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ABSTRACT
Previous work has treated test case selection as a single
objective optimisation problem. This paper introduces the
concept of Pareto efficiency to test case selection. The Pareto
efficient approach takes multiple objectives such as code cov-
erage, past fault-detection history and execution cost, and
constructs a group of non-dominating, equivalently optimal
test case subsets. The paper describes the potential benefits
of Pareto efficient multi-objective test case selection, illus-
trating with empirical studies of two and three objective
formulations.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Algorithms

Keywords: Test case selection, Multi-objective evolution-
ary algorithm

1. INTRODUCTION
Regression testing is the testing performed in order to

guarantee that newly introduced changes in a software do
not affect the unchanged parts of the software. One possi-
ble approach to regression testing is the retest-all method,
in which the tester simply executes all of the existing test
cases to ensure that the new changes are harmless. Unfor-
tunately, this is a very expensive process; time limitations
force a consideration of test case selection and prioritisation
techniques[1, 2, 8, 13, 17, 19, 20, 22].

Test case selection techniques try to reduce the number of
test cases to be executed, while satisfying the testing require-
ments denoted by a test criterion. Test case prioritisation
techniques try to order the test cases in such a way that
increases the rate of early fault-detection.

In real world testing, there are often multiple test criteria.
For example, different types of testing, such as functional
testing and structural testing, require different testing cri-
teria [9]. There also can be cases where it is beneficial for
the tester to consider multiple test criteria because the sin-
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gle most ideal test criterion is simply unobtainable. For
example, testers face the problem that real fault detection
information cannot be known until regression testing is ac-
tually finished. Code coverage is one possible surrogate test
adequacy criterion that is used in place of fault detection,
but it is not the only one. Because one cannot be certain
of a link between code coverage and fault detection it would
be natural to supplement coverage with other test criteria,
for example, past fault detection history.

Of course, the quality of the test data is not the only
concern. Cost is also one of the essential criteria, because
the whole purpose of test case selection and prioritisation is
to achieve more efficient testing in terms of the cost. One
important cost driver, considered by other researchers [13,
20] is the execution time of the test suite.

In order to provide automated support for the selection
of regression test data it therefore seems inevitable that a
multi-objective approach is required that is capable of tak-
ing into account the subtleties inherent in balancing many,
possibly competing and conflicting objectives. Existing ap-
proaches to regression test case selection (and prioritisation)
have been single objective approaches that have sought to
optimise a single objective function.

For the prioritisation problem, there has been recent work
on a two objective formulation [13], that takes account of
coverage and cost, using a single objective of coverage per
unit cost. However, this approach conflates the two objec-
tives into a single objective. Where there are multiple com-
peting and conflicting objectives the optimisation literature
recommends the consideration of a Pareto optimal optimi-
sation approach [4, 18]. Such a Pareto optimal approach
is able to take account of the need to balance the conflict-
ing objectives, all of which the software engineer seeks to
optimise.

This paper presents the first multi-objective formulation
of the test case selection problem, showing how multiple ob-
jectives can be optimised using a Pareto efficient approach.
We believe that such an approach is well suited to the re-
gression test case selection problem, because it is likely that
a tester will want to optimise several possible conflicting
constraints.

The primary contributions of this paper are as follows:

1. The paper introduces a multi-objective formulation of
the regression test case selection problem and instan-
tiates this with two versions: A two objective formula-
tion that combines coverage and cost and a three ob-
jective formulation that combines coverage, cost and
fault history. The formulation facilitates a theoretical



treatment of the optimality of the greedy algorithm
and allows us to establish a relationship between the
multi-objective problems of test case prioritisation and
test case selection.

2. The paper presents three algorithms for solving the
two and three objective instances of the test case selec-
tion problem: a re-formulation of the single–objective
greedy algorithm, the Non Dominating Sorting Ge-
netic Algorithm (NSGA-II) of Deb et al. [6] and an
island genetic algorithm variant of NSGA-II, which we
call vNSGA-II.

3. The paper presents the results for these algorithms,
when applied to the two objective version of the prob-
lem using, as subjects, four programs from the Siemens
suite [11], together with space. The results confirm the
theoretical analysis, revealing cases where the search
based algorithms out–perform the greedy approach.
However, they also show that the greedy approach
is capable of producing good approximations to the
Pareto front, indicating that the results from the greedy
approach can be used to augment those from the search–
based algorithms in a hybrid approach.

4. The paper also presents results from an empirical study
of the three algorithms applied to the three objective
formulation of the problem. These results also show
that the search–based approaches can out–perform the
greedy approach (it is statistically significantly out–
performed for all programs in the Siemens suite by
NSGA-II). However, the results also show that the
greedy approach is capable of producing strong results,
indicating that a hybrid approach is also required for
the three objective formulation.

The rest of this paper is organised as follows. Section 2
presents the background of the existing single objective for-
mulation of the test case selection and prioritisation prob-
lems, while Section 3 introduces the multi-objective formu-
lation, giving theoretical results and connections between
the selection and prioritisation problems. Section 4 presents
two empirical studies of multi-objective test case selection
for two and three objective version of the multi-objective
formulation. The results of the empirical studies are anal-
ysed in Section 5. Section 6 describes related work, while
Section 7 concludes with directions for future work.

2. SINGLE OBJECTIVE PARADIGM
Selection and prioritisation of test cases are proposed as

two important solutions to the problem of test case man-
agement. Test case selection techniques try to improve the
retest-all approach by selecting a subset of the entire test
suite based on some test criteria. Test case prioritisation
techniques try to find an ordering of test cases so that some
test adequacy can be maximised as early as possible.

One of the criteria for selecting test cases is to have a safe
selection of test cases. Let us assume that we have a pro-
gram P , its new version, P ′, and a test suite, T . A test case
in T is said to be modification-traversing if it executes code
that was changed or inserted into P (to create a new version
P ′), or deleted from P . A subset T ′ of T is said to be safe
if it includes all the modification-traversing test cases in T :

Safe Test Case Selection Given: a program P , its new
version P ′, and a test suite, T Problem: to find T ′ such that
T ′ ⊂ T , (∀t ∈ T ) [t is modification-traversing ⇒ t ∈ T ′].

Leung and White showed that the selective method is
more economical provided that the cost of the selection pro-
cess does not exceed the gain in cost that is achieved by
omitting the non-selected test cases [10].

The high cost of regression testing, especially in regards
to time, also means that it is ideal to have a scheduling of
test cases such that any fault that can be revealed by the
given test suite is revealed as early as possible. Test case
prioritisation is a problem of choosing an ordering of the
test suite that maximises some test adequacy. It is defined
by Rothermel et al. as follows [17]:

Test Case Prioritisation Given: a test suite, T , the
set of permutations of T , PT ; a function from PT to real
numbers, f .

Problem: to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT )(T ′′ 6=
T ′)[f(T ′) ≥ f(T ′′)].

The function f assigns a real value to a permutation of
T according to the test adequacy of the particular permu-
tation. The ideal order would be the one that reveals faults
soonest, the rate of which can be expressed in Average Per-
centage of Fault Detection. However, since fault detection
cannot be known in advance, most of the currently pro-
posed techniques have been code-based, replacing the fault
detection with code coverage. Rothermel et al. investigated
several prioritisation techniques with different coverage mea-
surements, and showed that coverage prioritisation can im-
prove the rate of fault detection [17].

3. MULTI OBJECTIVE PARADIGM
This section introduces the multi-objective formulation of

test case selection. Section 3.1 introduces the Pareto op-
timal formulation of the test case selection problem. Sec-
tion 3.2 explores the theoretical properties of the two objec-
tive greedy algorithm, while section 3.3 shows the relation-
ship between multi-objective selection and prioritisation.

3.1 Pareto Optimality
Pareto optimality is a notion from economics with broad

range of applications in game theory and engineering. The
original presentation of the Pareto optimality is that, given
a set of alternative allocations and a set of individuals, allo-
cation A is an improvement over allocation B only if A can
make at least one person better off than B, without making
any other worse off.

Based on this, the multi-objective optimisation problem
can be defined as to find a vector of decision variables x,
which optimises a vector of M objective functions fi(x)
where i = 1, 2, . . . ,M . The objective functions are the math-
ematical description of the optimisation criteria, which are
often in conflict with each other.

Without the loss of generality, let us assume that we want
to maximise fi where i = 1, 2, . . . ,M . A decision vector x is
said to dominate a decision vector y (also written x � y) if
and only if their objective vectors fi(x) and fi(y)satisfies:

fi(x) ≥ fi(y)∀i ∈ {1, 2, . . . ,M}; and



∃i ∈ {1, 2, . . . ,M}|fi(x) > fi(y)

All decision vectors that are not dominated by any other
decision vectors are said to form the Pareto optimal set,
while the corresponding objective vectors are said to form
the Pareto frontier. Now the multi-objective optimisation
problem can be defined as follows:

Given: a vector of decision variables, x, and a set of ob-
jective functions, fi(x) where i = 1, 2, . . . ,M

Definition: maximise {f1(x), f2(x), . . . , fM (x)} by finding
the Pareto optimal set over the feasible set of solutions.

Identifying the Pareto frontier is particularly useful in en-
gineering because the decision maker can use the frontier to
make a well-informed decision that balances the trade-offs
between the objectives.

The multi-objective test case selection problem is to select
a Pareto efficient subset of the test suite, based on multiple
test criteria. It can be defined as follows:

Multi Objective Test Case Selection Given: a test
suite, T , a vector ofM objective functions, fi, i = 1, 2, . . . ,M .

Problem: to find a subset of T , T ′, such that T ′ is a
Pareto optimal set with respect to the objective functions,
fi, i = 1, 2, . . . ,M .

The objective functions are the mathematical descriptions
of test criteria concerned. A subset t1 is said to dominate t2
when the decision vector for t1 ({f1(t1), . . . , fM (t1)}) dom-
inates that of t2. The resulting subset of the test suite, T ′,
has several benefits in regards to the regression testing, as
shown in Section 3.2.

3.2 Properties of 2 Objective Coverage Based
Selection

In this paper, we will instantiate the two objective formu-
lation with code coverage as a measure of test adequacy and
execution time as a measure of cost. Thus, code coverage
becomes one of the two objectives, and it should be max-
imised for a given cost. Time is the other objective, which
should be minimised for a given code coverage.

In this instantiation of the problem, should there exist a
subset of test suite s with coverage c1 and execution time t1
on the Pareto frontier, it means that:

• T1. No other subset of s can achieve more coverage
than c1 without spending more time than t1.

• T2. No other subset of s can finish in less time than t1
while achieving a coverage that is equal to or greater
than c1.

This is the implication of Pareto optimality. Rather than
obtaining a single answer that approximates the global op-
timum in the search space for a single objective, we obtain a
set of points, each of which denotes one possible way of bal-
ancing the two objectives in a globally optimal way. Each
member of the Pareto frontier is therefore a candidate solu-
tion to the problem, upon which it is not possible to improve.

In the single objective formulation of test case selection,
greedy algorithms have been used to maximise coverage.
The greedy approach starts with an empty test set as the
‘current solution’ and iteratively adds a test case which gives

the most coverage of those that remain. A variant, addi-
tional greedy, improves on this by adding to the current
solution the test case that gives the best additional coverage
to the current solution. Each addition by the greedy algo-
rithm of a new test case to the ‘current solution’ denotes a
candidate element of the Pareto frontier.

Greedy algorithms have proved effective for the single ob-
jective formulation, so they make a sensible starting point
for the consideration of the multi-objective formulation. In
order to optimise both coverage and cost, the additional
greedy algorithm will need to be formulated to measure not
coverage, but coverage per unit time. This produces a sin-
gle objective cost cognizant variant of the greedy algorithm,
similar to that used by Rothermel et al. for the single ob-
jective prioritisation problem [13].

Suppose the algorithm has chosen a test case T1 with cov-
erage c1 and time t1. By definition, there is no single test
case T ′ such that c′ > c and t′ = t (otherwise the algorithm
would have picked T ′). Therefore, the two objective cost
cognizant additional greedy algorithm cannot be improved
upon by the addition of a single case. However, this leaves
open the possibility that there may be a set of test cases
that, taken together, could have produced a better approx-
imation to the Pareto front.

It turns out that any point on the Pareto front that dom-
inates a point found in the course of the additional greedy
algorithm can only do so by improvement with respect to
T2. It is not possible to improve on the additional greedy
algorithm with respect to T1. This observation is stated
and proved more formally below.

Proposition 1 (Partial Optimality).
The set of points produced by the additional greedy algorithm
cannot be improved upon with respect to T1.

Proof. Suppose the contrary. That is, let T1 = c1/t1
be the solution found by the additional greedy algorithm.
Suppose there exists a pair of test cases, T2 and T3, each with
coverage of c2/c3 and time of t2/t3 that, together, improve
upon T1 by achieving more coverage without spending more
time. By definition, we have

c2
t2
<
c1
t1
∧ c3
t3
<
c1
t1

because, otherwise, the additional greedy algorithm would
not have selected T1. In order for T2∪T3 to be a better choice
than T1 we require coverage(T2∪T3) > c1, t2+t3 = t1. From
which it follows that: t1(c2 + c3) < (t2 + t3)c1

Replacing t1 with t2 + t3 we get: c2 + c3 < c1. Now,
because code coverage is a set theoretic concept, it is not
possible for the coverage of the union to be greater than the
sum of the coverage of the parts, so we have: coverage(s2 ∪
s3) ≤ c2 + c3

Therefore coverage(T2 ∪T3) ≤ c2 + c3 and by transitivity,
coverage(T2∪T3) < c1, which breaks the initial assumption,
so we must conclude that it is not possible to dominate the
results from the additional greedy algorithm by breaking
T1. 2

However it is possible to construct an example that shows
that the additional greedy algorithm does not produce solu-
tions that are Pareto efficient with respect to T2. Such an
example is shown in Table 1. The first choice of the addi-
tional greedy algorithm will be T1, which has the additional
coverage per unit time value of 0.8

4
= 0.2 (T2, T3, T4 each



Program Points Exec. Time
T1 X X X X X X X X 4
T2 X X X X X X X X X 5
T3 X X X X 3
T4 X X X X X 3

Table 1: An example of a test suite where the addi-
tional greedy algorithm produces suboptimal selec-
tion of test cases

has 0.18, 0.13̃, and 0.16̃). The second choice will be T2 with
the additional coverage per unit time value of 0.2

5
= 0.04,

whereas T3 and T4 each has 0.03̃ and 0. At this point, the
algorithm achieves 100% coverage in 9 units of time. How-
ever, the same amount of coverage is also achievable in 8
units of time by selecting T2 and T3, so the subset {T2, T3}
dominates the subset {T1, T2}.

Furthermore, though the additional greedy algorithm may
produce points that are Pareto efficient with respect to T1,
it does not produce a complete Pareto frontier. The exis-
tence of T4 in the above example demonstrates this. Ac-
cording to the additional greedy algorithm, the first deci-
sion point chosen for this example would be the subset of
{T1}, which achieves 80% coverage in 4 units of time. The
subset {T1} is on the Pareto frontier because no other test
case can achieve 80% coverage in 4 units of time. However,
the subset of {T4} is also on the Pareto frontier, because
no other test case can achieve 50% coverage in 3 units of
time. This point {T4} on the Pareto frontier is ignored by
the additional greedy algorithm. As we will see in the next
subsection, this issue is important, because it is necessary
to produce the most complete approximation to the Pareto
front possible in order to exploit the relationship between
multi-objective selection and prioritisation.

3.3 The Relationship Between Multi Objective
Selection and Prioritisation

While they are formally different concepts, test case selec-
tion and prioritisation problems are closely related to each
other in real world decision making process, where the tester
wants more efficient regression testing. Test case prioritisa-
tion concerns the most ideal ordering of a given test suite.
Since it only changes the order of a given test suite, it is not
capable of producing an efficient test case scheduling when
the available time is shorter than the total time required by
the test suite.

Figure 1 shows the result that the additional greedy algo-
rithm produces with the test data shown in Table 1, along
with the real Pareto frontier of the test data. If the bud-
get allows 9 units of time for the testing, the result of the
additional greedy algorithm can be applied with a final cov-
erage of 100%. Now suppose that the budget allows only
6 units of time. From the result of the additional greedy
algorithm, the next feasible solution is to execute just T1,
achieving 80% coverage. However, the Pareto frontier tells
us that the subset of T2 can be executed in 5 units of time,
achieving 90% coverage. It also shows us that a coverage of
100% is achievable in only 8 units of time. It also reveals
that, should the budget allow only 3 units of time, it is still
possible to achieve 50% coverage by executing T4.

The benefit of knowing the existence of {T2, T3} and {T4}
as candidate selections of test cases becomes clear under

Figure 1: Comparison between the Pareto frontier
and the results of the additional greedy algorithm
from the test data shown in Table 1

the assumption that there is a cost constraint, i.e., testing
budget. Prioritisation techniques make no such assumption;
they assume that whatever ordering of test cases they pro-
duce can be executed in its entirety. However, there can be
situations when the exact amount of the available budget
is known before the testing begins. Test case prioritisation
techniques cannot optimise the testing process in such a sit-
uation, because they are not capable of selecting test cases.
In order to construct an efficient test sequence under cost
constraint, an appropriate subset of test cases should be se-
lected first. This subset can subsequently be prioritised in
order to achieve the ideal ordering among the selected test
cases. This way, test case selection and prioritisation tech-
niques can be used in combination in order to achieve more
efficient regression testing.

4. EMPIRICAL STUDIES
This section explains the experiments conducted to ex-

plore the two and three objective formulations of the multi-
objective selection problem. Sections 4.1 and 4.2 set out
the research questions and subjects studied. Section 4.3 de-
scribes the objectives to be optimised. Section 4.4 describes
the algorithms studied, while Section 4.5 explains the mech-
anisms by which these algorithms will be evaluated in the
two empirical studies.

4.1 Research Questions
The first three research questions can be answered quanti-

tatively using the approaches described in Section 4.5. The
last research question is more qualitative in nature.
RQ1: Do the situations theoretically predicted in Section 3.2
arise in practise? That is, does there exist a situation in
which the greedy algorithm can be out–performed by solu-
tions that achieve identical coverage in less time? Do there
exist situations where the Pareto efficient approaches pro-
duce more points on the Pareto front than the greedy algo-
rithm?
RQ2: How well do the greedy and search–based algorithms
perform compared to each other and to the global optimum
for the 2-objective formulation?



RQ3: How well do the greedy and search–based algorithms
perform compared to each other for the 3-objective formu-
lation?
RQ4: What can be said about the shape of the Pareto
frontiers, both approximated and optimal? What insights
do they reveal concerning the tester’s dilemma as to how to
balance the trade-offs between objectives?

4.2 Subjects
A total of 5 programs were studied in this paper: a part of

the Siemens suite (printtokens, printtokens2, schedule,

schedule2), and the program space from the European
Space Agency. These programs range from 374 to 6,199 lines
of code, and include a real world application. The software
artifacts were available from Software-artifact Infrastructure
Repository (SIR) [7].

Each program has a large number of available test suites.
Four test suites were randomly selected for each program;
therefore a total of 20 test suites were used as input to the
multi-objective Pareto optimisation. The size of the pro-
grams and their test suites are shown in Table 2.

Program Lines of Code Avg. test
suite size

printtokens 726 16
printtokens2 570 17

schedule 412 8
schedule2 374 8

space 6199 153

Table 2: Size of test suites of studied programs

4.3 Objectives
It is not the aim of this paper to enter into a discussion

concerning which objectives are more important for regres-
sion testing. We simply note that, irrespective of arguments
about their suitability, coverage and fault histories are likely
candidate objectives for assessing test adequacy and that ex-
ecution time is one realistic measure of effort.

For the two objective formulation, statement coverage and
computational cost of test cases will be used as objectives.
The additional objective used in the three objective formu-
lation is the past fault detection history. Each software arti-
fact used in this paper has several seeded faults (taken from
the data available on the SIR [7]), which are associated with
the test cases that reveal them. Using this information, it is
possible to assign past fault coverage to each test case subset,
which corresponds to how many of the known, past faults
in the previous version this subset would have revealed.

Physical execution time of test cases is hard to measure
accurately. It involves many external parameters that can
affect the physical execution time; different hardware, ap-
plication software and operating system. In particular, any
measurement of execution time is likely to be affected by
aspects of the environment unconnected to the the choice
of test cases. Such factors include concurrent execution,
caching and other low-level processor optimisations.

In this paper we circumvent these issues by using the soft-
ware profiling tool, Valgrind, which executes the program
binary code in an emulated, virtual CPU [14]. The compu-
tational cost of each test case was measured by counting the
number of virtual instruction codes executed by the emu-
lated environment. Valgrind was created to allow just this

sort of precise and unequivocal assessment of computational
effort; it allows us to argue that these counts are directly
proportional to the cost of the test case execution.

4.4 Algorithms
Two different Pareto efficient genetic algorithms, NSGA-

II and its variation were used in this paper. NSGA-II is
a multi-objective genetic algorithm developed by Deb et
al. [6]. The output of NSGA-II is not a single solution,
but the final state of the Pareto frontier that the algorithm
has constructed. Pareto optimality is used in the process of
selecting individuals. This leads to the problem of select-
ing one individual out of a non-dominated pair. NSGA-II
uses the concept of crowding distance to make this decision;
crowding distance measures how far away an individual is
from the rest of the population. NSGA-II tries to achieve
a wider Pareto frontier by selecting individuals that are far
from the others. NSGA-II is based on elitism; it performs
the non-dominated sorting in each generation in order to
preserve the individuals on the current Pareto frontier into
the next generation.

A variation of NSGA-II, which we call vNSGA-II, was also
implemented. Two major modifications to NSGA-II were
made for vNSGA-II. First, the algorithm uses a group of
sub-populations that are separate from each other, in or-
der to achieve wider Pareto frontiers. When performing
a pairwise tournament selection on individuals that form
a non-dominated pair, each of the sub-populations slightly
prefers different objectives so that the Pareto frontier can
be advanced in all the directions. vNSGA-II also extends
the elitism of NSGA-II by keeping a best-so-far record of
the Pareto frontier separate from the sub-populations.

Two Greedy Algorithms were also implemented. For the
two objective formulation, the cost cognizant version of the
additional greedy algorithm was implemented. For the three
objective formulation, the three objectives were combined
into a single objective according to the classical weighted-
sum approach. With M different objectives, fi with i =
1, 2, . . . ,M , the weighted-sum approach calculates the single
objective, f ′, as follows:

f ′ =

MX
i=1

(wi · fi),

MX
i=1

wi = 1

Both the additional code coverage per until time and addi-
tional past fault coverage per unit time were combined using
coefficients of 0.5 and 0.5, thereby giving equal weighting to
each objective.

4.5 Evaluation Mechanisms
The difficulty of evaluating Pareto frontiers lies in the fact

that the absolute frame of reference is the real Pareto fron-
tier, which by definition, is impossible to know a priori.
Instead, a reference Pareto frontier can be constructed and
used when comparing different algorithms with respect to
the Pareto frontiers they produce. The reference frontier
represents the hybrid of all approaches, combining the best
of each. It is one of the advantages of Pareto optimality that
results for various approaches can be combined in this way.

More formally, let us assume that we have N different
Pareto frontiers, Pi with i = 1, 2, . . . , N . A reference Pareto
frontier, Pref , can be formulated as follows. Let P ′ be the
union of all Pi with i = 1, 2, . . . , N . Then:



Pref ⊂ P ′, (∀p ∈ Pref )(@q ∈ P ′)(q � p)

For the programs from the Siemens suite, the search spaces
were sufficiently small to allow us to perform an exhaustive
search to locate the true Pareto frontier. This allows us to
compare the results from the algorithms to the globally op-
timal solution in these cases. For the program space this
was not possible, so the reference Pareto frontier was formed
as described.

One of the methods to compare Pareto frontiers is to look
at the number of solutions that are not dominated by the
reference Pareto frontier. By definition, Pref is not domi-
nated by any of the N different Pareto frontiers, because it
consists of the best parts of the different Pareto frontiers.
However, each of N different Pareto frontiers may be partly
dominated by Pref . Therefore, these N different Pareto
frontiers can be compared with each other by counting the
number of solutions that are not dominated by Pref in each
Pareto frontier.

Another meaningful measurement is the size of each Pareto
frontier. Achieving wider Pareto frontiers is one of the im-
portant goals of Pareto optimisation. This is particularly of
concern in engineering application, because a wider Pareto
frontier means a larger number of alternatives available to
the decision maker.

Both the number of non-dominated solutions and the size
of Pareto frontiers were measured and statistically analysed
in this paper using Welch’s t-test. Welch’s t-test is a sta-
tistical hypothesis test for two groups with different vari-
ance values. It tests the null hypothesis that the means of
two normally distributed groups are equal. In the context
of this paper, the null hypothesis is that with two differ-
ent algorithms, the mean values of the number of solutions
that are not dominated by the reference Pareto frontier are
equivalent. For these tests the α level was set to 0.95. Sig-
nificant p − values suggest that the null hypothesis should
be rejected in favour of the alternative hypothesis, which
states that one of the algorithm produces a larger number
of non-dominated solutions.

NSGA-II and vNSGA-II algorithms were both executed 20
times for each test suite to account for their inherent ran-
domness. Both algorithms use single-point crossover and
bit-flip mutation. NSGA-II is configured with the recom-
mended setting of {population = 100, and maximum fitness
evaluation = 25, 000} for the Siemens suite. vNSGA-II uses
three different sub-population groups of {population = 300,
and maximum iteration = 250} for the Siemens suite. For
space, both algorithm use the setting of {population =
1, 500 and {maximum iteration = 180}. In the case of vNSGA-
II, this means three sub-populations with 500 individuals.

5. RESULTS AND ANALYSIS
The results for the 2-objective formulation for the five

different subjects are shown in Figure 2. The figures are
provided for illustration and qualitative evaluation only. For
complete quantitative data, see Table 3.

In particular, it should be noted that the lines connecting
the data points are drawn merely in order to aid the visual
comprehension of the plot; no meaning can be ascribed con-
cerning the results that may or may not exist along these
lines, apart from the points plotted. In case with vNSGA-II
and NSGA-II, a single result was chosen out of the 20 exper-

iments in order to produce readable images. The variance in
their complete results over 20 runs can be seen in Table 3.

The results from the programs from the Siemens suite con-
firm the theoretical argument set out in Section 3.1; there do
exist data points that achieve the same amount of coverage
as the additional greedy algorithm, but in less time. The size
of Pareto frontiers produced by the Pareto efficient genetic
algorithms are larger than those produced by the additional
greedy algorithm, giving more information to the tester. In
all four smaller programs, the Pareto efficient genetic algo-
rithms produce subsets of test cases that can be executed in
fewer than 200 units of cost, something for which the addi-
tional greedy algorithm is incapable. These results provide
a positive answer to RQ1.

It can also be observed that NSGA-II is capable of identi-
fying the entire reference frontier, producing the exhaustive
result. The results from vNSGA-II are not always exhaus-
tive, but they still outperform the additional greedy algo-
rithm.

However, the result for the (larger) program space shows
the contrary; the additional greedy algorithm performs very
well, dominating the rest of the algorithms. NSGA-II, which
is very competitive with the smaller programs, manages to
produce results that are close to those produced by the ad-
ditional greedy algorithm but none of the points on its ap-
proximation to the Pareto frontier dominates those found
by the additional greedy algorithm. vNSGA-II partly dom-
inates NSGA-II, but its results are still inferior to those of
the additional greedy algorithm. The good performance of
the additional greedy algorithm suggests that the existing
test case prioritisation techniques are capable of producing
solutions that are strongly Pareto efficient. This is a very
attractive finding, given the computations efficiency of the
greedy algorithms, compared to the alternatives.

These findings provide a mixed message for the answer
to RQ2. The data show that the additional greedy algo-
rithm may be dominated by the Pareto efficient genetic al-
gorithms, but also that, for some programs the additional
greedy algorithm produces the best results. This suggests
that for optimal quality test data selection it may be advis-
able to combine the results from greedy and evolutionary al-
gorithms. This is one of the attractive aspects of the Pareto
efficient approach; results from several algorithms can be
merged to form a single Pareto front that combines the best
of all approaches.

Figure 3 shows the results for the three objective formu-
lation. The 3D plots display the solutions produced by the
weighted-sum additional greedy algorithm (depicted by a
line in the figures), and the reference Pareto frontier (de-
picted by square–shaped points). The weighted-sum addi-
tional greedy algorithm produces very strong results because
the line can be seen to connect the data points forming the
reference Pareto frontier, meaning that the solutions from
the weighted-sum and additional greedy algorithm form a
part of the reference Pareto frontier (which is later confirmed
by a statistical analysis).

These results suggest that the answer to RQ3 is also
mixed. Even where there are more than 2 objectives, the
greedy approach is capable of reasonable performance. There-
fore, a combination of results may be appropriate. Of course,
these findings will depend upon the three objectives chosen.
More work is required to experiment with other objectives.
It is not possible to extrapolate from these results to con-



Figure 2: Plot of Pareto frontier for two objective formulation. With the Siemens suite, the results from
the additional greedy algorithm are dominated by the reference Pareto frontier obtained by an exhaustive
search, which NSGA-II is also capable of finding. However, in the zoomed plot of space, it can be observed
that the additional greedy algorithm dominates the rest of the algorithms.



Figure 3: Plot of Pareto frontier for three objective formulation. The line shows the result from weighted-sum
additional greedy, while the points correspond to the reference Pareto frontier.



clude than the additional greedy algorithm will perform well
for any 3 objective instantiation of the multi-objective test
case selection problem. For example, the strong results that
we have been able to obtain may be a result of the relative
sparseness of the fault history data, which may favour the
additional greedy approach.

In order to provide a more concrete quantitative analy-
sis of the answers to RQ2 and RQ3, we compare the re-
sults obtained using tests for statistical significance. For
the Siemens suite programs, NSGA-II shows the best per-
formance by producing the entire reference Pareto frontier.
The results from NSGA-II for the Siemens suite are also
very stable; the variance in the size of the Pareto fron-
tier produced by NSGA-II is 0. On the other hand, the
results from vNSGA-II show some variance, and therefore
are compared to the additional greedy algorithm using the
t-test analysis with the confidence level of 95% and using
the null hypothesis that there is no difference in the results
for n̄vNSGA−II and n̄AdditionalGreedy and the alternative hy-
pothesis that n̄vNSGA−II is greater than n̄AdditionalGreedy.
The observed p − values for these t–tests are significant at
the 95% level, confirming the alternative hypothesis.

However, the weighted-sum additional greedy algorithm
produces the best result with space. For the analysis of
vNSGA-II results from space, the alternative hypothesis is
that n̄vNSGA−II is smaller than n̄AdditionalGreedy. The ob-
served p−values are significant at the 95% level, confirming
the alternative hypothesis. For some test suites of space,
the results were constant, making the t-test inapplicable.
For the program space, the Pareto frontiers produced by
NSGA-II are completely dominated by the results from the
additional greedy algorithm.

Both of the genetic algorithms produce much wider Pareto
frontiers than the additional greedy algorithm, which is ex-
pected because they are designed to produce Pareto fron-
tiers. However, in terms of the number of solutions that are
not dominated by the reference frontier, statistical analysis
confirms the results shown in Figure 2 and 3. With smaller
programs, NSGA-II performs significantly better than the
others in both two and three objective formulations, while
space shows the contrary. However, the higher deviation
observed in the results of vNSGA-II with test suite T2 of
space suggest that both the random nature of the genetic
algorithm and the composition of a particular test suite may
affect the result; further research on wider range of subjects
will confirm or refute this.

Turning to the last research question, RQ4, a more qual-
itative analysis is required. This is made possible by the
visualisations of the solutions plotted in Figures 2 and 3. It
can be seen that the shapes of the lines and the reference
Pareto frontiers are relatively similar to each other across all
programs, suggesting a similar relationship between cover-
age and fault detection for these programs. The shape is an
interesting observation on the relation between the code cov-
erage and past fault coverage, because it seems to illustrate
a relatively strong correlation between the two objectives.
Such a correlation may suggest that the concerned faults are
not concentrated in a limited part of the code. There also
appear to exist a point on the line in every program, where
the rate of increase in the fault coverage changes. Such el-
bow points are considered important in the study of Pareto
optimality. They indicate points of particular interest where
the balance of trade offs inherent in the objectives changes.

In the case of test case selection, the location of this elbow
point may tell us the percentage of faults that require cer-
tain amount of code coverage to be detected. The selections
below the elbow point generally contain smaller numbers of
test cases, which results in the limited fault detection capa-
bility; once a sufficient amount of cost is available, combi-
nations of test cases can be picked up, which improves the
rate of the past fault coverage. These results provide evi-
dence to suggest a ‘critical mass’ phenomenon in test case
selection. These observations form a partial answer to RQ4,
but more data is required to see whether this critical mass
phenomenon is generic to test case selection, or whether it
is merely an artefact of the set of programs we have chosen
to study in the present paper.

5.1 Threats to Validity
Threats to internal validity concern the factors that might

have affected the multi-objective optimisation techniques
used in the paper. One potential concern involves the accu-
racy of the instrumentation of the subject software, e.g. the
correctness of the coverage information. To address this, a
professional and commercial software tool (Cantata++ from
IPL ltd.) was used to collect code coverage information. The
fault coverage information was extracted from SIR - a well-
managed software archive [7]. Precisely determined com-
putational cost was used in place of the physical execution
time in order to raise the precision of the cost information
using the Valgrind profiling tool [14].

Another potential internal threat comes from the selec-
tion and optimisation of the meta-heuristic techniques them-
selves. No particular algorithm is known to be effective for
the multi-objective test case selection problem. However the
genetic algorithm used in this paper is known to be effective
for a wide range of multi-objective problems [3, 5], and can
serve as a basis for the future research.

Threats to external validity concern the conditions that
limit generalisation from the result. The primary concern
for this paper is the representativeness of the subjects that
were studied. This threat can be addressed only by addi-
tional research using a wider range of software artifacts and
optimisation techniques.

6. RELATED WORK
The existing literature on test case management can be

categorised in to three different areas of investigation; test
suite reduction (or minimisation), test case selection, and
test case prioritisation.

Test suite reduction shares many similarities with test case
selection, except the fact that the reduction of the test cases
is permanent compared to the temporary selection of test
cases for a specific testing run. It is known that test suite
reduction can be efficient provided that the cost of the re-
duction is smaller than the gain in the cost of the reduced
test suite [10]. However, a weakness of test suite reduction is
that the removal of some test cases from the test suite may
potentially reduce the fault detecting capability of the test
suite too. Some studies have shown that the fault-detection
capability of the test suite was indeed damaged [16], while
others have shown that the reduced test suite still preserved
its fault-detection capability [21]. The reduction technique
studied by Harrold et al. is of particular interest in the con-
text of this paper because the technique considers multiple
criteria when deciding whether to preserve a test case or not.



2 Objectives

Program Suite
vNSGA-II NSGA-II Additional Greedy

n̄ σ p Avg. Size n̄ σ Avg. Size n̄ σ Size

printtokens

T1 13.00 2.51 3.5e-16 16.75 23.00 0.00 23.00 2.00 0.00 10.00
T2 14.15 2.08 6.0e-13 21.30 33.00 0.00 33.00 8.00 0.00 11.00
T3 13.70 3.61 4.3e-08 18.20 30.00 0.00 30.00 8.00 0.00 10.00
T4 10.15 2.16 2.4e-14 13.40 19.00 0.00 19.00 2.00 0.00 8.00

printtokens2

T1 9.05 2.85 9.9e-18 12.55 24.00 0.00 24.00 4.00 0.00 6.00
T2 14.00 1.97 1.0e-12 16.00 25.00 0.00 25.00 7.00 0.00 7.00
T3 7.75 1.52 3.1e-13 9.40 14.00 0.00 14.00 2.00 0.00 5.00
T4 8.60 1.96 1.2e-09 11.90 24.00 0.00 24.00 4.00 0.00 7.00

schedule

T1 8.90 1.59 2.6e-14 9.00 11.00 0.00 11.00 2.00 0.00 6.00
T2 11.95 1.47 < 2.2e-16 12.00 15.00 0.00 15.00 2.00 0.00 7.00
T3 10.30 1.13 6.5e-15 10.30 12.00 0.00 12.00 5.00 0.00 5.00
T4 10.45 1.47 < 2.2e-16 10.70 13.00 0.00 13.00 2.00 0.00 6.00

schedule2

T1 7.75 0.91 < 2.2e-16 7.75 9.00 0.00 9.00 2.00 0.00 5.00
T2 12.70 1.49 < 2.2e-16 13.15 17.00 0.00 17.00 4.00 0.00 6.00
T3 8.70 1.38 3.6e-15 8.70 11.00 0.00 11.00 2.00 0.00 6.00
T4 8.40 1.19 5.2e-16 8.45 10.00 0.00 10.00 2.00 0.00 6.00

space

T1 1.40 1.56 < 2.2e-16 99.50 0.00 0.00 55.55 117.00 0.00 117.00
T2 1.05 0.22 < 2.2e-16 107.55 0.00 0.00 54.15 118.00 0.00 118.00
T3 1.00 0.00 N/A 94.90 0.00 0.00 55.55 92.00 0.00 119.00
T4 1.00 0.00 N/A 104.45 0.00 0.00 54.25 120.00 0.00 121.00

Table 3: Average number of solutions that are not dominated by the reference Pareto frontier(n̄), standard
deviation(σ), and the size of Pareto frontier in two objective formulation

3 Objectives

Program Suite
vNSGA-II NSGA-II Weighted-sum Greedy

n̄ σ p Avg. Size n̄ σ Avg. Size n̄ σ Size

printtokens

T1 11.95 3.02 1.6e-04 15.20 23.00 0.00 23.00 9.00 0.00 9.00
T2 25.25 4.78 2.5e-12 39.60 65.65 1.42 66.70 9.00 0.00 11.00
T3 20.80 3.30 9.0e-13 26.70 51.00 0.00 51.00 9.00 0.00 9.00
T4 13.55 2.78 6.0e-14 21.25 33.00 0.00 33.00 2.00 0.00 8.00

printtokens2

T1 21.75 4.84 1.6e-12 27.70 55.00 0.00 55.00 5.00 0.00 7.00
T2 28.40 5.37 3.1e-13 35.20 59.75 0.64 60.60 8.00 0.00 8.00
T3 14.40 2.54 3.6e-12 16.15 24.00 0.00 24.00 6.00 0.00 6.00
T4 17.45 3.50 1.2e-10 25.40 48.00 0.00 48.00 8.00 0.00 8.00

schedule

T1 12.05 1.82 3.2e-12 12.50 16.00 0.00 16.00 6.00 0.00 6.00
T2 16.90 2.25 2.1e-14 18.20 23.00 0.00 23.00 7.00 0.00 7.00
T3 12.80 1.32 1.2e-15 13.20 16.00 0.00 16.00 6.00 0.00 6.00
T4 14.20 1.32 < 2.2e-16 14.45 18.00 0.00 18.00 6.00 0.00 6.00

schedule2

T1 11.20 0.95 < 2.2e-16 11.40 14.00 0.00 14.00 5.00 0.00 5.00
T2 21.30 2.18 < 2.2e-16 22.30 29.00 0.00 29.00 6.00 0.00 6.00
T3 12.00 1.62 3.0e-14 12.45 16.00 0.00 16.00 5.00 0.00 5.00
T4 11.50 1.19 4.2e-16 11.60 14.00 0.00 14.00 5.00 0.00 6.00

space

T1 1.50 1.82 < 2.2e-16 268.65 0.00 0.00 119.20 118.00 0.00 118.00
T2 19.05 23.50 2.3e-14 263.30 0.00 0.00 119.95 119.00 0.00 122.00
T3 1.00 0.00 N/A 208.55 0.00 0.00 96.10 114.00 0.00 119.00
T4 2.80 3.65 < 2.2e-16 183.15 0.00 0.00 88.80 67.00 0.00 122.00

Table 4: Average number of solutions that are not dominated by the reference Pareto frontier(n̄), standard
deviation(σ), and the size of Pareto frontier in three objective formulation

Their technique converts this multi-objective problem into
a series of single objective problems, by solving the problem
for the first objective then uses this intermediate solution as
the starting point of the solution for the next objective.

Test case selection focuses on selecting a subset of the
test suite in order to test software modifications. The selec-
tion is typically made in terms of the structure of the pro-
gram P and the test suite T . Several techniques have been
considered, including symbolic execution [22], flow graph
based [15] and dependence graph based approaches [1, 2].

Test case prioritisation is a closely related topic, in which
the goal is to find an optimal order in which to execute test
cases. One of the most widely used metrics is APFD (Aver-
age Percentage of Fault Detected), which rewards orderings
with earlier fault detection abilities [17]. The additional
greedy algorithm is known to produce good results for the
test case prioritisation problem [8, 12]. Rothermel et al. in-
troduced APFDc, the cost cognizant version of APFD [13],

which inspired our formulation of the weighted objective
greedy algorithm.

Walcott et al. also take time into account in their work
on the test case prioritisation problem [20]. Their approach
to prioritisation combines both selection and prioritisation
problems into a single objective, which is the weighted sum
of the selection fitness and prioritisation fitness. The coeffi-
cients used for weights are defined to ensure that selection
fitness is the primary objective, while ordering is secondary.

7. CONCLUSION AND FUTURE WORK
This paper introduced the concept of Pareto efficient multi-

objective optimisation to the problem of test case selection.
It described the benefits of Pareto efficient multi-objective
optimisation, and presented an empirical study that investi-
gated the relative effectiveness of three algorithms for Pareto
efficient multi-objective test case selection. The empirical



results obtained reveal that greedy algorithms (which per-
form well for single objective formulations) are not always
Pareto efficient in the multi-objective paradigm, motivating
the study of metaheuristic search techniques. Future work
will consider a wider range of software artifacts with differ-
ent meta-heuristic multi-objective optimisation techniques.
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