
Metamorphic Testing of Stochastic Optimisation

Shin Yoo
Centre for Research on Evolution, Search & Testing

King’s College London
London, UK

Shin.Yoo@kcl.ac.uk

Abstract—Testing stochastic optimisation algorithms
presents an unique challenge because of two reasons. First,
these algorithms are non-testable programs, i.e. if the test
oracle was known, there wouldn’t have been the need for
those algorithms in the first place. Second, their performance
can vary depending on the problem instances they are used
to solve. This paper applies the statistical metamorphic
testing approach to stochastic optimisation algorithms and
investigates the impact that different problem instances have
on testing optimisation algorithms. The paper presents an
empirical evaluation of the approach using instances of Next
Release Problem (NRP). The effectiveness of the testing
method is evaluated using mutation testing. The result shows
that, despite the challenges from the stochastic nature of the
optimisation algorithm, metamorphic testing can be effective
in testing them.

Keywords-Metamorphic Testing, Optimisation, Search-Based
Software Engineering

I. INTRODUCTION

The use of meta-heuristic optimisation techniques in
software engineering, often referred to as Search-Based
Software Engineering (SBSE), has been of growing inter-
est to researchers [1–4]. The main idea behind SBSE is
that software engineering problems can be reformulated as
optimisation problems and ‘good enough’ solutions can be
obtained by the use of existing optimisation algorithms. This
approach has been successfully applied to problems across
the software life-cycle, from Requirements Engineering to
regression testing [4].

As the SBSE approach matures, various optimisation
techniques find their place in software tools [5–10]. These
practical applications of optimisation techniques raise an
interesting software testing question: how do we test these
optimisation techniques? Or, more precisely, how do we test
the implementations of these optimisation algorithms?

The answer to this question is not as trivial as to compare
the implementation to the reference algorithm design, often
because there is no such reference. Many well-studied
optimisation algorithms come with multiple variants of
themselves. Genetic Algorithms (GAs), for example, allow
the user to select genetic operators from a huge pool of
existing selection, cross-over and mutation operators; each
unique combination of these operators can be thought of
as a new variant of GA. Furthermore, it is common that

these optimisation algorithms need to go through slight
modifications in order to be applied to a specific software
engineering problem.

However, testing the optimisation algorithms involves
solving a much more fundamental testing problem; that
is, the problem of testing ‘non-testable’ programs [11].
Weyuker described ‘non-testable’ programs as “programs
which were written in order to determine the answer in
the first place”. Testing the optimisation algorithms would
require a test oracle to compare the test results to. However,
if the correct answer to the optimisation problem was known
in advance, there would not have been the need for the
optimisation algorithm.

Metamorphic testing is a testing approach that seeks to
overcome the lack of test oracle [12]. The idea behind
metamorphic testing is that certain properties of the program
under test can allow the tester to create, from an existing
test case, a new ‘follow-up’ test case whose outcome can
be predicted according to the metamorphic relations. The
outcome of the follow-up test case can act as a pseudo-oracle
for the original test case, or vice versa. It has been applied to
testing heuristics such as machine learning algorithms [13].

However, there are a few challenges in applying meta-
morphic testing to stochastic optimisation algorithms. First,
the stochastic nature of these algorithms prevents the direct
comparison of test results to the test oracle. For metamorphic
testing of nondeterministic programs, Guderlei and Mayer
proposed the Statistical Metamorphic Testing (SMT), com-
bining statistical hypothesis test with metamorphic testing,
in order to overcome the randomness in output [14].

The second issue is perhaps more uniquely problematic
for meta-heuristic optimisation algorithms; the observed
performance of an optimisation algorithms may depend
not only on the correctness of the implementation of the
algorithm, but also the relative difficulty of the instance of
the problem the algorithm is applied to. Guderlei and Mayer
only considered a program with hard-coded randomness;
an implementation of the inverse cumulative distribution
function of the normal distribution Φ−1. For stochastic
optimisation algorithms, it is possible that an implementation
passes the metamorphic test with a problem instance pA,
but fails to perform correctly for another problem instance,
pB . Therefore, it is crucial to measure and evaluate the

impact of different problem instances on the effectiveness
of metamorphic testing of meta-heuristic optimisation.

This paper presents a metamorphic testing approach for
stochastic optimisation algorithms based on statistical analy-
sis and aims to investigate the impact that different problem
instances can have on the effectiveness of metamorphic
testing of stochastic optimisation algorithms. Using injected
faults, a well studied stochastic optimisation algorithm (Sim-
ulated Annealing) has been tested for multiple instances of
Next Release Problem (also known as Release Planning)
formulated from both real-world and synthetic datasets.
The effectiveness of SMT approach was measured using
mutation testing. The results showed that metamorphic test-
ing combined with statistical analysis of its results can
be effective for testing stochastic optimisation algorithms
against certain classes of faults. While the paper considers
NRP and Simulated Annealing as a test subject, the outlined
SMT approach is applicable to search-based software testing
with any stochastic optimisation algorithm.

The contributions of this paper are as follows:

1) The paper presents the first attempt to provide
a systematic testing framework for stochastic
optimisation algorithms using the statistical
metamorphic testing methodology.

2) The paper presents a controlled empirical evaluation
to investigate how different problem instances can
affect the effectiveness of metamorphic testing of
optimisation algorithms, using multiple datasets
including both real-world and synthetic data.

3) The paper considers the impact of different statistical
confidence level on the accuracy of the statistical
metamorphic testing approach.

The rest of the paper is organised as follows. Section II
introduces metamorphic testing approach. Section III dis-
cusses both the simulated annealing optimisation algorithm
and the NRP from Requirements Engineering that will be
studied in the paper. Section IV describes the set-up of
the empirical study, the results of which are discussed
in Section V. Section VI discusses the related work and
Section VII concludes.

II. METAMORPHIC TESTING

A. Concepts

Metamorphic testing is a process of generating follow-up
test cases from correctly executed test cases in order to check
important properties of the target function [12]. A successful
test case is a one on which the program computes the correct
output. Chen at al. argued that, although successful test cases
are conventionally considered to be useless with respect
to fault finding, they do carry valuable information that

contribute towards a solution to the oracle problem [12]. This
is made possible by exploiting specific relations between the
System Under Test (SUT) and test cases.

A metamorphic relation (MR) is an expected relation
between different pairs of inputs and outputs to SUT. In-
tuitively, if a metamorphic relation holds between a pair of
test inputs, it follows that there also holds a specific relation
between the pair of corresponding outputs, which allows the
tester to infer what the test oracle should be. The following
relations are some of the examples listed by Chen et al. [12]
for the metamorphic testing of a function that calculates sine
function:
• R1 : sinx = sin (2π + x)
• R2 : sinx = − sin (π + x)

Suppose that the Function Under Test (FUT) f , which is
an implementation of sine function, returned a value α for
a specific input value x. Using R1, it is possible to obtain a
follow-up test case with a metamorphic test oracle: 2π − x
and α. That is, based on R1, it follows that f(x) = α →
f(2π−x) = α. Similarly, it can be stated that, based on R2,
f(x) = α → f(π + x) = −α. Using this metamorphic test
oracles, fault can be detected when sin(x) 6= sin (2π − x) or
when sinx 6= − sin (π + x). While R1 and R2 represent the
identity relation (i.e. the outputs should be identical), there
can be other types of metamorphic relations. For example,
if the FUT is linear, a rational relation would be expressed
as following: f(x) = y → f(αx) = αf(x) = αy

B. Statistical Metamorphic Testing

When the FUT is deterministic, applying a test oracle
is essentially an equality check between a pair of outputs.
However, when the FUT is stochastic, a simple equality
check is not possible due to the inherent randomness. This,
in turn, requires statistical analysis of multiple pairs of
outputs from the original test case and the metamorphic
follow-up test case. Statistical metamorphic testing is a sub-
branch of metamorphic testing introduced by Guderlei and
Mayer [14]. It overcomes where the metamorphic test oracle
can only be checked by means of statistical analysis.

The exact type of statistical analysis to be performed
should be decided based on the nature of the specific
metamorphic relation in question. For example, if the meta-
morphic relation is identity relations similar to R1 and R2

in Section II-A, hypothesis testing for equality would be
the appropriate choice. However, if exists, further domain
knowledge such as the expected distribution of the test
output can be used to select more precise hypothesis testing
method.

C. Applying SMT to Optimisation Algorithms

Algorithm 1 outlines how SMT can be applied to stochas-
tic optimisation algorithms. Given an implementation of an
optimisation algorithm to test, A, a problem instance to test
A with, P and a metamorphic relation, M , SMT approach

first obtains P ′ which is derived from P using M . It means
that A should converge to the same solution most of times, if
not always. SMT executes A with both P and P ′ for a given
number of times (N) and then applies a given statistical
hypothesis test, S, to the hypothesis H that two samples
obtained respectively from A(P) and A(P ′) share the same
mean value.

Algorithm 1: Outline of SMT for Optimisation Algorithms
Input: an implementation of an optimisation algorithm,
A, a problem instance, P , a metamorphic relation, M , a
statistical hypothesis test, S, a sample size, N
Output: pass if no fault is suspected, fail if a fault is
likely
(1) P ′ ←M(P)
(2) R← ∅, R′ ← ∅
(3) repeat
(4) R← R ∪ {A(P)}
(5) R′ ← R′ ∪ {A(P ′)}
(6) until N times
(7) H ← hypothesis that mean(R) = mean(R′)
(8) if H holds w.r.t. S then return pass
(9) else return fail

Since the outcome is based on a statistical analysis, it is
not possible to decide whether A is definitely faulty or not.
If H is statistically confirmed, it is likely that A is not faulty.
However, if H is rejected, then A did not converge to the
same solution for P and P ′ and, therefore, is more likely
to be faulty. This means that the choice of S can affect the
accuracy of SMT.

D. Research Questions

This paper aims to answer the following research ques-
tions.
• RQ1. Accuracy: How accurately can statistical

metamorphic testing approach detect faults in
Simulated Annealing algorithm?

• RQ2. Insight: What are the difficulties for applying
statistical metamorphic testing approach?

• RQ3. Impact of Problem Instance: Does the accuracy
of SMT approach differ between different problem
instances?

• RQ4. Impact of Strength of Hypothesis Testing:
Does the accuracy of SMT approach differ between
different statistical significance level for hypothesis
testing required by SMT approach?

RQ1 will be answered by evaluating SMT approach using
mutation faults. RQ2 will require more qualitative analysis
of the results for RQ1. RQ3 and RQ4 will be answered by

comparing the fault detection capability of SMT approach
using different problem instances (for RQ3) and different
statistical significance levels (for RQ4).

III. NEXT RELEASE PROBLEM & STOCHASTIC
OPTIMISATION

A. Next Release Problem (NRP)

This paper uses instances of Next Release Problem
(NRP) to illustrate the application of metamorphic testing
to stochastic optimisation algorithms. NRP is a software
engineering problem that aims to select the ideal subset of
software features that should be implemented and included
in the next version of the software system [15, 16]

More formally, let R = {r1, . . . , rn} be the set of all
candidate software features that are available for the next
version of the system. Let C = {c1, . . . , cn} be a set of costs
for each features in R. A boolean decision vector, x =<
x1, . . . , xn > denotes the subset of features that would be
implemented in the next version; ri is selected if xi = 1,
otherwise not.

Let U = {u1, . . . , um} be the set of m customers
who use the software system; each customer is assigned
with a relative degree of importance to the company that
releases the software system. Let W = {w1, . . . , wm} be
the set of weights that reflect the relative importance of
each customer to the company. Similarly, not all features
in R carry the same value to customers. Each customer
uj(1 ≤ j ≤ m) assigns the value of a specific requirement
ri(1 ≤ j ≤ n), which is denoted by v(ri, uj). Each feature
ri is assigned a score, si, based on these information:
S = {si|si =

∑m
j=i wj · v(ri, uj), 1 ≤ i ≤ n}. Finally,

let B be the budget allowed for the selection of features.
The basic NRP is defined by a tuple < R,C, S,B >, from
which the aim is to obtain a decision vector x such that:

maximise
n∑

i=1

xi · si while subject to
n∑

i=1

xi · ci ≤ B

This is the well-known 0/1 knapsack problem, which is
known to be NP-complete [17] and, therefore, an appropriate
candidate for meta-heuristic optimisation techniques. Bagnal
et al. called this the basic NRP because this formulation does
not consider the dependency relations between features [15].
However, Bagnal et al. also noted that an instance of NRP
with dependency relations can be approximated by basic
NRP by combining features in dependency chains into one
large feature.

B. Simulated Annealing

Simulated Annealing is a type of stochastic local search
that is specially designed to overcome one of the major
drawbacks of local search techniques, i.e., to escape local
optimum. When the algorithm starts, it will accept a move
towards an inferior neighbouring solution according to a pre-
defined probability. This probability, however, decreases as

the search progresses, converging to 0 near the end of the
search. The decrease of the probability is modelled from
the annealing process in metallurgy, which the algorithm
its name. It has been successfully applied to NRP [18].
Algorithm 2 contains the outline of Simulated Annealing.

More formally, the algorithm starts with temperature T
set to t0. In each iteration, the probability of accepting an
inferior neighbouring solution in an attempt to escape a
local optimum is defined as e

−∆E
T , where ∆E denotes the

difference in fitness value between the current solution and
the candidate solution. At the end of each iteration, the value
of T is decreased according to a specific cooling scheme.
The algorithm finishes when the temperature reaches a pre-
defined point.

Algorithm 2: Pseudocode for Simulated Annealing

(1) s← a random initial solution
(2) T ← t0
(3) while T ≥ tf
(4) for i = 1 to L
(5) n← a neighbouring solution of s
(6) if n is fitter than s
(7) s← n
(8) else
(9) r ← a random probability
(10) if r < e

−(fit(n)−fit(s))
T then s← n

(11) T ← coolingScheme(T)
(12) return s

Following Baker et al. [18], the implementation used in
the empirical study has been modified to what is outlined
in Algorithm 2 in order to cater for the budget constraint
that is an inherent part of NRP. It considers a neighbouring
solution only when the budget constraint is satisfied in Line
(5). The implementation of Simulated Annealing has been
written in Java; the algorithm is contained in a method
with 25 Non-Comment Source Statement (NCSS) and its
cyclomatic complexity equals 25. Source code metrics have
been obtained using JavaNCSS [19].

One particular strength of Simulated Annealing in the
context of this paper is that the algorithm allows a systematic
parameter tuning for a specific instance of a given optimisa-
tion problem [20]. This makes Simulated Annealing an ideal
candidate for the empirical study in this paper, as the impact
of inappropriate parameter setting on the performance and
accuracy of the optimisation can be significantly reduced.

IV. EXPERIMENT SETUP

A. Mutation Faults

This paper uses injected mutation faults in order to evalu-
ate, with respect to RQ1, the effectiveness of SMT approach.
Mutation faults are based on the idea of mutation testing,

Table I: Mutation operators used in the paper

Operator Description

AOIS Insert short-cut arithmetic operators
AIOU Insert basic arithmetic operators
AORB Replace basic binary arithmetic operators
COI Insert unary conditional operators
LOI Insert unary logic operators
ROR Replace relational operators

where the testing adequacy is measured based on simple
syntactic modifications artificially made to the SUT [21].

A well known mutation tool, muJava [22], was applied
to the implementation of Simulated Annealing algorithm
outlined in Algorithm 2. Table I lists the mutation operators
available from muJava that resulted in executable mutants
of the implementation of Simulated Annealing; other opera-
tors did not produce executable variants. Since the algorithm
was contained in a single Java method, mutation operators
that concern Object-Oriented aspects of Java have not been
applied. A total of 96 executable mutant programs have been
generated.

One of the difficulties of injecting faults using mutation is
the possibility of equivalent mutants, i.e. program variants
that differ from the original program syntactically but remain
the same semantically. In the context of this paper, injected
faults that correspond to equivalent mutants are not real
faults and, therefore, cannot be detected by any testing
methodology. To answer RQ2, all 96 mutants have been
manually analysed and inspected to classify them according
to their semantic impact to Simulated Annealing. Out of
the 96 mutants obtained by muJava, 10 were equivalent.
Some of the non-equivalent mutants also resulted in program
variants with infinite loops, of which there were 22. These
were detected by the time-out routine in the testing harness
and regarded as being killed.

B. Simulated Annealing Configuration

Simulated Annealing require a set of configuration pa-
rameters: a initial temperature, t0, a final temperature, tf ,
a cooling scheme which is a function of the temperature
variable and a length for the Markov chain, L. Steinhöfel et
al. suggested the following setup for t0 and L [20]:

t0 =
∆maxfitness

log(1− p1)
for a small positive p1

L = h · [num. of neighbouring solutions] (h > 0)

Initial temperature t0 is configured in such a way that, at
the beginning, the chance of accepting any transition would
be close to 1; the empirical study uses p1 = 0.8. Length
of Markov chain, L, is configured so that all neighbouring
solutions can have enough chance of being considered;
L was set to 15,000. A simple linear cooling scheme,
ti+1 = ti ∗ (1 − p2) has been adopted, with p2 = 0.2.
The final temperature, tf , is set to 0.005. These parameters

reproduces the configuration used in previous work that
applied Simulated Annealing to NRP [18].

C. Problem Instances

To answer RQ3, three different feature datasets have
been used to formulate problem instances studied in this
paper. The first dataset, D1, is based on a real-world
feature requirement dataset from a large telecommunication
company, which previously has been used for the analysis
of multi-objective optimisation for NRP [16]. It contains
35 distinctive features. The second and the third sets, D2

and D3 respectively, have been generated randomly. Both
contain 100 features. For D2, the values of cost and score
for each feature have been sampled from a discrete uniform
distribution whereas, for D3, these values have been sampled
from a normal distribution.

Table II: Instances of Next Release Problem

Dataset Blow Bmid Bhigh

Real-world (D1) 674 3,370 6,066
Random/Uniform (D2) 792 3,962 7,131
Random/Normal (D3) 807 4,039 7,072

An instance of NRP requires not only a feature dataset
with costs and scores but also a budget value. For each
dataset, three different budget values have been defined:
Blow, Bmid and Bhigh. Table II presents the budget values
for different datasets. For each dataset, Blow was set to be
about 10% of the total cost of all features. Similarly, Bmid

and Bhigh were set to be about 50% and 90% of the total
cost of the corresponding dataset respectively.

Unlike different datasets, the effect of which is difficult to
anticipate, different budget sizes allows some prediction of
the results. It may be anticipated that different budget values
will affect the difficulty associated with the optimisation for
the specific problem instance. For each dataset, the lower
budget, Blow, has been set sufficiently low so that the
majority candidate solutions will be unacceptable due to the
budget constraint. This effectively reduces the search space,
helping the algorithm to find the global optimum. Similarly,
the higher budget, Bhigh, is set sufficiently high so that the
majority of the features can be safely included in the final
solution. This effectively lessens the effect of the budget
constraint, helping the algorithm to find the global optimum.
However, the mid-level budget, Bmid, is set so that there
are many different combinations of features that satisfy the
given budget constraint, thereby presenting a much harder
optimisation problem.

D. Metamorphic Relations and Evaluation

Identifying useful metamorphic relations for SBSE prob-
lems can be a challenging task on its own. The discovery of
more sophisticated metamorphic relations would present an
interesting future work; this paper begins the investigation

with a basic and intuitive convergence relation for NRP
based on permutation of problem instances. Theoretically,
the set of candidate features R is a set and, therefore,
not ordered. Practically, the same information is almost
always contained in an ordered data structure such as arrays
or vectors and each feature is accessed using iterators.
However, different ordering of features should not affect the
final solution that Simulated Annealing converges to.

More formally, let P be a permutation operator for
ordered sets; if an implementation of Simulated Annealing,
SA, is correct, it follows that SA(< R,C, S,B >) and
SA(< P (R), P (C), P (S), B >) should converge to the
same solution within the margin of error allowed by the
inherent randomness of Simulated Annealing.

To cater for the inherent randomness and the subsequent
need for the margin of error for comparing solutions, sta-
tistical hypothesis testing is applied. The implementation
of Simulated Annealing guarantees that every solution pro-
duced satisfies the budget constraint; therefore, only the
scores of the solution are compared using Wilcoxon’s rank-
sum test. Wilcoxon’s rank-sum test is a non-parametric
statistical hypothesis test that does not require the population
to be normally distributed. The sample size for the statistical
test, i.e. N in Algorithm 1, has been set to 30.

For each instance of NRP, two samples consist of so-
lutions obtained by SA(< R,C, S,B >) and SA(<
P (R), P (C), P (S), B >) respectively; the algorithm was
executed for 30 times for each instance. The random number
generator has been seeded with the system clock. The
null hypothesis is that there is no difference between two
samples, while the alternative hypothesis is that two samples
are different. Accepting the null hypothesis means that the
metamorphic relation holds and, therefore, the implementa-
tion is correct. Accepting the alternative hypothesis means
that the metamorphic relation does not hold and, therefore,
the implementation is faulty. For mutated implementations
of Simulated Annealing, the desired outcome is to reject the
null hypothesis and to accept the alternative hypothesis (i.e.
the mutant is killed). To answer RQ4, significance levels
ranging from 91% to 99% have been used.

V. RESULTS & ANALYSIS

A. Effectiveness

Figure 1 represents the overall results from applying
SMT approach to different problem instances described in
Table II. Recall from Section IV-A that 10 of the 96 mutant
programs were equivalent mutants; these mutants cannot be
killed. Based on this, the results have been classified into
the following four categories:
• TP (True Positive): the mutant program is not equiva-

lent and SMT approach statistically revealed differences
in output between the original and the mutant program
(i.e. killed the mutant). This would equal to the muta-
tion score.

Mutant mlow mmid mhigh ulow umid uhigh glow gmid ghigh
AOIS_1.txt
AOIS_10.txt
AOIS_11.txt
AOIS_12.txt
AOIS_13.txt
AOIS_14.txt
AOIS_15.txt
AOIS_16.txt
AOIS_17.txt
AOIS_18.txt
AOIS_19.txt
AOIS_2.txt
AOIS_20.txt
AOIS_21.txt
AOIS_22.txt
AOIS_23.txt
AOIS_24.txt
AOIS_25.txt
AOIS_26.txt
AOIS_27.txt
AOIS_28.txt
AOIS_29.txt
AOIS_3.txt
AOIS_30.txt
AOIS_31.txt
AOIS_32.txt
AOIS_33.txt
AOIS_34.txt
AOIS_35.txt
AOIS_36.txt
AOIS_4.txt
AOIS_5.txt
AOIS_6.txt
AOIS_7.txt
AOIS_8.txt
AOIS_9.txt
AOIU_1.txt
AORB_1.txt
AORB_10.txt
AORB_11.txt
AORB_12.txt
AORB_13.txt
AORB_14.txt
AORB_15.txt
AORB_16.txt
AORB_17.txt
AORB_18.txt
AORB_19.txt
AORB_2.txt
AORB_20.txt
AORB_21.txt
AORB_22.txt
AORB_23.txt
AORB_24.txt
AORB_3.txt
AORB_4.txt
AORB_5.txt
AORB_6.txt
AORB_7.txt
AORB_8.txt
AORB_9.txt
AORS_1.txt
COI_1.txt
COI_2.txt
COI_3.txt
COI_4.txt
COI_5.txt
COI_6.txt
COI_7.txt
LOI_4.txt
LOI_5.txt
ROR_1.txt
ROR_10.txt
ROR_11.txt
ROR_12.txt
ROR_13.txt
ROR_14.txt
ROR_15.txt
ROR_16.txt
ROR_17.txt
ROR_18.txt
ROR_19.txt
ROR_2.txt
ROR_20.txt
ROR_21.txt
ROR_22.txt
ROR_23.txt
ROR_24.txt
ROR_25.txt
ROR_3.txt
ROR_4.txt
ROR_5.txt
ROR_6.txt
ROR_7.txt
ROR_8.txt
ROR_9.txt

F K F F K F F F F wrong initial temp
T T T T T T T T T main loop
F F F K F F K F F main loop ends too soon (epsilon++)_
T T T T T T T T T main loop
N N F N F K K F K markov chain too short
T T T T T T T T T markov chain never ends
N N K K F K F F F markov chain too short
T T T T T T T T T markov chain never ends
T T T T T T T T T markov chain never ends
F F F F F F F F F markov chain too short
T T T T T T T T T markov chain never ends
N N F K K K N F K wrong initial temp
F F F F F F F F F markov chain too short
N N K N F K K F K move to better neighbour made harder
N K F N K K N K K move to better neighbour made easier
N N F F F F F F F equivalent
N F F F F N N K F equivalent
T T T T T T T T T temperature increases
F F F F F F F F F temperature drops more quickly
T T T T T T T T T temperature increases
F F F F F F F F K temperature drops more quickly
T T T T T T T T T temperature increases
N N F F F F F F F equivalent
F F F F F K F F K temperature drops more quickly
N N F K K K N F K temperature drops more slowly
N N F N K K N F K temperature drops more quickly
F F F F F F F K F temperature turns minus in 1st iteration (premature end)
T T T T T T T T T temperature increases
F F F F F F F F F temperature turns minus in 2nd iteration (premature end)
T T T T T T T T T temperature increases
N N F N K F N F K equivalent
T T T T T T T T T temperature increases
F N F F F K F F K temperature drops more quickly
T T T T T T T T T temperature increases
F F K F F K F F K temperature drops more quickly
F F F K F F F F F main loop ends too soon (++epsilon)
F F F F F F F F F temperature turns minus in 1st iteration (premature end)
N N K K K K K F K wrong initial temp (too low)
F F K F F K K F F delta is never below 0
F F F F F K F F F delta is never below 0
F F F F F K F F F delta is never below 0
N N F K K K N F K too easy to move to suboptimal solution
N N F K K K N F F too easy to move to suboptimal solution
N N F N K K K F K too easy to move to suboptimal solution
N N F K K N N F F too hard to move to suboptimal solution
F N F K F K K F F temperature drops more quickly
T T T T T T T T T temperature increases
F N F K F K K F F temperature drops more quickly
N N F N F K N F K wrong initial temp (too low)
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
N N F F F K N F F equivalent
N N F N F K N K K wrong initial temp (too low)
N N F N F K K F K wrong initial temp (too low)
F F F F F F F F F wrong initial temp (too low)
N N F N F F K F K wrong initial temp (too low)
N N F N F K N F K wrong initial temp (too low)
F F F F F F F F F delta is never below 0
T T T T T T T T T markov chain never ends
F F F F F F F F F main loop ends too soon (!temp > epsilon)
F F F F F F F F F markov chain ends too soon (! i < L)
N K N K N N K N K budget constraints always violated
F F F F F F F K F always makes suboptimal move
F F K F F F F F F updates bestSolution suboptimally
F K F K K F K F F accepts suboptimal moves too frequently
F F K F F F F F F updates bestSolution suboptimally
T T T T T T T T T markov chain never ends
F F F F F F F F K markov chain nonexistent
N N F N F F N F K virtually equivalent
N N N K K K N K N budget constraint ignored
F K F K F F F F F makes suboptimal moves
F F F F K F K F F makes suboptimal moves
N N F N F F F F F virtually equivalent
N N F N K K K F K only moves when fitnesses are equal
F F F F F F F K F makes virtually random moves
N N F F F K F F K virtually equivalent
K F F F F F F F F updates bestSolution suboptimally
F F F F F F F F F updates bestSolution suboptimally
N N F K F K K F F updates bestSolution suboptimally
F F F F F F F F F main loop ends too soon (temp < epsilon)
K F F F F F F F F makes virtually random moves
N N F N K F F F K virtually equivalent
F F F F F K F F F updates bestSolution suboptimally
F K F F F F F F F updates bestSolution suboptimally
N N F N K N N F F updates bestSolution suboptimally
F F K F F F F F K updates bestSolution suboptimally
F F K F F F F F F main loop ends too soon (temp <= epsilon)
F F F F F F F F F main loop ends too soon (temp == epsilon)
T T T T T T T T T main loop never ends
N N N K K K N N K budget constraints always violated
N N N K K N N K K budget constraints always violated
N N F F K F N F F virtually equivalent
F F F F F F F F F only moves when cost equals budget (hardly at all)

D1+BL D1+BM D1+BH D2+BL D2+BM D2+BH D3+BL D3+BM D3+BH
kill
fail

FP
FP(corrected)
TP
TP %
FP_c %

TP
TN
FP
FN

True Positive
True Negative
False Positive
False Negative

24 28 32 42 30 53 46 44 57
72 68 64 54 66 43 50 52 39

0 0 1 5 1 7 6 5 7
0 0 0 0 1 4 0 3 2

24 28 32 42 29 49 46 41 55
27.906976744 32.558139535 37.209302326 48.837209302 33.720930233 56.976744186 53.488372093 47.674418605 63.953488372

0 0 0 0 1.1627906977 4.6511627907 0 3.488372093 2.3255813953

24 28 31 37 29 46 40 39 50
10 10 9 10 9 6 10 7 8

0 0 1 0 1 4 0 3 2
62 58 55 49 57 40 46 47 36

25.00% 29.17% 32.29% 38.54% 30.21% 47.92% 41.67% 40.63% 52.08%
10.42% 10.42% 9.38% 10.42% 9.38% 6.25% 10.42% 7.29% 8.33%

0.00% 0.00% 1.04% 0.00% 1.04% 4.17% 0.00% 3.13% 2.08%
64.58% 60.42% 57.29% 51.04% 59.38% 41.67% 47.92% 48.96% 37.50%

35.42% 39.58% 41.67% 48.96% 39.58% 54.17% 52.08% 47.92% 60.42%

Type Number
Equivalent 10
Wrong initial temperature 9
Wrong cooling scheme 25
Wrong length of Markov chain 12
Wrong main loop length 9
Wrong transition 27
Constraint violation 4

96

Type Size
Equivalent 10
Configurational 22
Control-flow 40
Miscalculation 24

25%

42%

23%

10%

Classification of Mutation Faults

Equivalent Configurational
Control-flow Miscalculation

D1 D2 D3
BL
BM
BH

35.42% 48.96% 52.08%
39.58% 39.58% 47.92%
41.67% 54.17% 60.42%

0%

25%

50%

75%

D1 D2 D3

Success Rate (TP + TN) per Budget

BL BM BH

0%

25%

50%

75%

BL BM BH

Success Rate (TP + TN) per Dataset

D1 D2 D3

D1+BL D1+BM D1+BH D2+BL D2+BM D2+BH D3+BL D3+BM D3+BH
0.09
0.07
0.05
0.03
0.01

28 28 33 42 42 52
25 28 31 40 40 50
24 28 31 40 39 50
23 27 27 40 37 48
22 25 26 40 35 46

D1+BL

D1+BM

D1+BH

D2+BL

D2+BM

D2+BH

D3+BL

D3+BM

D3+BH

0% 25.00% 50.00% 75.00% 100.00%

Results of Statistical Metamorphic Testing from Different Problem Instances

True Positive True Negative False Positive False Negative

Figure 1: Results of applying statistical metamorphic testing to different problem instances. True Positive (TP) represents
non-equivalent mutant programs killed by SMT approach, whereas True Negative (TN) represents non-equivalent mutant
programs that are not killed. Similarly, False Positive (FP) represents equivalent mutant programs wrongly killed by SMT
approach, whereas False Negative (FN) represents non-equivalent programs that are not killed. In all cases, False Positive
(FP) accounts for less than 5%. Correct diagnosis (TP + TN) ranges from 25.42% to 60.41%.

• TN (True Negative): the mutant program is equivalent
and SMT approach did not statistically reveal differ-
ences in output between the original and the mutant
program (i.e. did not kill the mutant).

• FP (False Positive): the mutant program is equivalent
and, therefore, impossible to kill, but SMT approach
statistically revealed differences in output between the
original and the mutant program.

• FN (False Negative): the mutant program is not equiv-
alent but SMT approach did not statistically reveal
the differences in output between the original and the
mutant program.

Table III presents the results in more details. Overall,
correct behaviours (TP + TN) account for from 35.42%
(D1 + Blow) to 60.41% (D3 + Bhigh) of all the mutants.
In most cases, TN values are 8 or higher, showing that
equivalent mutants were properly detected as not–killable.
Naturally, FP is the category with the lowest ratio across all
problem instances. To answer RQ1, statistical metamorphic
testing of Simulated Annealing for NRP achieved mutation
scores (i.e. TN) ranging from 24 to 50 out of 86 non-
equivalent mutants.

B. Insights

To answer RQ2, it is necessary to understand the nature
of each mutation. 96 mutation faults studied here have been
manually classified according to their semantic impact on
Simulated Annealing. The type equivalent corresponds to
equivalent mutants and, therefore, not really faults. Con-
figurational faults are those whose effect can be recreated
by configuring the parameters of Simulated Annealing in a

wrong manner; for example, mutation faults that result in
an initial temperature that is too low. Control-flow faults are
those that directly affect the control flow of the algorithm;
for example, mutation faults that result in infinite loops by
increasing the temperature rather than decreasing. Finally,
miscalculation faults are those that affect the core mathe-
matical expressions in the algorithm; for example, mutation
faults that affect the calculation of the probability to accept
a move to a suboptimal solution.

Table IV: Classification of Mutation Faults

Type Size Never Detected

Equivalent 10 N/A
Configurational 22 4
Control-flow 40 5
Miscalculation 24 0

Table IV shows the result of manual classification of
the 96 mutation faults studied. The largest group is the
control-flow faults, which includes the 22 mutation faults
that lead to infinite loops. However, what is interesting is that
significant portion of the mutation faults can be also thought
of as configurational faults, e.g. wrong initial temperatures or
inappropriate cooling scheme. Whether these configurational
faults will be propagated to the outcome of the optimisation
largely depends on the characteristics of the specific problem
instance and the algorithm. If the inappropriate configuration
for the algorithm is still good enough for the problem
instance, it would not be propagated and the metamorphic
testing would not work. There were 9 mutation faults that
were not killed in any of the problem instances. Out of those

Table III: Details of the results shown in Figure 1

Type D1 +Blow D1 +Bmid D1 +Bhigh D2 +Blow D2 +Bmid D2 +Bhigh D3 +Blow D3 +Bmid D3 +Bhigh

TP 24 (25.00%) 28 (29.17%) 31 (32.29%) 37 (38.54%) 29 (30.21%) 46 (47.92%) 40 (41.67%) 39 (40.63%) 50 (52.08%)
TN 10 (10.42%) 10 (10.42%) 9 (9.38%) 10 (10.42%) 9 (9.38%) 6 (6.25%) 10 (10.42%) 7 (7.29%) 8 (8.33%)
FP 0 (0.00%) 0 (0.00%) 1 (1.04%) 0 (0.00%) 1 (1.04%) 4 (4.17%) 0 (0.00%) 3 (3.13%) 2 (2.08%)
FN 62 (64.58%) 58 (60.42%) 55 (57.29%) 49 (51.04%) 57 (59.38%) 40 (41.67%) 46 (47.92%) 47 (48.96%) 36 (37.50%)

Mutant mlow mmid mhigh ulow umid uhigh glow gmid ghigh
AOIS_1.txt
AOIS_10.txt
AOIS_11.txt
AOIS_12.txt
AOIS_13.txt
AOIS_14.txt
AOIS_15.txt
AOIS_16.txt
AOIS_17.txt
AOIS_18.txt
AOIS_19.txt
AOIS_2.txt
AOIS_20.txt
AOIS_21.txt
AOIS_22.txt
AOIS_23.txt
AOIS_24.txt
AOIS_25.txt
AOIS_26.txt
AOIS_27.txt
AOIS_28.txt
AOIS_29.txt
AOIS_3.txt
AOIS_30.txt
AOIS_31.txt
AOIS_32.txt
AOIS_33.txt
AOIS_34.txt
AOIS_35.txt
AOIS_36.txt
AOIS_4.txt
AOIS_5.txt
AOIS_6.txt
AOIS_7.txt
AOIS_8.txt
AOIS_9.txt
AOIU_1.txt
AORB_1.txt
AORB_10.txt
AORB_11.txt
AORB_12.txt
AORB_13.txt
AORB_14.txt
AORB_15.txt
AORB_16.txt
AORB_17.txt
AORB_18.txt
AORB_19.txt
AORB_2.txt
AORB_20.txt
AORB_21.txt
AORB_22.txt
AORB_23.txt
AORB_24.txt
AORB_3.txt
AORB_4.txt
AORB_5.txt
AORB_6.txt
AORB_7.txt
AORB_8.txt
AORB_9.txt
AORS_1.txt
COI_1.txt
COI_2.txt
COI_3.txt
COI_4.txt
COI_5.txt
COI_6.txt
COI_7.txt
LOI_4.txt
LOI_5.txt
ROR_1.txt
ROR_10.txt
ROR_11.txt
ROR_12.txt
ROR_13.txt
ROR_14.txt
ROR_15.txt
ROR_16.txt
ROR_17.txt
ROR_18.txt
ROR_19.txt
ROR_2.txt
ROR_20.txt
ROR_21.txt
ROR_22.txt
ROR_23.txt
ROR_24.txt
ROR_25.txt
ROR_3.txt
ROR_4.txt
ROR_5.txt
ROR_6.txt
ROR_7.txt
ROR_8.txt
ROR_9.txt

F K F F K F F F F wrong initial temp
T T T T T T T T T main loop
F F F K F F K F F main loop ends too soon (epsilon++)_
T T T T T T T T T main loop
N N F N F K K F K markov chain too short
T T T T T T T T T markov chain never ends
N N K K F K F F F markov chain too short
T T T T T T T T T markov chain never ends
T T T T T T T T T markov chain never ends
F F F F F F F F F markov chain too short
T T T T T T T T T markov chain never ends
N N F K K K N F K wrong initial temp
F F F F F F F F F markov chain too short
N N K N F K K F K move to better neighbour made harder
N K F N K K N K K move to better neighbour made easier
N N F F F F F F F equivalent
N F F F F N N K F equivalent
T T T T T T T T T temperature increases
F F F F F F F F F temperature drops more quickly
T T T T T T T T T temperature increases
F F F F F F F F K temperature drops more quickly
T T T T T T T T T temperature increases
N N F F F F F F F equivalent
F F F F F K F F K temperature drops more quickly
N N F K K K N F K temperature drops more slowly
N N F N K K N F K temperature drops more quickly
F F F F F F F K F temperature turns minus in 1st iteration (premature end)
T T T T T T T T T temperature increases
F F F F F F F F F temperature turns minus in 2nd iteration (premature end)
T T T T T T T T T temperature increases
N N F N K F N F K equivalent
T T T T T T T T T temperature increases
F N F F F K F F K temperature drops more quickly
T T T T T T T T T temperature increases
F F K F F K F F K temperature drops more quickly
F F F K F F F F F main loop ends too soon (++epsilon)
F F F F F F F F F temperature turns minus in 1st iteration (premature end)
N N K K K K K F K wrong initial temp (too low)
F F K F F K K F F delta is never below 0
F F F F F K F F F delta is never below 0
F F F F F K F F F delta is never below 0
N N F K K K N F K too easy to move to suboptimal solution
N N F K K K N F F too easy to move to suboptimal solution
N N F N K K K F K too easy to move to suboptimal solution
N N F K K N N F F too hard to move to suboptimal solution
F N F K F K K F F temperature drops more quickly
T T T T T T T T T temperature increases
F N F K F K K F F temperature drops more quickly
N N F N F K N F K wrong initial temp (too low)
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
N N F F F K N F F equivalent
N N F N F K N K K wrong initial temp (too low)
N N F N F K K F K wrong initial temp (too low)
F F F F F F F F F wrong initial temp (too low)
N N F N F F K F K wrong initial temp (too low)
N N F N F K N F K wrong initial temp (too low)
F F F F F F F F F delta is never below 0
T T T T T T T T T markov chain never ends
F F F F F F F F F main loop ends too soon (!temp > epsilon)
F F F F F F F F F markov chain ends too soon (! i < L)
N K N K N N K N K budget constraints always violated
F F F F F F F K F always makes suboptimal move
F F K F F F F F F updates bestSolution suboptimally
F K F K K F K F F accepts suboptimal moves too frequently
F F K F F F F F F updates bestSolution suboptimally
T T T T T T T T T markov chain never ends
F F F F F F F F K markov chain nonexistent
N N F N F F N F K virtually equivalent
N N N K K K N K N budget constraint ignored
F K F K F F F F F makes suboptimal moves
F F F F K F K F F makes suboptimal moves
N N F N F F F F F virtually equivalent
N N F N K K K F K only moves when fitnesses are equal
F F F F F F F K F makes virtually random moves
N N F F F K F F K virtually equivalent
K F F F F F F F F updates bestSolution suboptimally
F F F F F F F F F updates bestSolution suboptimally
N N F K F K K F F updates bestSolution suboptimally
F F F F F F F F F main loop ends too soon (temp < epsilon)
K F F F F F F F F makes virtually random moves
N N F N K F F F K virtually equivalent
F F F F F K F F F updates bestSolution suboptimally
F K F F F F F F F updates bestSolution suboptimally
N N F N K N N F F updates bestSolution suboptimally
F F K F F F F F K updates bestSolution suboptimally
F F K F F F F F F main loop ends too soon (temp <= epsilon)
F F F F F F F F F main loop ends too soon (temp == epsilon)
T T T T T T T T T main loop never ends
N N N K K K N N K budget constraints always violated
N N N K K N N K K budget constraints always violated
N N F F K F N F F virtually equivalent
F F F F F F F F F only moves when cost equals budget (hardly at all)

D1+BL D1+BM D1+BH D2+BL D2+BM D2+BH D3+BL D3+BM D3+BH
kill
fail

FP
FP(corrected)
TP
TP %
FP_c %

TP
TN
FP
FN

TP
TN
FP
FN

24 28 32 42 30 53 46 44 57
72 68 64 54 66 43 50 52 39

0 0 1 5 1 7 6 5 7
0 0 0 0 1 4 0 3 2

24 28 32 42 29 49 46 41 55
27.906976744 32.558139535 37.209302326 48.837209302 33.720930233 56.976744186 53.488372093 47.674418605 63.953488372

0 0 0 0 1.1627906977 4.6511627907 0 3.488372093 2.3255813953

24 28 31 37 29 46 40 39 50
10 10 9 10 9 6 10 7 8
0 0 1 0 1 4 0 3 2

62 58 55 49 57 40 46 47 36

25.00% 29.17% 32.29% 38.54% 30.21% 47.92% 41.67% 40.63% 52.08%
10.42% 10.42% 9.38% 10.42% 9.38% 6.25% 10.42% 7.29% 8.33%
0.00% 0.00% 1.04% 0.00% 1.04% 4.17% 0.00% 3.13% 2.08%

64.58% 60.42% 57.29% 51.04% 59.38% 41.67% 47.92% 48.96% 37.50%

35.42% 39.58% 41.67% 48.96% 39.58% 54.17% 52.08% 47.92% 60.42%

Type Number
Equivalent 10
Wrong initial temperature 9
Wrong cooling scheme 25
Wrong length of Markov chain 12
Wrong main loop length 9
Wrong transition 27
Constraint violation 4

96

D1+BL

D1+BM

D1+BH

D2+BL

D2+BM

D2+BH

D3+BL

D3+BM

D3+BH

0% 25.00% 50.00% 75.00% 100.00%

Results of Statistical Metamorphic Testing from Different Problem Instances

TP TN FP FN

Type Size
Equivalent 10
Configurational 22
Control-flow 40
Miscalculation 24

25%

42%

23%

10%

Classification of Mutation Faults

Equivalent Configurational
Control-flow Miscalculation

D1 D2 D3
BL
BM
BH

35.42% 48.96% 52.08%
39.58% 39.58% 47.92%
41.67% 54.17% 60.42%

0%

25%

50%

75%

D1 D2 D3

Success Rate (TP + TN) per Budget

BL BM BH

0%

25%

50%

75%

BL BM BH

Success Rate (TP + TN) per Dataset

D1 D2 D3

Figure 2: Comparison of success rates (TP + TN) between
different datasets for the same budget setting. The real-
world data (D1) shows the lowest success rate for all budget
settings. The success rates for D3 are higher than those of
D2.

Mutant mlow mmid mhigh ulow umid uhigh glow gmid ghigh
AOIS_1.txt
AOIS_10.txt
AOIS_11.txt
AOIS_12.txt
AOIS_13.txt
AOIS_14.txt
AOIS_15.txt
AOIS_16.txt
AOIS_17.txt
AOIS_18.txt
AOIS_19.txt
AOIS_2.txt
AOIS_20.txt
AOIS_21.txt
AOIS_22.txt
AOIS_23.txt
AOIS_24.txt
AOIS_25.txt
AOIS_26.txt
AOIS_27.txt
AOIS_28.txt
AOIS_29.txt
AOIS_3.txt
AOIS_30.txt
AOIS_31.txt
AOIS_32.txt
AOIS_33.txt
AOIS_34.txt
AOIS_35.txt
AOIS_36.txt
AOIS_4.txt
AOIS_5.txt
AOIS_6.txt
AOIS_7.txt
AOIS_8.txt
AOIS_9.txt
AOIU_1.txt
AORB_1.txt
AORB_10.txt
AORB_11.txt
AORB_12.txt
AORB_13.txt
AORB_14.txt
AORB_15.txt
AORB_16.txt
AORB_17.txt
AORB_18.txt
AORB_19.txt
AORB_2.txt
AORB_20.txt
AORB_21.txt
AORB_22.txt
AORB_23.txt
AORB_24.txt
AORB_3.txt
AORB_4.txt
AORB_5.txt
AORB_6.txt
AORB_7.txt
AORB_8.txt
AORB_9.txt
AORS_1.txt
COI_1.txt
COI_2.txt
COI_3.txt
COI_4.txt
COI_5.txt
COI_6.txt
COI_7.txt
LOI_4.txt
LOI_5.txt
ROR_1.txt
ROR_10.txt
ROR_11.txt
ROR_12.txt
ROR_13.txt
ROR_14.txt
ROR_15.txt
ROR_16.txt
ROR_17.txt
ROR_18.txt
ROR_19.txt
ROR_2.txt
ROR_20.txt
ROR_21.txt
ROR_22.txt
ROR_23.txt
ROR_24.txt
ROR_25.txt
ROR_3.txt
ROR_4.txt
ROR_5.txt
ROR_6.txt
ROR_7.txt
ROR_8.txt
ROR_9.txt

F K F F K F F F F wrong initial temp
T T T T T T T T T main loop
F F F K F F K F F main loop ends too soon (epsilon++)_
T T T T T T T T T main loop
N N F N F K K F K markov chain too short
T T T T T T T T T markov chain never ends
N N K K F K F F F markov chain too short
T T T T T T T T T markov chain never ends
T T T T T T T T T markov chain never ends
F F F F F F F F F markov chain too short
T T T T T T T T T markov chain never ends
N N F K K K N F K wrong initial temp
F F F F F F F F F markov chain too short
N N K N F K K F K move to better neighbour made harder
N K F N K K N K K move to better neighbour made easier
N N F F F F F F F equivalent
N F F F F N N K F equivalent
T T T T T T T T T temperature increases
F F F F F F F F F temperature drops more quickly
T T T T T T T T T temperature increases
F F F F F F F F K temperature drops more quickly
T T T T T T T T T temperature increases
N N F F F F F F F equivalent
F F F F F K F F K temperature drops more quickly
N N F K K K N F K temperature drops more slowly
N N F N K K N F K temperature drops more quickly
F F F F F F F K F temperature turns minus in 1st iteration (premature end)
T T T T T T T T T temperature increases
F F F F F F F F F temperature turns minus in 2nd iteration (premature end)
T T T T T T T T T temperature increases
N N F N K F N F K equivalent
T T T T T T T T T temperature increases
F N F F F K F F K temperature drops more quickly
T T T T T T T T T temperature increases
F F K F F K F F K temperature drops more quickly
F F F K F F F F F main loop ends too soon (++epsilon)
F F F F F F F F F temperature turns minus in 1st iteration (premature end)
N N K K K K K F K wrong initial temp (too low)
F F K F F K K F F delta is never below 0
F F F F F K F F F delta is never below 0
F F F F F K F F F delta is never below 0
N N F K K K N F K too easy to move to suboptimal solution
N N F K K K N F F too easy to move to suboptimal solution
N N F N K K K F K too easy to move to suboptimal solution
N N F K K N N F F too hard to move to suboptimal solution
F N F K F K K F F temperature drops more quickly
T T T T T T T T T temperature increases
F N F K F K K F F temperature drops more quickly
N N F N F K N F K wrong initial temp (too low)
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
T T T T T T T T T temperature increases
N N F F F K N F F equivalent
N N F N F K N K K wrong initial temp (too low)
N N F N F K K F K wrong initial temp (too low)
F F F F F F F F F wrong initial temp (too low)
N N F N F F K F K wrong initial temp (too low)
N N F N F K N F K wrong initial temp (too low)
F F F F F F F F F delta is never below 0
T T T T T T T T T markov chain never ends
F F F F F F F F F main loop ends too soon (!temp > epsilon)
F F F F F F F F F markov chain ends too soon (! i < L)
N K N K N N K N K budget constraints always violated
F F F F F F F K F always makes suboptimal move
F F K F F F F F F updates bestSolution suboptimally
F K F K K F K F F accepts suboptimal moves too frequently
F F K F F F F F F updates bestSolution suboptimally
T T T T T T T T T markov chain never ends
F F F F F F F F K markov chain nonexistent
N N F N F F N F K virtually equivalent
N N N K K K N K N budget constraint ignored
F K F K F F F F F makes suboptimal moves
F F F F K F K F F makes suboptimal moves
N N F N F F F F F virtually equivalent
N N F N K K K F K only moves when fitnesses are equal
F F F F F F F K F makes virtually random moves
N N F F F K F F K virtually equivalent
K F F F F F F F F updates bestSolution suboptimally
F F F F F F F F F updates bestSolution suboptimally
N N F K F K K F F updates bestSolution suboptimally
F F F F F F F F F main loop ends too soon (temp < epsilon)
K F F F F F F F F makes virtually random moves
N N F N K F F F K virtually equivalent
F F F F F K F F F updates bestSolution suboptimally
F K F F F F F F F updates bestSolution suboptimally
N N F N K N N F F updates bestSolution suboptimally
F F K F F F F F K updates bestSolution suboptimally
F F K F F F F F F main loop ends too soon (temp <= epsilon)
F F F F F F F F F main loop ends too soon (temp == epsilon)
T T T T T T T T T main loop never ends
N N N K K K N N K budget constraints always violated
N N N K K N N K K budget constraints always violated
N N F F K F N F F virtually equivalent
F F F F F F F F F only moves when cost equals budget (hardly at all)

D1+BL D1+BM D1+BH D2+BL D2+BM D2+BH D3+BL D3+BM D3+BH
kill
fail

FP
FP(corrected)
TP
TP %
FP_c %

TP
TN
FP
FN

TP
TN
FP
FN

24 28 32 42 30 53 46 44 57
72 68 64 54 66 43 50 52 39

0 0 1 5 1 7 6 5 7
0 0 0 0 1 4 0 3 2

24 28 32 42 29 49 46 41 55
27.906976744 32.558139535 37.209302326 48.837209302 33.720930233 56.976744186 53.488372093 47.674418605 63.953488372

0 0 0 0 1.1627906977 4.6511627907 0 3.488372093 2.3255813953

24 28 31 37 29 46 40 39 50
10 10 9 10 9 6 10 7 8
0 0 1 0 1 4 0 3 2

62 58 55 49 57 40 46 47 36

25.00% 29.17% 32.29% 38.54% 30.21% 47.92% 41.67% 40.63% 52.08%
10.42% 10.42% 9.38% 10.42% 9.38% 6.25% 10.42% 7.29% 8.33%
0.00% 0.00% 1.04% 0.00% 1.04% 4.17% 0.00% 3.13% 2.08%

64.58% 60.42% 57.29% 51.04% 59.38% 41.67% 47.92% 48.96% 37.50%

35.42% 39.58% 41.67% 48.96% 39.58% 54.17% 52.08% 47.92% 60.42%

Type Number
Equivalent 10
Wrong initial temperature 9
Wrong cooling scheme 25
Wrong length of Markov chain 12
Wrong main loop length 9
Wrong transition 27
Constraint violation 4

96

D1+BL

D1+BM

D1+BH

D2+BL

D2+BM

D2+BH

D3+BL

D3+BM

D3+BH

0% 25.00% 50.00% 75.00% 100.00%

Results of Statistical Metamorphic Testing from Different Problem Instances

TP TN FP FN

Type Size
Equivalent 10
Configurational 22
Control-flow 40
Miscalculation 24

25%

42%

23%

10%

Classification of Mutation Faults

Equivalent Configurational
Control-flow Miscalculation

D1 D2 D3
BL
BM
BH

35.42% 48.96% 52.08%
39.58% 39.58% 47.92%
41.67% 54.17% 60.42%

0%

25%

50%

75%

D1 D2 D3

Success Rate (TP + TN) per Budget

BL BM BH

0%

25%

50%

75%

BL BM BH

Success Rate (TP + TN) per Dataset

D1 D2 D3

Figure 3: Comparison of success rates (TP + TN) between
different budget settings for the same dataset. The results
from D2 and D3 confirms H2 that SMT approach will
perform least effectively against the problem instances based
on Bmid budget setting.

9, there were 4 configurational faults and 5 control-flow
faults.

Another interesting observation is that, for certain problem
instances, the use of statistical hypothesis test was not
effective. For example, some mutant programs changed the
control-flow structure of the algorithm so that the main
loop of Simulated Annealing was never executed. The al-
gorithm, therefore, returns the random initial solution that
only satisfies the budget constraint. These initial solutions
are randomly sampled from the search space, which may
sometimes allow the statistical hypothesis test to accept the
null hypothesis (i.e. no shift between mean values) even
when the algorithm did not actually converge at all.

C. Problem Instances

Section IV-C described two controlled properties that
led to the generation of 9 different problem instances:
distribution of scores and costs (D1, D2 and D3) and budget
(Blow, Bmid and Bhigh). Figure 2 and 3 shows the impact
these factors have on the success rate, i.e. the combined
ratio of TP and TN. Figure 2 shows that D3 shows higher
success rates than D2 across all budget settings. Similarly,
Figure 3 shows that Bmid budget setting produced the lowest
success rates for all datasets, confirming the conjecture on
the difficulty of each problem made in Section IV-C. Overall,

the results show that the choice of problem instances can
affect the effectiveness of the statistical metamorphic testing.
This answers RQ3; different problem instances bring about
non-negligible changes in the performance of the statistical
metamorphic testing.

One particularly interesting observation is that problem in-
stances based on D1, i.e. the real-world requirement dataset,
show different behaviour from other, randomly generated
datasets in both Figure 2 and 3. The success rate for D1 is
consistently lower than that of other problem instances, sug-
gesting a level of complexity that has not been reproduced
by the random generation of datasets. Analysing the source
of the complexity in the real-world dataset lies beyond the
scope of this paper. However, one potential explanation is
that, in the real-world dataset, there may exist not only a
certain level of cost-score correlation between the cost and
the score but also some outliers to the correlation, which in
turn may create additional subtlety and complexity to the
search landscape.

While the effect that different problem instances have on
the performance of SMT approach has been shown in the
result, providing a generalised explanation on why and how
they affect the performance would not be an easy task. One
general principle could be that the problem instances for

metamorphic testing should be neither too easy nor too hard.
In metamorphic testing approach, a potential fault is defined
by the difference observed between the outcomes of two test
cases that are connected by a metamorphic relation. If the
problem instance is too easy, it may not fail to discern the
difficulties because even a slightly faulty (and, therefore,
sub-optimal) optimisation algorithm may still succeed in
solving the problem. However, if the problem instance is
too hard, the differences between a correct optimisation
algorithm and the faulty one will be again blurred because
neither of them will succeed in solving the problem.

It may not be clear how to define the relative difficulty
of a class of optimisation problem in general, let alone
precisely control it. The issue of the appropriate level
of difficulty would require both theoretical and empirical
further studies. The practical message here is that it would
be more advisable to use multiple problem instances in order
to avoid over-fitting the metamorphic testing to a single
problem instance.

D. Significance Level

To answer RQ4, the results from the statistical metamor-
phic testing have been analysed using different statistical
significance level. Table V shows the change in the number
of True Positive diagnoses as different confidence levels
ranging from 91% interval (α = 0.09) to 99% interval
(α = 0.01) are applied. A higher confidence interval
would mean that it becomes harder to accept the alternative
hypothesis, i.e. harder to kill the mutant program. Naturally,
TP values monotonically decrease in all problem instances.

Normally, higher confidence levels mean more precise
statistical hypothesis test. However, a too strict hypothesis
test can actually have a negative impact on the performance
of the statistical metamorphic testing. For example, 99%
confidence level for D1 + Blow results in only 22 True
Positive cases, all of which are due to timeout (refer to
Section IV-A). On the other hand, a too low confidence
level may introduce more False Positives. From the results,
it shows that the impact of different confidence levels
vary between problem instances. In practice, it would be
advisable to try different confidence levels and observe the
change in the effectiveness of SMT approach.

Table V: Impact of Confidence Level on Effectiveness (TP)

Problem Instance Significance Level(α)
0.09 0.07 0.05 0.03 0.01

D1 +Blow 28 25 24 23 22
D1 +Bmid 28 28 28 27 25
D1 +Bhigh 33 31 31 27 26
D2 +Blow 42 40 40 40 40
D2 +Bmid 42 40 39 37 35
D2 +Bhigh 52 50 50 48 46
D3 +Blow 39 38 37 37 36
D3 +Bmid 32 32 29 27 24
D3 +Bhigh 48 47 46 44 43

E. Threats to Validity

Threats to internal validity concern the factors that could
have affected the empirical study in the paper. The accuracy
of the proposed testing approach depends heavily on the
accuracy of the statistical hypothesis test used. Since the
sample consists of results of optimisation algorithms (that
are trying to converge to an optimal solution, assuming
that the implementation is correct), it may be said that its
probabilistic distribution would be contrived, which in turn
can make it difficult to choose the most suitable statistical
hypothesis test for the task of comparing these samples.
While there may exist other sophisticated statistical analyses
that may be more suitable for the proposed approach,
Wilcoxon’s rank-sum test is still the most widely used non-
parametric statistical testing method when the distribution
of samples is not known. Another potential source of errors
is the floating point precision error; it can also add up to
incorrect outcomes. Interestingly, the better the algorithm
performs and converges to a very small range of values,
the more the precision errors may matter. In the empirical
study, all values were handled with double precision and
statistical analysis was performed using JavaStatSoft,
an open-source statistical library for Java programming
language [23].

Threats to external validity concern the factors that may
prevent the generalisation of the empirical study in the
paper. The empirical study only considered one class of
optimisation problem (0-1 knapsack problem) using one
optimisation algorithm (Simulated Annealing). However,
Simulated Annealing was an ideal candidate because the
systematic parameter tuning allowed the exclusion of the im-
pact from incorrect parameters. While the permutation-based
metamorphic relation is a sound one, it may not be strong
enough for Simulated Annealing let alone be appropriate
for other stochastic optimisation algorithms. Generalising
the impact of different problem instances would require a
further study involving wider range of problem instances.

Threats to construct validity arise when the measurements
used in the experiment do not capture the concepts they
represent. In the empirical evaluation, the comparison of
solutions from problem instances with metamorphic relation
was only performed using their fitness values and not the
actual solution they represent, i.e. the choice of software
features. While the decision whether to treat different sets
of features with the same fitness value as being identical lies
beyond the scope of this paper, the discrepancy between the
fitness values and the actual solutions should be noted.

VI. RELATED WORK

Chen et al. introduced metamorphic testing as a way of
generating a follow-up test case without a-priori knowledge
of the test oracle [12, 24]. Numerical computation is an area
to which the idea of metamorphic relation applies most nat-
urally [14, 25]; however, it also has been applied to Service-

oriented Architecture [26] and machine learning [13]. Gud-
erlei and Mayer extended the metamorphic testing approach
to testing nondeterministic programs, resulting in statistical
metamorphic testing [14]. In the context of SBSE, McMinn
presented an approach towards the generation of pseudo-
oracle using program transformation [27]. However, this
paper presents the first attempt to apply the statistical
metamorphic testing to stochastic optimisation algorithms
and consider the impact of different problem instances.

The empirical study uses mutation testing to create ar-
tificial faults. Mutation testing is a systematic way of in-
jecting faults into a program by making small syntactic
changes [21]. The idea is that the tester should aim to detect
as many mutation faults as possible, thereby enhancing
the quality of the test data. While it serves as a testing
methodology on its own, injecting mutation fault has been
widely used to evaluate other testing methodologies by
simulating faults [28–30].

Next Release Problem (NRP) is a problem in Require-
ments Engineering, also known as Release Planning, that
aims to determine the optimal subset of software features for
the release of the next version [15]. Search-based approach
have been applied to the problem in different contexts in-
cluding multi-objective approaches [16, 31], scheduling [32],
analysis of fairness in resource distribution [33] and data
sensitivity [34]. Simulated Annealing, the algorithm studied
in this paper, has been proven to be very effective for solving
NRP [18]. While this paper specifically consider the pair of
Simulated Annealing and NRP as the subject of SMT, the
same approach can be applied to any search-based software
testing technique based on optimisation algorithms.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a testing approach for stochastic
optimisation algorithms based on the idea of metamorphic
testing and the statistical hypothesis testing. It allows the
tester to come up with metamorphic test cases for optimisa-
tion algorithms, which are essentially non-testable programs,
i.e. programs the aim of which is to determine the solution
in the first place and, therefore, for which it is not trivial to
derive test oracles. Given a test case, metamorphic relations
can provide a follow-up test case that would function as a
pseudo-oracle. The inherent stochastic nature of optimisation
algorithms require statistical hypothesis test in order to con-
firm the metamorphic relation. The result from the empirical
study showed that SMT approach can be effective for certain
class of faults in optimisation algorithms. It also showed that
the effectiveness of SMT approach not only depends on the
algorithm and the fault but also on the problem instance that
was used for the test.

Future work will include the application of more sophisti-
cated statistical analysis for the confirmation of metamorphic
relations and the identification of stronger metamorphic
relations for a specific optimisation algorithm.

REFERENCES

[1] J. Clark, J. J. Dolado, M. Harman, R. M. Hierons,
B. Jones, M. Lumkin, B. Mitchell, S. Mancoridis,
K. Rees, M. Roper, and M. Shepperd, “Reformulat-
ing software engineering as a search problem,” IEE
Proceedings — Software, vol. 150, no. 3, pp. 161–175,
2003.

[2] P. McMinn, “Search-based software test data gener-
ation: A survey,” Software Testing, Verification and
Reliability, vol. 14, no. 2, pp. 105–156, Jun. 2004.

[3] O. Räihä, “A survey on search-based software
design,” Department of Computer Science, University
of Tampere, Tech. Rep. D-2009-1, 2009. [Online].
Available: http://www.cs.uta.fi/reports/dsarja/D-2009-
1.pdf

[4] M. Harman, S. A. Mansouri, and Y. Zhang, “Search
based software engineering: A comprehensive analysis
and review of trends techniques and applications,”
Department of Computer Science, King’s College Lon-
don, Tech. Rep. TR-09-03, April 2009.

[5] T. Bodhuin, G. Canfora, and L. Troiano, “SORMASA:
A tool for suggesting model refactoring actions by
metrics-led genetic algorithm,” in Proceedings of the
1st Workshop on Refactoring Tools (WRT 2007). TU
Berlin, 2007, pp. 23–24.

[6] V. Cortellessa, F. Marinelli, and P. Potena, “An op-
timization framework for “build-or-buy” decisions in
software architecture,” Computers & Operations Re-
search, vol. 35, no. 10, pp. 3090–3106, 2008.

[7] M. C. F. P. Emer and S. R. Vergilio, “GPTesT: A testing
tool based on genetic programming,” in Proceedings
of the 2002 Conference on Genetic and Evolutionary
Computation (GECCO ’02). Morgan Kaufmann Pub-
lishers, 2002, pp. 1343–1350.

[8] Y. Jia and M. Harman, “Milu : A customizable,
runtime-optimized higher order mutation testing tool
for the full c language,” in Proceedings of the 3rd Test-
ing: Academic and Industrial Conference - Practice
and Research Techniques (TAIC PART ’08). IEEE,
2008, pp. 94–98.

[9] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R.
Gansner, “Bunch: A clustering tool for the recovery
and maintenance of software system structures,” in
Proceedings of the IEEE International Conference on
Software Maintenance (ICSM ’99). IEEE, 1999, pp.
50–59.

[10] J. C. B. Ribeiro, M. Zenha-Rela, and F. F. de Vega,
“eCrash: a Framework for Performing Evolutionary
Testing on Third-Party Java Components,” in Pro-
ceedings of Jornadas sobre Algoritmos Evolutivosy
Metaheuristicas (JAEM ’07), 2007, pp. 137–144.

[11] E. J. Weyuker, “On testing non-testable programs,” The
Computer Journal, vol. 25, no. 4, pp. 465–470, Nov.

1982.
[12] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou,

“Metamorphic testing and beyond,” in Proceedings of
the International Workshop on Software Technology
and Engineering Practice (STEP 2003), September
2004, pp. 94–100.

[13] C. Murphy, K. Shen, and G. Kaiser, “Automatic system
testing of programs without test oracles,” in Proceed-
ings of the eighteenth International Symposium on
Software Testing and Analysis (ISSTA 2009). New
York, NY, USA: ACM Press, 2009, pp. 189–200.

[14] R. Guderlei and J. Mayer, “Statistical metamorphic
testing testing programs with random output by means
of statistical hypothesis tests and metamorphic testing,”
in Proceedings of the 7th International Conference on
Quality Software (QSIC 2007), October 2007, pp. 404–
409.

[15] A. Bagnall, V. Rayward-Smith, and I. Whittley, “The
next release problem,” Information and Software Tech-
nology, vol. 43, no. 14, pp. 883–890, Dec. 2001.

[16] Y. Zhang, M. Harman, and S. A. Mansouri, “The
Multi-Objective Next Release Problem,” in GECCO
’07: Proceedings of the 2007 Genetic and Evolutionary
Computation Conference. ACM Press, 2007, pp.
1129–1136.

[17] R. Karp, “Reducibility among combinatorial prob-
lems,” Complexity of Computer Computations, 1972.

[18] P. Baker, M. Harman, K. Steinhöfel, and A. Skali-
otis, “Software component ranking as feature subset
selection,” in Genetic and Evolutionary Computation
– GECCO-2006, Seattle, Washington, USA, Jul. 2006.

[19] JavaNCSS: A source measurement suite for java
(http://www.kclee.de/clemens/java/javancss).

[20] K. Steinhöfel, A. Albrecht, and C. K. Wong, “Two
simulated annealing-based heuristics for the job shop
scheduling problem,” European Journal of Operational
Research, vol. 118, no. 3, pp. 524 – 548, 1999.

[21] T. A. Budd, “Mutation analysis of program test data,”
Ph.D. dissertation, Yale University, New Haven, CT,
USA, 1980.

[22] Y. S. Ma, J. Offutt, and Y. R. Kwon, “muJava: An
Automated Class Mutation System,” Software Testing,
Verification, and Reliability, vol. 15, no. 2, pp. 97–133,
2005.

[23] Javastatsoft: an open source statistics library for Java
(http://www2.thu.edu.tw/˜wenwei/).

[24] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing:
A new approach for generating next test cases,” Depart-
ment of Computer Science, Hong Kong University of
Science and Technology, Tech. Rep. HKUST-CS98-01,
1998.

[25] T. Chen, J. Feng, and T. Tse, “Metamorphic testing
of programs on partial differential equations: a case
study,” in Proceedings of the 26th International Com-

puter Software and Applications Conference (COMP-
SAC 2002), 2002, pp. 327–333.

[26] W. Chan, S. Cheung, and K. Leung, “Towards a
metamorphic testing methodology for service-oriented
software applications,” in Proceedings of the 5th Inter-
national Conference on Quality Software (QSIC 2005),
September 2005, pp. 470–476.

[27] P. McMinn, “Search-based failure discovery using
testability transformations to generate pseudo-oracles,”
in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2009). ACM Press,
2009, pp. 1689–1696.

[28] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is
mutation an appropriate tool for testing experiments?”
in Proceedings of the 27th International Conference on
Software Engineering (ICSE 2005). ACM Press, May
2005, pp. 402–411.

[29] H. Do and G. Rothermel, “On the use of mutation faults
in empirical assessments of test case prioritization tech-
niques,” IEEE Transactions on Software Engineering,
vol. 32, no. 9, pp. 733–752, 2006.

[30] S.-S. Hou, L. Zhang, T. Xie, H. Mei, and J.-S. Sun,
“Applying interface-contract mutation in regression
testing of component-based software,” in Proc. 23rd
IEEE International Conference on Software Mainte-
nance (ICSM 2007). IEEE Computer Society Press,
October 2007, pp. 174–183.

[31] J. J. Durillo, Y. Zhang, E. Alba, and A. J. Nebro,
“A study of the multi-objective next release problem,”
in Proceedings of the 1st International Symposium
on Search Based Software Engineering (SSBSE ’09).
Cumberland Lodge, Windsor, UK: IEEE Computer
Society, 13-15 May 2009, pp. 49–58.

[32] C. Li, M. van den Akker, S. Brinkkemper, and
G. Diepen, “Integrated requirement selection and
scheduling for the release planning of a software prod-
uct,” in Proceedings of the 13th International Working
Conference on Requirements Engineering: Foundation
for Software Quality (RefsQ ’07), vol. 4542. Trond-
heim, Norway: Springer, 11-12 June 2007, pp. 93–108.

[33] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren,
and Y. Zhang, “A search based approach to fairness
analysis in requirement assignments to aid negotiation,
mediation and decision making,” Requirements Engi-
neering Journal (RE ’08 Special Issue), vol. 14, no. 4,
pp. 231–245, December 2009.

[34] M. Harman, J. Krinke, J. Ren, and S. Yoo, “Search
based data sensitivity analysis applied to requirement
engineering,” in Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation
(GECCO ’09). Montreal, Canada: ACM, 8-12 July
2009, pp. 1681–1688.

