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Abstract

We present a formulation of the source separation problem as the minimization of
a symmetric function defined on fragments of the observed signal. We draw a par-
allel between this function and the mutual information function, which is known to
be submodular, and propose the use of tractable combinatorial optimization tech-
niques, in particular Queyranne’s algorithm, suited to optimization of symmetric
submodular functions. While these ideas can be applied to any signal segmenta-
tion problem (e.g., image or video segmentation), we focus here on unsupervised
separation of sources in mixed speech signals recorded by a single microphone.
The optimization criterion is the likelihood under a generative model which as-
sumes that each time-frequency bin is assigned to one of the two speakers, and
that each speaker’s utterance has been generated from the same generic speech
model. The optimization can then be performed over all possible assignments of
the time-frequency bins to the two speakers. Even though the algorithm requires
polynomial time, it is still too slow for large signals. Therefore, we first overseg-
ment the spectrogram into a large number of segments which do not violate the
deformable spectrogram model [4]. Queyranne’s algorithm is than constrained to
search only over unions of these segments, rather than all possible signal frag-
ments. We show that this technique leads to blind separation of mixed signals
where both speakers are of the same gender and very similar spectral characteris-
tics.

1 Introduction

This paper is concerned with analysis of multidimensional signalsX = {xi : i ∈ V }, where V is the
domain of the signal. For eaxmple, a 255×255 image has 2-D indices i = (i, j) ∈ [1..255]×[1..255].
An audio spectrogram also has 2-D time-frequency indices i = (t, f) ∈ [1..T ] × [1..F ], where T
is the number of time samples, and F is the number of frequency bins in the representation. We
consider a class of signals drawn from the (trainable) joint probability distribution p(Y |θ), and study
an observed mixture X of two signals (sources) of this class. The mixing is assumed to be such that
each mixed signal component xi comes from one of the two individual sources. If we choose a set
S ⊂ V as the set of observed elements to be assigned to the first source, then the log likelihood of
the observed signal given the assignment S is:

log p(X|S) = log p(XS |θ) + log p(XV \S |θ), (1)

where XA = {xi : i ∈ A}, and so XS and XV \S constitute a partition of the signal into two
fragments. Note that p(XA|θ) =

∑
XV \A

p(X|θ), and that the above log likelihood is a symmetric
set function (log p(X|S) = log p(X|V \ S)), as the two sources are assumed to follow the same
probability distribution.



We will consider signal segmentation as a search for the partition that maximizes this likelihood. For
this purpose, we propose the use of Queyranne’s algorithm [6], which has the complexity O(|V |3).
The complexity can be reduced if the signal comes presegmented into a large number of smaller
regions Ri, i ∈ 1..N and the search is limited to the unions of these regions. In that case the
algorithm has the complexity O(|N |3).
In our experiments, we focused on separating sources in mixed speech signals, for which we propose
the use of the deformable spectrograms model to provide pre-segmentation as described in Section
4, and the use of a generic speech model trained using the HTK library to define the speech model
p(X|θ). In this way, the source separation is driven both by the semantics of the inferred speech as
well as the lower level features. On 100 same gender mixtures we obtained overall word recognition
rate of 82.17%. This error was measured on the output transcriptions obtained from the generic
speech recognizer applied to each signal partition. These transcriptions, are in fact the inferred
hidden variables in the models p(XS |θ) and p(XS\V |θ) for optimal S. To our knowledge processing
of these kind of single microphone mixtures is not possible with previous related research. We expect
that this general strategy can be applied to other types of natural signals.

The paper is organized as follows. The next section provides background the Queyranne’s algo-
rithm, and illustrates the relationship between our optimization criteria and the submodular func-
tions optimized in [5]. Section 3 provides a brief background on the single microphone blind source
separation research. In Section 4 we describe deformable spectrograms and propose the use of this
representation for discovering small regions dominated by a single speaker. These regions are clus-
tered using an algorithm which is based on the Queyranne’s algorithm, and described in detail in
Section 5. Finally, in Section 6 we present experimental results.

2 Queyranne’s algorithm and signal segmentation

In [5] it was shown that several types of clustering criteria can be reduced to functions that can be
optimized using Queryanne algorithm [6], whose complexity is O(|V |3). In particular, [5] shows
that separating sites in genetic sequences into two clusters so that the mutual information between
clusters is minimized can be performed exactly using this algorithm. Their optimization criterion
can also be shown as equivalent to the minimal description length criterion:

f(S) = H(XS) +H(XV \S), (2)

where
H(XA) = −

∑
XA

p(XA) log p(XA), (3)

is the entropy of the observations at indices in A. The task of separating sequence sites is defined
as finding the partition (S,V \ S), for which the sum of the two entropies is minimized, and to
estimate the entropy multiple genetic sequences are observed under the assumption that a single
partition should work for all sequences. The optimization criterion is a symmetric and submodular
function, and so Queryanne algorithm can be used to find optimal S in O(|V |3) time. The resulting
segmentation guarantees, that XS and XV \S , over the observed sequences, are as independent of
each other as possible. The entropy H(XA) is clearly related to log likelihood. To estimate an
entropy of a signal piece S for a class of signals Xk sampled from a distribution p(X|θ), we can
use:

H(XA) ' −
∑

k

log p(Xk
A|θ), (4)

where samples Xk
A are used as an empirical distribution instead of the true distribution. If the em-

pirical distribution truly matches the model distribution, the entropy estimate will be correct. Thus,
the MDL criterion f(S) can be thought of as a negative of the log likelihood criterion− log p(X|S),
where only a single mixed signal is observed, rather than an ensemble of consistently mixed signals,
as was the case in the genetics application in [5].

Unfortunately, as opposed to f(S) in (2), the new criterion − log p(X|S) is symmetric, but not a
submodular function. For a function to be submodular, increasing a set size should progressively
lead to smaller and smaller increases in the function as new elements are added:

f(S ∪ {j})− f(S) ≥ f(S ∪ {i} ∪ {j})− f(S ∪ {i}). (5)



It would be sufficient for − log p(XS) to be submodular, as the Queyranne algorithm optimizes the
symmetric part of a given submodular function, which for − log p(XS) is our optimization criterion
− log p(XS)− log p(XV \S). But, plugging− log p(XS) into the above definition would lead to the
conclusion that p(Xj|XS) ≤ p(Xj|XS ∪Xi), which is not generally true. While extra information
Xi may decrease the uncertainty about Xj, the conditional probability of a particular observation
Xj can be higher without the knowledge of Xi, if it so happens that the observed Xi contradicts
Xj under the model. In practice, however, we expect that when S is close to a subset of the true
solution, this will be unlikely and the new elements will be more and more in accordance with the
rest of the set as it grows.

Due to these two reasons (relationship to entropy and the typically diminishing punishment on like-
lihood log p(XS) as more elements are added), we expect that minimizing − log p(X)) from (1)
using the Queyranne algorithm is a viable strategy in practice.

3 Background on blind source separation

The separation of speech mixtures into individual sources using a single microphone is a hard prob-
lem that has generated a lot of interest in the research community. Current approaches attempt to
disambiguate the log-spectra representation of the mixture on a time-frequency bin basis. Each bin
is subjected to analysis and tagged as belonging to one of the individual sources. The large com-
binatorial space created by the analysis of the signal in such a small resolution posses a significant
challenge to systems attempting to do this kind of separation.

The time-frequency representation of speech signals, the spectrogram, is very sparse: most narrow
frequency bands carry substantial energy only during a small fraction of time. Therefore it is rare
to encounter two independent sources with large amounts of energy at the same frequency band at
the same time. Figure 1 shows a spectrogram representation of a speech signal, where each column
depicts the energy content across frequency in a short-time window or time-frame. The value in
each cell is actually the log-magnitude of the short-time Fourier transform in deciBels:

xk
t = 20 log

(
abs

(
NF−1∑
τ=0

w[τ ]x[t ·H + τ ]e−j2πτk/NF

))
(6)

where t is the time-frame index, k indexes the frequency bands,NF is the size of the discrete Fourier
transform, H is the hop between successive time-frames, w[τ ] is the NF -point short-time window,
and x[τ ] is the original time-domain signal. The time-frequency masking approach exploits the
sparseness characteristic of the time-frequency representation by assigning each time-frequency bin
xk

t (eq. 6) from the mixture signal to one and only one of the sources. Each source in the mixture has
a correspondent binary mask with the same dimensions as the time-frequency representation of the
mixed signal, where “one” in a given source mask indicates that the corresponding time-frequency
bin in the spectrogram of the mixture signal belongs to the corresponding speaker. The individual
sources are later resynthesized using the masks and the spectrogram and phase information from the
original mixed signal.

The large combinatorial space created by the analysis of the signal at such a fine resolution poses
a great challenge to systems attempting to do such a separation. In [1] the combinatorial search is
restricted by the use of pretrained speaker models, which limits the applicability of the approach to
mixtures of sources whose individual properties are known in great detail. In [2], a training session
is required to choose the right parameters for a spectral clustering algorithm. Finding clusters among
the set of all time-frequency bins requires huge matrices that pose significant numerical problems.

Empirically, time-frequency cells belonging to any particular source occur in large clumps (local
regions), and highly-intelligible separation can be achieved by limiting the masks to consist of rel-
atively large, locally-consistent regions of labeling. Moreover the intelligibility of the experiments
was greatly increased when the missing regions that were masked by the competing signal [4]. In
this paper, we propose a dominant speaker source separation approach, where the spectogram is
first segmented using the deformable spectogram model [4] into regions where only one speaker
dominates the mixture. This model exploits the high correlation between adjacent frames of the
spectogram, shown in many audio signals including speech and musical instruments to model suc-
cessive spectra as transformations of their immediate predecessors. The model can also detect when
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Figure 2: a) Graphical model b) Graphical simpli-
fication.

prediction of frames from their context is not possible, marking those frames as boundaries between
regions with different patterns on the signal’s energy dynamics [4].

Clustering these larger regions is a task several degrees simpler than clustering individual time fre-
quency bins. If the speakers have sufficiently dissimilar characteristics, such as when they belong
to different genders, the regions can be clustered [5] using spectral clustering techniques – a set of
algorithms that rely on the eigen-structure of a similarity matrix between the points to be clustered
to partition the points so that points in the same cluster have high similarity while points in different
clusters have low similarity [2]. However, in cases such as [2] where a spectral clustering approach
was used to separate speakers using speaker dependant similarity features (e.g. pitch), these tech-
niques fail to cluster dominant regions belonging to the same speaker when the different speakers’
voices are similar.

A plausible alternative is to apply a model-based clustering approach where constraints on the form
that the mixture components can take are encoded in models which capture the statistical distribu-
tions of the features of the mixture components. Previous related work has used probabilistic speech
models to guide single microphone source separation tasks [1], however the models used in that
approach were speaker-dependant models which would also encounter problems if the speakers are
sufficiently similar. Furthermore, the use of pretrained speaker models greatly limits the applicabil-
ity of the approach.

In this work, we propose to evaluate the quality of the speaker segmentations by the use of a generic
speech model, like the one obtained through the training of a regular speech recognizer, trained
with clean speech from sources other than the ones that are intended to be separated. Even with
the local preclustering of individual time frequency bins into N dominant speaker regions for m
speakers, an exhaustive search for the best partition will require mN/(m − 1)! evaluations of the
speech recognizer, a task that quickly becomes unbearable for most values of N and m. To tackle
this problem we perform the search using the Q-clustering algorithm [5] which can approximate the
optimal solution in polynomial time.

4 Deformable spectrograms and dominant speaker segmentation

Many audio signals have spectral representations that show high correlation between adjacent
frames. The deformable spectrogram model discovers and tracks the nature of such correlation
by finding how the patterns of energy are transformed between adjacent frames and how those trans-
formations evolve over time. The model was introduced and presented in detail in [4]. Figure 1
shows a narrow band spectrogram representation of a speech signal, where each column depicts the
energy content across frequency in a short-time window, or time-frame. Using the subscript C to
designate current and P to indicate previous, the model predicts a patch of NC time-frequency bins
centered at the kth frequency bin of frame t as a “transformation” of a patch of NP bins around the



kth bin of frame t− 1, i.e.

~X
[k−nC ,k+nC ]
t ≈ ~T k

t · ~X
[k−nP ,k+nP ]
t−1 (7)

where nC = (NC − 1)/2, nP = (NP − 1)/2, and T k
t is the particular NC × NP transformation

matrix employed at that point on the time-frequency plane. Figure 1 shows an example withNC = 3
and NP = 5 to illustrate the intuition behind this approach. The selected patch in frame t can be
seen as a close replica of an upward shift of part of the patch highlighted in frame t − 1. This
“upward” relationship can be captured by a transformation matrix, such as the one shown in the
figure. The patch in frame t − 1 is larger than the patch in frame t to permit both upward and
downward motions. The proposed model finds the particular transformation, from a discrete set
of transformations, that better describes the evolution of the energy from frame t − 1 to frame t
around each one of the time frequency bins xk

t in the spectrogram. The model also tracks the nature
of the transformations throughout the whole signal to find useful patterns of transformation. The
generative graphical model is depicted in figure 2. Nodes X = {x1

1, x
2
1, ..., x

k
t , ..., x

K
T } represent

all the time-frequency bins in the spectrogram. Considering the continuous nodes X as observed
or hidden when parts of the spectogram are missing, discrete nodes T = {T 1

1 , T
2
1 , ..., T

k
t , ..., T

K
T }

index the set of transformation matrices used to model the dynamics of the signal. Each NC ×NP

transformation matrix ~T is of the form: (
~w 0 0
0 ~w 0
0 0 ~w

)
(8)

i.e. each of the NC cells at time t predicted by this matrix is based on the same transformation of
cells from t − 1, translated to retain the same relative relationship. The complete set of ~w vectors
is composed by upward/downward shifts of whole bins, which when applied to the matrix format
on eq.8, results in a transformation matrix similar to the one in 1, .i.e. ~w = [0 0 1] in the figure.
Given the probabilistic nature of the model an apparently limited set of transformation, like the
ones described by pure shifts, can have a wide range of representational capabilities. For example
a transformation like the one described by [0 0 0 .25 .75] with probability one is equivalent to
trasformations described by [0 0 0 1 0] and [0 0 0 0 1] with probabilities 0.25 and 0.75 respectively.
The length NW of the transformation vectors defines the supporting coefficients from the previous
frame ~X

[k−nW ,k+nW ]
t−1 (where nW = (NW − 1)/2) that can “explain” xk

t . The “local-likelihood”
potential between the time-frequency bin xk

t , its relevant neighbors in frame t, its relevant neighbors
in frame t− 1, and its transformation node T k

t has the following form:

ψ
(
~X

[k−nC ,k+nC ]
t , ~X

[k−nP ,k+nP ]
t−1 , T k

t

)
=

N
(
~X

[k−nC ,k+nC ]
t ; ~T k

t
~X

[k−nP ,k+nP ]
t−1 ,Σ[k−nC ,k+nC ]

)
(9)

The diagonal matrix Σ[k−nC ,k+nC ], which is learned, has different values for each frequency band
to account for the variability of noise across frequency bands.

Two Layer Source-Filter Transformations

Many sound sources, can be regarded as the convolution of a broad-band source excitation, and
a time-varying resonant filter, therefore the overall spectrum is in essence the convolution of the
source with the filter in the time domain, which corresponds to multiplying their spectra in the
Fourier domain, or adding in the log-spectral domain. Hence, we model the log-spectra X as the
sum of variables F and H , which explicitly model the formants and the harmonics of the speech
signal. The source-filter transformation model is based on two additive layers of the deformation
model described above, where variables F and H in the model are hidden, while, as before, X can
be observed or hidden. The two layers are iteratively and approximately inferred using loopy belief
propagation as described in [4]. The first row of figure 3 shows the decomposition of a speech
signal into harmonics and formants components, illustrated as the means of the posteriors of the
continuous hidden variables in each layer. Figure 3 Second Row a) shows the spectrogram on the
first row with deleted regions;in b) the regions have been filled via inference in a single-layer model.
Notice that since the formant motion does not follow the harmonics, the formants are not captured
in the reconstruction and hence the need for two layers. In c) the two layers are first decomposed
and then each layer is filled in; the figure shows the addition of the filled-in version in each layer.



= +

Signal Harmonics Formants

a)Missing Sections b) Fill-in; one layer c) Fill-in; two layers

Figure 3: First Row.- Harmonics/Formants decomposition (posterior distribution means). Second
Row (a) Spectrogram with deleted (missing) regions. (b) Filling in using a single-layer transforma-
tion model. (c) Results from the two-layer model.

Subband transition boundary detection

Prediction of frames from their context is not always possible such as when there are transitions
between silence and speech or transitions between voiced and unvoiced speech, or when smooth
regions on the energy patterns of a single source are disrupted due to interference from a new source.
Given that the magnitude of the interference is not uniform across all the spectrum, the model is
extended to detect “vertical” (synchronized) sections of the spectogram, composed by a band of n
adjacent time frequency bins on a given time frame, where the model cannot efficiently “track” the
energy dynamics from the context, labeling the frame section as a transition boundary. Figure 4,
shows the transition boundaries obtained by the model for a female-female mixture of two speakers.

Dominant speaker transition boundary detection

In [5], for a set of 200 artificially mixed mixtures of two speakers, divided in four categories: 50
female-female, 50 male-male, 50 male-female and 50 with the same speaker voicing different utter-
ances, the correlation between these transition boundaries and the actual boundaries where changes
on dominant speakers ocurr was measured by the use of the basic measures used in evaluating search
strategies: precision = 97.25 and recall = 63.88. Recall is the ratio of the number of relevant records,
in this case the ground truth boundaries, retrieved to the total number of records. Precision is the ra-
tio of the number of relevant records retrieved to the total number of records retrieved, both relevant
and irrelevant. The precision values were homogeneous between the different kind of mixtures, even
for the ones with the same speaker. The model does well regardless of the nature of the speakers
because it discovers interruptions in the energy pattern of the signal without relying on any source
dependant features. On the other hand, precision results are not as good. This is in part, because
transitions between voiced and unvoiced data for the same speaker are also detected but they are
not considered a “ground truth” dominant speaker change boundary. Two alternative approaches for
the dominant speaker transition boundary detection are also presented, one using a strong speaker
dependant feature such as pitch and another using a minimum description length criteria to segment
the regions, both approaches considerable underperform the detection obtained by our proposed
approach.

5 Clustering single-speaker regions

Since the deformable spectrogram-based segmentation has high recall values we can be pretty cer-
tain that the signal is segmented into single-speaker regions (albeit a large number). Clustering these
regions is a task several degrees simpler than clustering individual time frequency bins. When the
speakers are sufficiently dissimilar the regions can be clustered using spectral clustering methods
that use similarity measures within the regions to be clustered. However when the speakers are very
similar like in the extreme case of figure 4 that depicts the dominant speaker segmentation of the
spectogram of a mixture of the same speaker voicing different utterances, there is not an affinity
based clustering method capable of grouping the regions that correspond to the different utterances.



Therefore, as argued above, we instead use a semantic clustering approach that consist of evaluating
the quality of the speaker segmentations by the use of a generic speech model. The idea behind
this approach is that the feature constraints encoded in the acoustic model along with the language
model constraints can efficiently help to discard poor segmentations. However exhaustive search for
the best partition will require mN/(m − 1)! evaluations of the speech recognizer, for a mixture of
m speakers presegmented into N dominant speaker regions. To tackle this problem we perform the
search using the Q-clustering algorithm [4] which terminates in polynomial time.

In the following, Ri denotes a small single-speaker region. V denotes the complete spectrogram
composed of N non overlapping single-speaker regions, V =

∑N
i=1(Ri). R

′

i = V \Ri denotes all
the regions in V but Ri. S denotes a union of individual regions S =

∑
i∈G(Ri), and S′ = V \S,

denotes all the regions in V but the ones in S. L(S) = logp(XS |theta) denotes the loglikelihood
obtained when the decoder is applied to the signal part XS (marginalizing over the rest of the spec-
trogram as hidden). As indicated above, regions Ri are obtained by segmentation into regions that
do not violate the smoothness constraints of the deformable spectrogram model, and p(XS |theta)
is based on a generic speech model trained on a large corpus of data as described in the next section.
LT (S) = L(S) + L(V \ S) denotes the total loglikehihood given the decoder for the spectogram
partition P = (S, V \ S).

Start with the N original regions.
Nnew = N ;
While Nnew ≥ 2.
S = ∅.
Ntested = 0;
While Ntested ≤ Nnew − 2.

For all Ri ∈ V \ S
Compute LT (S +Ri)

end
Ri ← argmaxRj∈V \S (LT (S +Rj)); S ← S +Rj ;
Ntested = Ntested − 1

end
By this point there is only two original regions untested Rl and Rk.
Ri ← max(LT (Rl),LT (Rk))

Place (Ri, V \Ri) on the list of possible solutions
Merge regions Rl and Rk into a single Rm.
SetNnew ← Nnew − 1 and reindex original regions.

end
Choose the best solution from the list of possible solutions.

6 Experimental Results

A generic speech recognizer was trained using HTK with over 3000 clean speech signals from
over 50 different female speakers from the Aurora database, which is composed of utterances of
sequences of three to six continuous digits.

We tested our approach on 100 artificially mixed signals from two female speakers each one uttering
a sequence of three continuous digits. The speakers were not present in the training set used to train
the recognizer.

Each mixture was first pre-segmented using the deformable spectogram model into regions with
smooth energy patterns. Then, the algorithm in Section 5 was applied to each oversegmented signal
to obtain the best partition of the two sources.

Before continuing to the evaluation of the partitions, we briefly discuss the computation expense
of the algorithm. From 5 it can be seen that the algorithm requires up to N3 evaluations under the
speech decoder. This is quite a reduction from 2N evaluations needed for the exhaustive search,
and this makes this algorithm possible to evaluate. In fact, taking a closer look to the algorithm
it becomes apparent that many of those evaluation are repeated and so recording the indexes of



Figure 4: Detected boundaries: resulting in over 60 presegmented regions and estimated partition.
(Presegmented silence regions are including in both signals)

the original regions already tested in a hash table greatly reduces the actual number of evaluations
needed. First part of table 1 shows the mean and the standard deviation of the ratio between the
actual number of evaluations used to complete the algorithm for each mixture and the expected N3

number of evaluations. The total number of calls to speech recognizer was only around 5% of the
worst case N3 calls.

Computational Cost
Num. Evaluations Ratio Mean Std

Actual Number/N3 0.054 0.011
Performance Evaluation

Partition LogLikelihood Word Recog. Rate
Pest -7.1220e+003 82.17%
Popt -7.3487e+003 83.50%

Table 1: Computational cost and performace evaluation

Given that the signals were artificially mixed we could obtain the ”optimal” grouping of the dom-
inant speaker regions by asigning each region to the speaker for which the amount of energy con-
tained in its individual source is greater. We called this partition Popt. Table shows performance
comparisons for both set of partitions Pest and Popt. The first column shows the mean for the par-
tition loglikelihood for all mixture. In each single one of the mixtures the loglikelihood of partition
Pest is greater than the loglikelihood obtained from partition Popt, which indicates both that the
optimization algorithm is working well, and that the generic model is under-trained. Second row
shows the word recognition rate over the 600 hundred decoded digits, 3 per independent source over
the 100 mixtures.

The test set included a few mixtures containing the same speaker uttering two different digits se-
quences. The word error rate on those mixtures is consistent with the one obtained for the complete
test set. Figure shows an example of such a mixture with its correspondent partitionPest. In the su-
plemental material, we provide wav files with examples of speech separation using our algorithm.
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