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Abstract

There is an increasing interest in customizable methods fororganizing music col-
lections. Relevant music characterization can be obtainedfrom short-time fea-
tures, but it is not obvious how to combine them to get useful information. First,
the relevant information might not be evident at the short-time level, and these
features have to be combined at a larger temporal level into anew feature vector
in order to capture the relevant information. Second, we need to learn a model
for the new features that generalizes well to new data. In this contribution, we
will study how multivariate analysis (MVA) and kernel methods can be of great
help in this task. More precisely, we will present two modified versions of a MVA
method known as Orthonormalized Partial Least Squares (OPLS), one of them
being a kernel extension, that are well-suited for discovering relevant dynamics in
large music collections. The performance of both schemes will be illustrated in a
music genre classification task.

1 Introduction

The interest in automated methods for organizing music is increasing, which is primarily due to the
large digitalization of music. Music distribution is no longer limited to physical media, but users
can download music titles directly from Internet services such as e.g.iTunes or Napster1. Portable
players easily store most users personal collections and allow the user to bring the music anywhere.
The problem of navigating these seemingly endless streams of music apparently seems dubious with
current technologies. However, the increased research conducted in fields of music information
retrieval (MIR) will aid users in organizing and navigatingtheir music collections. Furthermore,
there has been an increasing interest in customization whenorganizing the music, see e.g. [1, 2],
which provides a better control of the users individual collections.

The problems that researchers face when working with customization, especially in MIR, are many
and indeed require robust machine learning algorithms for handling the large amount of data avail-
able for an average user. User interaction could be in the sense of organizing the music collection in
specific taxonomies. This could be a simple flat genre taxonomy that is frequently used in portable
players, or taxonomies based on instrumentation, artist ortheme, see e.g.www.allmusic.com
and [1]. Customization in terms of predicting users personal music taste was investigated in [3],
where a support vector machine was applied in connection with active retrieval.

The present work considers the problem of learning important dynamical structure in the short-time
features2 extracted from the music, in such a way that this informationis as relevant as possible

1www.itunes.com andwww.napster.com.
2Short-time features are usually extracted from music at time-levels around 5 − 100 ms.



for a given music organization task. After applying some kind of temporal feature integration3,
new discriminative features will be extracted using new extensions of a multivariate analysis (MVA)
method known as Orthonormalized Partial Least Squares (OPLS). It will be shown that the new
methods, proposed in [4] and [5], are well-suited for music data and are able to cope with large data
sets, while providing competitive performance and, if desired, a clear physical interpretation for the
derived features.

The rest of the paper is organized as follows: the next Section will review the standard OPLS
algorithm for feature extraction; Sections 3 and 4 will be dedicated to the two OPLS extensions that
we have recently proposed; in Section 5 we will illustrate the performance of both approaches in a
genre music classification task, and Section 6 will concludethe paper.

2 Orthonormalized Partial Least Squares

Consider we are given a set of pairs{xi,yi}
l
i=1

, with xi ∈ ℜN , yi ∈ ℜM . Let us also introduce
matricesX = [x1, . . . ,xl]

T andY = [y1, . . . ,yl]
T , and denote by

X′ = XU and Y′ = YV

two matrices, each one containingnp projections of the original input and output data,U andV
being the projection matrices of sizesN×np andM×np, respectively. The objective of Multivariate
Analysis (MVA) algorithms is to search for projection matrices such that the projected input and
output data are maximally aligned. For instance, CanonicalCorrelation Analysis (CCA) finds the
projections that maximize the correlation between the projected data, while Partial Least Squares
(PLS) provides the directions for maximum covariance:

PLS : maximize: Tr{UT CxyV}
subject to: UT U = VT V = I

(1)

whereI is the identity matrix of sizenp, theT superscript denotes matrix or vector transposition,
and where we have also defined the covariance matrixCxy = X̃T Ỹ, X̃ andỸ being the centered
versions ofX andY, respectively.

In this paper, we will consider a different MVA method, namely, the Orthonormalized Partial Least
Squares (OPLS) which tackles the following maximization problem:

OPLS : maximize: Tr{UT CxyC
T
xyU}

subject to: UT CxxU = I
(2)

with Cxx = X̃T X̃.

Note that, unlike CCA or PLS, OPLS only extracts projectionsof the input data. It is known that
OPLS is optimal for performing linear regression on the input data when a bottleneck is imposed
for data dimensionality reduction [6]. In other words, the solution to (2) also minimizes the sum of
squares of the residuals of the approximation of the label matrix:

‖Ỹ − X̃′B̂‖2

F , B̂ = (Cxx)−1Cxy (3)

where‖·‖F denotes the Frobenius norm of a matrix andB̂ is the optimal regression matrix. Similarly
to other MVA methods, OPLS is not only useful for multi-regression problems, but it can also be
used as a feature extractor in supervised problems, including also the multi-label case, whenY is
used to encode class membership information. The optimality condition suggests that the features
obtained by OPLS will be more relevant than those provided byother MVA methods, in the sense
that they will allow similar or better accuracy rates using fewer projections.

Before moving on to our modified versions of OPLS, it is worth pointing out two properties of MVA
algorithms that make them well suited for music data analysis:

• Flexibility: The output space can be used to encode any kind of information relevant to the
music organization task at hand. For instance, in this paper, we will useY to encode the

3Temporal feature integration is the process of combining all the feature vectors in a time-frame into a single
new feature vector in order to capture the relevant temporal informationin the frame.
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Figure 1: The figure illustrates the flow-chart of the complete process. After MFCC extraction,
periodograms are computed for each MFCC. The output of the “periodogram” box is aDx = 129
dimensional vector for each MFCC, corresponding to the power in the different frequency bands.
The filter bank (U) summarizes the power in different frequency bands.

genre information for the songs in a training data set (usingone-out-of-C encoding), but
in previous works we also considered feature extraction forinstrument classification [7]
and for detecting the presence of vibrato in instrument recordings [4]. Furthermore, MVA
algorithms can also be used in problems with multiple labels(e.g., when soft or multiple
membership is allowed), and in regression problems (e.g., if Y is used to encode the ratings
given by a user to different songs).

• Scalability: MVA methods extract the projection vectors using the covariance matrices
only. Since these can be computed through a sum over all patterns, MVA can certainly be
applied with large data sets (which is usually the case in music organization tasks), without
having to keep all training data in memory. This property allows also the implementation
of incremental learning schemes, which are useful when moredata becomes available as
time goes by.

3 Filtering of short-time dynamics using Positive Constrained OPLS

The complete system considered in this section has been illustrated in Figure 1. The purpose of
the overall system is to classify music data according to some criterion, such as genre, so we are
assuming that some labelled data is available for the design. From the raw digital audio signal,
an initial step towards an automated organization of music is feature extraction. A music signal is
typically stationary in periods ranging from5-100ms, see e.g., [8], and features extracted at this
time-scale are denoted short-time features.

3.1 Short-time features

The Mel Frequency Cepstral Coefficients (MFCC) have been selected as short-time features in this
work. The MFCCs are ranked in such a manner that the lower order MFCCs contain information
about the slow variations in the spectral envelope. Hence, including the higher MFCCs a richer
representation of the spectral envelope will be obtained.

For this investigation, the6 initial MFCCs have been used, including the first coefficient, which is
correlated with the perceptual dimension of loudness. In the investigations, each music snippet is



power normalized prior to the MFCC extraction stage. A frame-size of30ms and a hop-size of
7.5ms have been applied in all experiments to minimize aliasing inthe MFCCs.

3.2 Temporal feature integration

Temporal feature integration is the process of combining all the feature vectors in a time-frame into
a single new feature vector in order to capture the relevant information in the frame.

In [9] it was proposed to perform temporal feature integration by estimating the power spectrum of
the MFCCs using the periodogram method [10]. In addition to this, the authors propose to summa-
rize the energy in different frequency bands using a predefined filter bank:

x′

i = UT xi (4)

wherexi is a periodogram of dimensionDx of any of the MFCC coefficients over some framefsx
,

andU comprises the frequency magnitude response of the filter bank. Finally, the feature vector
x′

i, which has as many components as the number of filters in the bank, is used as an input to the
subsequent classification process.

In other words, the temporal feature extraction stage consists of estimating the periodogram of each
MFCC dimension independently over some time-framefsx

, after which a filter bankU is applied.
In [9] it was proposed to use a filter bank with four bandpass filters whose frequency responses
where selected according to the believed importance of eachfrequency for the genre classification
task.

3.3 Supervised Design of Filter Banks

Rather than using a predetermined filter bank, we propose to make a supervised design using the pe-
riodograms extracted from some collection of labelled music data. Then, we can select the frequency
response of each filter by using the OPLS algorithm; however,there is an additional constraint that
we should take into consideration: note that, from its definition, and given thatU operates on the
power spectrum of the different MFCCs, all elements inU should be non-negative numbers so that
the extracted features,{x′

i}, can be effectively interpreted as the energy of the periodograms in
different frequency ranges.

When consider the positivity constraint, we can formulate the Positive Constrained OPLS (POPLS)
as:

POPLS : maximize: Tr{UT CxyC
T
xyU}

subject to: UT CxxU = I
uij ≥ 0

(5)

There are a number of ways to solve the above problem. We will use a procedure consisting on
iteratively calculating the best filter, so that we are not only guaranteeing that we are computing an
optimal bank withnp filters, but also that any subbank consisting of some of the first columns ofU
is optimal with respect to the number of filters used. In brief, the process consists of the following
two differentiated stages:

1) Solve the “one filter” optimization problem given by:

maximize: uT CxyC
T
xyu (6)

subject to: uT Cxxu = 1 (7)

ui ≥ 0 (8)

2) Remove from the label matrix the prediction obtained fromthe current filter bank.

Finally, it is worth mentioning that the positivity constraint obviously leads to a suboptimal discrim-
inative performance of the extracted features in comparison to standard OPLS. This is the price we
pay in exchange for deriving features with a clear physical interpretation. We will later check that,
when using enough filters, the discriminative power of the features is still quite satisfactory.



4 Sparse Kernel OPLS

When a physical interpretation of the extracted features is not required, one can increase the discrim-
ination power of the extracted features by using more powerful, possibly non-linear, techniques. In
this section we consider the kernel extension of the OPLS algorithm [5].

The overall feature extraction scheme is very similar to that in Figure 1, but important differences
exist in the temporal feature integration block. First, rather than extracting the periodograms of
the MFCCs, we consider adjusting an Autorregresive (AR) prediction model, as it was proposed in
[11]. The parameters of this model are then stacked in a columnwise manner, forming what we call a
vector of AR coefficients. These AR coefficients are projected into a very high dimensional feature
space, where linear OPLS is finally applied.

To be more explicit, in this case we consider that we are givena set of pairs{φ(xi),yi}
l
i=1

, with
xi ∈ ℜN being vectors of AR coefficients andyi ∈ ℜM their associated labels, andφ(x) : ℜN →
F a function that maps the input data into some Reproducing Kernel Hilbert Space (RKHS), usually
referred to as feature space, of very large or even infinite dimension. We also need to introduce
matrixΦ = [φ(x1), . . . ,φ(xl)]

T andΦ′ = ΦU for thenp dimensional extracted features. Now,U
has dimensionsdim(F) × np. Accordingly, the new Kernel OPLS problem is given by:

KOPLS : maximize: Tr{UT Φ̃
T
ỸỸT Φ̃U}

subject to: UT Φ̃
T
Φ̃U = I

(9)

whereΦ̃ is a centered version ofΦ.

When projecting data into an infinite dimensional space, we need to use the Representer Theorem
that states that each of the projection vectors inU can be expressed as a linear combination of
the training data. However, as explained in [5], when dealing with large data sets it is normally
more convenient to impose sparsity in the projection vectors representation, i.e., we will use the
approximationU = ΦT

RB, whereΦR is a subset of the training data containing onlyR patterns
(R < l) andB = [β

1
, · · · ,βnp

] contains the parameters of the compact model. Although more
sophisticated strategies can be followed in order to selectthe training data to be incorporated into the
basisΦR, we will rely on random selection, very much in the line of thesparse greedy approximation
proposed in [12] to reduce the computational burden of Support Vector Machines (SVMs).

ReplacingU in (9) by its approximation, we get an alternative maximization problem that constitutes
the basis for a KOPLS algorithm with reduced complexity (rKOPLS):

rKOPLS : maximize: Tr{BT KRỸỸT KT
RB}

subject to: BT KRKT
RB = I

(10)

where we have definedKR = ΦRΦ̃
T

, which is a reduced kernel matrix of sizeR × l.

There are different ways to solve the rKOPLS problem. Among them, we will rely on a two
stage procedure similar to the one we used for POPLS, and basically consisting in solving the one-
dimensional problem, followed by deflation (see [5] for further details).

What is interesting to our discussion here is that, apart fromproviding the high expressive power in-
herent to kernel methods, the proposed scheme still scales well with the number of training patterns,
which, as we have already explained, is critical if the method is to be applied to large collections of
music. Indeed, it is possible to check that matricesKRKT

R andKRỸ are of sizeR×R andR×M ,
respectively, and that they can be computed using a sum over all training patterns. Additionally, the
extraction of features for new unseen data requires only thecomputation ofR kernels. Note, how-
ever, that the proposed scheme is very different from using simple subsampling, given that matrix
KR still takes into account all training data.

5 Experiments

In this section we illustrate the overall performance of thesystems based on POPLS and rKOPLS in a
genre classification task. To keep things as simple as possible, we use one of the simplest classifiers:
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Figure 2: The figure illustrates the average number of songs misclassified when using thenp = 25
filters obtained by the POPLS procedure.
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Figure 3: The first and fourth most discriminative filters forthe genre classification task.

we compute the pseudoinverse of the projected training datato calculateB̂ (see Eq. (3)), and then
classify data according tõX′B̂ or Φ̃

′

B̂ (for the POPLS and the rKOPLS approaches, respectively),
using a “winner-takes-all” (w.t.a) activation function.

For the kernel approach we used a Gaussian kernel

k(xi,xj) = exp
(

−‖xi − xj‖
2

2
/2σ2

)

using 10-fold cross-validation (10-CV) on the training setto estimateσ.

5.0.1 Dataset description

The dataset has previously been investigated in [11, 13], and consists of1317 music snippets each of
30 s. distributed evenly among the11 music genres: alternative, country, easy listening, electronica,
jazz, latin, pop&dance, rap&hip-hop, r&b and soul, reggae and rock, except for latin, which only has
117 music samples. The labels have been obtained from an external reference. The music snippets
consist of MP3 (MPEG1-layer3) encoded music with a bitrate of 128kbps or higher, downsampled
to 22050Hz. This dataset is rather complex having on the average1.83 songs per artist. Previous
results show that this is a difficult dataset for genre classification (see, for instance, [13]).

Since every song consists of about seventy AR vectors, we canmeasure the classification accuracy
in two different ways: 1) On the level of individual AR vectors or 2) by majority voting among the
AR vectors of a given song.

5.1 Performance with POPLS features

Figure 2 shows the10-fold cross-validation song classification error as a function of the number of
filters in the bank. Although most of the important dynamicalstructure of the MFCCs is captured
by the first few filters ofU, the figure shows that a significant error reduction can be obtained when
considering a larger number of filters, achieving error rates around61% for np > 15.

Figure 3 shows the first and fourth filters obtained on a singlefold using the POPLS. Filter1 includes
the most important frequencies of the MFCCs periodograms, which basically cover the modulation
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Figure 4: Genre classification performance of KPLS2 and rKOPLS.

frequencies of instruments. Filters2 and3 (not shown here) provide attention to the lower modula-
tion frequencies. Filter4 spans the higher modulation frequencies, which are relatedto the percep-
tual roughness. The difference between the filters obtainedfor each training data fold is small, which
partly illustrates that the proposed method is robust to noise and, further, that the specific underlying
temporal structure of the MFCCs is relevant for discriminating between the different genres.

5.2 Performance with rKOPLS features

In this section we illustrate the classification accuracy ofthe classifiers built using rKOPLS features.
For comparison purposes we include also the results achieved with a different kernel MVA tech-
nique. We have considered the Kernel Partial Least Squares algorithm described in [14], to which
we refer in the following as KPLS2.

In Figure 4 the results are given both with respect to the accuracy at classifying AR vectors, and when
considering the overall classification of a song. The results are very clear: compared to KPLS2,
rKOPLS is not only consistently performing better as seen inFigure 4(a), but is also doing so
with much fewer projections. These conclusions are very pronounced when looking at Figure 4(b)
where, forR = 750, rKOPLS is outperforming ordinary KPLS, and is doing so withonly ten
projections compared to fifty projections of the KPLS2. Thisdemonstrates that the features extracted
by rKOPLS holds much more information relevant to the genre classification task than KPLS2.

6 Conclusions

In this contribution we have illustrated the relevance of MVA and kernel methods to learn the dy-
namics of short-time features which are relevant to a particular classification task. The features
computed using modified OPLS schemes have shown to have good discrimination power, while
retaining physical interpretation if needed.

We can conclude that MVA techniques are very versatile, in the sense that they can be applied to any
discrimination task. Additionally, because of the nature of music data, in which both the number of
dimensions and samples are very large, we believe that feature extraction methods such as POPLS
and rKOPLS can become crucial to music information retrieval tasks, and hope that other researchers
in the community will be able to benefit from our results.
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