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Outline

• Acoustic Modeling and applications

• Parameter estimation and Inference

– Subspace methods, Variational, Monte Carlo

• Issues

Cemgil NIPS Workshop on Advances in Models for Acoustic Processing. 9 Dec 2006, Whistler, Canada 1



Acoustic Modeling
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Probabilistic Models

• Once a realistic model is constructed many related task can be cast to posterior
inference problems

p(Structure|Observations) ∝ p(Observations|Structure)p(Structure)

– analysis,
– localisation,
– restoration,
– transcription,
– source separation,
– identification,
– coding,
– resynthesis, cross synthesis
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Source Separation
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• Joint estimation Sources, Channel noise and mixing system

• Typically underdetermined (Channels < Sources) ⇒ Multimodal posterior
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Source Separation
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Source Separation
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Audio Interpolation

• Estimate missing samples given observed ones

• Restoration, concatenative expressive speech synthesis, ...

0 50 100 150 200 250 300 350 400 450 500

0

Cemgil NIPS Workshop on Advances in Models for Acoustic Processing. 9 Dec 2006, Whistler, Canada 7



Audio Interpolation

p(x¬κ|xκ) ∝

∫

dHp(x¬κ|H)p(xκ|H)p(H)

H ≡ (parameters, hidden states)

H

x¬κ xκ

Missing y
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Application: Analysis of Polyphonic Audio
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• Each latent process ν = 1 . . . W corresponds to a “voice”. Indicators r1:W,1:K

encode a latent “piano roll”
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Tempo, Rhythm, Meter analysis
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Hierarchical ModelingSore Expression
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Hierarchical Modeling
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Time Series Modeling

• Sound is primarily about oscillations and resonance

• Cascade of second order sytems

• Audio signals can often be compactly represented by sinusoidals

(real) yn =

p
∑

k=1

αke
−γkn cos(ωkn + φk)

(complex) yn =

p
∑

k=1

ck(e
−γk+jωk)n

y = F (γ1:p, ω1:p)c

Cemgil NIPS Workshop on Advances in Models for Acoustic Processing. 9 Dec 2006, Whistler, Canada 13



State space Parametrisation

xn+1 =





e−γ1+jω1

. . .
e−γp+jωp





︸ ︷︷ ︸

A

xn x0 =
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c2
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yn =
(

1 1 . . . 1 1
)

︸ ︷︷ ︸

C

xn

x0 x1 . . . xk−1 xk . . . xK

y1 . . . yk−1 yk . . . yK
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State Space Parametrisation
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Classical System identification approach

• The state space representation implies

xn+1 = Axn

yn = Cxn
⇒ yn = CAnx0

• Therefore we can write for arbitrary L and M the Hankel matrix







y0 y1 . . . yM

y1 y2 . . . yM+1
... ... . . . ...

yL yL+1 . . . yL+M







︸ ︷︷ ︸

Y

=







C

CA
...

CAL







︸ ︷︷ ︸

ΓL+1

(
x0 Ax0 . . . AMx0

)

︸ ︷︷ ︸

ΩM+1

Cemgil NIPS Workshop on Advances in Models for Acoustic Processing. 9 Dec 2006, Whistler, Canada 16



Identification via matrix factorisation

1. Given the “impulse response” Hankel matrix Y (Ho and Kalman 1966, Rao and Arun
1992, Viberg 1995), compute a matrix factorisation (typically via SVD)

Y = Γ̄L+1Ω̄M+1 =







C

CA
...

CAL







(
x0 Ax0 . . . AMx0

)

︸ ︷︷ ︸

2. Read off C and x0 from factors Γ̄L+1 and Ω̄M+1

3. Compute transition matrix by exploiting shift invariance






CA

CA2

...
CAL







=







C

CA
...

CAL−1







A ⇒ A = Γ†
1:nΓ2:n+1

Matrix factorisation ideas have lead to useful methods (N4SID, NMF, MMMF...)
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Pros and Cons

• Uses well understood algorithms from numerical linear algebra ⇒ often quite
fast and numerically stable

• Model selection can be based on numerical rank analysis; inspection of
singular values e.t.c.

• Handling of uncertainty and nonstationarity is not very transparent

• Prior knowledge is hard to incorporate
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Hierarchical Factorial Models

• Each component models a latent process

• The observations are projections

rν
0 · · · rν

k · · · rν
K
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ν
K

ν = 1 . . . W

yk yK

• Generalises Source-filter models
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Harmonic model with changepoints

rk|rk−1 ∼ p(rk|rk−1)

θk|θk−1, rk ∼ [rk = 0]N (Aθk−1, Q)
︸ ︷︷ ︸

reg

+ [rk = 1]N (0, S)
︸ ︷︷ ︸

new

yk|θk ∼ N (Cθk, R)

A =







Gω

G2
ω

. . .
GH

ω







N

Gω = ρk

(
cos(ω) − sin(ω)
sin(ω) cos(ω)

)

damping factor 0 < ρk < 1, framelength N and damped sinusoidal basis matrix C of size
N × 2H
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Harmonic model with changepoints
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• Each changepoint denotes the onset of a new audio event
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Monophonic transcription

• Detecting onsets, offsets and pitch (Cemgil et. al. 2006, IEEE TSALP)

500 1000 1500 2000 2500 3000 3500

Exact inference is possible
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Factorial Changepoint model

r0,ν ∼ C(r0,ν; π0,ν)

θ0,ν ∼ N (θ0,ν; µν, Pν)

rk,ν|rk−1,ν ∼ C(rk,ν; πν(rt−1,ν)) Changepoint indicator

θk,ν|θk−1,ν ∼ N (θk,ν; Aν(rk)θk−1,ν, Qν(rk)) Latent state

yk|θk,1:W ∼ N (yk; Ckθk,1:W , R) Observation
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K
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Application: Analysis of Polyphonic Audio
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• Each latent changepoint process ν = 1 . . . W corresponds to a “piano key”.
Indicators r1:W,1:K encode a latent “piano roll”
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Single time slice - Bayesian Variable Selection

ri ∼ C(ri; πon, πoff)

si|ri ∼ [ri = on]N (si; 0, Σ) + [ri 6= on]δ(si)

x|s1:W ∼ N (x; Cs1:W , R)

C ≡ [ C1 . . . Ci . . . CW ]

r1 . . . rW

s1 . . . sW

x

• Generalized Linear Model – Column’s of C are the basis vectors
• The exact posterior is a mixture of 2W Gaussians
• When W is large, computation of posterior features becomes intractable.
• Sparsity by construction (Olshausen and Millman, Attias, ...)
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Chord detection example
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Inference : Iterative Improvement

r∗1:W = arg max
r1:W

∫

ds1:Wp(y|s1:W )p(s1:W |r1:W )p(r1:W )

iteration r1 rM log p(y1:T , r1:M )

1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −1220638254

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −665073975

3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • −311983860

4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • −162334351

5 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • −43419569

6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −1633593

7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −14336

8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −5766

9 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −5210

10 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −4664

True ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −4664
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Inference : MCMC/Gibbs sampler

• MCMC: Construct a markov chain with stationary distribution as the desired
posterior P

• Gibbs sampler: We cycle through all variables rν = 1 . . . W and sample from
full conditionals

rν ∼ p(rν|r
(t+1)
1 , r

(t+1)
2 , . . . , r

(t+1)
ν−1 , r

(t)
ν+1, . . . , r

(t)
W )

• Rao-Blackwellisation: Conditioned on r1:W , the latent variables s1:W can be
integrated over analytically.
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Variational Bayes – Structured mean field

• VB: Approximate a complicated distribution P with a simpler, tractable one Q
in the sense of

Q∗ = argmin
Q

KL(Q||P)

• KL is the Kullback-Leibler divergence

KL(Q||P) ≡ 〈logQ〉Q − 〈logP〉Q ≥ 0

• If Q obeys the factorisation as Q =
∏

ν Qν the solution is given by the fixed
point

Qν ∝ exp
(
〈logP〉Q¬ν

)

• Leads to powerful generalisations of the Expectation Maximisation (EM)
algorithm (Hinton and Neal 1998, Attias 2000)
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MCMC versus Variational Bayes (VB)

• Each configuration of r1:W corresponds to a corner of a W dimensional
hypercube

b

b b
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• MCMC moves along the edges stochastically

• VB moves inside the hypercube deterministically
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Sequential Inference

• Filtering: Mixture Kalman Filter (Rao-Blackwellized PF) (Chen and Liu 2001)

• MMAP: Breadth-first search algorithm with greedy or randomised pruning,
multi-hypothesis tracker (MHT)

• For each hypothesis, there are 2W possible branches at each timeslice

⇒ Need a fast proposal to find promising branches without exhaustive
evaluation
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Music Processing challenges

• Computational modeling of human listening and music performance abilities

– complex and nonstationary temporal structure, both on physical-signal and
cognitive-symbolic level

– Applications: Interactive Music performance, Musicology, Music Information
Retrieval, Education

• Analysis

– identification of individual sound events - notes, kicks
– invariant characteristics - timbre
– extraction of higher structure information - tempo, harmony, rhythm
– not well defined attributes - expression, mood, genre

• Synthesis

– design of soud synthesis models - abstract or physical
– performance rendering: generation of a physically, perceptually or artistically

feasible control policy
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Issues

• What types of modelling approaches are useful for acoustic processing (e.g.
hierarchical, generative, discriminative) ?

• What classes of inference algorithms are suitable for these potentially large
and hybrid models of sound ?

• How can we improve the quality and speed of inference ?

• Can efficient online algorithms be developed?

• How can we learn efficient auditory codes based on independence
assumptions about the generating processes?

• What can biology and cognitive science can tell us about acoustic
representations and processing? (and vice versa)
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