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1 Introduction

Spectrogram factorization methods have been proposed for single channel source separation [1–4],
audio analysis [5–8] and more recently multichannel source separation [9–11]. All spectrogram
factorization approaches incorrectly assume that the mixture spectrogram is the sum of the source
spectrograms. In fact, the mixture spectrogram depends on the source spectrograms and the phase
difference between them. This paper investigates the role of phase in determining the mixture spec-
trogram and incorporates a probabilistic representation of phase into a novel method for source
spectrogram estimation.

When multiple mixture signals are available, independent component analysis (ICA) is a statistical
technique that separates as many independent source signals as there are mixture signals. When
there is only one mixture signal, the signal may be transformed into a time-frequency representation
such as the magnitude of the short-time Fourier transform (i.e., spectrogram). Casey and Westner [1]
originated the idea of spectrogram factorization by applying ICA to the single mixture spectrogram,
treating each frequency channel as a separate mixture signal. Using this approach, ICA separates
as many sources as frequency channels. However, the expressiveness of each source is necessarily
diminished. Each source spectrogram is a rank-one matrix formed by the product of a column vector
containing the spectral shape and a row vector containing the time-varying gain. The actual source
spectra are deemed to be a combination of multiple rank-one source spectrograms.

The problem with ICA for spectrogram factorization is that it extracts components that have neg-
ative elements, whereas spectrogram data is always non-negative. Therefore, non-negative matrix
factorization (NMF) has been proposed for source spectrogram estimation. NMF does not require
independence but maintains non-negative elements. An underlying assumption of ICA- and NMF-
based approaches is that the mixture spectrogram is the sum of the source spectrograms. This
assumption is valid only in the unlikely event that all sources have the same phase at every time-
frequency point or in the trivial case when only one source is active. In all other cases, the mixture
spectrogram also depends on the phase information in the short-time Fourier transform (STFT) of
the sources. We present a method to incorporate the unknown source phase information into the
estimation of the source spectrograms using a probabilistic representation of phase.

2 Spectrogram factorization

The first step for spectrogram factorization methods is to convert the mixture signal into a time-
frequency representation such as the complex-valued short-time Fourier transform (STFT). Because
the STFT contains the phase information for each source, the mixture STFT can be constructed
precisely as the sum of the source STFT matrices. However, this model does not extend to the spec-
trogram (i.e., the absolute value of each element of an STFT matrix). This is due to the nonlinearity



of the absolute value function and is analogous to the following inequality.

|a + b| 6= |a|+ |b| (1)

In contrast, spectrogram factorization techniques typically assume that the magnitude of the sum of
source STFTs (i.e., mixture spectrogram) is equal to the sum of the magnitudes of the source STFTs
(i.e., source spectrograms). Non-negative matrix factorization estimates the mixture spectrogram,
V, as the sum of multiple source component spectrograms, Cr:

V ≈ WHT =
∑

r

wrhT
r =

∑
r

Cr (2)

where the column vector wr and hr represents the spectral shape and amplitude envelope of the
r-th source component, respectively. Non-negative matrix factorization estimates W and H by
minimizing a distance metric such as the squared Euclidian distance [12]:
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This approach optimizes one possible configuration of phase, namely when the sources have equal
phase or when only one source is active. By incorporating the true distribution of phase, we improve
the estimates of W and H.

3 Probabilistic representation of phase

By considering the phase at each time-frequency point of each source to be a uniformly distributed
random variable, we derive the probability density function of the mixture spectrogram given the
source spectrograms. For the case of two components at one time-frequency point, the magnitude
of the mixture, v = Vkt, is a function of the magnitude of each source component, cr = [Cr]kt and
the phase difference between them:

v =
√

c2
1 + c2

2 + 2c1c2 cos θ (4)

Because of the circularity of phase, the difference in two uniformly distributed random phases is
also a uniformly distributed random variable, θ = U(−π, π). This allows us to derive the likelihood
of v given c1 and c2:

p(v|c1, c2) =
2v

π
√
−(v + c1 + c2)(v + c1 − c2)(v − c1 + c2)(v − c1 − c2)

(5)

By using uninformative priors on c1 and c2, we approximate p(c1, c2|v) ∝ p(v|c1, c2). We propose
maximizing this equation with respect to c1 and c2 by minimizing the following:

argmin
c1,c2

((v + c1 − c2)(v − c1 + c2)(v − c1 − c2)/v2)2 (6)

which reaches a minimum at the maxima of Equation 5. Notice that in terms of v, c1 and c2, the
standard NMF solution in Equation 2 is the following:

argmin
c1,c2

(v − c1 − c2)
2 (7)

Figure 1 illustrates Equation 5 as a function of c1 and c2 for v = 1. The standard NMF solution
minimizes the distance to the line v = c1 + c2, whereas the true distribution has energy along a
corridor defined by the asymptotes v = c1 − c2 and v = c2 − c1.

We tested our approach over 1000 trials using random W and H matrices and uniformly distributed
phase. As compared to the standard NMF solution, our approach provided a 28% improvement in
the mean square error of the estimated W and H matrices. For comparison, Figure 2 shows the
scatter plots for one representative trial. Using Equation 6 we attain a distribution that more closely
resembles Figure 1 evidenced by data points clustering along v = c1 − c2 and v = c2 − c1.
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Figure 1: Energy function for a and b when v = 1.

4 Conclusion and future work

We have shown that phase plays an important role in the determination of the mixture spectrogram
from a number of source spectrograms. By incorporating a probabilistic representation of phase,
we propose an improvement on NMF that more closely follows the true distribution of source spec-
trogram points given the mixture spectrogram. However, extending this analytical solution to more
than two components presents quite a challenge. In general, for R components Equation 4 becomes
the following:

v =
√ ∑

i={1..R}
c2
i +

∑

i,j={1..R}
cicj cos θij (8)

where θij is the phase difference between component i and j. This leads to R − 1 independent and
identically distributed random variables, {θ1j |j = 2..R}, with the remaining dependent variables
determined by: θij = θ1j−θ1i. Deriving the likelihood of the mixture given the source components
requires integration over the independent variables where the domain of integration is nontrivial.
Therefore, we are exploring numerical and sampling based approaches. By examining a histogram
of p(v|{ci}) constructed from a sufficiently large sample of points, we have observed that it has
asymptotes (i.e., spikes) at positive values of v =

∑
i±ci. In addition, the shape of the distribution

moves from a U-shaped “trough” for R = 2 to a more bell-shaped distribution for larger R. We
intend to leverage this information to apply our technique to greater numbers of components.
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Figure 2: Scatter plot of bins for one representative trial.
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