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Abstract

From physiology we learn that the auditory system extracts simultaneous features
from the underlying signal, giving birth to simultaneous representations of audible
signals. The use of the Rank Order Coding has also been recently hypothesized
in the mammalian auditory system. In a first application we compare a very sim-
plistic speech recognition prototype that uses the Rank Order Coding with a con-
ventional Hidden Markov Model speech recognizer. In a second application, we
combine a simultaneous auditory images representation with a network of oscilla-
tory spiking neurones to segregate and bind auditory objects for acoustical source
separation. We discuss on the importance of the time in acoustic processing.

1 Introduction

This paper has two essential goals:i) emphasizes on the importance of time in the features extracted
by the auditory system – with illustration of the influence of such time structures on performance of
a simple prototype speech recognizer and on a sound source separation system – andii) brings up
the question: ”How far can we go in sound source separation systems when not taking into account
prior knowledge?”

In the present paper we present two speech processing systems based on an auditory motivated
approach. One system is a prototype speech recognizer that uses the sequence of spikes, as a recog-
nition feature, in a network of spiking neurons. When compared with a Hidden Markov Models
recognizer, preliminary results show that the approach as a great potential for transients recognition
and situations where no sufficient data are available to train the speech recognizer. The second sys-
tem shows that separation and segregation of simultaneous audio sources can be performed by using
the temporal correlation paradigm to group auditory objects coming from the same source. This
system does not need prior knowledge of the sources.

1.1 Suitable representations

We know that, for speech processing, an efficient and suitable signal representation has first to be
found. Ideally the representation should be adapted to the problem in hand and has not to be the
same for both systems (for exmple, the separation and recognition cues are different). With at least
two interfering speakers and voiced speech, it is observed that the separation is relatively easy –
speakers with different fundamental frequencies – since spectral representations or auditory images
exhibit different regions with structures dominated by different pitch trajectories. Hence, amplitude
modulation of cochlear filter outputs (or modulation spectrograms) are discriminative. In situations
where speakers have similar pitches, the separation is difficult and features, like the phase, should
be preserved by the analysis to increase the discrimination. Most conventional source segregation or
recognition systems use an analysis that is effective, as long as speech segments under the analysis
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window are relatively stationary and stable. Furthermore, these systems need a sufficient amount of
data to be trained. For segregation with at least 2 simultaneous speakers and overlapping unvoiced
speech segments, a signal-dependent and fine analysis is required. In this situation, separation and
recognition cannot be performed with conventional speech analysis that are usually based on spectral
and time-averaged features. It is very likely that this kind of system would fail. Hence, adaptive (or
at least multi-features) and dynamic signal analysis is required.

1.2 So, which signal representation?

The question is still open, but the signal representation should enhance speech structured features
that ease discrimination and differentiation.
Based on the literature on auditory perception, it is possible to argue that the auditory system gen-
erates a multi–dimensional spatio-temporal representation of the one dimensional acoustic signal.
In the first half of the paper (speech recognition application) we use a simple time sequence of
2D auditory images (cochlear channels – neuron thresholds) or the time sequence of 3D Shamma’s
multiscale analysis (tonotopic frequency – temporal rate – modulation of the auditory spectrum). In
the second half of the paper we use 2D auditory image (AM modulation and spectrum of cochlear
envelops) sequences and we treat them as videos.

2 Perceptive Approach

From physiology we learn that the auditory system extracts simultaneous features from the under-
lying signal, giving birth to simultaneous time structured multi-representations of speech. We also
learn that fast and slow efferences can selectively enhance speech representations in relation to the
auditory environment. This is in opposition with most conventional speech processing systems that
use a systematic analysis1 that is effective only when speech segments under the analysis window
are relatively stationary and stable.

2.1 Physiology: Multiple Features

Inner and outer hair cells establish synapses with efferent and afferent fibres. The efferent pro-
jections to the inner hair cells synapse on the afferent connection, suggesting a modulation of the
afferent information by the efferent system. On the contrary, other efferent fibres project directly to
the outer hair cells, suggesting a direct control of the outer hair cells by the efferences. It has also
been observed that all afferent fibres (inner and outer hair cells) project directly into the cochlear nu-
cleus. It has a layered structure that preserves frequency tonotopic organisation where one finds very
different neurons that response to various features2. In the inferior colliculus of the cat, Schreiner
and Langner [1, 2] have shown that there exists a highly systematic topographic representation of
AM parameters. Maps showing best modulation frequency have been determined. The pioneering
work by Robles, Ruggero and Evans [3] [4][5] reveals the importance of AM-FM3 coding in the
peripheral auditory system along with the role of the efferent system in relation with adaptive tuning
of the cochlea. Small neural circuits in relation withwideband inhibitory inputneurons are observed
by Arnott et al. [6] in the cochlear nucleus. These circuits, explain the response of specialised neu-
rons to frequency position of sharp spectral notches.
It is also known that the auditory efferent system plays a crucial role in enhancing signals in back-
ground noise [7] [8] [9]. Kimet al. [9] measure the effect of aging on the medial olivocochlear
system and suggest that the functional decline of the medial olivocochlear system with age precedes
outer hair cell degeneration.
It is clear from physiology that multiple and simultaneous representations of the same input signal
are observed in the cochlear nucleus [10] [11]. In the remaining parts of the paper, we call these
representations,simultaneous auditory images.

1A systematic analysis extracts the same features independently of the signal context. Frame by frame
extraction of Mel Frequency Cepstrum Coefficients (MFCC) is an example of a systematic analysis.

2onset, chopper, primary–like, etc.
3Other features like transients, ON, OFF responses are observed, but are not implemented here.



2.2 Rank Order Coding and Temporal Correlation

VanRullen etal. [12] discuss the importance of the relative timing in neuronal responses and have
shown that the coding of the Rank Order of spikes can explain the fast responses that are observed
in the human somatosensory system. Along the same line, Nätschlager and Maass [13] have tech-
nically shown that information about the result of the computation is already present in the current
neural network state long before the complete spatio-temporal input patterns have been received by
the neural network. This suggests that neural networks use the temporal order of the first spikes
yielding ultra-rapid computation in accordance with the physiology by [14, 12]. As an example, we
can cite the work by DeWeese etal. [15], where the authors observe in the auditory cortex of the
rat that transient responses in auditory cortex can be described as a binary process, rather than as a
highly variable Poisson process. Once again, these results suggest that the spike timing is crucial.
As the Rank Order Coding is one of the potential neural codes that respects these spike timing con-
straints, we explore here a possible way of integration in the context of speech recognition.
On the other hand, we explore, in the context of source separation, the use of theTemporal Corre-
lation to compute dynamical spatio–temporal correlation between features obtained with a bank of
cochlear filters. This time the coding is made through the synchronization of neurons. Neurons that
fire simultaneously will characterize the same sound source.

3 Exploration in Speech Recognition

3.1 Rank Order Coding

Rank Order Coding has been proposed by Simon Thorpe and his team from CERCO, Toulouse
to explain the impressive performance of our visual system [16, 17]. The information is distributed
through a large population of neurons and is represented by spikes relative timing in a single wave of
action potentials. The quantity of information that can be transmitted by this type of code increases
with the number of neurons in the population. For a relatively large number of neurons, the code
transmission power can satisfy the needs of any visual task [16]. There are advantages in using the
relative order and not the exact spike latency: the strategy is easier to implement, the system is less
subject to changes in intensity of the stimulus and the information is available as soon as the first
spike is generated.

3.2 System Overview

In this work, we use the temporal order of spikes at the output of two auditory models. One is a
very simple peripheral auditory channels representation (which we callcochlear channelsmodel)
while the second is a far more complete model that includes mid–brain and cortical representations
of sounds (which we callcompletemodel).
We also use two models of neurons. In the first model, spikes are obtained with simple fixed thresh-
olds (which we callthresholdmodel), without integration. Different neurons can have a different
internal threshold value. The second model is the conventional leaky integrate and fire representation
of neurons (LIAF) with different internal thresholds.

3.3 Speech Analysis Modules

Auditory models The first is a model of peripheral auditory system which is crudely modelled by
a gammatone filter-bank followed by rectification and compression with a square-root law. The
second model has been proposed by Shamma and his team [18] and his a complete model from
the periphery to the auditory cortex. Spike trains are generated by feeding the neuronal models
(described in next subsections) with one of the two analysis modules described here.

Neuronal modelsSimple threshold neuronal model:For each signal envelope, from each cochlear
channel, we use three neurons with different thresholds (denoted 1, 2 and 3). A spike is generated
when the signal envelope exceeds one of the internal neuron’s threshold. After producing a spike, a
neuron becomes inactive for the remaining time of the stimulus. With such model we only capture
the first instant for which the envelope signal is sufficiently high and we ignore the other spikes.
The Leaky Integrate and Fire neuronal model:Our simple Integrate-and-Fire neuron model has four
parameters: adaptive threshold, leaky current, resting potential and reset potential. Throughout the



simulation, the neuron integrates the input to determine the neuron’s internal potential evolution.
Once the internal potential is sufficient (it reaches the threshold), a spike is generated.

3.4 Illustration with the simple analysis and thresholding
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Figure 1: Illustration of spike sequence generation on a French digit ’un’ [˜E] with the cochlear
channel analysis and threshold neurons.(a) The signal is first filtered through a cochlear gammatone
filter-bank. It is then rectified and compressed with a square-root law. For each channel, three
threshold neurons are used with different threshold values. If the amplitude in the channel reaches
one of the neuron’s threshold, a spike is generated. After firing, a neuron becomes inactive for the
remaining time of the stimulus.(b) White stars represent spikes. The x-axis is the time samples
(sampling frequency of 16 kHz) and the y-axis shows the filter-bank channels. Center frequencies
of channels 1 and 20 are respectively equal to 8000 and 100 Hz.
.

We illustrate the sequence generation and processing with the cochlear channels analysis used in
conjunction with the threshold neuronal models. Figure 1, page 4, sumarizes the preprocessing and
the generation of spikes with the threshold neuronal model.

3.5 Learning and Recognition Modules

The same training and recognition procedure has been used with the simple thresholding and leaky
integrate and fire neuronal models. During training a template is generated for each reference word.
It is a sequence of the first most likely N cochlear channel/threshold numbers.

3.6 Experiments

Speech Database We performed a proof-of-concept test of speech recognition using in house
speech databases made of 10 French digits spoken by 5 men and 4 women and of the French vowels
spoken by the same 5 men and 5 women (including the 4 women from the digits database). Each
speaker pronounced ten times the same digits (from 0 to 9) and vowels. The speakers were presented
with random sequences of digits and vowels to be read.

Training and Recognition For each digit (or vowel), two reference models are used for the rec-
ognizer (one pronunciation for each sex). Recognition has been performed on all pronunciations of
each speaker. During recognition and for a given digit (or vowel), only two speakers were repre-
sented in the reference models. Experiments have been conducted with two combinations: cochlear
filter–bank analysis with simple threshold neurons (noted as Cochlear–Threshold) and the complete
auditory model with LIAF neurons (noted as Complete–LIAF).

Reference System A conventional MFCC and Hidden Markov Model speech recognizer has been
trained with the same training set than with the ROC prototype4.

4The same reference pronunciation has been used for each digit (or vowel).



3.7 Recognition scores with limited training data

Table 1: Averaged recognition rates on the five French vowels [a@ioy] for the HMM speech recog-
nizer, the Cochlear–Treshold and Complete-LIAF speech recognizers

HMM Cochlear–Treshold Complete-LIAF
90% 89% 94%

Recognition of vowels The 5 French vowels [a@ioy] recognition has been made with three rec-
ognizers. The conventional reference HMM, one ROC prototype with the cochlear analysis and
the threshold neuron model and another ROC prototype with the complete auditory model with
LIAF neurons. The average recognition rates are reported on table 1. The HMM and the Cochlear–
Treshold recognizers have comparable performance while the complete model (Complete-LIAF) is
better. The Cochlear–Treshold recognizer does relatively well (recall that it uses only one spike per
channel/threshold neuron) even if it uses only the first signal frames. On the opposite, the HMM and
the Complete-LIAF systems use the full vowel signal.

French digit recognition We report in table 2 the results for the very simple system (Cochlear–
Treshold) and those from the MFCC–HMM recognizer.

Table 2: Recognition for each pronunciation of the ten French digits – Cochlear filter analysis com-
bined with the one time threshold neuron (Cochlear–Threshold system) and MFCC with HMM.

Cochlear–Threshold Total Recognition Rate: 65 %
Digits 1 2 3 4 5 6 7 8 9 0

Scores (%) 93 76 64 75 46 75 13 75 60 67

MFCC–HMM Total Recognition Rate: 52 %
Digits 1 2 3 4 5 6 7 8 9 0

Scores (%) 16 61 46 36 90 80 33 5 49 100

3.8 Discussion

Both ROC based speech recognizer prototypes do surprisingly well when compared with a state of
the art HMM recognizer.
The Complete–LIAF system uses the same length of the test signal than the HMM system but with-
out the stationary assumption of the MFCC analysis and yields better results on the vowels when
the training set is limited (only 1 reference speaker for each sex). The simple Cochlear–Threshold
system has comparable results than the HMM on stationary signals (vowels) and much better results
on the consonants of the digits. Clearly, one reference speaker per sex with only one occurrence is
not sufficient to train the HMM. Furthermore, the transient cues from the consonants are spread out
with the stationary MFCC analysis.
Apart from the fact that the Rank Order Coding scheme could be a viable approach to the recog-
nition it is important to notice that with only one spike per neuronal model (reported results with
the Cochlear–Threshold system) the recognition is still promising. It is interesting to link these pre-
liminary results with the arguments of Thorpe and colleagues [14] [19]. They argue that first spike
latencies provide a fast and efficient code of sensory stimuli and that natural vision scene reconstruc-
tions can be obtained with very short durations. If such a coding is occuring in the auditory system,
the study conducted here could be a good start point in the design of a speech recognizer.
The statistical HMM speech recognizer and our ROC prototypes are complementary. The ROC
prototypes seem to be robust to transient and unvoiced consonants recognition (which is known to
be difficult for statistical based speech recognizers) while the HMM based systems are know to be
very robust for stationary voiced speech segments. Also, an important aspect to consider is that the
HMM technology dates from the middle of the seventies and plenty of good training algorithms are
available which is not yet the case for the ROC. For now, a mixed speech recognizer, that relies
i) on a Perceptive & ROC approach for the transients andii) on the MFCC & HMM approach for
the voiced segments could be viable. While the HMM recognizer performance can be improved
by increasing the training set, the performance of our prototypes could benefit from various pre- or
post-processing schemes that are currently under investigation.



4 A sound source separation system based on synchronisation of neurons

In this part of the paper we present a work that explores the feasibility of sound source separation
without any prior knowledge on the interfering sources. In other words we begin to pave the road to
answer to the question: ”How far can we go in the separation of sound sources without integrating
any priori knowledge on the sources?”.
We assume here that sound segregation is a generalised classification problem, in which we want to
bind features – extracted from the auditory image representations – in different regions of a neural
network map.

4.1 Proposed System Strategy
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Figure 2: Source Separation System. Two auditory images are simultaneously generated – a
Cochleotopic/AMtopic map (CAM) and a Cochleotopic/Spectrotopic map (CSM) – in two different
paths. Based on the neural synchrony of the lower layer neurons, a binary mask is generated to mute
– in time and across channels – the synthesis filterbank’s channels that do not belong to the desired
source. The first layer of the neural layer segregates the auditory objects on the CAM/CSM maps
and the second layer binds the channels that are dominated by the same stream. For now, the user
decides which representation (CAM or CSM) is being presented to the neural network.

The sound mixture is processed by an enhanced FIR Gammatone filterbank that mimics the behav-
ior of the cochlea [20]. From the output of the cochlear channels two different anthropomorphic
maps are generated (figure 2). The amplitude modulation map, that we call Cochleotopic/AMtopic
(CAM) Map and the Cochleotopic/Spectrotopic Map (CSM) that encodes the averaged spectral en-
ergies of the cochlear filterbank output. These maps partially mimic the behavior of the peripheral
auditory pathway. These maps are based on the computation of the FFT (Fast Fourier Transform)
and envelope detection [21] (figure 2).
The first representation somehow reproduces the AM processing performed by multipolar cells



(Chopper-S) from the anteroventral cochlear nucleus [11], while the second representation is closer
to the spherical bushy cell processing from the ventral cochlear nucleus [10].
For now, we assume that different sources are disjoint in the auditory image representation space
and that masking (binary gain) of the undesired sources is feasible. Speech has a specific structure
that is different from that of most noises and perturbations. Also, when dealing with simultaneous
speakers, separation is possible when preserving the time structure (the probability at a given instant
t to observe overlap in pitch and timbre is relatively low). Therefore, a binary gain could be used to
suppress the interference (or separate all sources with adaptive masks).
Our separation technique uses the Computational Auditory Scene Analysis that is based on the com-
putational implementation of ideas exposed by Bregman [22]. A two-layered network of spiking
neurons is used to perform cochlear channel selection (figure 2) based on temporal correlation: neu-
rons associated to those channels belonging to the same sound source synchronize. A more detailed
description of the system is given in [23, 24]. It has been tested on two-sources and three-sources
sound source separation situations. Results can be found in [23, 24, 25]. Different criteria such
as PEL (Percentage of Energy Loss), PNR (Percentage of Noise Reduction), LSD (Log Spectral
Distortion), and PESQ (Perceptual Evaluation of Speech Quality) have been used for the evaluation
of the quality of separation. According to these criteria, it has been shown [23, 24, 25] that the
proposed system outperforms other state of the art systems that do need to be trained to know the
source characteristics.

Time

F
re

qu
en

cy

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

Time

F
re

qu
en

cy

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 3: Illustration of the separation on three simultaneous sources. (a) The spectrogram of the
mixture of an utterance, a tone, and a telephone ring. (b) The spectrogram of the extracted utterance.
The telephone and the tone have been suppressed, while the voice has been preserved. Results can
be heard and evaluated on one of the authors’ web page: [26] [27].

4.2 Discussion

The uses a perceptive analysis to extract multiple and simultaneous time structured features to be
processed by an unsupervised neural network. There is no need to tune-up the neural network when
changing the nature of the signal. Furthermore, there is no training or recognition phase. Even with
a crude approximation such as binary masking, non overlapping and independent time window, we
obtain relatively good synthesis intelligibility.

5 Conclusion

Starting in the mid ’80s, auditory models preserving time organized features were already proposed
and tested on corrupted signals but with limited success because of pattern recognizers’ inabilities
to exploit the rich time-structured information generated by these models. Spiking neural networks
open doors to new systems with a stronger integration between analysis and recognition. The under-
standing of the performance of the ROC (with little training data) in relation with Bayesian learning
methods is certainly an interesting research issue for the future. It is also important to note that
acceptable monophonic source separations can be performed without prior knowledge by using the
temporal correlation. Of course, when possible, a more robust system would combine both Bayesian
learning and temporal correlation.
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