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Abstract

There is an increasing interest in customizable methodsrfianizing music col-
lections. Relevant music characterization can be obtafreed short-time fea-
tures, but it is not obvious how to combine them to get usefidrimation. First,

the relevant information might not be evident at the shionetlevel, and these
features have to be combined at a larger temporal level im@afeature vector
in order to capture the relevant information. Second, welriedearn a model
for the new features that generalizes well to new data. k& ¢bntribution, we

will study how multivariate analysis (MVA) and kernel mett®ocan be of great
help in this task. More precisely, we will present two modifiersions of a MVA

method known as Orthonormalized Partial Least Squares 8pRine of them
being a kernel extension, that are well-suited for disdoggrelevant dynamics in
large music collections. The performance of both schembBdevillustrated in a

music genre classification task.

1 Introduction

The interest in automated methods for organizing musicaessing, which is primarily due to the
large digitalization of music. Music distribution is no Iger limited to physical media, but users
can download music titles directly from Internet servicestsas e.giTunes or Napster®. Portable
players easily store most users personal collections dma tie user to bring the music anywhere.
The problem of navigating these seemingly endless streamasic apparently seems dubious with
current technologies. However, the increased researctiucted in fields of music information
retrieval (MIR) will aid users in organizing and navigatitfieir music collections. Furthermore,
there has been an increasing interest in customization wrganizing the music, see e.g. [1, 2],
which provides a better control of the users individual edtilons.

The problems that researchers face when working with cugadion, especially in MIR, are many
and indeed require robust machine learning algorithmsdaidling the large amount of data avail-
able for an average user. User interaction could be in theesafrorganizing the music collection in
specific taxonomies. This could be a simple flat genre taxgrtbiatt is frequently used in portable
players, or taxonomies based on instrumentation, artifteme, see e.gwwv. al | musi c. com
and [1]. Customization in terms of predicting users perbomasic taste was investigated in [3],
where a support vector machine was applied in connectidnaditive retrieval.

The present work considers the problem of learning impodgnamical structure in the short-time
feature$ extracted from the music, in such a way that this informat®as relevant as possible

lwwy. i t unes. comandwww. napst er . com
2Short-time features are usually extracted from music at time-levels @fownl 00 ms.



for a given music organization task. After applying somedkaf temporal feature integratién
new discriminative features will be extracted using nevergions of a multivariate analysis (MVA)
method known as Orthonormalized Partial Least Squares 8pRL will be shown that the new
methods, proposed in [4] and [5], are well-suited for musitacand are able to cope with large data
sets, while providing competitive performance and, if degbia clear physical interpretation for the
derived features.

The rest of the paper is organized as follows: the next Sedfiitl review the standard OPLS
algorithm for feature extraction; Sections 3 and 4 will beidated to the two OPLS extensions that
we have recently proposed; in Section 5 we will illustrate prerformance of both approaches in a
genre music classification task, and Section 6 will concthéepaper.

2 Orthonormalized Partial Least Squares

Consider we are given a set of pairs;, y; }._,, with x; € RY,y; € RM. Let us also introduce
matricesX = [xy,...,x;]7 andY = [y4,...,y;|’, and denote by

X'=XU and Y=YV

two matrices, each one containing projections of the original input and output datd,and V
being the projection matrices of siz&5<n, andM xn,, respectively. The objective of Multivariate
Analysis (MVA) algorithms is to search for projection ma#&s such that the projected input and
output data are maximally aligned. For instance, Canoi@catelation Analysis (CCA) finds the
projections that maximize the correlation between thequtejd data, while Partial Least Squares
(PLS) provides the directions for maximum covariance:

PLS: maximize: TfUTC,,V} B
subjectto: UTU=VTV =1

wherel is the identity matrix of size:,, thel’ superscript denotes matrix or vector transposition,

and where we have also defined the covariance m@trix= XY, X andY being the centered
versions ofX andY, respectively.

In this paper, we will consider a different MVA method, nagehe Orthonormalized Partial Least
Squares (OPLS) which tackles the following maximizatiookpem:

OPLS:  maximize: TU'C,,C] U} 2
subjectto: UTC,,U=1

with C,., = X7X.

Note that, unlike CCA or PLS, OPLS only extracts projectiofishe input data. It is known that

OPLS is optimal for performing linear regression on the ingata when a bottleneck is imposed
for data dimensionality reduction [6]. In other words, tledusion to (2) also minimizes the sum of
squares of the residuals of the approximation of the labédixna

|Y ~X'B|}, B =(Cu) 'Cyy ©)

where|-|| » denotes the Frobenius norm of a matrix &his the optimal regression matrix. Similarly
to other MVA methods, OPLS is not only useful for multi-regg®n problems, but it can also be
used as a feature extractor in supervised problems, imgualso the multi-label case, whén is
used to encode class membership information. The optynadihdition suggests that the features
obtained by OPLS will be more relevant than those providedther MVA methods, in the sense
that they will allow similar or better accuracy rates usieg/ér projections.

Before moving on to our modified versions of OPLS, it is wortlirping out two properties of MVA
algorithms that make them well suited for music data ansdysi

o Flexibility: The output space can be used to encode any Kimtfarmation relevant to the
music organization task at hand. For instance, in this papemwill useY to encode the

3Temporal feature integration is the process of combining all the featwtens in a time-frame into a single
new feature vector in order to capture the relevant temporal informatithe frame.
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Figure 1: The figure illustrates the flow-chart of the complptocess. After MFCC extraction,
periodograms are computed for each MFCC. The output of thkeddogram” box is &, = 129
dimensional vector for each MFCC, corresponding to the pawéhe different frequency bands.
The filter bank U) summarizes the power in different frequency bands.

genre information for the songs in a training data set (usimgrout-of€' encoding), but
in previous works we also considered feature extractionrfstrument classification [7]
and for detecting the presence of vibrato in instrumentndings [4]. Furthermore, MVA
algorithms can also be used in problems with multiple lakelg., when soft or multiple
membership is allowed), and in regression problems (€.%.$ used to encode the ratings
given by a user to different songs).

e Scalability: MVA methods extract the projection vectorsngsthe covariance matrices
only. Since these can be computed through a sum over alrpstté VA can certainly be
applied with large data sets (which is usually the case inerarganization tasks), without
having to keep all training data in memory. This propertpwal also the implementation
of incremental learning schemes, which are useful when ata becomes available as
time goes by.

3 Filtering of short-time dynamics using Positive Constraned OPLS

The complete system considered in this section has beetréted in Figure 1. The purpose of
the overall system is to classify music data according toesoriterion, such as genre, so we are
assuming that some labelled data is available for the dedigom the raw digital audio signal,
an initial step towards an automated organization of mussfeature extraction. A music signal is
typically stationary in periods ranging from100 ms, see e.g., [8], and features extracted at this
time-scale are denoted short-time features.

3.1 Short-time features

The Mel Frequency Cepstral Coefficients (MFCC) have beerttsd as short-time features in this
work. The MFCCs are ranked in such a manner that the lower dieCCs contain information
about the slow variations in the spectral envelope. Hene#uding the higher MFCCs a richer
representation of the spectral envelope will be obtained.

For this investigation, thé initial MFCCs have been used, including the first coefficievitich is
correlated with the perceptual dimension of loudness. énitkiestigations, each music snippet is



power normalized prior to the MFCC extraction stage. A frasize of 30 ms and a hop-size of
7.5ms have been applied in all experiments to minimize aliasing&MFCCs.

3.2 Temporal feature integration

Temporal feature integration is the process of combinihthalfeature vectors in a time-frame into
a single new feature vector in order to capture the relevdatration in the frame.

In [9] it was proposed to perform temporal feature integratdy estimating the power spectrum of
the MFCCs using the periodogram method [10]. In additiorhts, tthe authors propose to summa-
rize the energy in different frequency bands using a preééfiitter bank:

x) = UTx; 4)

wherex; is a periodogram of dimensialy of any of the MFCC coefficients over some frarfie,
andU comprises the frequency magnitude response of the filtdc. beimally, the feature vector
x4, which has as many components as the number of filters in thie, [|used as an input to the
subsequent classification process.

In other words, the temporal feature extraction stage stssf estimating the periodogram of each
MFCC dimension independently over some time-frafng after which a filter banRU is applied.

In [9] it was proposed to use a filter bank with four bandpagsrélwhose frequency responses
where selected according to the believed importance of #aghiency for the genre classification
task.

3.3 Supervised Design of Filter Banks

Rather than using a predetermined filter bank, we proposake @ supervised design using the pe-
riodograms extracted from some collection of labelled mdaita. Then, we can select the frequency
response of each filter by using the OPLS algorithm; howekerge is an additional constraint that
we should take into consideration: note that, from its deéinj and given thall operates on the
power spectrum of the different MFCCs, all element®Jirshould be non-negative numbers so that
the extracted featureg§x;}, can be effectively interpreted as the energy of the pegoaos in
different frequency ranges.

When consider the positivity constraint, we can formulagRloesitive Constrained OPLS (POPLS)
as:
POPLS:  maximize: HU'C,,CI U}
subjectto: UTC,,U=1 (%)

There are a number of ways to solve the above problem. We sallauprocedure consisting on
iteratively calculating the best filter, so that we are ndy@uaranteeing that we are computing an
optimal bank withn,, filters, but also that any subbank consisting of some of tsedwlumns ofU

is optimal with respect to the number of filters used. In bitleé process consists of the following
two differentiated stages:

1) Solve the “one filter” optimization problem given by:

maximize:  u’ C,,Cl u (6)
subjectto:  u’C,u=1 (7)
u; >0 (8)

2) Remove from the label matrix the prediction obtained fthecurrent filter bank.

Finally, it is worth mentioning that the positivity consimaobviously leads to a suboptimal discrim-
inative performance of the extracted features in comparisstandard OPLS. This is the price we
pay in exchange for deriving features with a clear physictdrpretation. We will later check that,

when using enough filters, the discriminative power of tregdees is still quite satisfactory.



4 Sparse Kernel OPLS

When a physical interpretation of the extracted featurestisaguired, one can increase the discrim-
ination power of the extracted features by using more pawgrbssibly non-linear, techniques. In
this section we consider the kernel extension of the OPL&ithgn [5].

The overall feature extraction scheme is very similar ta thaigure 1, but important differences

exist in the temporal feature integration block. Firstheatthan extracting the periodograms of
the MFCCs, we consider adjusting an Autorregresive (AR{listeon model, as it was proposed in

[11]. The parameters of this model are then stacked in a cokise manner, forming what we call a

vector of AR coefficients. These AR coefficients are projgdteo a very high dimensional feature

space, where linear OPLS is finally applied.

To be more explicit, in this case we consider that we are giveat of pair¢(x;),y; }._,, with

x; € RV being vectors of AR coefficients aryd € R their associated labels, agdx) : RV —

F afunction that maps the input data into some Reproducingéétilbert Space (RKHS), usually
referred to as feature space, of very large or even infiniteedsion. We also need to introduce
matrix ® = [¢(x1), ..., ¢(x;)]T and®’ = ®U for then, dimensional extracted features. N,
has dimensiongim(F) x n,. Accordingly, the new Kernel OPLS problem is given by:

KOPLS:  maximize: TfUT® YY7&U} ©)
subjectto: U U =T

where® is a centered version @.

When projecting data into an infinite dimensional space, walrie use the Representer Theorem
that states that each of the projection vectordJircan be expressed as a linear combination of
the training data. However, as explained in [5], when dealiith large data sets it is normally
more convenient to impose sparsity in the projection vectepresentation, i.e., we will use the
approximationU = @EB, where®y, is a subset of the training data containing oilypatterns

(R <l)andB = [By, -, 3,,] contains the parameters of the compact model. Although more
sophisticated strategies can be followed in order to s#tedraining data to be incorporated into the
basis® , we will rely on random selection, very much in the line of #pairse greedy approximation
proposed in [12] to reduce the computational burden of Supfextor Machines (SVMs).

ReplacingU in (9) by its approximation, we get an alternative maxiniaproblem that constitutes
the basis for a KOPLS algorithm with reduced complexity (C3):

rKOPLS:  maximize: T{B"K;YYTKZ%LB} (10)
subjectto: BTKzKEB =1

where we have defined = <I>R<i>T, which is a reduced kernel matrix of sizex [.

There are different ways to solve the rKOPLS problem. Amdmgnt, we will rely on a two
stage procedure similar to the one we used for POPLS, anddligsionsisting in solving the one-
dimensional problem, followed by deflation (see [5] for hat details).

What is interesting to our discussion here is that, apart fpoowiding the high expressive power in-
herent to kernel methods, the proposed scheme still scalésvith the number of training patterns,
which, as we have already explained, is critical if the mdtisato be applied to large collections of
music. Indeed, it is possible to check that matrib’asKﬁ andKrY are of sizeR x RandR x M,
respectively, and that they can be computed using a sum byeiaing patterns. Additionally, the
extraction of features for new unseen data requires onlgahgputation ofR kernels. Note, how-
ever, that the proposed scheme is very different from usimgls subsampling, given that matrix
K, still takes into account all training data.

5 Experiments

In this section we illustrate the overall performance ofthgtems based on POPLS and rKOPLS in a
genre classification task. To keep things as simple as gdesgib use one of the simplest classifiers:
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Figure 2: The figure illustrates the average number of sorigslassified when using the, = 25
filters obtained by the POPLS procedure.
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Figure 3: The first and fourth most discriminative filters floe genre classification task.

we compute the pseudoinverse of the projected trainingtdatalculateB (see Eq. (3)), and then

classify data according t&&'B or 3B (for the POPLS and the rKOPLS approaches, respectively),
using a “winner-takes-all” (w.t.a) activation function.

For the kernel approach we used a Gaussian kernel
k(xi,%;) = exp (—|lx; — x;(3/20%)

using 10-fold cross-validation (10-CV) on the training &eéstimater.

5.0.1 Dataset description

The dataset has previously been investigated in [11, 18]cansists of 317 music snippets each of
30s. distributed evenly among thid music genres: alternative, country, easy listening, elaata,
jazz, latin, pop&dance, rap&hip-hop, r&b and soul, reggae @ck, except for latin, which only has
117 music samples. The labels have been obtained from an ektefagence. The music snippets
consist of MP3 (MPEG1-layer3) encoded music with a bitrdté28kbps or higher, downsampled
to 22050 Hz. This dataset is rather complex having on the averag® songs per artist. Previous
results show that this is a difficult dataset for genre cfasdion (see, for instance, [13]).

Since every song consists of about seventy AR vectors, weneasure the classification accuracy

in two different ways: 1) On the level of individual AR vectoor 2) by majority voting among the
AR vectors of a given song.

5.1 Performance with POPLS features

Figure 2 shows the0-fold cross-validation song classification error as a fiomcof the number of
filters in the bank. Although most of the important dynamistabcture of the MFCCs is captured
by the first few filters ofU, the figure shows that a significant error reduction can baiobdtl when
considering a larger number of filters, achieving errorsat®und;1% for n,, > 15.

Figure 3 shows the first and fourth filters obtained on a sifadttusing the POPLS. Filterincludes
the most important frequencies of the MFCCs periodograrhgwbasically cover the modulation
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Figure 4: Genre classification performance of KPLS2 and rk&®P

frequencies of instruments. Filte2sand3 (not shown here) provide attention to the lower modula-
tion frequencies. Filtet spans the higher modulation frequencies, which are retattfte percep-
tual roughness. The difference between the filters obtdoreshch training data fold is small, which
partly illustrates that the proposed method is robust teanand, further, that the specific underlying
temporal structure of the MFCCs is relevant for discrimimgbetween the different genres.

5.2 Performance with rKOPLS features

In this section we illustrate the classification accuracthefclassifiers built using rKOPLS features.
For comparison purposes we include also the results achisitb a different kernel MVA tech-
nigue. We have considered the Kernel Partial Least Squégestam described in [14], to which
we refer in the following as KPLS2.

In Figure 4 the results are given both with respect to theraosiat classifying AR vectors, and when
considering the overall classification of a song. The resalle very clear: compared to KPLS2,
rKOPLS is not only consistently performing better as seelfrigure 4(a), but is also doing so
with much fewer projections. These conclusions are verymguaced when looking at Figure 4(b)
where, forR = 750, rKOPLS is outperforming ordinary KPLS, and is doing so wathly ten
projections compared to fifty projections of the KPLS2. Tdesnonstrates that the features extracted
by rKOPLS holds much more information relevant to the getaedification task than KPLS2.

6 Conclusions

In this contribution we have illustrated the relevance of Mdhd kernel methods to learn the dy-
namics of short-time features which are relevant to a padicclassification task. The features
computed using modified OPLS schemes have shown to have geailhdnation power, while
retaining physical interpretation if needed.

We can conclude that MVA techniques are very versatile,érstinse that they can be applied to any
discrimination task. Additionally, because of the naturenasic data, in which both the number of
dimensions and samples are very large, we believe thatréeatraction methods such as POPLS
and rKOPLS can become crucial to music information rettitagks, and hope that other researchers
in the community will be able to benefit from our results.
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