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Abstract

In this paper, we investigate the problem of resource con-
straints in Mobile Peer-to-Peer Wireless Sensor Networks
(MP2P WSNs). We propose a scheme to load share tasks
among peer sensor nodes, taking into account both their
computational capabilities and networking conditions. Ex-
periments to evaluate the performance results were con-
ducted over real Tmote Sky sensor testbeds. We demon-
strate that significant performance improvements in terms
of latency can be achieved for a MP2P WSN by considering
both load and network constraints, and we argue that, when
ignoring the latter, the performance of MP2P computing in
the application overlay could be severely impacted.

1 Introduction

Modern Wireless Sensor Networks (WSNs) have the po-
tential to provide situational information to enhance the ef-
fectiveness of mission critical operations. However, sen-
sors often generate large amounts of data at a (fine) gran-
ularity that is not operationally useful. Peer-to-Peer (P2P)
overlays can thus be employed in WSNs to enable effective
data query and search based on attributes [3]. For exam-
ple, to monitor fire hazards, the application needs to identify
sensor nodes at which temperature, smoke and visible light
readings have passed a given threshold. It must then execute
a fusion process to estimate the location, importance and
other related attributes of the situation. Such applications
involve query and search on attribute identifiers instead of
known IP addresses, and require collaborative task execu-
tion among sensor peers based on the data attributes [17].

In comparison to general P2P networks, P2P WSNs give
rise to new challenges as a result of bandwidth limitations
in the underlying physical network: (i) Given the innate in-
accuracy of such devices, data from multiple sensor nodes
must normally be fused together to provide derived values
in which one has confidence. (ii) Sensor nodes are much un-

usually heavily resource constrained, in terms of their com-
putational strength, link capacity and battery power. For
example, wireless networking protocols for sensors (e.g.
802.15.4) are severely limited in bandwidth (250 Kbps)
compared to, say, WiFi (2–270 Mbps). Thus, to support
an effective P2P application overlay on a WSN, resource
management becomes critical in preventing the congestive
collapse of the underlying physical network.

Various resource management schemes have been devel-
oped to distribute task execution (e.g. Grid Computing).
However, such approaches usually assume high-end proces-
sors and connections that do not experience the bandwidth
restrictions and congestion inevitable in WSNs. In recent
years, first steps have been taken towards collaborative exe-
cution of applications in WSNs [19, 20, 4]. However, most
such approaches focus on the CPU availability of the nodes
during the task distribution process; they ignore network ef-
fects during and after distribution.

In this paper, we present our initial investigations of a
novel peer task distribution scheme for Mobile P2P (MP2P)
WSNs, which takes into account both the computational ca-
pabilities and the local network conditions of the peer sen-
sor nodes. In particular, we present results from our imple-
mentation of two different task distribution algorithms on
real Tmote Sky sensor testbeds. Our experimental results
demonstrate that significant degradation in job execution
time is experienced when ignoring the bandwidth availabil-
ity in physical links between peers. We examine approaches
to ameliorate this problem, and then discuss techniques by
which the application overlay can infer physical route char-
acteristics to guide the task distribution process.

The rest of the paper is organised as follows. Section 2
describes the MP2P WSN scenario. Section 3 discusses the
MP2P load distribution problem analysing, with real exper-
iments, the effects on the latency if local network condi-
tions are ignored. Section 4 presents the performance re-
sults improved by the application of our novel task distribu-
tion scheme. Section 5 provides a brief overview of related
work and, finally, Section 6 concludes the paper.



2 MP2P WSN Scenario Description

The network scenario of an example MP2P WSN is il-
lustrated in Figure 1. A large number of sensor nodes are
distributed throughout a given space, some static and pre-
deployed, some mobile. Given the trade-off between com-
putational power, battery capacity and form factor, nodes
may be unable individually to compute tasks allocated to
them. Neither can they simply ship all data back to a more
capable sink because widespread contention for the medium
might lead to network collapse. Thus, distributed computa-
tion is a key component in forming a robust and flexible
sensor network system.

Figure 1. Example of a MP2P WSN.

When a job either requires data from multiple nodes, or
requires computational power beyond that of a single node,
peer nodes must be involved in the execution. The com-
munication in organising this occupies bandwidth, but the
result then requires less bandwidth to transmit throughout
the wider network. As a prerequisite to the realisation of
this MP2P computing paradigm in WSNs, it is necessary to
establish whether, and to what extent, bandwidth consider-
ations affect the dynamic task allocation process. It should
be noted that the application overlay may have no, or very
little knowledge of the underlying physical network. More-
over, node mobility adds to the system dynamism.

As an example, assume that an application needs to
search in the west section of a tunnel for any location that
has its temperature, smoke and light reading in excess of
certain thresholds. Different readings need to be fused to
determine if a fire is suspected at the location. For exam-
ple, when several nodes report higher temperature readings
within one area, a subsequent smoke reading must be gath-
ered from one or several of the sensors in the vicinity. The
data need to be fused with the temperature and possibly
other readings to derive the current situation and estimated
fire location and intensity. The application overlay issues
the request indicating the data attributes that are of interest
and this is routed by the MP2P network to reach the can-
didate peer nodes. The peers must then distribute the data
processing task to the nodes that are best able to compute

the required information in the least possible time. The first
issue of searching and contacting the required peers was ad-
dressed in several other works [17, 3, 14]. In this work, we
focus on effectively selecting peers from the candidate peer
group to perform task execution with minimised job execu-
tion latency.

In a simple case, assume a node that needs to distribute
a task, and two peer nodes to which it could potentially dis-
tribute it (Figure 2). One peer is rather less loaded than the
other, but the most loaded of the peers is positioned in an en-
vironment with much lower network utilisation, making the
choice difficult since the job execution latency is affected by
both factors. Moreover, a distributed task might itself add to
the congestion of an area in several ways: through the traf-
fic resulting from the initial distribution of code and data,
through subsequent communication between peers during
the execution, and through control overhead. Thus, if we
distribute a large task with substantial I/O requirements into
an area of existing congestion, we will not only cause that
task to run more slowly, but would also expect other tasks
either within the area, or using the area for communication,
to run more slowly too. Achieving the right balance is par-
ticularly critical in emergencies, since nodes (particularly
those close to the incident) report data in large volumes. In-
jection of additional traffic in the affected area may lead to
the failure of the network exactly when it is most needed.

Figure 2. The Bandwidth Problem.

3 Problem of MP2P Load Distribution

The issue of timely medium access is one that origi-
nates somewhat below the MP2P application overlay. In-
deed, MP2P application programmers are encouraged and
enabled to ignore such issues. In the following sections, we
demonstrate three things: (i) that congestion of links in the
underlying network has a significant impact on task execu-
tion performance (Sec. 3.3); (ii) that it is nevertheless pos-



sible to ameliorate those effects using simple load sharing
techniques if one has even rudimentary knowledge about
the state of the network (Sec. 4.1); and (iii) that in MP2P
systems one should adopt either a cross-layered approach or
one based on heuristics at the application overlay to gather
the parameters of the network status and apply them to the
load sharing algorithms (Sec. 4.2). Before starting the anal-
ysis, we briefly describe our experimental setup (Sec. 3.1)
and the load sharing algorithms we employed and adapted
for our experiments (Sec. 3.2).

3.1 Experimental Setup

Our experimental testbed consists of Tmote Sky sen-
sors running the Contiki OS [6]. This approach avoids
the strongly simplifying assumptions that most simulators
make about radio communications: they are often assumed
to be error-free, with a circular transmission radius, with
bidirectional communication, etc. In reality, such assump-
tions are so unreasonable that the validity of the work is
questionable for even a small number of nodes [13]. For
our experiments, we used the Heterogeneous Experimental
Network (HEN) [1] deployed at the Department of Com-
puter Science at UCL. We used actual computation, actual
profiling of the medium, and actual network traffic.

During MP2P collaborations, Initiating Peers (IntPs)
split the job into several tasks and then distribute them
to Receiving Peers (RcvPs), for execution. Three phases
of communication during task distribution are included in
our experiments: (i) offload of the tasks from the IntP to
the RcvP; (ii) internal communication exchanges needed to
progress with task execution; (iii) communication upload of
the combined final result from the RcvP to the IntP. In our
tests, we used 3 IntP nodes, 21 RcvP nodes and a single
streaming node whose sole task is to create network con-
tention. We set the streaming sensor radio power level to
provide a physical packet reception range of ∼250cm to
congest one part of the involved area. Every job to be per-
formed is split into at most 32 tasks.

Latency is used as our performance metric in all experi-
ments because we assume that timeliness of information is
vital in an emergency scenario. Moreover, latency captures
the effects that tasks from one node have on the execution
patterns of others. Results are obtained by computing the
mean of the times measured by 3 lab-rat IntP nodes (each
performing 50 different experimental runs). Job execution
time is deemed to be the overall time spent to execute all
the tasks into which a job is split. We examine three cases:
(i) without network congestion, (ii) with congestion (ex-
tra traffic generated by the streaming node) but considering
only computational requirements during load distribution,
and (iii) with congestion and using our approach which ad-
ditionally considers bandwidth requirements.

3.2 Load Sharing Algorithms

For task distribution, we employ two simple load sharing
techniques: one reactive and sender-initiated (the Auction
algorithm) and the other proactive and receiver-initiated
(the Lookup List algorithm).

Auction Algorithm: In this, state information exchange
is handled reactively. Each job is split into tasks; for each
of these, the IntP broadcasts a task request message con-
taining the details of the data type (attributes that the peer
has to match), the task CPU and estimated bandwidth re-
quirements. Upon receiving the task request, each RcvP
that finds itself meeting the task requirements sends a bid to
the IntP containing its CPU and bandwidth details. Once the
IntP has received all bids, it chooses the best RcvP. Then it
starts the offload of the task to the winner that consequently
launches a process to compute the task, and sends the result
back to the IntP. Multiple requests are handled by RcvPs on
a First-Come First-Served (FCFS) basis.

Lookup List Algorithm: This is a more sophisticated
algorithm, in which state information exchange is proactive.
The main idea behind this algorithm was taken from [5] and
adapted to allow for bandwidth control. At the beginning of
the computation, every IntP launches a discovery phase in
which a lookup list is filled with CPU and bandwidth avail-
ability details of all the neighbouring RcvPs. These lists are
then dynamically updated during the execution of the algo-
rithm. When an IntP has a task to distribute, it selects the
best candidate RcvP from its lookup list and sends it a task
request message containing the data type (attributes that the
peer has to match), task CPU and bandwidth details. The
RcvP sends an acknowledgement back to the IntP together
with an update of its CPU and bandwidth availability. If
the RcvP is able to execute the task, it indicates in the mes-
sage its availability and it launches a process to receive the
offload of the task, to execute the computation and then to
send the result back together with another update of its re-
sourse details. If the RcvP cannot execute the task, the IntP
updates the CPU and bandwidth availability details of the
previously chosen RcvP and selects the next best RcvP in
its list. Multiple requests are managed by RcvPs using a
FCFS strategy.

In both algorithms described above, there is a phase in
which the IntP selects the peer node with the best resource
availability to distribute the task execution. In Eq. 1, given
an IntP, for each one of its RcvP neighbours i a weighted
score function S(i) is calculated to perform peer selection.
C(i) and B(i) are defined as the CPU and bandwidth avail-
ability of i, and wC and wB the weights associated to them
respectively. The RcvP with the highest score is selected for
task distribution.

S(i) = wC ∗ C(i) + wB ∗ B(i) i = 1, ..., N (1)



Figure 3. Experiment A and B nodes topology and results obtained on the HEN sensor testbed.

3.3 Effects of Congestion

In the first experiment, we evaluate the impact of net-
work congestion during task distribution. To do that, we
use the two load sharing algorithms described above, but
only computing the CPU availability requirement C(i) in
the scoring function (i.e. wC 6= 0 in Eq. 1). The bandwidth
resource constraint is thus ignored (i.e. wB = 0 in Eq. 1),
an approach which is common to most of the existing load
distribution algorithms. Note that C(i) represents the num-
ber of processes that are actively running on a node.

In Figure 3, the results show that the addition of network
contention leads to an increase in the job execution latency,
with respect to the case without congestion, of ∼55% and
∼40% (Experiments A1 and B1) in the case of the Auc-
tion algorithm and ∼50% and ∼25% (Experiments A2 and
B2) in the case of the Lookup List algorithm. This occurs
when considering the simplest form of task offload to phys-
ically adjacent neighbours, and represents an upper bound
on performance for MP2P WSNs, where similar problems
of contention will be faced for each hop in a multihop route.
Therefore, from this experiment we observe that the MP2P
computing may encounter severe performance degradations
if bandwidth requirements are not taken into account during
task distribution.

4 Improving the Performance

4.1 Effects of Considering Bandwidth

We now explore whether taking into account bandwidth
availability has a significant impact on job latency. The
experiments are performed with the same configuration as
above but feeding the algorithms, described in Sec. 3.2,
with network information as well as computational load (i.e.
wB 6= 0 and wC 6= 0 in Eq. 1). To gather network infor-
mation, we elected to read the Clear Channel Assessment
value from pin 28 of the Chipcon CC2420 transceiver and
maintain a sliding window containing information for the
last n temporal slots in which the radio channel was clear or
busy. When aggregated, this value is used as an estimate of
likely contention. We used the results of a number of runs
to hand-tune the weights applied to computational load, wC ,
and bandwidth availability, wB , to 5 and 1 respectively.

The experiments demonstrate that by taking bandwidth
into consideration, system performance approximates that
of the uncongested scenario. In Figure 3 for both Experi-
ment A and B, it can also be seen that the Auction and the
Lookup List algorithms are comparable. When the num-
ber of tasks involved in each job is small, Lookup List
may perform slightly better than Auction. When the num-
bers of IntP nodes and tasks are increased, Auction outper-



forms Lookup List. Note that the Auction algorithm fits
better with the processing order of a conventional P2P sys-
tem, where the search and query takes place first before the
downloading starts. Although Auction appears to be heav-
ier than Lookup List because of the initial search, it achieves
better performance when the number of tasks increases, be-
cause each RcvP is always aware of the status of each IntP
and vice versa when starting a task computation. Conse-
quently, the Auction algorithm appears to be much more
flexible both regarding the number of tasks into which a job
can be split and the number of clients that are operating in
the environment. In Experiment B, we also compared per-
formance with a random task assignment, which is compu-
tationally simple. As expected, the results indicate that our
approach, which is capable of making informed decisions
about where to distribute tasks, achieves better performance
than a pure random approach. As we can conclude from the
experiments presented above, in a MP2P WSN the physical
network conditions have a major impact on the performance
of job collaborations between peer nodes.

4.2 Implications for MP2P Systems

So far we have considered the base case of a network
in which information about underlying radio conditions is
available to the task distribution process. In a MP2P sys-
tem, two things change: (i) task offload may still occur to
nodes that are logical peers, but connected by a route of
more than one physical link; (ii) information about the na-
ture of this route may be unavailable to the application be-
cause of abstraction away from the physical network. Two
potential solutions exist to this: (i) to adopt a cross-layered
approach providing an API that permits the placement de-
cision process in the application overlay to access low level
information; (ii) to infer approximate information about the
physical state of the network through tests that can be per-
formed without layer violation. In both cases, we consider
that throughput and latency measurements for the whole
route will be used as a measure of congestion.

The greatest challenge for MP2P systems lies in utilis-
ing only information available at the application overlay to
make determinations of levels of congestion. Since it is un-
reasonable to assume that the same networking technology
is used throughout all paths, the application overlay may be
only left with the periodic measurements of latency to esti-
mate the available bandwidth between peer nodes. It is rel-
atively straightforward to see that latency (or RTT, if clocks
are not synchronised) can be measured directly simply by
timestamping application overlay packets. Likewise, there
are a range of techniques for estimating instantaneous band-
width on routes, by using latency measurements [16, 12].
Such techniques are likely to provide adequate estimates for
the bandwidth available in wired systems. However, they

are not very adequate in MP2P WSNs.
For MP2P WSNs, it is important to distinguish between

two effects that act on the latency along a path: the first
effect is due to the length/number of hops of the path under-
lying a logical link between peers [11], and the second is the
variability in the quality of that path as a result of conges-
tion (as shown in Sect. 4.1). The fact that changes in latency
due to congestion along a route occur at a frequency that
exceeds those due to the changes in path length [18] can be
exploited to separate the two effects in estimating the avail-
able bandwidth. For example, after obtaining a time series
of latency measurements, a Hamming windowed FIR-H fil-
ter applied at, say, 1Hz, may separate the short timescale
congestive effects on latency from the longer timescale ef-
fects of changing path length. This will establish more ac-
curate upper and lower bounds for the available bandwidth
and allow for a more effective estimate of likely bandwidth
availability of the path that respects both effects. Such tech-
niques of effective bandwidth estimation for MP2P WSNs
are under our current investigation and will be proposed in
a future paper.

5 Related Work

P2P WSN is a very new research field. Most work in this
area deals with peer routing, searching and data query issues
(e.g. [3], [14]). P2P overlay solutions were also presented to
allow users to access various services across different phys-
ical sensor networks (e.g. [8], [14]). These works show the
potential of better application support employing P2P over-
lay in WSNs. However, the key issue of P2P computing,
i.e. load distribution in WSN, which is characterised by its
heavily limited network layer, is yet to find a solution.

The problem of computation distribution has been exten-
sively studied in the past in the grid computing area [7, 9,
15]. Regrettably, the assumptions behind most existing ap-
proaches render them largely unsuitable for use in networks
of highly constrained devices (WSNs). Recent research has
explored collaborative computation distribution in WSNs,
but rarely in a P2P network model. Some of these ap-
proaches are inspired by the client-server based paradigm,
others by the mobile-agent based one. Both can be com-
bined with cluster based techniques. A range of approaches
based on a cluster based computational model can be found
in [19, 20, 10]. They all have in common the view that
there is a hierarchical network architecture comprising of a
high number of low-cost, less powerful sensors, and a small
number of higher-cost, more powerful cluster heads. Such
algorithms are particularly interesting if the structure of the
deployed network is indeed hierarchical, and if the geo-
graphic distribution of cluster heads relative to sensor nodes
is appropriate. However, cluster based approaches are inap-
propriate otherwise, and the existing approaches also fail to



take into account issues that relate to bandwidth utilisation,
message collision and realistic radio modelling: communi-
cation is assumed to be collision-free. Furthermore, some
of them [20] make two strong assumptions: firstly, when
a certain event occurs, all sensor nodes can detect it and
collect raw data; secondly, there are no events simultane-
ously occurring in the field. Moreover, tests are undertaken
within oversimplified simulation environments that do not
take into account real communication issues. Chiasserini et
al. [4] propose the replication of an algorithm on every node
and to split the data to compute among the peers, but they
do not tackle the congestion problem. Abrams et al. in [2]
study an optimisation algorithm for the assignment of tasks
to microservers.

6 Conclusion

In this work, we presented a task load sharing scheme
for MP2P WSNs. Experiments to evaluate the performance
results were conducted on real Tmote Sky sensor testbeds,
thus avoiding oversimplified radio models employed by the
majority of simulation environments. In particular, we es-
tablished that: (i) ignoring underlying network contention
is highly unwise, in view of the magnitude of the effect on
job execution time; (ii) simple load sharing algorithms can
be adapted to take into account both computational capa-
bilities and network conditions, with the result of achieving
execution times that approximate those of an uncongested
system; and (iii) there are plausible approaches for apply-
ing this technique for use in MP2P systems.
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