
RN/11/09 Research
March 14, 2011 Note

FLINT: Fault Localisation using Information Theory

S. Yoo, M. Harman & D. Clark

Telephone: +44 (0)20 3108 5032
Fax: +44 (0)171 387 1397

Electronic Mail: {S.Yoo, M.Harman, D.Clark}@cs.ucl.ac.uk
URL: http://www.cs.ucl.ac.uk/staff/S.Yoo/,
http://www.cs.ucl.ac.uk/staff/M.Harman/,

http://www.cs.ucl.ac.uk/staff/D.Clark/

Abstract

Test case prioritisation techniques aim to maximise the chance of fault detection as early in
testing as possible. This is most commonly achieved by prioritising the tests according to a
surrogate measure that is thought to correspond to fault detection capabilities, such as code
coverage. However, once the prioritised test suite indeed detects a fault, the original priori-
tisation may become obsolete. Rather, from the point of the first fault detection, the aim of
the prioritisation should be that it should maximise the chance of locating the detected fault.
This paper introduced a novel dynamic test prioritisation technique that is based on Shannon’s
entropy. Fault localisation is formulated as a process of decreasing the entropy calculated over
the test information. The dynamic test case prioritisation uses both the coverage information
from the previous testing and the results from the current testing and selects the next test that is
most likely to reduce the entropy of information regarding the locality of the fault, maximising
the chance of identifying the location of the fault whenever the testing is terminated.

Keywords

Information Theory, Fault Localisation, Test Case Prioritisation

Department of Computer Science
University College London
Gower Street
London WC1E 6BT, UK

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

1 Introduction

Fault localization can be used to prioritize the statements of a program according to the likelihood that each
contains a fault that causes a known failure [16, 20]. This provides decision support to the engineer which
may help to reduce the time taken to find the fault [15]. Fault localization is usually based on a concept of
suspiciousness: we assign a degree of suspiciousness to each statement that assesses the likelihood that it
contains the fault, based on the evidence from testing.

In this paper we chose to incorporate the widely used Tarantula suspiciousness metric [15, 16] into our
approach. However, the choice of suspiciousness measurement is a parameter to our approach, so we can
easily incorporate metrics from other fault localization work [10, 19, 20].

Previous work on fault localization tacitly assumes that all test cases contribute positively to the localization
of a fault. However, some test cases execute a faulty statement without leading to failure. Such test cases
cause the true faulty statement to appear less suspicious. The information they provide can thus reduce the
likelihood that the engineer will find the faulty statement early. Borrowing from the famous aphorism of
Fred Brooks [6], we might say that

“adding tests to a late localization may make it later”.

In order to address this problem we introduce FLINT: Fault Localization using INformation Theory. We
use Shannon’s Information Theory [22] to define an entropy measure for test cases, such that the next test
case in an ordering is the one that maximally reduces fault locality entropy. This is the first time that
information theory has been incorporated into fault localization. All fault localizaton approaches implicitly
rely on some form of information to reduce the inherent uncertainty surrounding fault location. This makes
Shannon’s mathematical theory of information a natural choice; one that we formalise in this paper. From
a more practical point of view, our FLINT approach allows us to maximise the chance of localizing the
fault, even when we are only able to consider an initial prefix of test case ordering.

We report the results of an empirical study of an implementation of FLINT on five different releases of four
software systems for which test suites and fault information are available. Our results show that information
theoretic test ordering can outperform coverage based ordering for early fault localization with statistical
significance. Our study also reveal examples in which the theoretical observation “adding tests to a late
localization may make it later” is borne out in practice, providing a further motivation for the incorporation
of information theory into fault localization.

In our approach statements of the program are ordered according to their suspiciousness, as is common with
other work on fault localization. However, test cases are also ordered according to their ability to reduce
fault localization entropy. The engineer can thus consider first the most suspicious statements, but also
can consider first the test cases that reveal most information about the likely faultiness of each statement
considered.

Regression testing and fault localization are naturally complementary: we test to see if change has intro-
duced a fault and, if we discover that it has, we switch from regression testing to fault localization as a
first step towards fault fixing. Having fixed the fault we switch back to regression testing and so the cycle
continues. This ‘test–find–fix’ cycle is familiar to many software engineers, yet surprisingly, it fails to find
a compelling counterpart in the literature. FLINT allows us to unite the two related, but hitherto largely
disjoint sets of literature on test case prioritization and fault localization.

Regression test prioritization is used to order statements according to early achievement of some testing
goal such as coverage [14, 18, 21, 24]. Should any test lead to a failure, we immediately switch from
regression testing to fault localization. An unstated assumption in previous work on fault localization is
that we should use all available test cases to localize a fault. FLINT challenges this assumption and this is
important for this ‘test–find–fix’ cycle, because when we switch from regression testing to fault localization
not all test cases will yet have been executed, thereby raising the natural question:

RN/11/09 Page 1

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

“Having found a fault, what is the best order in which to rank the remaining test cases to
maximise early localization of the fault?”

The FLINT approach addresses precisely this question. For those test cases already executed at the point
we switch to localization we shall have reliable coverage. However, for those that remain to be executed,
we shall have to make do with coverage information available from the previous version of the software.
Of course, we could simply let the regression testing run on to completion, but for smaller changes com-
plete retesting may be impractical. Complete retesting times of up to seven weeks have been reported in
the literature [21]. Clearly, it would therefore be unreasonable to always expect the engineer to wait for
regression completion before fault localization can commence.

Our second empirical study evaluates the performance of the FLINT approach for the ‘test–find–fix’ cycle.
The results indicate that even in this information-impoverished environment, the FLINT approach outper-
forms traditional coverage-based test case prioritization, localizing faulty statements statistically signif-
icantly sooner in all programs studied. This provides a further motivation for the information theoretic
approach to fault localization that we advocate. We may summarise the primary contributions of the paper
as follows:

1. The paper is the first to use of Information Theory to capture the entropy of the locality of faults.
Shannon entropy provides a quantitative theoretical foundation on which to build a new approach to
fault localization in which both statements and test cases are prioritized. Statements are ordered by
suspiciousness, while test cases are ordered by the degree to which they reduce the entropy inherent
in fault localization.

2. The paper presents the results of an empirical study that demonstrates that information theoretic
ordering outperforms coverage-based test case prioritization.

3. The paper presents results from a further empirical study that provides evidence to support the claim
that information theoretic ordering copes well with imperfect, partial and noisy information. This
makes the approach applicable after code changes have degraded existing test coverage information.

The rest of the paper is organised as follows: Section 2 explains the underlying concepts of the suspicious-
ness metric and test case prioritisation as well as presenting a motivating example for FLINT. Section 3
presents the theoretical foundation of FLINT approach and sets out the research questions. Section 4 de-
scribes the algorithms for FLINT. Section 5 discusses the experimental setup of the empirical study, the
results of which are analysed in Section 6. Section 7 present related work and Section 8 concludes.

2 Background

2.1 Test Case Prioritisation

Test case prioritisation concerns ordering test cases for early maximisation of some desirable properties,
such as the rate of fault detection [24]. It seeks to find the optimal permutation of the sequence of test
cases. It does not involve selection of test cases, and assumes that all the test cases may be executed in the
order of the permutation it produces, but that testing may be terminated at some arbitrary point during the
testing process. More formally, the prioritisation problem is defined as follows:

Definition 1 Test Case Prioritisation Problem

Given: a test suite, T , the set of permutations of T , PT , and a function from PT to real numbers,
f : PT → R.

Problem: to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].

RN/11/09 Page 2

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

The ideal choice of the priority function, f , would be one that would result in an ordering of tests with the
maximum rate of fault detection. Since this information is unavailable before the testing is finished, various
surrogates including code coverage [14,21], test execution history [17] and expert knowledge [23,25] have
been studied.

2.2 Fault Localisation Metrics

Fault location techniques aim to reduce the cost of debugging by automating the process of searching for
the location of the fault in the program. A widely studied approach to fault localisation is to assign to
each structural element in the program a suspiciousness value that corresponds to the relative likelihood
of the element containing the fault [1, 15, 19]. For example, the Tarantula suspiciousness metric [15] for a
statement s in a program is calculated as follows:

Tarantula metric τ(s) =

fail(s)
totalfail

pass(s)
totalpass + fail(s)

totalfail

(1)

In Equation 1, fail(s) and pass(s) represent the number of times the statement s was executed by fail-
ing and passing tests, respectively, whereas totalfail and totalpass represent the number of failing and
passing tests.

The highest possible value for τ is 1 and the lowest is 0. If a statement s is executed by all tests, regardless
of their results, it gets assigned τ = 0.5. A faulty statement s′ gets assigned τ = 1 if and only if all failing
tests and none of the passing tests executes s′. However, it is possible that some statements other than s′

gets a higher τ value than s′. Suppose that s′ causes a failure only for certain input values, whereas an
error handling routine s′′ is executed whenever s′ fails: s′′ will get assigned τ = 1, whereas s′ might get
assigned τ less than 1 depending on the test input.

2.3 Prioritising Tests for Fault Localisation

Existing work on fault localisation treated the calculation of suspiciousness metrics as a post hoc proce-
dure. That is, fault localisation was attempted only after the entire test suite was executed. However, this
contradicts the assumptions behind test case prioritisation, i.e. that there may not be enough time to execute
the entire test suite.

Suppose that the tester encounters a failing test while executing a test suite prioritised for maximum fault
detection capability. We argue that, after the initial failure, different tests contribute different amounts of
information regarding the location of the faulty structural element. It follows that, after the initial failure,
the tester should choose a test that would provide the most information as the next test case whenever
possible, followed by other tests in the order of decreasing amount of information provided.

Consider the motivating example in Table 1. Test t1 to t4 is prioritised based on the structural coverage
following the additional approach with resets [14]. The dots (•) show the coverage relation: for example,
structural element s1 is covered by test t1 and t3. The prioritised test suite detects the first fault with t2,
which covers the faulty element s7. Suppose that there is only time to execute one additional test: the next
two columns show what the final suspiciousness metric would look like if t3 or t4 is chosen to be executed.
According to the coverage-based prioritisation, the next test is t3 and the faulty element will get assigned
the suspiciousness of 0.67. However, this is misleading as s6 and s8 are assigned with higher suspiciousness
values. On the other hand, if t4 is executed, the faulty element is assigned the suspiciousness of 1.0 along
with other elements, which would be a more precise result. This shows that the choice of the next test case
can affect the accuracy of the suspiciousness metric if the testing is terminated at an arbitrary point.

In reality, it is impossible to predict whether a test would pass or fail. Therefore, it is also impossible to
make the ideal choice for fault location. However, it is possible to formulate a probabilistic approximation

RN/11/09 Page 3

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

Structural Test Test Test Tarantula Test Tarantula
Elements t1 t2 t3 Metric(τ) t4 Metric(τ)
s1 • • 0.00 0.00
s2 • • 0.00 0.00
s3 • • 0.00 0.00
s4 • 0.00 0.00
s5 • • 0.00 0.00
s6 • 1.00 • 1.00
s7 (faulty) • • 0.67 • 1.00
s8 • 1.00 • 1.00
s9 • • 0.67 • 0.50
Result P F P - F -

Table 1: Motivating Example: coverage-based prioritisation would execute t3 after the first failure (t2),
resulting in sub-optimal suspiciousness metric values. However, if t4 is executed after the first failure, the
faulty s7 will get assigned the optimal suspiciousness value.

that can be used as a surrogate, much in the same way as test case prioritisation techniques use structural
coverage as a surrogate for the measure of fault detection capability. It is for this that we turn to Information
Theory.

3 Fault Localisation & Entropy

This section presents the formulation of fault localisation as an entropy reduction process and outlines the
research questions.

3.1 Problem Formulation

3.1.1 Assumptions & Basic Notations

Let S = {s1, . . . , sm} be the set of structural elements in the System Under Test (SUT); let T =
{t1, . . . , tn} be the test suite with n tests. A single element in S contains the fault. Let C : T → 2S

be the mapping from tests to executed structural elements, i.e.:

C(t) = {s ∈ S|t covers s when executed}

Finally, let F (t) be a boolean statement that says test t has failed. Similarly, let B(s) be a boolean state-
ment that says structural element s contains a fault. We will make the following assumptions for our
approximation:

1. The results from all tests in T are deterministic, i.e. ∀t ∈ T : F (t) ∨ ¬F (t).

2. The suspiciousness metric is competent and does reflect the likelihood of faultiness, i.e. P(B(s)) ∼
τ(s).

3. The mapping between tests and structural elements, C, is known.

The first assumption underpins most existing work for software testing. The second assumption is sup-
ported by empirical evidence in the existing work [1, 15], the findings of which the paper replicates. Re-
garding the third assumption, the empirical study in the paper considers both the case: when it holds and
when it does not. The assumption about the knowledge of coverage information may not be realistic in
certain cases. However, when the exact information C is not known, it is possible to replace C with infor-
mation from the previous iteration of testing, similar to the way in which test case prioritisation techniques
use the coverage information from the previous iteration of testing.

RN/11/09 Page 4

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

Now we describe the situation in which the ith test fails during testing. Without losing generality, let Ti−1
be the set of i−1 tests, {t1, . . . , ti−1}, that have passed; let ti be the first failing test. For the sake of brevity,
let TPi and TFi be the total number of passing/failing tests, respectively, after executing the tests in Ti.
Similarly, let CPi(sj) and CFi(sj) be the times sj has been covered by passing/failing tests, respectively,
after executing the tests in Ti.

3.1.2 Entropy of Fault Locality

Given a set of tests at least one of which fails, it is possible to calculate the suspiciousness of each statement
based on the tests executed up to and including the point of the first failure. Given a set of tests Ti =
Ti−1 ∪ {ti}, let τ(s|Ti) denote the suspiciousness of s calculated using the tests in Ti. Based on the
assumption 2, the probability that statement sj contains the fault, based on the information observed with
Ti, is calculated as the normalised suspiciousness metric for sj :

PTi(B(sj)) =
τ(sj |Ti)∑n
j=1 τ(sj |Ti)

(2)

Shannon’s entropy regarding the locality of the fault can now be defined as follows:

HTi(S) = −
n∑
j=1

PTi(B(s)) · logPTi(B(s)) (3)

Ideally, fault localisation is complete when H(S) reaches 0: the probability P(B(s′)) will be 1 for the fault
statement s′ and 0 for the remaining. Since we use τ(s) as a surrogate for the real probability distribution,
our aim is to minimise H(S) as much as possible. This means not only increasing the suspiciousness of
the faulty statement, but also decreasing the suspiciousness of the non-faulty statements.

When locating a fault that can be detected deterministically (Assumption 1), it should be noted that the
entropy of fault locality, calculated following Equation 3, is identical for the same set of tests, i.e. T =
T ′ → HTi+1(S) = HT ′

i+1
(S). That is, the same set of tests yields the same amount of information

regarding the locality of the fault. The aim of FLINT is not, and cannot be, to increase the amount of
information; rather, it is to order tests so that the maximum information is extracted as early as possible. It
follows that the next test to execute, ti+1, should be the one that yields the smallest HTi+1(S).

3.1.3 Entropy Lookahead

To calculate HTi+1(S), PTi+1(B(sj)) needs to be approximated. Since it is not possible to predict whether
ti+1 will pass or fail, we use conditional probability to express both cases:

PTi+1(B(sj)) = PTi+1(B(sj)|F (ti+1)) ·PTi+1(F (ti+1)) +

PTi+1(B(sj)|¬F (ti+1)) ·PTi+1(¬F (ti+1))

(4)

The conditional probability PTi+1(F (ti+1)|B(sj)) can be approximated by following Equation 2 with
assumptions about the outcome of ti+1: we simply consider two separate cases (ti+1 passes or fails) and
calculate the lookahead suspiciousness metric accordingly.

The remaining unknown terms are essentially probabilities that the next test either passes or fails. Instead
of using arbitrarily fixed vlaues, we use the observed feedback from the execution of tests in Ti as follows:

RN/11/09 Page 5

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

PTi+1(F (ti+1)) ≈
TFi

TPi + TFi
(5)

PTi+1(¬F (ti+1)) ≈
TPi

TPi + TFi
(6)

Using the lookahead suspiciousness, Equation 5 and 6, it is possible to calculate Equation 4, i.e. the
lookahead probability. Once normalised, the lookahead probability enables the calculation of the lookahead
entropy that is expected from the execution of each candidate test case for ti+1. For better fault localisation
after the detection of the first failing test, the tester should select the next test case that is expected to yield
the lowest entropy by the approximation.

3.2 Research Questions

The “Precision” study considers the case when C, i.e. the coverage information of the each test, is known.
The aim is to investigate what FLINT is capable of when C is known: this corresponds to the use case
when the tester wants guidance for debugging by ranking tests post hoc, i.e. after executing all the tests, in
the order of the amount of information they reveal regarding the locality of the fault.

RQ1. Effectiveness: Does FLINT increase the suspiciousness of the faulty statement during testing? If
so, by how much?

RQ2. Efficiency: If FLINT successfully increase the suspiciousness of the faulty statement, does this re-
sult in reduction in number of statements to be inspected before the tester encounters the faulty statement?

RQ1 is answered by observing the suspiciousness metric of the faulty statement during the execution of
the test suite in two different orders: coverage-based prioritisation and entropy-based prioritisation. RQ2
is answered by analysing the percentage of the number of statements that the tester has to investigate,
following the suspiciousness ranking, until the faulty statement is encountered.

The next set of research questions considers “Robustness” of the proposed technique: we assume the sit-
uation when C, the coverage relation between tests and statements, is not known and, therefore, has to be
replaced by the coverage information from the previous version. This corresponds to the use case when the
tester wants to maximise the efficiency of fault localisation by executing tests in the order of the amount of
information they reveal.

RQ3. Robustness: Does the use of coverage information from the previous iteration of testing affect the
effectiveness of FLINT? If so, by how much?

RQ4. Correlation: Does the result from the previous version of SUt correlate with the result from the
current version?

RQ3 is answered by applying FLINT using coverage information from the previous iteration of testing and
analysing the results. RQ4 is answered by analysing the statistical correlation between results from two
consecutive versions of SUT: this enables the tester to estimate the potential reduction FLINT can introduce
to the testing of SUT.

RN/11/09 Page 6

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

4 Algorithms

4.1 Entropy Lookahead Algorithm

To keep the pseudo-code concise, let us assume that the counter functions described in Section 3.1.1,
TP, TF,CPi : S → N andCFi : S → N, as well as the coverage relation,C, remain available throughout
Algorithm 1, 2 and 3. The variable i denotes, whenever present, that the algorithm is seeking to find the
i-th test.

Algorithm 1 contains the lookahead algorithm for entropy. The loop in Line (1) calculates the lookahead
suspiciousness for each statement, sj : tp,j is the lookahead suspiciousness of sj when the candidate test t
is expected to pass and tf,j when t is expected to fail. The lookahead for each case is achieved by providing
different input values to Algorithm 2.

The loop in Line (10) uses Equation 4 in Section 3.1.3 in order to convert the lookahead suspiciousness
values into lookahead probabilities., which is normalised using Psum. Finally, Line (14) normalises the
lookahead probabilities using Psum and summarises them into the entropy H , following Equation 3.

Algorithm 1: Entropy Lookahead Algorithm
EL(t)
Input: A candidate test, t
Output: Lookahead entropy, H
(1) foreach sj ∈ S
(2) cp ← CPi(sj)
(3) if sj ∈ C(t) then cp ← cp + 1
(4) τp,j ←TARANTULA(TPi + 1, TFi, cp, CFi(sj))
(5) cf ← CFi(sj)
(6) if sj ∈ C(t) then cf ← cf + 1
(7) τf,j ←TARANTULA(TPi, TFi + 1, CPi(sj), cf)
(8) P ← {pj = 0|1 ≤ j ≤ m}
(9) Psum ← 0
(10) foreach sj ∈ S
(11) pj ← TFi

TPi+TFi
· τf,j∑m

j=1 τf,j
+ TPi

TPi+TFi
· τp,j∑m

j=1 τp,j

(12) Psum ← Psum + pj
(13) H ←

∑
pj∈P −

pj
Psum

· log
pj

Psum

(14) return H

Algorithm 2: Tarantula Suspiciousness Metric
TARANTULA(tp, tf, cp, cf)
Input: Total number of passing tests, tp, total number of failing tests, tf , number of passing tests that
cover the statement of focus, cp, and number of failing tests that cover the statement of focus, cf
Output: Tarantula suspiciousness metric, τ
(1) if tp == 0 then rp ← 0
(2) else rp ← cp

tp
(3) if tf == 0 then rf ← 0

(4) else rf ← cf
tf

(5) τ ←=
rf

rp+rf
(6) return τ

4.2 FLINT Algorithm

Algorithm 3 illustrates the top-level algorithm for FLINT. The first loop executes tests in T following the
prioritisation by greedy algorithm, which is widely used for coverage-based test case prioritisation [24],

RN/11/09 Page 7

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

Subject # of Tests Lines of Code Executable Lines

flex 567 12,407–14,244 3,393–3,965
grep 199 12,653–13,363 3,078–3,314
gzip 214 6,576– 7,996 1,705–1,993
sed 360 8,082–11,990 1,923–2,172

Table 2: Subject Programs from SIR

until the first fault occurs. The second loop prioritises the set of remaining tests, R, by choosing the test
with the lowest lookahead entropy value.

Algorithm 3: FLINT
FLINT(T)
(1) index← 0
(2) G← {}
(3) while |G| < |T |
(4) t← GREEDYORDER(index)
(5) Execute t and update TPi, TFi, CPi and CFi
(6) G← G ∪ {t}
(7) index← index+ 1
(8) if t fails then break
(9) R← T −G
(10) while |R| > 0
(11) Pick t ∈ R s.t. ∀(t′ ∈ R)(t′ 6= t)(EL(t) ≤ EL(t)
(12) Execute t and update TPi, TFi, CPi and CFi
(13) R← R− {t}

5 Experimental Setup

5.1 Subjects

Table 2 lists the subject programs studied in the paper. All four Unix utility programs are obtained from
Software Infrastructure Repository (SIR) [13] along with their test suites: flex is a lexical analyser,
grep is a text-search utility, gzip is a compression utility and sed is a stream text editor. We consider
five consecutive versions for each program.

Since SIR only contains the fault matrices, statement coverage information was collected using the widely
used GNU profiler, gcov. The number of executable lines in Table 2 is produced by gcov version 4.3.2
running on Linux version 2.6.27. Both the coverage-based test case prioritisation and FLINT have been
performed using only the executable lines.

For each subject program, we selected a test suite that can be applied across all five versions. This is to
ensure that, when FLINT is being applied to version n of the program, there exists matching coverage data
for each test from version n−1. However, test suites for version 4 and 5 of sed were completely re-written
from those for the previous versions and, therefore, could not be used for the robustness study.

5.2 Faults

SIR provides a total of 219 both real and seeded faults across the five versions of subject programs [13].
Out of 219 faults, 35 were excluded because these faults were unreachable in the compiled binary for the
experimental environment. Out of the remaining 184 faults, another 92 were excluded because they were
not detected by any test from the chosen test suites. The paper considers the remaining 92 faults, which are
listed in Table 3.

RN/11/09 Page 8

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

Subject V1 V2 V3 V4 V5

flex 15 14 7 9 2
grep 2 1 5 3 0
gzip 7 3 0 3 5
sed 0 5 6 1 4

Table 3: Number of faults studied in the paper

The robustness study uses versions from 2 to 5 of subject programs, because it requires coverage informa-
tion from the previous versions. Therefore, the robustness study considers only 63 faults.

5.3 Evaluation

We compare FLINT approach and the traditional Test Case Prioritisation (TCP, hereafter) regarding their
effectiveness for early fault localisation. While there is no known approach for prioritising tests for early
fault localisation, we argue that TCP provides a good baseline because the aim of TCP is to maximise early
fault detection. If a fault can be repeatedly detected early in testing, it should help the tester determining
its locality.

In order to answer RQ2, we turn to a widely-studied metric that measures the effectiveness of fault locali-
sation is Expense [20], which is defined as follows:

Expense =
rank of faulty statement

number of executable statements
· 100

The numerator is the rank of the faulty statement when sorted according to the suspiciousness metric:
the rank of tied statements are equal to the sum of the number of the tied statements and the number of
statements ranked before them [20, 26]. Expense metric represents the percentage of the source code the
tester has to investigate before the faulty statement is encountered. Intuitively, higher suspiciousness for
the faulty statement should result in lower Expense metric. However, because of the reasons discuseed in
Section 2.2, the suspiciousness metric and the Expense metric may not always agree with each other.

We execute the test suite following TCP ordering and FLINT ordering. TCP ordering is obtained using
the additional approach with resets [14]. After executing each test for each ordering, we calculate the
suspiciousness of the faulty statement and the corresponding Expense metric, thus providing a time-series
of both metrics for each ordering.

The improvement in suspiciousness is observed by measuring the increment in suspiciousness achieved by
FLINT over TCP ordering; the improvement in Expense is observed by measuring the reduction in Expense
achieved by FLINT over TCP ordering. We report the comparison of mean values and the results of the
statistical hypothesis tests. By definition, FLINT produces the same suspiciousness metric and, therefore,
the same Expense metric for all statements when the entire test suite is executed.

The mean values represent the expected level of improvement when the testing is stopped at any arbitrary
point. The statistical hypothesis test provides statistical confidence on the observed improvement. We
categorise the results of statistical hypothesis tests into the following categories:

• Positive with Significance(PS): the technique shows statistically significant improvement over the
untreated ordering.

• Positive with No significance(PN): the mean value of the metric does show improvement, but with-
out statistical significance.

• Equal(EQ): the technique performs equally well compared to the untreated ordering.

RN/11/09 Page 9

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

Subj. V Fault ID τ̄T τ̄F Tτ Avg.∆E TE Subj. V Fault ID τ̄T τ̄F Tτ Avg.∆E TE

flex V1

F AA 6 0.53 0.55 PS -0.90 NS flex V5 F JR 2 1.00 1.00 EQ 9.64 PS
F AA 1 0.78 0.76 NS 8.77 PS

grep V1
F KP 2 1.00 1.00 EQ 12.28 PS

F AA 2 1.00 1.00 EQ -0.36 NS F DG 4 0.80 0.91 PS 1.92 PS
F AA 3 0.59 0.75 PS -4.83 NS grep V2 F DG 1 0.66 0.83 PS 3.13 PS
F JR 4 1.00 1.00 EQ 1.13 PS

grep V3

F KP 7 0.84 0.84 EQ 0.00 EQ
F JR 6 1.00 1.00 EQ -1.13 PS F KP 3 0.65 0.76 PS 8.65 PS
F JR 5 1.00 1.00 EQ -1.70 NS F DG 8 0.60 0.70 PS -1.33 NS
F JR 2 0.78 0.76 NS 8.77 PS F DG 2 0.96 0.99 PS -1.03 NN
F JR 3 1.00 1.00 EQ -5.52 NS F DG 3 0.75 0.85 PS 2.32 PN
F HD 3 1.00 1.00 EQ -0.36 NS

grep V4
F KP 8 1.00 1.00 EQ -1.90 NS

F HD 1 0.54 0.56 PS 4.20 PS F DG 3 0.62 0.62 PS -0.00 NS
F HD 6 0.51 0.50 NS 9.84 PS F KP 6 0.98 0.90 NS -0.68 NS
F HD 7 0.95 0.99 PS -2.09 NS

gzip V1

F KL 2 0.81 0.82 PS 1.12 PS
F HD 4 0.53 0.56 PS 0.80 PS F KL 6 0.41 0.42 PN 0.00 EQ
F HD 5 1.00 1.00 EQ -2.14 PS F KP 10 0.99 0.99 EQ 0.00 EQ

flex V2

F AA 4 0.63 0.61 NS -2.09 NS F KP 11 0.77 0.83 PS 0.38 PS
F AA 5 0.61 0.64 PS 3.70 PS F KP 9 1.00 1.00 EQ -0.54 NN
F AA 2 0.50 0.50 EQ 4.21 PS F TW 3 1.00 1.00 EQ -0.82 NS
F AA 3 0.99 0.99 EQ 0.00 EQ F KP 1 0.98 0.97 PS -2.24 NS
F JR 6 0.97 0.97 NS 0.15 PS

gzip V2
F KL 1 0.73 0.62 NS 0.84 PS

F HD 8 0.96 0.99 PS 1.38 PS F KL 3 0.87 0.90 PS 0.90 PS
F JR 5 1.00 1.00 EQ -0.02 NS F KL 8 0.66 0.65 NN -0.02 NN
F JR 2 0.96 0.99 PS 1.38 PS

gzip V4
F KL 1 0.99 0.99 EQ -0.00 NS

F JR 3 0.99 1.00 PS -3.63 PS F KL 8 0.96 0.94 NS -0.34 NS
F JR 1 1.00 1.00 EQ -0.02 NS F KP 3 0.99 0.99 EQ 0.00 EQ
F HD 2 1.00 1.00 EQ -0.66 NS

gzip V5

F KL 1 0.96 0.95 NS -0.32 NS
F HD 6 1.00 1.00 EQ -12.03 NS F KL 2 0.89 0.87 NN -2.39 NS
F HD 7 1.00 1.00 EQ -0.00 NN F KL 4 0.91 0.91 EQ 0.00 EQ
F HD 4 0.69 0.71 PS 3.37 PS F KL 8 0.95 0.95 NS 0.00 EQ

flex V3

F AA 4 0.50 0.50 NN 3.77 PS F TW 1 0.74 0.86 PS -7.37 NS
F AA 5 1.00 1.00 EQ -0.31 NS

sed V2

F AG 20 0.64 0.63 NS 0.26 PN
F AA 3 0.53 0.54 PS -0.28 NS F AG 17 0.38 0.41 PS 0.18 PS
F JR 5 1.00 1.00 EQ -0.50 NN F AG 12 0.96 0.97 PS 1.48 PS
F JR 2 1.00 1.00 EQ -0.31 NS F AG 19 0.92 0.85 NS 3.60 PS
F JR 3 1.00 1.00 EQ -0.50 NN F AG 2 0.98 0.95 NS 0.18 PS
F HD 6 1.00 1.00 EQ -0.31 NS

sed V3

F AG 15 0.94 0.95 PS 0.29 PS

flex V4

F AA 7 0.98 0.99 PS 1.56 PS F AG 5 0.88 0.91 PS 0.00 EQ
F AA 1 0.81 0.89 PS 0.81 PS F AG 17 0.99 0.98 NN -0.60 NS
F AA 2 1.00 1.00 EQ -1.41 NS F AG 6 1.00 1.00 EQ 0.26 NS
F AA 3 0.54 0.63 PS 8.31 PS F AG 11 0.98 0.99 PS 0.20 PS
F JR 4 0.99 0.99 PS 0.09 PS F AG 18 0.97 0.97 EQ 0.03 PS
F JR 2 1.00 1.00 EQ -2.06 NS sed V4 F KRM 2 0.94 0.94 EQ 0.00 EQ
F JR 3 1.00 1.00 EQ 1.12 PS

sed V5

F KRM 8 0.99 0.99 NS 0.73 PS
F JR 1 0.54 0.63 PS 8.31 PS F KRM 1 0.94 0.94 NS -0.87 PS
F HD 5 1.00 1.00 EQ 1.12 PS F KRM 2 1.00 1.00 EQ -0.21 PS

flex V5 F AA 4 0.89 0.91 PS 4.18 PS F KRM 10 0.87 0.89 PS 0.00 EQ

Table 4: Statistical Analysis for Precision Study: PS and PN denote that FLINT achieves improvements
over TCP with and without statistical significance, respectively. Similarly, NS and NN denote degenera-
tion with and without statistical significance. EQ denotes that TCP and FLINT produces the same results.
Excluding 37 faults that do not provide any room for improvement of suspiciousness (because τ = 1.0
regardless of test ordering for these faults), FLINT achieves higher suspiciousness with statistical signifi-
cance for 64% of faults (35 out of 55). However, this does not always translate into lower Expense, as can
be seen from the results of the statistical hypothesis testing for Expense (TE) due to inherent limitations in
coverage-based suspiciousness metrics described in Section 2.2 and Section 5.3.

• Negative with No significance(NN): the mean value of the metric does show degeneration, but with-
out statistical significance.

• Negative with Significance(NS): the technique shows statistically significant degeneration from the
untreated ordering.

Category EQ is possible when, for example, the faulty statement is detected by the first test and its suspi-
ciousness remains 1.0 throughout the testing, regardless of the ordering of tests: any ordering produced by
TCP or FLINT will always result in the same suspiciousness values.

RN/11/09 Page 10

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

grep, v2, F_DG_1

0.
0

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

Susp. FLINT
Susp. Greedy
Susp. Untreated

0 20 40 60 80 100

Percentage of Executed Tests

−
10

−
5

0
5

10
15

E
xp

en
se

 R
ed

uc
tio

n

Expense Reduction

(a)

flex, v1, F_JR_4

1.
0

S
us

pi
ci

ou
sn

es
s

Susp. FLINT
Susp. Greedy
Susp. Untreated

0 20 40 60 80 100

Percentage of Executed Tests

0
5

10
15

20
E

xp
en

se
 R

ed
uc

tio
n

Expense Reduction

(b)

gzip, v2, F_KL_1

0.
0

0.
5

S
us

pi
ci

ou
sn

es
s

Susp. FLINT
Susp. Greedy
Susp. Untreated

0 20 40 60 80 100

Percentage of Executed Tests

−
1

0
1

2
3

4
E

xp
en

se
 R

ed
uc

tio
n

Expense Reduction

(c)

flex, v1, F_HD_7

1.
0

S
us

pi
ci

ou
sn

es
s

Susp. FLINT
Susp. Greedy
Susp. Untreated

0 20 40 60 80 100

Percentage of Executed Tests

−
10

−
8

−
6

−
4

−
2

0
E

xp
en

se
 R

ed
uc

tio
n

Expense Reduction

(d)

Figure 1: Plots of suspiciousness and Expense reduction from the precision study. Figure 1(a) represent
the cases when FLINT approach produces higher suspiciousness and lower Expense, compared to TCP
approach, with statistical significance. Figure 1(b) and 1(c) represent the cases when the reduction in
entropy achieved by FLINT results in reduced Expense, despite the fact that the suspiciousness value
of the faulty statement is equal to that from TCP approach (Figure 1(b)) or even lower (Figure 1(c)).
This is because the reduction in entropy is achieved by lowering the suspiciousness metric for non-faulty
statements. Howevver, in Figure 1(d), the suspiciousness metric is not in alignment with Expense: the
increased suspiciousness metric resulted in higher Expense.

6 Results

6.1 Precision Study

Table 4 contains the results from the precision study as well as the statistical analysis. Column τ̄T and τ̄F
contain the mean suspiciousness of the faulty statement, over the entire test suite, by TCP and FLINT re-
spectively. Column Avg.∆ET

contains the mean reduction in Expense metric achieved by FLINT over
TCP.

For FLINT to produce more effective fault localisation, it should provide the tester with higher suspicious-
ness and lower Expense metric for the faulty statement. This is analysed using Mann-Whitney ‘U’ test. The

RN/11/09 Page 11

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

Mann-Whitney ‘U’ test is a non-parametric statistical hypothesis test, i.e. it allows the comparison of two
samples with unknown distributions. Column Tτ contains the result classification of the Mann-Whitney
‘U’ test for the suspiciousness metric. The null hypothesis is that there is no difference between τ̄F and τ̄T ;
the alternative hypothesis is that τ̄F > τ̄T . Similarly, column TE contains the result classification of the
Mann-Whitney ‘U’ test for the Expense metric. The null hypothesis is that there is no difference between
the mean Expense from FLINT and the mean Expense from TCP. The alternative hypothesis is that the
mean Expense from FLINT is lower than the mean Expense from TCP. The confidence level is 95%.

Table 5 contains the classification of the statistical hypothesis testing for the precision study. Out of 92
studied faults, 37 were classified into EQ category for Tτ . For these faults, the suspiciousness of the faulty
statement remains at 1.0 from the point of fault detection to the end of the test suite execution, regardless of
test ordering. That is, it is not possible to make improvement in suspiciousness metric. Excluding these 37
faults for which there is no room for improvement of suspiciousness metric, FLINT achieves statistically
significant increment of suspiciousness for 64% of the studied faults.

However, the number of faults classified into EQ category for Expense metric is smaller than those for
suspiciousness metric. This is because the Expense of the faulty statement depends not only on the suspi-
ciousness of the statement itself but also on the suspiciousness of other statements. It should be also noted
that the 35 faults that were classified into PS category for Expense are not the same set of faults that are
in PS category for suspiciousness. For example, Table 4 shows that the fault F AA 6 for the version 1 of
flex is PS for suspiciousness but NS for Expense.

Figure 1 provides more detailed explanation with exemplar cases. The top pane shows how the suspicious-
ness metric for the faulty statement has changed during the execution of test orderings from FLINT and
TCP approach. The bottom pane shows the reduction in Expense (ET − EF).

Figure 1(a) shows a case when both suspiciousness and Expense result in PS category. FLINT produces
higher suspiciousness during the most of the duration of the testing, which results in reductions in Expense
for the most of times.

Figure 1(b) and 1(c) represent two interesting cases when reduction in Expense is achieved despite the fact
that the suspiciousness metric for the faulty statement from FLINT is the same, at 1.0, as that from TCP
approach (Figure 1(b)) or even lower with statistical significance (Figure 1(c)). These results area achieved
because choosing a test that produces the lowest entropy may not only increase the suspiciousness of the
faulty statement but also lower the suspiciousness of the non-faulty statements (Section 3.1.2).

However, the results also show that increment of the suspiciousness metric may not always result in reduc-
tion in Expense, as discussed in Section 2.2 and Section 5.3. In Figure 1(d), although τF of fault F HD 7
for version 1 of flex is higher with statistical significance than τT , FLINT fails to make reductions in Ex-
pense. This means that, when considering the impact of FLINT on Expense reduction, we cannot exclude
faults in EQ category.

Metric PS PN EQ NN NS

Suspiciousness 35 1 37 4 15
Expense 43 2 10 6 31

Table 5: Hypothesis Test for Precision Study

To answer RQ1, Table 4 and 5 provide evidence that FLINT achieves higher suspiciousness with statistical
significance for 64% of studied faults for which there exist room for improvement. It produces lower
suspiciousness with statistical significance for only 27% of the faults.

To answer RQ2, FLINT reduces Expense metric with statistical significance for 43 faults out of 92 studied
(47%). However, these 35 faults are not the same faults for which FLINT increased the suspiciousness
metric, as can be seen in Figure 1(c). For these faults, the average reduction over the entire test suite ranges

RN/11/09 Page 12

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

Subj. V Fault ID τ̄T τ̄F Tτ Avg.∆E TE Subj. V Fault ID τ̄T τ̄F Tτ Avg.∆E TE

flex V2

F AA 4 0.63 0.61 NS 1.69 PS grep V2 F DG 1 0.66 0.83 PS 8.37 PS
F AA 5 0.60 0.63 PS 2.46 PS

grep V3

F KP 7 0.84 0.84 EQ 0.00 EQ
F AA 2 0.50 0.50 EQ 4.29 PS F KP 3 0.65 0.76 PS 8.80 PS
F AA 3 0.96 0.96 EQ 0.00 EQ F DG 8 0.59 0.70 PS 0.26 PS
F JR 6 0.97 0.98 NS 0.17 PS F DG 2 0.96 0.99 PS -1.45 NN
F HD 8 0.95 0.96 PS 4.02 PS F DG 3 0.75 0.86 PS 3.53 PS
F JR 5 1.00 1.00 EQ 0.02 NS

grep V4
F KP 8 1.00 1.00 EQ -1.74 NS

F JR 2 0.95 0.96 PS 4.02 PS F DG 3 0.82 0.81 NS -0.12 NS
F JR 3 0.99 0.99 NS 0.42 PS F KP 6 0.98 0.90 NS -0.70 NS
F JR 1 1.00 1.00 EQ 0.02 NS

gzip V2
F KL 1 0.73 0.59 NS 0.34 NS

F HD 2 1.00 1.00 EQ -1.17 NS F KL 3 0.91 0.95 PS 0.63 PS
F HD 6 1.00 1.00 EQ -2.92 NS F KL 8 0.66 0.55 NS 0.31 PN
F HD 7 1.00 1.00 EQ 0.02 PN

gzip V4
F KL 1 0.99 0.99 EQ 0.00 EQ

F HD 4 0.69 0.71 NS 3.45 PS F KL 8 0.96 0.95 NS -0.32 NS

flex V3

F AA 4 0.50 0.50 NN 3.76 PS F KP 3 0.99 0.99 EQ 0.00 EQ
F AA 5 1.00 1.00 EQ -0.31 NS

gzip V5

F KL 1 0.96 0.94 NS -0.33 NS
F AA 3 0.53 0.54 PS -0.28 NS F KL 2 0.89 0.86 NN -2.98 NS
F JR 5 1.00 1.00 EQ -0.48 NN F KL 4 0.93 0.93 EQ 0.00 EQ
F JR 2 1.00 1.00 EQ -0.31 NS F KL 8 0.96 0.95 NS 0.00 EQ
F JR 3 1.00 1.00 EQ -0.48 NN F TW 1 0.72 0.63 NS -0.40 PS
F HD 6 1.00 1.00 EQ -0.31 NS

sed V2

F AG 20 0.65 0.60 NS -0.45 NS

flex V4

F AA 7 0.98 0.99 PS 1.57 PS F AG 17 0.38 0.40 PS 0.17 PS
F AA 1 0.81 0.87 PS 0.70 PS F AG 12 0.95 0.98 PS -0.64 NS
F AA 2 1.00 1.00 EQ -1.41 NS F AG 19 0.92 0.94 PS 2.07 PN
F AA 3 0.54 0.63 PS 8.26 PS F AG 2 0.98 0.94 NS 0.08 PS
F JR 4 0.99 1.00 PS -3.68 PS

sed V3

F AG 15 0.94 0.95 PS -0.34 NS
F JR 2 1.00 1.00 EQ -5.97 NS F AG 5 0.87 0.91 PS 0.01 PS
F JR 3 1.00 1.00 EQ -0.73 NN F AG 17 0.99 0.99 NS -2.08 NS
F JR 1 0.54 0.63 PS 8.26 PS F AG 6 1.00 1.00 EQ 0.54 PS
F HD 5 1.00 1.00 EQ -0.73 NN F AG 11 0.97 0.98 PS 4.00 PS

flex V5
F AA 4 0.89 0.90 NS 4.24 PS F AG 18 0.98 0.98 EQ 0.03 PS
F JR 2 1.00 1.00 EQ 9.64 PS

Table 6: Statistical Analysis for Robustness Study: PS and PN denote that FLINT achieves improvements
over TCP with and without statistical significance, respectively. Similarly, NS and NN denote degenera-
tion with and without statistical significance. EQ denotes that TCP and FLINT produces the same results.
Excluding 24 faults that do not provide any room for improvement of suspiciousness (because τ = 1.0
regardless of test ordering for these faults), FLINT achieves higher suspiciousness with statistical signifi-
cance for 54% of faults (21 out of 39). However, as observed in the precision study, this does not always
translate into lower Expense.

from 0.15% to 12.28%. FLINT increases Expense metric with statistical significance for 31 faults out of
92 studied (34%).

6.2 Robustness Study

Table 6 contains the results from the robustness study as well as the statistical analysis. The results of the
statistical hypothesis tests are summarised in Table 7. Excluding the faults in EQ, FLINT achieves higher
suspiciousness for 54% of the faults studied. It also achieves statistically significant Expense reduction for
44% of the faults studied.

Figure 2 presents the representative outcome of the robustness study. Figure 2(a) and 2(c) contain the plots
for the same faults depicted in Figure 1(a) and 1(c) We can observe not identical, but similar patterns in
the suspiciousness plot: it shows that FLINT can cope with the coverage information from the previous
version for these faults. The results shown in these two plots, as well as in Figure 2(b), are positive.

Figure 2(d) shows that there are certain stopping points for which FLINT can reduce the Expense metric
even it fails to make statistically significant reduction over the entire test suite. If the testing were to be
terminated within the first 10% of the test suite, FLINT would reduction Expense.

To answer RQ3, Table 6 and 7 shows that FLINT achieves higher suspiciousness and reduced Expense
with statistical significance for more of the studied faults than TCP approach even when the coverage
information from the previous version is used. Comparing the results of the robustness study with those of

RN/11/09 Page 13

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

grep, v2, F_DG_1

0.
0

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

Susp. FLINT
Susp. Greedy
Susp. Untreated

0 20 40 60 80 100

Percentage of Executed Tests

−
5

0
5

10
15

20
E

xp
en

se
 R

ed
uc

tio
n

Expense Reduction

(a)

flex, v4, F_AA_3

0.
0

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

Susp. FLINT
Susp. Greedy
Susp. Untreated

0 20 40 60 80 100

Percentage of Executed Tests

−
10

0
5

10
E

xp
en

se
 R

ed
uc

tio
n

Expense Reduction

(b)

gzip, v2, F_KL_1

0.
0

0.
5

S
us

pi
ci

ou
sn

es
s

Susp. FLINT
Susp. Greedy
Susp. Untreated

0 20 40 60 80 100

Percentage of Executed Tests

−
2

0
2

4
6

8
E

xp
en

se
 R

ed
uc

tio
n

Expense Reduction

(c)

flex, v2, F_JR_5

0.
0

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

Susp. FLINT
Susp. Greedy
Susp. Untreated

0 20 40 60 80 100

Percentage of Executed Tests

−
2

0
2

4
6

8
E

xp
en

se
 R

ed
uc

tio
n

Expense Reduction

(d)

Figure 2: Plots of suspiciousness and Expense reduction from the robustness study. Figure 2(a) and 2(c)
correspond to Figure 1(a) and 1(c) respectively: FLINT achieves improved suspiciousness and reduced
Expense for these faults, despite the use of coverage information from the previous version for the looka-
head. Figure 2(b) shows another positive result. Figure 2(d) shows a case when reduction in Expense is
possible in early stage of the testing, even though the mean EF is lower than the mean ET with statistical
significance.

the precision study provides evidence that it is possible to use FLINT with coverage information from the
previous version and still achieve improvements in both suspiciousness and Expense metrics.

To answer RQ4, we compare the mean reductions of Expense from two consecutive versions of the same
program. The third column in Table 8 shows the mean reductions of Expense for all faults in version n from
Table 4. The fifth column shows the mean reductions of Expense for all faults in the corresponding version
n+1 from Table 6. If there exists a positive correlation between the two sets of values, it becomes possible
for the tester to try FLINT with known data from the previous version (following the precision study) to
see whether FLINT can achieve reductions for the current version (following the robustness study). The
result of Spearman’s rank correlation analysis is ρ = 0.6190 with p = 0.057, supporting a positive answer
to RQ4.

RN/11/09 Page 14

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

Metric PS PN EQ NN NS

Suspiciousness 21 0 24 2 16
Expense 28 3 6 5 21

Table 7: Hypothesis Test for Robustness Study
Subject Ver. n Avg.∆E Ver. n+ 1 Avg.∆E

flex 3 0.22 4 0.70
flex 4 1.98 5 6.94
grep 1 7.10 2 8.37
grep 2 3.13 3 2.23
grep 3 1.72 4 -0.85
gzip 1 -0.30 2 0.43
gzip 4 -0.13 5 -0.74
sed 2 1.14 3 0.36

Table 8: Comparison of Mean Expense Reduction between consecutive versions. Spearman’s rank corre-
lation coefficient ρ is 0.6190 with p = 0.057.

7 Related Work

Test case prioritisation is a regression testing technique that aims to maximise the rate of fault detection
if the testing is terminated at an arbitrary point [24]. Since the fault information is not known, test case
prioritisation techniques often rely on surrogates, for which structural coverage is widely used [14, 21].
However, test case prioritisation techniques do not separately consider the case when a fault is actually
detected during the execution of the prioritised test suite.

Fault localisation is a debugging technique that aims to aid the tester to locate a detected fault [20]. Existing
work focus on coverage-based metrics, program spectra analysis or Program Dependence Graph (PDG) to
locate faults [1,10,15,19,20]. There is existing work that investigates the impact of test suite reduction on
fault localisation [26] the impact of test case prioritisation on fault localisation has not been studied before.
Recent work uses a probabilistic causal inference model for better fault localisation [4] but this paper is the
first to introduce Information Theory to fault localisation.

Information theory [11], now an extensive branch of probability theory with many applications, was fa-
mously founded by Claude Shannon in a single paper [22]. It has been applied in many research areas
related to computer science including machine learning, analysis of algorithms, and data mining. Ap-
plications to software engineering and particularly to programming languages, have been less common.
Software metrics [2] and software evolution [3] are both areas which have seen contributions but the most
active area at the present time is program analysis for quantifying information flow.

Questions about quantified information flow (QIF) arise naturally in the theory of dependence, particu-
larly in the theory of security, in order to measure the strength of dependence (e.g. for potential covert
channels). It is not surprising that one of the the earliest applications of Shannon information to program-
ming languages was in Denning’s 1982 book on cryptography and data security [12] where it appears in
an informal discussion of how to analyse program constructs in terms of information flow, along with an
attempt to define flow quantity. Although it subsequently became fashionable to use information theory
in discussions of security properties for software systems, the first automatable analysis for QIF did not
appear until 2002 [7]. This latter work was extended to a Turing complete language [8] and to a process
language [5]. In the last five years a vibrant community of researchers into QIF has developed but to date
all the applications have been to flow security.

Our paper introduces a novel application of Shannon entropy to the analysis of programs and has potential
for extension to a theoretical framework for a probabilistic approach to testing. It is not QIF based but
it adopts a similar approach to Clarkson et alia’s Bayesian-influenced paper on quantifying information
flow [9]. The paper describes a security attack in which a series of experiments successively update the
attacker’s belief about the probability distribution on the space of secrets with the aim of refining that

RN/11/09 Page 15

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

probability distribution to the one in which the actual secret input to the program has probability 1 while
all others have probability 0.
8 Conclusion

This paper presents the first use of Information Theory for fault localisation. We build an entropy model for
the locality of fault: the probability distribution of the locality of the fault is approximated using existing
fault localisation metrics. The proposed technique, FLINT, aims to improve the effectiveness of fault
localisation by trying to reduce the Shannon entropy of the locality of the fault. While the paper considers
the use of Tarantula metric, any fault localisation metric can be plugged into FLINT.

We evaluate FLINT by evaluating its effectiveness for a novel problem: test case prioritisation for early
fault localisation. Once a test suite, prioritised for early fault detection, indeed detects a fault, we switch to
FLINT approach to maximise the chance of early fault localisation even if testing is terminated prematurely.
Empirical evaluation of FLINT shows that it is possible to increase the suspiciousness metric and reduce
the fault localisation cost for more than half of the studied faults.

References

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of spectrum-based fault local-
ization. In Proceedings of the Testing: Academic and Industrial Conference Practice and Research
Techniques - MUTATION, pages 89–98. IEEE Computer Society, 2007.

[2] E. B. Allen and T. M. Khoshgoftaar. Measuring coupling and cohesion: An information-theory
approach. In IEEE METRICS, 1999.

[3] T. Arbuckle. Studying software evolution using artefacts’ shared information content. Science of
Computer Programming, In Press:–, 2010.

[4] G. K. Baah, A. Podgurski, and M. J. Harrold. Causal inference for statistical fault localization. In
Proceedings of the 19th International Symposium on Software Testing and Analysis (ISSTA 2010),
pages 73–84. ACM Press, July 2010.

[5] M. Boreale, D. Clark, and D. Gorla. A semiring-based trace semantics for processes with applica-
tions to information leakage analysis. In Proceedings of the 6th IFIP TC 1/WG 2.2 International
Conference TCS 2010, Part of WCC2010 Proceedings. Springer, 2010.

[6] F. P. Brooks, Jr. The Mythical Man Month: Essays on Software Engineering. Addison-Wesley
Publishing Company, Reading , MA , USA, 1975.

[7] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of confidential data. Elec-
tronic Notes in Theoretical Computer Science, 59, 2002.

[8] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information flow in a simple
imperative language. Journal of Computer Security, 15(3):321 – 372, 2007.

[9] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Quantifying information flow with beliefs. Journal
of Computer Security, 17(5):655–701, 2009.

[10] H. Cleve and A. Zeller. Locating causes of program failures. In Proceedings of the 27th international
conference on Software engineering, ICSE ’05, pages 342–351, New York, NY, USA, 2005. ACM.

[11] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Interscience, 1991.

[12] D. E. R. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[13] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing tech-
niques: An infrastructure and its potential impact. Empirical Software Engineering, 10(4):405–435,
2005.

RN/11/09 Page 16

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

[14] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test cases for regression testing.
In Proceedings of International Symposium on Software Testing and Analysis (ISSTA 2000), pages
102–112. ACM Press, August 2000.

[15] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic fault-localization
technique. In Proceedings of the 20th International Conference on Automated Software Engineering
(ASE2005), pages 273–282. ACM Press, 2005.

[16] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault localization.
In Proceedings of the 24th International Conference on Software Engineering, pages 467–477, New
York, NY, USA, 2002. ACM.

[17] J.-M. Kim and A. Porter. A history-based test prioritization technique for regression testing in re-
source constrained environments. In Proceedings of the 24th International Conference on Software
Engineering, pages 119–129. ACM Press, May 2002.

[18] Z. Li, M. Harman, and R. M. Hierons. Search Algorithms for Regression Test Case Prioritization.
IEEE Transactions on Software Engineering, 33(4):225–237, 2007.

[19] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug isolation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’05, pages 15–26, New York, NY, USA, 2005. ACM.

[20] M. Renieres and S. Reiss. Fault localization with nearest neighbor queries. In Proceedings of the 18th
International Conference on Automated Software Engineering, pages 30 – 39, October 2003.

[21] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test cases for regression testing. IEEE Transac-
tions on Software Engineering, 27(10):929–948, October 2001.

[22] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–
423 and 623–656, July and October 1948.

[23] P. Tonella, P. Avesani, and A. Susi. Using the case-based ranking methodology for test case prioriti-
zation. In Proceedings of the 22nd International Conference on Software Maintenance (ICSM 2006),
pages 123–133. IEEE Computer Society, July 2006.

[24] S. Yoo and M. Harman. Regression testing minimisation, selection and prioritisation: A survey.
Software Testing, Verification, and Reliability, to appear, 2010.

[25] S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective & scalable pri-
oritisation incorporating expert knowledge. In Proceedings of International Symposium on Software
Testing and Analysis (ISSTA 2009), pages 201–211. ACM Press, July 2009.

[26] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical study of the effects of test-suite reduction on fault
localization. In Proceedings of the International Conference on Software Engineering (ICSE 2008),
pages 201–210. ACM Press, May 2008.

RN/11/09 Page 17

