Learning blind one-microphone speech separation

Francis Bach Ecole des Mines de Paris francis.bach@mines.org Michael Jordan UC Berkeley jordan@cs.berkeley.edu

Blind one-microphone speech separation

- Two or more speakers s_1,\ldots,s_m one microphone x
- Ideal acoustics: $x = s_1 + s_2 + \cdots + s_m$
- Goal: recover s_1, \ldots, s_m from x
- Blind: without knowing the speakers in advance

Approaches to one-microphone speech separation

- Mixing model: $x = s_1 + s_2 + \cdots + s_m$
- Two types of approaches:
 - 1. Generative
 - Learn source model p(s), then ``simply" an inference problem
 - Model too simple : does not separate
 - Model too complex : inference potentially intractable
 - Works for non blind situations (Roweis, 2001, Lee et al., 2002)

Approaches to one-microphone speech separation

- Mixing model: $x = s_1 + s_2 + \cdots + s_m$
- Two types of approaches:
 - 1. Generative
 - Learn source model p(s), then ``simply" an inference problem
 - Model too simple : does not separate
 - Model too complex : inference potentially intractable
 - Works for non blind situations (Roweis, 2001, Lee et al., 2002)
 - 2. Discriminative: model of separation task, not of speakers

Spectrogram Sparsity and superposition $s_1 + s_2 = x$

Reformulation as segmentation

• *Empirical property*: there exists a segmentation that leads to audibly acceptable signals, e.g., take $\arg \max(|S_1|, |S_2|)$

Spectrogram of the mix

cf. time frequency masking

Reformulation as segmentation

• *Empirical property*: there exists a segmentation that leads to audibly acceptable signals, e.g., take $\arg \max(|S_1|, |S_2|)$

Spectrogram of the mix

cf. time frequency masking

• Requires new way of segmenting images

Segmenting images for speech separation

Spectrogram of the mix

 "Speech segments" are very different from "vision segments"

Segmenting images for speech separation

Spectrogram of the mix

- "Speech segments" are very different from "vision segments"
- Designing segmenter by hand is cumbersome
- Why not learn it directly from data? Requires:
 - 1. labelled examples
 - 2. machine learning algorithm

Learning problem

- Data:
 - Artificially generated spectrograms
 - Corresponding segmentations
- Goal: learn how to segment new spectrograms

Learning problem

- Data:
 - Artificially generated spectrograms
 - Corresponding segmentations
- Goal: learn how to segment new spectrograms
- We propose a two stage approach:
 - 1. Build features adapted to speech segments
 - 2. Learn how to segment from those features (clustering)

 Usual grouping cues from speech psycho-physics and computational auditory scene analysis (CASA)

- Usual grouping cues from speech psycho-physics and computational auditory scene analysis (CASA)
- Non harmonic cues (same as in vision)
 - Continuity
 - Common fate
 - Common offsets/onsets
 - Frequency co-modulation (frequencies move in sync)

- Usual grouping cues from speech psycho-physics and computational auditory scene analysis (CASA)
- Non harmonic cues (same as in vision)
 - Continuity
 - Common fate
 - Common offsets/onsets
 - Frequency co-modulation (frequencies move in svnc)

Building features

• For each cues, build a "feature map"

Building features

- For each cues, build a "feature map"
- Feature I: continuity
 - Time/frequency are usual features for continuity

Features II: common fate cues

- Oriented edge filters used in vision
 - Vertical: common offsets and onsets
 - Other angles: frequency co-modulation

Features III: harmonic cues

- Estimation of pitch for multiple speakers:
 - Simple estimation based on independent frames and spline smoothing

- Characteristics of features ...
 - Numerous
 - Noisy or very noisy
- ... impose constraints on clustering algorithm
 - Robust to noise
 - Flexible enough to account for various cluster shapes
- Spectral clustering

Spectral clustering

- Consider N data points (e.g., pixels) as weighted graph
 - N vertices: one vertex per data point
 - Weight: $W_{ij} \ge 0, i, j \in \{1, \dots, N\}$
- W_{ij} large if points i and j likely to be in the same cluster • $W \in \mathbb{R}^{N \times N}$ = similarity matrix
- Goal: find clusters with high intra-similarity and low intersimilarity

Spectral clustering

- $W \in \mathbb{R}^{N \times N}$ = similarity matrix
- Goal: find clusters with high intra-similarity and low intersimilarity
- Criterion: normalized cut =

Sum of inter-cluster weights

Sum of intra-cluster weights

Goal: find partition that minimizes the normalized cut

Spectral clustering

- $W \in \mathbb{R}^{N \times N}$ = similarity matrix
- Goal: find clusters with high intra-similarity and low intersimilarity
- Criterion: normalized cut = Sum of inter-cluster weights
- Goal: find partition that minimizes the normalized cut
- NP hard but can be relaxed in an eigenvalue problem

Overview of spectral clustering algorithm: clustering into R clusters

- Given similarity matrix $W \in \mathbb{R}^{N imes N}$
 - 1. Find first R eigenvectors $U = (u_1, \dots, u_R) \in \mathbb{R}^{N \times R}$
 - Cluster U (considered as N points in R dimensions) using K means → output partition E(W)

Overview of spectral clustering algorithm: clustering into R clusters

- Given similarity matrix $W \in \mathbb{R}^{N imes N}$
 - 1. Find first R eigenvectors $U = (u_1, \ldots, u_R) \in \mathbb{R}^{N \times R}$
 - Cluster U (considered as N points in R dimensions) using K means → output partition E(W)
- Properties:
 - Flexible clusters
 - State-of-the-art in vision (Malik et al.)
 - Naïve running time complexity $O(N^3)$

Overview of spectral clustering algorithm: clustering into R clusters

- Given similarity matrix $W \in \mathbb{R}^{N imes N}$
 - 1. Find first R eigenvectors $U = (u_1, \ldots, u_R) \in \mathbb{R}^{N \times R}$
 - Cluster U (considered as N points in R dimensions) using K means → output partition E(W)
- Properties:
 - Flexible clusters
 - State-of-the-art in vision (Malik et al.)
 - Naïve running time complexity $O(N^3)$
- Two challenges:
 - (1) learning from examples

(2) complexity

Learning spectral clustering

- Spectral clustering: Given similarity matrix $W \in \mathbb{R}^{N imes N}$
 - 1. Find first R eigenvectors $U = (u_1, \ldots, u_R) \in \mathbb{R}^{N \times R}$
 - Cluster U (considered as N points in R dimensions) using K means → output partition E(W)
- Learning spectral clustering:
 - Given E, find W such that E and E(W) are close
 - Solution proposed in earlier work
 (Bach & Jordan, NIPS 2004)
 - Designing appropriate differentiable cost function

Linear time complexity

- Naïve approaches using full matrices : $O(N^3)$
- Linear complexity: O(N)
 - Sparse matrices
 - Low-rank approximations
 - Band diagonal matrices

(short range interactions)

(*long* range interactions)

(medium range interactions)

• Ranges of interactions in speech

Spectral clustering for speech separation

- **TEST** : Given spectrogram with N pixels to segment:
 - build features: $x \in \mathbb{R}^{D imes N}$
 - build (parameterized) similarity matrix

$$W_{ij} = e^{-\sum_k \alpha_k (x_{ki} - x_{kj})^2}$$

- Cluster using spectral clustering
- Obtain speech signal by spectrogram inversion

Spectral clustering for speech separation

- **TEST** : Given spectrogram with N pixels to segment:
 - build features: $x \in \mathbb{R}^{D imes N}$
 - build (parameterized) similarity matrix

$$W_{ij} = e^{-\sum_k \alpha_k (x_{ki} - x_{kj})^2}$$

- Cluster using spectral clustering
- Obtain speech signal by spectrogram inversion
- TRAIN : Given spectrograms and segmentations, learn parameters $\, \alpha \in \mathbb{R}^D \,$
 - Feature weighting and feature selection

Experiments

• Two datasets of speakers (one for train, one for test)

"optimal" segmentation

Segmentation result

- Testing time (Matlab/C) : T = duration of signal (in sec)
 - Building features: pprox 4 imes T
 - Segmentation: $\approx 30 \times T$

Sound demos

Input (mixed signal)		Outputs (separated signals)
English 1	O	
English 2		
French 1		
French 2	<u>(</u>)	

Sound demos

Input (mixed signal)		Outputs (separated signals)
English 1	O E	
English 2	A	
French 1	W	
French 2	₩	

- Issues
 - Male vs. female
 - French is easier than English
- Usual problems
 - Full overlap of some harmonics
 - Switching between speakers (requires oversegmentation)

Conclusion and future work

- Discriminative approach to speech separation
- Learning how to segment spectrograms from examples
 - Clustering of large set of "physical" features
- Current/future work:
 - Benchmarks and separability measure
 - Mixing conditions: allow some form of echo or delay
 - Speaker vs. speaker
 speaker vs. non stationary noise
 - Better post processing of spectrogram segmentation?
 - Iterate feature extraction and separation