be
nf .

These observations do confirm our intuitions about the relationship between
program spectra elements and fault localisation. A statement that contains fault
will display a relatively higher ef value (i.e., frequently covered by failing tests)
and a relatively lower np value (i.e., less frequently covered by passing tests). In
fact, human-designed formulæ such as Wong1/2/3 and Op2 are also designed to
translate higher ef and lower np values to higher rankings.

However, there are also some new design insights that can be gained by ob-
serving GP-evolved formulæ, which provide answers to RQ3. Most interestingly,
it appears that ratio-type subcomponents (such as the ratio of a statement be-
ing covered by failing tests in Tarantula formula,

ef
ef+nf

) are not necessarily

required for a well performing formula: polynomials of spectra elements often
seem to be sufficient. Similarly, the results achieved by polynomials of spectra
elements suggests that specific constants, such as those found in Wong3, may
not be necessary for designing a well performing formula.

6 Related Work

Various Spectra-Based Fault Localisation techniques have been developed to
reduce the cost of debugging. One of the most widely studied risk evaluation
formula, Tarantula, was initially developed as a visualisation aid for debugging
process [1, 7]: subsequently, it has been studied independently from the visuali-
sation [2,16,18]. Other notable formulæ include the family of Wong metrics [9],
Statistical Bug Isolation (SBI) [21], and AMPLE [6]. Recently, Naish et al. pro-
vided an optimality proof against a specific program structure (ITE2: two con-
secutive If-Then-Else blocks) for their proposed metrics, Op1 and Op2 [8].
Naish et al. also provides an empirical evaluation of their metrics against a wide
range of other formulæ, albeit using a set of relatively small subject programs.

Table 7. GP-evolved risk evaluation formulæ. Trivial bloats, such as nf − nf , were
removed.

ID Refined Formula ID Refined Formula

GP01 ef (np + ef (1 +
√
ef)) GP16

√
e

3
2

f + np

GP02 2(ef +
√
np) +

√
ep GP17

2ef+nf

ef−np
+

np√
ef
− ef − e2f

GP03
√
|e2f −

√
ep| GP18 e3f + 2np

GP04
√
| np

ep−np
− ef | GP19 ef

√
|ep − ef + nf − np|

GP05
(ef+np)

√
ef

(ef+ep)(npnf+
√
ep)(ep+np)

√
|ep−np|

GP20 2(ef +
np

ep+np
)

GP06 efnp GP21
√
ef +

√
ef + np

GP07 2ef (1 + ef + 1
2np

) + (1 +
√

2)
√
np GP22 e2f + ef +

√
np

GP08 e2f (2ep + 2ef + 3np) GP23
√
ef (e2f +

np

ef
+
√
np + nf + np)

GP09
ef
√
np

np+np
+ np + ef + e3f GP24 ef +

√
np

GP10
√
|ef − 1

np
| GP25 e2f +

√
np +

√
ef√

|ep−np|
+

np

(ef−np)

GP11 e2f (e2f +
√
np) GP26 2e2f +

√
np

GP12
√
ep + ef + np −

√
ep GP27

np

√
(npnf−ef)

ef+npnf

GP13 ef (1 + 1
2ep+ef

) GP28 ef (ef +
√
np + 1)

GP14 ef +
√
np GP29 ef (2e2f +ef +np)+

(ef−np)
√
npef

ep−np

GP15 ef +
√
nf +

√
np GP30

√
|ef − nf−np

ef+nf
|

All existing metrics have been designed by human; this paper present the first
GP-based approach to the design of risk evaluation formulæ, reformulating it
as a predictive modelling based on GP. Machine learning techniques have been
also applied to fault localisation work, but the aim was to classify failing tests
together rather than to identify the location of the fault directly [22].

Although SBFL originally started as a debugging aid for human developers,
the technique is increasingly used to enable other automated Search-Based Soft-
ware Engineering (SBSE) techniques. Goues et al. use SBFL to identify the parts
of a program that needs to be automatically patched [23]. Yoo et al. use SBFL to
measure the Shannon entropy of fault locality, so that the test suite can be pri-
oritised for faster fault localisation [24]. GP may be able to help these techniques
by evolving SBFL techniques with a specific set of characteristics, improving the
synergy between predictive modelling and SBSE even further [25].

Other approaches towards fault localisation include slicing [26], consideration
of test similarity [27, 28], delta debugging [12, 13], and causal inference [14].
While this paper only concerns the spectra-based approach, the positive results
suggest that GP may be successfully employed to evolve a wider range of fault
localisation techniques.

7 Conclusion

This paper reports the first application of Genetic Programming to evolving
risk evaluation formulæ for Spectra-Based Fault Localisation. We use a simple
tree-based GP to evolve risk evaluation formulæ that take program spectra ele-
ments as terminals. Empirical evaluation based on 92 different faults from four
Unix utilities shows three important findings. First, GP-evolved formulæ can
outperform widely studied human-designed formulæ by up to 5.9 times. Second,

GP-evolved formulæ can perform optimally against the ITE2 program structure,
for which existing formulæ, Op1 and Op2, have been proven to be optimal.
Finally, GP-evolved formulæ can outperform Op1 and Op2 for certain studied
faults.

Future work will include the use of more sophisticated GP representation (so
that GP can evolve conditional formulæ as in Wong3), the inclusion of elements
other than program spectra (e.g., code churn, dependency, or data-flow informa-
tion), and the investigation of the possibility for the evolution of project-specific
formalæ.

References

1. J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information to
assist fault localization,” in Proceedings of the 24th International Conference on
Software Engineering. New York, NY, USA: ACM, 2002, pp. 467–477.

2. J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic
fault-localization technique,” in Proceedings of the 20th International Conference
on Automated Software Engineering (ASE2005). ACM Press, 2005, pp. 273–282.

3. R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy of spectrum-
based fault localization,” in Proceedings of the Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION. IEEE Computer
Society, 2007, pp. 89–98.

4. P. Jaccard, “Étude comparative de la distribution florale dans une portion des
Alpes et des Jura,” Bulletin del la Société Vaudoise des Sciences Naturelles, vol. 37,
pp. 547–579, 1901.

5. A. Ochiai, “Zoogeographic studies on the soleoid fishes found in Japan and its
neighbouring regions,” Bulletin of the Japanese Society of Scientific Fisheries,
vol. 22, no. 9, pp. 526–530, 1957.

6. V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug localization with ample,”
in Proceedings of the sixth international symposium on Automated analysis-driven
debugging, ser. AADEBUG’05. New York, NY, USA: ACM, 2005, pp. 99–104.

7. J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for fault localization,”
in Proceedings of ICSE Workshop on Software Visualization, 2001, pp. 71–75.

8. L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based software
diagnosis,” ACM Transactions on Software Engineering Methodology, vol. 20, no. 3,
pp. 11:1–11:32, 2011.

9. W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization using code
coverage,” in Proceedings of the 31st Annual International Computer Software and
Applications Conference - Volume 01, ser. COMPSAC ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 449–456.

10. M. Harman and B. F. Jones, “Search based software engineering,” Information
and Software Technology, vol. 43, no. 14, pp. 833–839, Dec. 2001.

11. H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact.” Empirical
Software Engineering, vol. 10, no. 4, pp. 405–435, 2005.

12. A. Zeller, “Automated debugging: Are we close?” IEEE Computer, vol. 34, no. 11,
pp. 26–31, 2001.

13. ——, Why Programs Fail: A Guide to Systematic Debugging. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2005.

14. G. K. Baah, A. Podgurski, and M. J. Harrold, “Causal inference for statistical
fault localization,” in Proceedings of the 19th International Symposium on Software
Testing and Analysis (ISSTA 2010). ACM Press, July 2010, pp. 73–84.

15. M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical investigation of
program spectra,” in Proceedings of the ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering (PASTE 1998), ser. PASTE
’98. New York, NY, USA: ACM, 1998, pp. 83–90.

16. S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: fault localization in concurrent
programs,” in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM,
2010, pp. 245–254.

17. M. Renieres and S. Reiss, “Fault localization with nearest neighbor queries,” in
Proceedings of the 18th International Conference on Automated Software Engi-
neering, October 2003, pp. 30 – 39.

18. Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the effects of test-
suite reduction on fault localization,” in Proceedings of the International Confer-
ence on Software Engineering (ICSE 2008). ACM Press, May 2008, pp. 201–210.

19. C. S. Perone, “PyEvolve: http://pyevolve.sourceforge.net.”
20. A. Vargha and H. D. Delaney, “A critique and improvement of the “CL” common

language effect size statistics of mcgraw and wong,” Journal of Educational and
Behavioral Statistics, vol. 25, no. 2, pp. pp. 101–132, 2000.

21. B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statistical
bug isolation,” in Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ser. PLDI ’05. New York, NY,
USA: ACM, 2005, pp. 15–26.

22. E. Wong and V. Debroy, “A survey of software fault localization,” Department
of Computer Science, University of Texas at Dallas, Tech. Rep. UTDCS-45-09,
November 2009.

23. C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each,” in Proceedings
of the 34th International Conference on Software Engineering, to appear, 2012.

24. S. Yoo, M. Harman, and D. Clark, “FLINT: Fault localisation using information
theory,” Department of Computer Science, University College London, Tech. Rep.
RN/11/09, March 2011.

25. M. Harman, “The relationship between search based software engineering and pre-
dictive modeling,” in Proceedings of the 6th International Conference on Predictive
Models in Software Engineering. New York, NY, USA: ACM Press, 2010, pp. 1–13.

26. H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault localization using execu-
tion slices and dataflow tests,” in Proceedings of IEEE Software Reliability Engi-
neering, 1995, pp. 143–151.

27. D. Hao, L. Zhang, Y. Pan, H. Mei, and J. Sun, “On similarity-awareness in testing-
based fault localization,” Automated Software Engineering, vol. 15, pp. 207–249,
June 2008.

28. S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test generation for effective
fault localization,” in Proceedings of the 19th international symposium on Software
testing and analysis, ser. ISSTA ’10. New York, NY, USA: ACM, 2010, pp. 49–60.

