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Preface

The data explosion

We live in a world that is rich in data, ever increasing in scale. This data comes from many different
sources in science (bioinformatics, astronomy, physics, environmental monitoring) and commerce (customer
databases, financial transactions, engine monitoring, speech recognition, surveillance, search). Possessing
the knowledge as to how to process and extract value from such data is therefore a key and increasingly
important skill. Our society also expects ultimately to be able to engage with computers in a natural manner
so that computers can ‘talk’ to humans, ‘understand’ what they say and ‘comprehend’ the visual world
around them. These are difficult large-scale information processing tasks and represent grand challenges
for computer science and related fields. Similarly, there is a desire to control increasingly complex systems,
possibly containing many interacting parts, such as in robotics and autonomous navigation. Successfully
mastering such systems requires an understanding of the processes underlying their behaviour. Processing
and making sense of such large amounts of data from complex systems is therefore a pressing modern day
concern and will likely remain so for the foreseeable future.

Machine Learning

Machine Learning is the study of data-driven methods capable of mimicking, understanding and aiding
human and biological information processing tasks. In this pursuit, many related issues arise such as how
to compress data, interpret and process it. Often these methods are not necessarily directed to mimicking
directly human processing but rather to enhance it, such as in predicting the stock market or retrieving
information rapidly. In this probability theory is key since inevitably our limited data and understanding
of the problem forces us to address uncertainty. In the broadest sense, Machine Learning and related fields
aim to ‘learn something useful’ about the environment within which the agent operates. Machine Learning
is also closely allied with Artificial Intelligence, with Machine Learning placing more emphasis on using data
to drive and adapt the model.

In the early stages of Machine Learning and related areas, similar techniques were discovered in relatively
isolated research communities. This book presents a unified treatment via graphical models, a marriage
between graph and probability theory, facilitating the transference of Machine Learning concepts between
different branches of the mathematical and computational sciences.

Whom this book is for

The book is designed to appeal to students with only a modest mathematical background in undergraduate
calculus and linear algebra. No formal computer science or statistical background is required to follow the
book, although a basic familiarity with probability, calculus and linear algebra would be useful. The book
should appeal to students from a variety of backgrounds, including Computer Science, Engineering, applied
Statistics, Physics, and Bioinformatics that wish to gain an entry to probabilistic approaches in Machine
Learning. In order to engage with students, the book introduces fundamental concepts in inference using
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only minimal reference to algebra and calculus. More mathematical techniques are postponed until as and
when required, always with the concept as primary and the mathematics secondary.

The concepts and algorithms are described with the aid of many worked examples. The exercises and
demonstrations, together with an accompanying MATLAB toolbox, enable the reader to experiment and
more deeply understand the material. The ultimate aim of the book is to enable the reader to construct
novel algorithms. The book therefore places an emphasis on skill learning, rather than being a collection of
recipes. This is a key aspect since modern applications are often so specialised as to require novel methods.
The approach taken throughout is to describe the problem as a graphical model, which is then translated
into a mathematical framework, ultimately leading to an algorithmic implementation in the BRMLtoolbox.

The book is primarily aimed at final year undergraduates and graduates without significant experience in
mathematics. On completion, the reader should have a good understanding of the techniques, practicalities
and philosophies of probabilistic aspects of Machine Learning and be well equipped to understand more
advanced research level material.

The structure of the book

The book begins with the basic concepts of graphical models and inference. For the independent reader
chapters 1,2,3,4,5,9,10,13,14,15,16,17,21 and 23 would form a good introduction to probabilistic reasoning,
modelling and Machine Learning. The material in chapters 19, 24, 25 and 28 is more advanced, with the
remaining material being of more specialised interest. Note that in each chapter the level of material is of
varying difficulty, typically with the more challenging material placed towards the end of each chapter. As
an introduction to the area of probabilistic modelling, a course can be constructed from the material as
indicated in the chart.

The material from parts I and II has been successfully used for courses on Graphical Models. I have also
taught an introduction to Probabilistic Machine Learning using material largely from part III, as indicated.
These two courses can be taught separately and a useful approach would be to teach first the Graphical
Models course, followed by a separate Probabilistic Machine Learning course.

A short course on approximate inference can be constructed from introductory material in part I and the
more advanced material in part V, as indicated. The exact inference methods in part I can be covered
relatively quickly with the material in part V considered in more in depth.

A timeseries course can be made by using primarily the material in part IV, possibly combined with material
from part I for students that are unfamiliar with probabilistic modelling approaches. Some of this material,
particularly in chapter 25 is more advanced and can be deferred until the end of the course, or considered
for a more advanced course.

The references are generally to works at a level consistent with the book material and which are in the most
part readily available.

Accompanying code

The BRMLtoolbox is provided to help readers see how mathematical models translate into actual MAT-
LAB code. There are a large number of demos that a lecturer may wish to use or adapt to help illustrate
the material. In addition many of the exercises make use of the code, helping the reader gain confidence
in the concepts and their application. Along with complete routines for many Machine Learning methods,
the philosophy is to provide low level routines whose composition intuitively follows the mathematical de-
scription of the algorithm. In this way students may easily match the mathematics with the corresponding
algorithmic implementation.
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1: Probabilistic Reasoning
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26: Distributed Computation
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Part I:
Inference in Probabilistic Models

Part II:
Learning in Probabilistic Models

Part III:
Machine Learning

Part IV:
Dynamical Models

Part V:
Approximate Inference

Website

The BRMLtoolbox along with an electronic version of the book is available from

www.cs.ucl.ac.uk/staff/D.Barber/brml

Instructors seeking solutions to the exercises can find information at the website, along with additional
teaching materials.
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Other books in this area

The literature on Machine Learning is vast with much relevant literature also contained in statistics, en-
gineering and other physical sciences. A small list of more specialised books that may be referred to for
deeper treatments of specific topics is:

• Graphical models

– Graphical models by S. Lauritzen, Oxford University Press, 1996.

– Bayesian Networks and Decision Graphs by F. Jensen and T. D. Nielsen, Springer Verlag, 2007.

– Probabilistic Networks and Expert Systems by R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D.
J. Spiegelhalter, Springer Verlag, 1999.

– Probabilistic Reasoning in Intelligent Systems by J. Pearl, Morgan Kaufmann, 1988.

– Graphical Models in Applied Multivariate Statistics by J. Whittaker, Wiley, 1990.

– Probabilistic Graphical Models: Principles and Techniques by D. Koller and N. Friedman, MIT
Press, 2009.

• Machine Learning and Information Processing

– Information Theory, Inference and Learning Algorithms by D. J. C. MacKay, Cambridge Uni-
versity Press, 2003.

– Pattern Recognition and Machine Learning by C. M. Bishop, Springer Verlag, 2006.

– An Introduction To Support Vector Machines, N. Cristianini and J. Shawe-Taylor, Cambridge
University Press, 2000.

– Gaussian Processes for Machine Learning by C. E. Rasmussen and C. K. I. Williams, MIT press,
2006.
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BRMLtoolbox

The BRMLtoolbox is a lightweight set of routines that enables the reader to experiment with concepts in
graph theory, probability theory and Machine Learning. The code contains basic routines for manipulating
discrete variable distributions, along with more limited support for continuous variables. In addition there
are many hard-coded standard Machine Learning algorithms. The website contains also a complete list of
all the teaching demos and related exercise material.

BRMLTOOLKIT

Graph Theory

ancestors - Return the ancestors of nodes x in DAG A

ancestralorder - Return the ancestral order or the DAG A (oldest first)

descendents - Return the descendents of nodes x in DAG A

children - return the children of variable x given adjacency matrix A

edges - Return edge list from adjacency matrix A

elimtri - Return a variable elimination sequence for a triangulated graph

connectedComponents - Find the connected components of an adjacency matrix

istree - Check if graph is singly-connected

neigh - Find the neighbours of vertex v on a graph with adjacency matrix G

noselfpath - return a path excluding self transitions

parents - return the parents of variable x given adjacency matrix A

spantree - Find a spanning tree from an edge list

triangulate - Triangulate adjacency matrix A

triangulatePorder - Triangulate adjacency matrix A according to a partial ordering

Potential manipulation

condpot - Return a potential conditioned on another variable

changevar - Change variable names in a potential

dag - Return the adjacency matrix (zeros on diagonal) for a Belief Network

deltapot - A delta function potential

disptable - Print the table of a potential

divpots - Divide potential pota by potb

drawFG - Draw the Factor Graph A

drawID - plot an Influence Diagram

drawJTree - plot a Junction Tree

drawNet - plot network

evalpot - Evaluate the table of a potential when variables are set

exppot - exponential of a potential

eyepot - Return a unit potential

grouppot - Form a potential based on grouping variables together

groupstate - Find the state of the group variables corresponding to a given ungrouped state

logpot - logarithm of the potential

markov - Return a symmetric adjacency matrix of Markov Network in pot

maxpot - Maximise a potential over variables

maxsumpot - Maximise or Sum a potential over variables

multpots - Multiply potentials into a single potential

numstates - Number of states of the variables in a potential
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orderpot - Return potential with variables reordered according to order

orderpotfields - Order the fields of the potential, creating blank entries where necessary

potsample - Draw sample from a single potential

potscontainingonly - Returns those potential numbers that contain only the required variables

potvariables - Returns information about all variables in a set of potentials

setevpot - Sets variables in a potential into evidential states

setpot - sets potential variables to specified states

setstate - set a potential’s specified joint state to a specified value

squeezepots - Eliminate redundant potentials (those contained wholly within another)

sumpot - Sum potential pot over variables

sumpotID - Return the summed probability and utility tables from an ID

sumpots - Sum a set of potentials

table - Return the potential table

ungrouppot - Form a potential based on ungrouping variables

uniquepots - Eliminate redundant potentials (those contained wholly within another)

whichpot - Returns potentials that contain a set of variables

Routines also extend the toolbox to deal with Gaussian potentials:

multpotsGaussianMoment.m, sumpotGaussianCanonical.m, sumpotGaussianMoment.m, multpotsGaussianCanonical.m

See demoSumprodGaussCanon.m, demoSumprodGaussCanonLDS.m, demoSumprodGaussMoment.m

Inference

absorb - Update potentials in absorption message passing on a Junction Tree

absorption - Perform full round of absorption on a Junction Tree

absorptionID - Perform full round of absorption on an Influence Diagram

ancestralsample - Ancestral sampling from a Belief Network

binaryMRFmap - get the MAP assignment for a binary MRF with positive W

bucketelim - Bucket Elimination on a set of potentials

condindep - Conditional Independence check using graph of variable interactions

condindepEmp - Compute the empirical log Bayes Factor and MI for independence/dependence

condindepPot - Numerical conditional independence measure

condMI - conditional mutual information I(x,y|z) of a potential.

FactorConnectingVariable - Factor nodes connecting to a set of variables

FactorGraph - Returns a Factor Graph adjacency matrix based on potentials

IDvars - probability and decision variables from a partial order

jtassignpot - Assign potentials to cliques in a Junction Tree

jtree - Setup a Junction Tree based on a set of potentials

jtreeID - Setup a Junction Tree based on an Influence Diagram

LoopyBP - loopy Belief Propagation using sum-product algorithm

MaxFlow - Ford Fulkerson max flow - min cut algorithm (breadth first search)

maxNpot - Find the N most probable values and states in a potential

maxNprodFG - N-Max-Product algorithm on a Factor Graph (Returns the Nmax most probable States)

maxprodFG - Max-Product algorithm on a Factor Graph

MDPemDeterministicPolicy - Solve MDP using EM with deterministic policy

MDPsolve - Solve a Markov Decision Process

MesstoFact - Returns the message numbers that connect into factor potential

metropolis - Metropolis sample

mostprobablepath - Find the most probable path in a Markov Chain

mostprobablepathmult - Find the all source all sink most probable paths in a Markov Chain

sumprodFG - Sum-Product algorithm on a Factor Graph represented by A

Specific Models

ARlds - Learn AR coefficients using a Linear Dynamical System

ARtrain - Fit autoregressive (AR) coefficients of order L to v.

BayesLinReg - Bayesian Linear Regression training using basis functions phi(x)

BayesLogRegressionRVM - Bayesian Logistic Regression with the Relevance Vector Machine

CanonVar - Canonical Variates (no post rotation of variates)

cca - canonical correlation analysis

covfnGE - Gamma Exponential Covariance Function

EMbeliefnet - train a Belief Network using Expectation Maximisation

EMminimizeKL - MDP deterministic policy solver. Finds optimal actions

EMqTranMarginal - EM marginal transition in MDP

EMqUtilMarginal - Returns term proportional to the q marginal for the utility term

EMTotalBetaMessage - backward information needed to solve the MDP process using message passing

EMvalueTable - MDP solver calculates the value function of the MDP with the current policy

FA - Factor Analysis
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GMMem - Fit a mixture of Gaussian to the data X using EM

GPclass - Gaussian Process Binary Classification

GPreg - Gaussian Process Regression

HebbML - Learn a sequence for a Hopfield Network

HMMbackward - HMM Backward Pass

HMMbackwardSAR - Backward Pass (beta method) for the Switching Autoregressive HMM

HMMem - EM algorithm for HMM

HMMforward - HMM Forward Pass

HMMforwardSAR - Switching Autoregressive HMM with switches updated only every Tskip timesteps

HMMgamma - HMM Posterior smoothing using the Rauch-Tung-Striebel correction method

HMMsmooth - Smoothing for a Hidden Markov Model (HMM)

HMMsmoothSAR - Switching Autoregressive HMM smoothing

HMMviterbi - Viterbi most likely joint hidden state of a HMM

kernel - A kernel evaluated at two points

Kmeans - K-means clustering algorithm

LDSbackward - Full Backward Pass for a Latent Linear Dynamical System (RTS correction method)

LDSbackwardUpdate - Single Backward update for a Latent Linear Dynamical System (RTS smoothing update)

LDSforward - Full Forward Pass for a Latent Linear Dynamical System (Kalman Filter)

LDSforwardUpdate - Single Forward update for a Latent Linear Dynamical System (Kalman Filter)

LDSsmooth - Linear Dynamical System : Filtering and Smoothing

LDSsubspace - Subspace Method for identifying Linear Dynamical System

LogReg - Learning Logistic Linear Regression Using Gradient Ascent (BATCH VERSION)

MIXprodBern - EM training of a Mixture of a product of Bernoulli distributions

mixMarkov - EM training for a mixture of Markov Models

NaiveBayesDirichletTest - Naive Bayes prediction having used a Dirichlet prior for training

NaiveBayesDirichletTrain - Naive Bayes training using a Dirichlet prior

NaiveBayesTest - Test Naive Bayes Bernoulli Distribution after Max Likelihood training

NaiveBayesTrain - Train Naive Bayes Bernoulli Distribution using Max Likelihood

nearNeigh - Nearest Neighbour classification

pca - Principal Components Analysis

plsa - Probabilistic Latent Semantic Analysis

plsaCond - Conditional PLSA (Probabilistic Latent Semantic Analysis)

rbf - Radial Basis function output

SARlearn - EM training of a Switching AR model

SLDSbackward - Backward pass using a Mixture of Gaussians

SLDSforward - Switching Latent Linear Dynamical System Gaussian Sum forward pass

SLDSmargGauss - compute the single Gaussian from a weighted SLDS mixture

softloss - Soft loss function

svdm - Singular Value Decomposition with missing values

SVMtrain - train a Support vector Machine

General

argmax - performs argmax returning the index and value

assign - Assigns values to variables

betaXbiggerY - p(x>y) for x~Beta(a,b), y~Beta(c,d)

bar3zcolor - Plot a 3D bar plot of the matrix Z

avsigmaGauss - Average of a logistic sigmoid under a Gaussian

cap - Cap x at absolute value c

chi2test - inverse of the chi square cumulative density

count - for a data matrix (each column is a datapoint), return the state counts

condexp - Compute normalised p proportional to exp(logp);

condp - Make a conditional distribution from the matrix

dirrnd - Samples from a Dirichlet distribution

field2cell - Place the field of a structure in a cell

GaussCond - Return the mean and covariance of a conditioned Gaussian

hinton - Plot a Hinton diagram

ind2subv - Subscript vector from linear index

ismember_sorted - True for member of sorted set

lengthcell - Length of each cell entry

logdet - Log determinant of a positive definite matrix computed in a numerically stable manner

logeps - log(x+eps)

logGaussGamma - unnormalised log of the Gauss-Gamma distribution

logsumexp - Compute log(sum(exp(a).*b)) valid for large a

logZdirichlet - Log Normalisation constant of a Dirichlet distribution with parameter u

majority - Return majority values in each column on a matrix

maxarray - Maximise a multi-dimensional array over a set of dimensions

maxNarray - Find the highest values and states of an array over a set of dimensions
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mix2mix - Fit a mixture of Gaussians with another mixture of Gaussians

mvrandn - Samples from a multi-variate Normal(Gaussian) distribution

mygamrnd - Gamma random variate generator

mynanmean - mean of values that are not nan

mynansum - sum of values that are not nan

mynchoosek - binomial coefficient v choose k

myones - same as ones(x), but if x is a scalar, interprets as ones([x 1])

myrand - same as rand(x) but if x is a scalar interprets as rand([x 1])

myzeros - same as zeros(x) but if x is a scalar interprets as zeros([x 1])

normp - Make a normalised distribution from an array

randgen - Generates discrete random variables given the pdf

replace - Replace instances of a value with another value

sigma - 1./(1+exp(-x))

sigmoid - 1./(1+exp(-beta*x))

sqdist - Square distance between vectors in x and y

subv2ind - Linear index from subscript vector.

sumlog - sum(log(x)) with a cutoff at 10e-200

Miscellaneous

compat - Compatibility of object F being in position h for image v on grid Gx,Gy

logp - The logarithm of a specific non-Gaussian distribution

placeobject - Place the object F at position h in grid Gx,Gy

plotCov - return points for plotting an ellipse of a covariance

pointsCov - unit variance contours of a 2D Gaussian with mean m and covariance S

setup - run me at initialisation -- checks for bugs in matlab and initialises path

validgridposition - Returns 1 if point is on a defined grid
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Part I

Inference in Probabilistic Models

1





Introduction to Part I

Probabilistic models explicitly take into account uncertainty and deal with our
imperfect knowledge of the world. Such models are of fundamental significance in
Machine Learning since our understanding of the world will always be limited by our
observations and understanding. We will focus initially on using probabilistic models
as a kind of expert system.

In Part I, we assume that the model is fully specified. That is, given a model of the
environment, how can we use it to answer questions of interest. We will relate the
complexity of inferring quantities of interest to the structure of the graph describing
the model. In addition, we will describe operations in terms of manipulations on
the corresponding graphs. As we will see, provided the graphs are simple tree-like
structures, most quantities of interest can be computed efficiently.

Part I deals with manipulating mainly discrete variable distributions and forms the
background to all the later material in the book.
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Some members of the graphical models family and their uses. Nodes further from the Graphical Models
root node are loosely speaking specialised versions of their parents. We discuss many of these models in
Part I, although some of the more specialised models are deferred to later Parts of the book.
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Graphical models and associated (marginal) inference methods. Specific inference methods are highlighted
in red. Loosely speaking, provided the graph corresponding to the model is singly-connected most of
the standard (marginal) inference methods are tractable. Multiply-connected graphs are generally more
problematic, although there are special cases which remain tractable.
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CHAPTER 1

Probabilistic Reasoning

We have intuition about how uncertainty works in simple cases. To reach sensible conclusions in complicated
situations, however – where there may be many (possibly) related events and many possible outcomes – we
need a formal ‘calculus’ that extends our intuitive notions. The concepts, mathematical language and rules of
probability give us the formal framework we need. In this chapter we review basic concepts in probability – in
particular, conditional probability and Bayes’ rule, the workhorses of machine learning. Another strength of
the language of probability is that it structures problems in a form consistent for computer implementation.
We also introduce basic features of the BRMLtoolbox that support manipulating probability distributions.

1.1 Probability Refresher

Variables, States and Notational Shortcuts

Variables will be denoted using either upper case X or lower case x and a set of variables will typically be
denoted by a calligraphic symbol, for example V = {a,B, c} .

The domain of a variable x is written dom(x), and denotes the states x can take. States will typically
be represented using sans-serif font. For example, for a coin c, dom(c) = {heads, tails} and p(c = heads)
represents the probability that variable c is in state heads. The meaning of p(state) will often be clear,
without specific reference to a variable. For example, if we are discussing an experiment about a coin c,
the meaning of p(heads) is clear from the context, being shorthand for p(c = heads). When summing over a
variable

∑
x f(x), the interpretation is that all states of x are included, i.e.

∑
x f(x) ≡∑s∈dom(x) f(x = s).

Given a variable, x, its domain dom(x) and a full specification of the probability values for each of the
variable states, p(x), we have a distribution for x. Sometimes we will not fully specify the distribution, only
certain properties, such as for variables x, y, p(x, y) = p(x)p(y) for some unspecified p(x) and p(y). When
clarity on this is required we will say distributions with structure p(x)p(y), or a distribution class p(x)p(y).

For our purposes, events are expressions about random variables, such as Two heads in 6 coin tosses. Two
events are mutually exclusive if they cannot both be true. For example the events The coin is heads and
The coin is tails are mutually exclusive. One can think of defining a new variable named by the event so,
for example, p(The coin is tails) can be interpreted as p(The coin is tails = true). We use the shorthand
p(x = tr) for the probability of event/variable x being in the state true and p(x = fa) for the probability of
variable x being in the state false.

Definition 1.1 (Rules of Probability for Discrete Variables).

7
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The probability p(x = x) of variable x being in state x is represented by a value between 0 and 1.
p(x = x) = 1 means that we are certain x is in state x. Conversely, p(x = x) = 0 means that we are certain
x is not in state x. Values between 0 and 1 represent the degree of certainty of state occupancy.

The summation of the probability over all the states is 1:∑
x∈dom(x)

p(x = x) = 1 (1.1.1)

This is called the normalisation condition. We will usually more conveniently write
∑

x p(x) = 1.

Two variables x and y can interact through

p(x = a or y = b) = p(x = a) + p(y = b)− p(x = a and y = b) (1.1.2)

Or, more generally, we can write

p(x or y) = p(x) + p(y)− p(x and y) (1.1.3)

We will use the shorthand p(x, y) for p(x and y). Note that p(y, x) = p(x, y) and p(x or y) = p(y or x).

Definition 1.2 (Set notation). An alternative notation in terms of set theory is to write

p(x or y) ≡ p(x ∪ y), p(x, y) ≡ p(x ∩ y) (1.1.4)

Definition 1.3 (Marginals). Given a joint distribution p(x, y) the distribution of a single variable is given
by

p(x) =
∑
y

p(x, y) (1.1.5)

Here p(x) is termed a marginal of the joint probability distribution p(x, y). The process of computing a
marginal from a joint distribution is called marginalisation. More generally, one has

p(x1, . . . , xi−1, xi+1, . . . , xn) =
∑
xi

p(x1, . . . , xn) (1.1.6)

Definition 1.4 (Conditional Probability / Bayes’ Rule). The probability of event x conditioned on knowing
event y (or more shortly, the probability of x given y) is defined as

p(x|y) ≡ p(x, y)

p(y)
(1.1.7)

If p(y) = 0 then p(x|y) is not defined. From this definition and p(x, y) = p(y, x) we immediately arrive at
Bayes’ rule

p(x|y) =
p(y|x)p(x)

p(y)
(1.1.8)

Since Bayes’ rule trivially follows from the definition of conditional probability, we will sometimes be loose
in our language and use the terms Bayes’ rule and conditional probability as synonymous.

As we shall see throughout this book, Bayes’ rule plays a central role in probabilistic reasoning since it helps

8 DRAFT November 21, 2011



Probability Refresher

us ‘invert’ probabilistic relationships, translating between p(y|x) and p(x|y).

Definition 1.5 (Probability Density Functions). For a continuous variable x, the probability density f(x)
is defined such that

f(x) ≥ 0,

∫ ∞
−∞

f(x)dx = 1 (1.1.9)

and the probability that x falls in an interval [a, b] is given by

p(a ≤ x ≤ b) =

∫ b

a
f(x)dx (1.1.10)

As shorthand we will sometimes write
∫
x f(x), particularly when we want an expression to be valid for either

continuous or discrete variables. The multivariate case is analogous with integration over all real space, and
the probability that x belongs to a region of the space defined accordingly. Unlike probabilities, probability
densities can take positive values greater than 1.

Formally speaking, for a continuous variable, one should not speak of the probability that x = 0.2 since the
probability of a single value is always zero. However, we shall often write p(x) for continuous variables, thus
not distinguishing between probabilities and probability density function values. Whilst this may appear
strange, the nervous reader may simply replace our p(x) notation for

∫
x∈∆ f(x)dx, where ∆ is a small region

centred on x. This is well defined in a probabilistic sense and, in the limit ∆ being very small, this would
give approximately ∆f(x). If we consistently use the same ∆ for all occurrences of pdfs, then we will simply
have a common prefactor ∆ in all expressions. Our strategy is to simply ignore these values (since in the end
only relative probabilities will be relevant) and write p(x). In this way, all the standard rules of probability
carry over, including Bayes’ Rule.

Remark 1.1 (Subjective Probability). Probability is a contentious topic and we do not wish to get bogged
down by the debate here, apart from pointing out that it is not necessarily the rules of probability that
are contentious, rather what interpretation we should place on them. In some cases potential repetitions
of an experiment can be envisaged so that the ‘long run’ (or frequentist) definition of probability in which
probabilities are defined with respect to a potentially infinite repetition of experiments makes sense. For
example, in coin tossing, the probability of heads might be interpreted as ‘If I were to repeat the experiment
of flipping a coin (at ‘random’), the limit of the number of heads that occurred over the number of tosses
is defined as the probability of a head occurring.’

Here’s a problem that is typical of the kind of scenario one might face in a machine learning situation. A
film enthusiast joins a new online film service. Based on expressing a few films a user likes and dislikes,
the online company tries to estimate the probability that the user will like each of the 10000 films in their
database. If we were to define probability as a limiting case of infinite repetitions of the same experiment,
this wouldn’t make much sense in this case since we can’t repeat the experiment. However, if we assume
that the user behaves in a manner consistent with other users, we should be able to exploit the large amount
of data from other users’ ratings to make a reasonable ‘guess’ as to what this consumer likes. This degree
of belief or Bayesian subjective interpretation of probability sidesteps non-repeatability issues – it’s just a
framework for manipulating real values consistent with our intuition about probability[158].

1.1.1 Interpreting Conditional Probability

Conditional probability matches our intuitive understanding of uncertainty. For example, imagine a circular
dart board, split into 20 equal sections, labelled from 1 to 20. Randy, a dart thrower, hits any one of the 20
sections uniformly at random. Hence the probability that a dart thrown by Randy occurs in any one of the
20 regions is p(region i) = 1/20. A friend of Randy tells him that he hasn’t hit the 20 region. What is the
probability that Randy has hit the 5 region? Conditioned on this information, only regions 1 to 19 remain
possible and, since there is no preference for Randy to hit any of these regions, the probability is 1/19. The
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conditioning means that certain states are now inaccessible, and the original probability is subsequently
distributed over the remaining accessible states. From the rules of probability :

p(region 5|not region 20) =
p(region 5,not region 20)

p(not region 20)
=

p(region 5)

p(not region 20)
=

1/20

19/20
=

1

19

giving the intuitive result. An important point to clarify is that p(A = a|B = b) should not be interpreted
as ‘Given the event B = b has occurred, p(A = a|B = b) is the probability of the event A = a occurring’.
In most contexts, no such explicit temporal causality is implied1 and the correct interpretation should be ‘
p(A = a|B = b) is the probability of A being in state a under the constraint that B is in state b’.

The relation between the conditional p(A = a|B = b) and the joint p(A = a, B = b) is just a normalisation
constant since p(A = a, B = b) is not a distribution in A – in other words,

∑
a p(A = a, B = b) 6= 1. To

make it a distribution we need to divide : p(A = a, B = b)/
∑

a p(A = a, B = b) which, when summed over
a does sum to 1. Indeed, this is just the definition of p(A = a|B = b).

Definition 1.6 (Independence).

Variables x and y are independent if knowing the state (or value in the continuous case) of one variable
gives no extra information about the other variable. Mathematically, this is expressed by

p(x, y) = p(x)p(y) (1.1.11)

Provided that p(x) 6= 0 and p(y) 6= 0 independence of x and y is equivalent to

p(x|y) = p(x)⇔ p(y|x) = p(y) (1.1.12)

If p(x|y) = p(x) for all states of x and y, then the variables x and y are said to be independent. If

p(x, y) = kf(x)g(y) (1.1.13)

for some constant k, and positive functions f(·) and g(·) then x and y are independent and we write x⊥⊥y.

Example 1.1 (Independence). Let x denote the day of the week in which females are born, and y denote
the day in which males are born, with dom(x) = dom(y) = {1, . . . , 7}. It is reasonable to expect that x
is independent of y. We randomly select a woman from the phone book, Alice, and find out that she was
born on a Tuesday. We also randomly select a male at random, Bob. Before phoning Bob and asking him,
what does knowing Alice’s birth day add to which day we think Bob is born on? Under the independence
assumption, the answer is nothing. Note that this doesn’t mean that the distribution of Bob’s birthday is
necessarily uniform – it just means that knowing when Alice was born doesn’t provide any extra information
than we already knew about Bob’s birthday, p(y|x) = p(y). Indeed, the distribution of birthdays p(y) and
p(x) are non-uniform (statistically fewer babies are born on weekends), though there is nothing to suggest
that x are y are dependent.

Deterministic Dependencies

Sometimes the concept of independence is perhaps a little strange. Consider the following : variables x and
y are both binary (their domains consist of two states). We define the distribution such that x and y are
always both in a certain joint state:

p(x = a, y = 1) = 1, p(x = a, y = 2) = 0, p(x = b, y = 2) = 0, p(x = b, y = 1) = 0

Are x and y dependent? The reader may show that p(x = a) = 1, p(x = b) = 0 and p(y = 1) = 1,
p(y = 2) = 0. Hence p(x)p(y) = p(x, y) for all states of x and y, and x and y are therefore independent.

1We will discuss issues related to causality further in section(3.4).
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This may seem strange – we know for sure the relation between x and y, namely that they are always in the
same joint state, yet they are independent. Since the distribution is trivially concentrated in a single joint
state, knowing the state of x tells you nothing that you didn’t anyway know about the state of y, and vice
versa. This potential confusion comes from using the term ‘independent’ which may suggest that there is no
relation between objects discussed. The best way to think about statistical independence is to ask whether
or not knowing the state of variable y tells you something more than you knew before about variable x,
where ‘knew before’ means working with the joint distribution of p(x, y) to figure out what we can know
about x, namely p(x).

Definition 1.7 (Conditional Independence).

X ⊥⊥Y|Z (1.1.14)

denotes that the two sets of variables X and Y are independent of each other provided we know the state
of the set of variables Z. For conditional independence, X and Y must be independent given all states of
Z. Formally, this means that

p(X ,Y|Z) = p(X|Z)p(Y|Z) (1.1.15)

for all states of X ,Y,Z. In case the conditioning set is empty we may also write X ⊥⊥Y for X ⊥⊥Y| ∅, in
which case X is (unconditionally) independent of Y.

If X and Y are not conditionally independent, they are conditionally dependent. This is written

X>>Y|Z (1.1.16)

Similarly X>>Y|∅ can be written as X>>Y.

Intuitively, if x is conditionally independent of y given z, this means that, given z, y contains no additional
information about x. Similarly, given z, knowing x does not tell me anything more about y. Note that
X ⊥⊥Y|Z ⇒ X ′⊥⊥Y ′|Z for X ′ ⊆ X and Y ′ ⊆ Y.

Remark 1.2 (Independence implications). It’s tempting to think that if a is independent of b and b is
independent of c then a must be independent of c:

{a⊥⊥b, b⊥⊥c} ⇒ a⊥⊥c (1.1.17)

However, this does not follow. Consider for example a distribution of the form

p(a, b, c) = p(b)p(a, c) (1.1.18)

From this

p(a, b) =
∑
c

p(a, b, c) = p(b)
∑
c

p(a, c) (1.1.19)

Hence p(a, b) is a function of b multiplied by a function of a so that a and b are independent. Similarly, one
can show that b and c are independent. However, a is not necessarily independent of c since the distribution
p(a, c) can be set arbitrarily.

Similarly, it’s tempting to think that if a and b are dependent, and b and c are dependent, then a and c
must be dependent:

{a>>b, b>>c} ⇒ a>>c (1.1.20)

However, this also does not follow. We give an explicit numerical example in exercise(3.17).

Finally, note that conditional independence x⊥⊥y|z does not imply marginal independence x⊥⊥y. See also
exercise(3.20).
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1.1.2 Probability Tables

Based on the populations 60776238, 5116900 and 2980700 of England (E), Scotland (S) and Wales (W),
the a priori probability that a randomly selected person from the combined three countries would live in
England, Scotland or Wales, is approximately 0.88, 0.08 and 0.04 respectively. We can write this as a vector
(or probability table) : p(Cnt = E)

p(Cnt = S)
p(Cnt = W)

 =

 0.88
0.08
0.04

 (1.1.21)

whose component values sum to 1. The ordering of the components in this vector is arbitrary, as long as it
is consistently applied.

For the sake of simplicity, we assume that only three Mother Tongue languages exist : English (Eng),
Scottish (Scot) and Welsh (Wel), with conditional probabilities given the country of residence, England (E),
Scotland (S) and Wales (W). We write a (fictitious) conditional probability table

p(MT = Eng|Cnt = E) = 0.95 p(MT = Eng|Cnt = S) = 0.7 p(MT = Eng|Cnt = W) = 0.6
p(MT = Scot|Cnt = E) = 0.04 p(MT = Scot|Cnt = S) = 0.3 p(MT = Scot|Cnt = W) = 0.0
p(MT = Wel|Cnt = E) = 0.01 p(MT = Wel|Cnt = S) = 0.0 p(MT = Wel|Cnt = W) = 0.4

(1.1.22)

From this we can form a joint distribution p(Cnt,MT ) = p(MT |Cnt)p(Cnt). This could be written as a
3× 3 matrix with columns indexed by country and rows indexed by Mother Tongue: 0.95× 0.88 0.7× 0.08 0.6× 0.04

0.04× 0.88 0.3× 0.08 0.0× 0.04
0.01× 0.88 0.0× 0.08 0.4× 0.04

 =

 0.836 0.056 0.024
0.0352 0.024 0
0.0088 0 0.016

 (1.1.23)

The joint distribution contains all the information about the model of this environment. By summing the
columns of this table, we have the marginal p(Cnt). Summing the rows gives the marginal p(MT ). Similarly,
one could easily infer p(Cnt|MT ) ∝ p(MT |Cnt)p(Cnt) from this joint distribution by dividing an entry of
equation (1.1.23) by its row sum.

For joint distributions over a larger number of variables, xi, i = 1, . . . , D, with each variable xi taking Ki

states, the table describing the joint distribution is an array with
∏D
i=1Ki entries. Explicitly storing tables

therefore requires space exponential in the number of variables, which rapidly becomes impractical for a
large number of variables. We discuss how to deal with this issue in chapter(3) and chapter(4).

A probability distribution assigns a value to each of the joint states of the variables. For this reason,
p(T, J,R, S) is considered equivalent to p(J, S,R, T ) (or any such reordering of the variables), since in each
case the joint setting of the variables is simply a different index to the same probability. This situation is
more clear in the set theoretic notation p(J ∩S ∩T ∩R). We abbreviate this set theoretic notation by using
the commas – however, one should be careful not to confuse the use of this indexing type notation with
functions f(x, y) which are in general dependent on the variable order. Whilst the variables to the left of the
conditioning bar may be written in any order, and equally those to the right of the conditioning bar may be
written in any order, moving variables across the bar is not generally equivalent, so that p(x1|x2) 6= p(x2|x1).

1.2 Probabilistic Reasoning

The central paradigm of probabilistic reasoning is to identify all relevant variables x1, . . . , xN in the envi-
ronment, and make a probabilistic model p(x1, . . . , xN ) of their interaction. Reasoning (inference) is then
performed by introducing evidence that sets variables in known states, and subsequently computing proba-
bilities of interest, conditioned on this evidence. The rules of probability, combined with Bayes’ rule make
for a complete reasoning system, one which includes traditional deductive logic as a special case[158]. In
the examples below, the number of variables in the environment is very small. In chapter(3) we will discuss
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reasoning in networks containing many variables, for which the graphical notations of chapter(2) will play
a central role.

Example 1.2 (Hamburgers). Consider the following fictitious scientific information: Doctors find that
people with Kreuzfeld-Jacob disease (KJ) almost invariably ate hamburgers, thus p(Hamburger Eater|KJ ) =
0.9. The probability of an individual having KJ is currently rather low, about one in 100,000.

1. Assuming eating lots of hamburgers is rather widespread, say p(Hamburger Eater) = 0.5, what is the
probability that a hamburger eater will have Kreuzfeld-Jacob disease?

This may be computed as

p(KJ |Hamburger Eater) =
p(Hamburger Eater,KJ )

p(Hamburger Eater)
=
p(Hamburger Eater|KJ )p(KJ )

p(Hamburger Eater)

(1.2.1)

=
9
10 × 1

100000
1
2

= 1.8× 10−5 (1.2.2)

2. If the fraction of people eating hamburgers was rather small, p(Hamburger Eater) = 0.001, what is the
probability that a regular hamburger eater will have Kreuzfeld-Jacob disease? Repeating the above
calculation, this is given by

9
10 × 1

100000
1

1000

≈ 1/100 (1.2.3)

This is much higher than in scenario (1) since here we can be more sure that eating hamburgers is
related to the illness.

Example 1.3 (Inspector Clouseau). Inspector Clouseau arrives at the scene of a crime. The victim lies dead
in the room alongside the possible murder weapon, a knife. The Butler (B) and Maid (M) are the inspector’s
main suspects and the inspector has a prior belief of 0.6 that the Butler is the murderer, and a prior belief
of 0.2 that the Maid is the murderer. These beliefs are independent in the sense that p(B,M) = p(B)p(M).
(It is possible that both the Butler and the Maid murdered the victim or neither). The inspector’s prior
criminal knowledge can be formulated mathematically as follows:

dom(B) = dom(M) = {murderer, not murderer} ,dom(K) = {knife used, knife not used} (1.2.4)

p(B = murderer) = 0.6, p(M = murderer) = 0.2 (1.2.5)

p(knife used|B = not murderer, M = not murderer) = 0.3
p(knife used|B = not murderer, M = murderer) = 0.2
p(knife used|B = murderer, M = not murderer) = 0.6
p(knife used|B = murderer, M = murderer) = 0.1

(1.2.6)

In addition p(K,B,M) = p(K|B,M)p(B)p(M). Assuming that the knife is the murder weapon, what is
the probability that the Butler is the murderer? (Remember that it might be that neither is the murderer).
Using b for the two states of B and m for the two states of M ,

p(B|K) =
∑
m

p(B,m|K) =
∑
m

p(B,m,K)

p(K)
=

∑
m p(K|B,m)p(B,m)∑
m,b p(K|b,m)p(b,m)

=
p(B)

∑
m p(K|B,m)p(m)∑

b p(b)
∑

m p(K|b,m)p(m)
(1.2.7)
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where we used the fact that in our model p(B,M) = p(B)p(M). Plugging in the values we have (see also
demoClouseau.m)

p(B = murderer|knife used) =
6
10

(
2
10 × 1

10 + 8
10 × 6

10

)
6
10

(
2
10 × 1

10 + 8
10 × 6

10

)
+ 4

10

(
2
10 × 2

10 + 8
10 × 3

10

) =
300

412
≈ 0.73 (1.2.8)

Hence knowing that the knife was the murder weapon strengthens our belief that the butler did it.

Remark 1.3. The role of p(knife used) in the Inspector Clouseau example can cause some confusion. In
the above,

p(knife used) =
∑
b

p(b)
∑
m

p(knife used|b,m)p(m) (1.2.9)

is computed to be 0.456. But surely, p(knife used) = 1, since this is given in the question! Note that the
quantity p(knife used) relates to the prior probability the model assigns to the knife being used (in the
absence of any other information). If we know that the knife is used, then the posterior

p(knife used|knife used) =
p(knife used, knife used)

p(knife used)
=
p(knife used)

p(knife used)
= 1 (1.2.10)

which, naturally, must be the case.

Example 1.4 (Who’s in the bathroom?). Consider a household of three people, Alice, Bob and Cecil.
Cecil wants to go to the bathroom but finds it occupied. He then goes to Alice’s room and sees she is there.
Since Cecil knows that only either Alice or Bob can be in the bathroom, from this he infers that Bob must
be in the bathroom.

To arrive at the same conclusion in a mathematical framework, we define the following events

A = Alice is in her bedroom, B = Bob is in his bedroom, O = Bathroom occupied (1.2.11)

We can encode the information that if either Alice or Bob are not in their bedrooms, then they must be in
the bathroom (they might both be in the bathroom) as

p(O = tr|A = fa, B) = 1, p(O = tr|A,B = fa) = 1 (1.2.12)

The first term expresses that the bathroom is occupied if Alice is not in her bedroom, wherever Bob is.
Similarly, the second term expresses bathroom occupancy as long as Bob is not in his bedroom. Then

p(B = fa|O = tr, A = tr) =
p(B = fa, O = tr, A = tr)

p(O = tr, A = tr)
=
p(O = tr|A = tr, B = fa)p(A = tr, B = fa)

p(O = tr, A = tr)
(1.2.13)

where

p(O = tr, A = tr) = p(O = tr|A = tr, B = fa)p(A = tr, B = fa)

+ p(O = tr|A = tr, B = tr)p(A = tr, B = tr) (1.2.14)

Using the fact p(O = tr|A = tr, B = fa) = 1 and p(O = tr|A = tr, B = tr) = 0, which encodes that if Alice
is in her room and Bob is not, the bathroom must be occupied, and similarly, if both Alice and Bob are in
their rooms, the bathroom cannot be occupied,

p(B = fa|O = tr, A = tr) =
p(A = tr, B = fa)

p(A = tr, B = fa)
= 1 (1.2.15)

This example is interesting since we are not required to make a full probabilistic model in this case thanks
to the limiting nature of the probabilities (we don’t need to specify p(A,B)). The situation is common in
limiting situations of probabilities being either 0 or 1, corresponding to traditional logic systems.
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Example 1.5 (Aristotle : Resolution). We can represent the statement ‘All apples are fruit’ by p(F = tr|A =
tr) = 1. Similarly, ‘All fruits grow on trees’ may be represented by p(T = tr|F = tr) = 1. Additionally
we assume that whether or not something grows on a tree depends only on whether or not it is a fruit,
p(T |A,F ) = P (T |F ). From this we can compute

p(T = tr|A = tr) =
∑
F

p(T = tr|F,A = tr)p(F |A = tr) =
∑
F

p(T = tr|F )p(F |A = tr)

= p(T = tr|F = fa) p(F = fa|A = tr)︸ ︷︷ ︸
=0

+ p(T = tr|F = tr)︸ ︷︷ ︸
=1

p(F = tr|A = tr)︸ ︷︷ ︸
=1

= 1 (1.2.16)

In other words we have deduced that ‘All apples grow on trees’ is a true statement, based on the information
presented. (This kind of reasoning is called resolution and is a form of transitivity : from the statements
A⇒ F and F ⇒ T we can infer A⇒ T ).

Example 1.6 (Aristotle : Inverse Modus Ponens). According to Logic, from the statement : ‘If A is true
then B is true’, one may deduce that ‘if B is false then A is false’. To see how this fits in with a probabilistic
reasoning system we can first express the statement : ‘If A is true then B is true’ as p(B = tr|A = tr) = 1.
Then we may infer

p(A = fa|B = fa) = 1− p(A = tr|B = fa)

= 1− p(B = fa|A = tr)p(A = tr)

p(B = fa|A = tr)p(A = tr) + p(B = fa|A = fa)p(A = fa)
= 1 (1.2.17)

This follows since p(B = fa|A = tr) = 1− p(B = tr|A = tr) = 1− 1 = 0, annihilating the second term.

Both the above examples are intuitive expressions of deductive logic. The standard rules of Aristotelian
logic are therefore seen to be limiting cases of probabilistic reasoning.

Example 1.7 (Soft XOR Gate).

A standard XOR logic gate is given by the table on the right. If we
observe that the output of the XOR gate is 0, what can we say about
A and B? In this case, either A and B were both 0, or A and B were
both 1. This means we don’t know which state A was in – it could
equally likely have been 1 or 0.

A B A xor B

0 0 0
0 1 1
1 0 1
1 1 0

Consider a ‘soft’ version of the XOR gate given on the right,
with additionally A⊥⊥B and p(A = 1) = 0.65, p(B = 1) = 0.77.
What is p(A = 1|C = 0)?

A B p(C = 1|A,B)

0 0 0.1
0 1 0.99
1 0 0.8
1 1 0.25

p(A = 1, C = 0) =
∑
B

p(A = 1, B,C = 0) =
∑
B

p(C = 0|A = 1, B)p(A = 1)p(B)

= p(A = 1) (p(C = 0|A = 1, B = 0)p(B = 0) + p(C = 0|A = 1, B = 1)p(B = 1))

= 0.65× (0.2× 0.23 + 0.75× 0.77) = 0.405275 (1.2.18)
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p(A = 0, C = 0) =
∑
B

p(A = 0, B,C = 0) =
∑
B

p(C = 0|A = 0, B)p(A = 0)p(B)

= p(A = 0) (p(C = 0|A = 0, B = 0)p(B = 0) + p(C = 0|A = 0, B = 1)p(B = 1))

= 0.35× (0.9× 0.23 + 0.01× 0.77) = 0.075145

Then

p(A = 1|C = 0) =
p(A = 1, C = 0)

p(A = 1, C = 0) + p(A = 0, C = 0)
=

0.405275

0.405275 + 0.075145
= 0.8436 (1.2.19)

Example 1.8 (Larry). Larry is typically late for school. If Larry is late, we denote this with L = late,
otherwise, L = not late. When his mother asks whether or not he was late for school he never admits to
being late. The response Larry gives RL is represented as follows

p(RL = not late|L = not late) = 1, p(RL = late|L = late) = 0 (1.2.20)

The remaining two values are determined by normalisation and are

p(RL = late|L = not late) = 0, p(RL = not late|L = late) = 1 (1.2.21)

Given that RL = not late, what is the probability that Larry was late, i.e. p(L = late|RL = not late)?

Using Bayes’ we have

p(L = late|RL = not late) =
p(L = late, RL = not late)

p(RL = not late)

=
p(L = late, RL = not late)

p(L = late, RL = not late) + p(L = not late, RL = not late)
(1.2.22)

In the above

p(L = late, RL = not late) = p(RL = not late|L = late)︸ ︷︷ ︸
=1

p(L = late) (1.2.23)

and

p(L = not late, RL = not late) = p(RL = not late|L = not late)︸ ︷︷ ︸
=1

p(L = not late) (1.2.24)

Hence

p(L = late|RL = not late) =
p(L = late)

p(L = late) + p(L = not late)
= p(L = late) (1.2.25)

Where we used normalisation in the last step, p(L = late) + p(L = not late) = 1. This result is intuitive –
Larry’s mother knows that he never admits to being late, so her belief about whether or not he really was
late is unchanged, regardless of what Larry actually says.

Example 1.9 (Larry and Sue). Continuing the example above, Larry’s sister Sue always tells the truth to
her mother as to whether or not Larry was late for School.

p(RS = not late|L = not late) = 1, p(RS = late|L = late) = 1 (1.2.26)

16 DRAFT November 21, 2011



Prior, Likelihood and Posterior

The remaining two values are determined by normalisation and are

p(RS = late|L = not late) = 0, p(RS = not late|L = late) = 0 (1.2.27)

We also assume p(RS , RL|L) = p(RS |L)p(RL|L). We can then write

p(RL, RS , L) = p(RL|L)p(RS |L)p(L) (1.2.28)

Given that RS = late and RL = not late, what is the probability that Larry was late?

Using Bayes’ rule, we have

p(L = late|RL = not late,RS = late)

=
1

Z
p(RS = late|L = late)p(RL = not late|L = late)p(L = late) (1.2.29)

where the normalisation Z is given by

p(RS = late|L = late)p(RL = not late|L = late)p(L = late)

+ p(RS = late|L = not late)p(RL = not late|L = not late)p(L = not late) (1.2.30)

Hence

p(L = late|RL = not late, RS = late) =
1× 1× p(L = late)

1× 1× p(L = late) + 0× 1× p(L = not late)
= 1 (1.2.31)

This result is also intuitive – Since Larry’s mother knows that Sue always tells the truth, no matter what
Larry says, she knows he was late.

Example 1.10 (Luke). Luke has been told he’s lucky and has won a prize in the lottery. There are 5
prizes available of value £10,£100,£1000,£10000,£1000000. The prior probabilities of winning these 5
prizes are p1, p2, p3, p4, p5, with p0 being the prior probability of winning no prize. Luke asks eagerly ‘Did I
win £1000000?!’. ‘I’m afraid not sir’, is the response of the lottery phone operator. ‘Did I win £10000?!’
asks Luke. ‘Again, I’m afraid not sir’. What is the probability that Luke has won £1000?

Note first that p0 + p1 + p2 + p3 + p4 + p5 = 1. We denote W = 1 for the first prize of £10, and W = 2, . . . , 5
for the remaining prizes and W = 0 for no prize. We need to compute

p(W = 3|W 6= 5,W 6= 4,W 6= 0) =
p(W = 3,W 6= 5,W 6= 4,W 6= 0)

p(W 6= 5,W 6= 4,W 6= 0)

=
p(W = 3)

p(W = 1 or W = 2 or W = 3)
=

p3

p1 + p2 + p3
(1.2.32)

where the term in the denominator is computed using the fact that the events W are mutually exclusive
(one can only win one prize). This result makes intuitive sense : once we have removed the impossible states
of W , the probability that Luke wins the prize is proportional to the prior probability of that prize, with
the normalisation being simply the total set of possible probability remaining.

1.3 Prior, Likelihood and Posterior

Much of science deals with problems of the form : tell me something about the variable θ given that I have
observed data D and have some knowledge of the underlying data generating mechanism. Our interest is
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Figure 1.1: (a): Noisy observations of displacements x1, . . . , x100 for a pendulum. (b): The prior belief
on 5 possible values of θ. (c): The posterior belief on θ.

then the quantity

p(θ|D) =
p(D|θ)p(θ)
p(D)

=
p(D|θ)p(θ)∫
θ p(D|θ)p(θ)

(1.3.1)

This shows how from a forward or generative model p(D|θ) of the dataset, and coupled with a prior belief
p(θ) about which variable values are appropriate, we can infer the posterior distribution p(θ|D) of the vari-
able in light of the observed data. The most probable a posteriori (MAP) setting is that which maximises
the posterior, θ∗ = arg maxθ p(θ|D). For a ‘flat prior’, p(θ) being a constant, not changing with θ, the MAP
solution is equivalent to the maximum likelihood , namely that θ that maximises the likelihood p(D|θ) of the
model generating the observed data. We will return to a discussion of such summaries of the posterior and
parameter learning in chapter(9).

This use of a generative model sits well with physical models of the world which typically postulate how
to generate observed phenomena, assuming we know the model. For example, one might postulate how
to generate a time-series of displacements for a swinging pendulum but with unknown mass, length and
damping constant. Using this generative model, and given only the displacements, we could infer the
unknown physical properties of the pendulum.

Example 1.11 (Pendulum). As a prelude to scientific inference and the use of continuous variables, we
consider an idealised pendulum for which xt is the angular displacement of the pendulum at time t. Assuming
that the measurements are independent, given the knowledge of the parameter of the problem, θ, we have
that the likelihood of a sequence of observations x1, . . . , xT is given by

p(x1, . . . , xT |θ) =
T∏
t=1

p(xt|θ) (1.3.2)

If the model is correct and our measurement of the displacements x is perfect, then the physical model is

xt = sin(θt) (1.3.3)

where θ represents the unknown physical constants of the pendulum (
√
g/L, where g is the gravitational

attraction and L the length of the pendulum). If, however, we assume that we have a rather poor instrument
to measure the displacements, with a known variance of σ2 (see chapter(8)), then

xt = sin(θt) + εt (1.3.4)

where εt is zero mean Gaussian noise with variance σ2. We can also consider a set of possible parameters
θ and place a prior p(θ) over them, expressing our prior belief (before seeing the measurements) in the
appropriateness of the different values of θ. The posterior distribution is then given by

p(θ|x1, . . . , xT ) ∝ p(θ)
T∏
t=1

1√
2πσ2

e−
1

2σ2
(xt−sin(θt))2 (1.3.5)

Despite noisy measurements, the posterior over the assumed possible values for θ becomes strongly peaked
for a large number of measurements, see fig(1.1).
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1.3.1 Two dice : what were the individual scores?

Two fair dice are rolled. Someone tells you that the sum of the two scores is 9. What is the posterior
distribution of the dice scores2?
The score of die a is denoted sa with dom(sa) = {1, 2, 3, 4, 5, 6} and similarly for sb. The three variables
involved are then sa, sb and the total score, t = sa + sb. A model of these three variables naturally takes
the form

p(t, sa, sb) = p(t|sa, sb)︸ ︷︷ ︸
likelihood

p(sa, sb)︸ ︷︷ ︸
prior

(1.3.6)

The prior p(sa, sb) is the joint probability of score sa
and score sb without knowing anything else. Assuming
no dependency in the rolling mechanism,

p(sa, sb) = p(sa)p(sb) (1.3.7)

Since the dice are fair both p(sa) and p(sb) are uniform
distributions, p(sa) = p(sb) = 1/6.

p(sa)p(sb):
sa = 1 sa = 2 sa = 3 sa = 4 sa = 5 sa = 6

sb = 1 1/36 1/36 1/36 1/36 1/36 1/36

sb = 2 1/36 1/36 1/36 1/36 1/36 1/36

sb = 3 1/36 1/36 1/36 1/36 1/36 1/36

sb = 4 1/36 1/36 1/36 1/36 1/36 1/36

sb = 5 1/36 1/36 1/36 1/36 1/36 1/36

sb = 6 1/36 1/36 1/36 1/36 1/36 1/36

Here the likelihood term is

p(t|sa, sb) = I [t = sa + sb] (1.3.8)

which states that the total score is given by sa + sb.
Here I [A] is the indicator function defined as I [A] = 1
if the statement A is true and 0 otherwise.

p(t = 9|sa, sb):
sa = 1 sa = 2 sa = 3 sa = 4 sa = 5 sa = 6

sb = 1 0 0 0 0 0 0

sb = 2 0 0 0 0 0 0

sb = 3 0 0 0 0 0 1

sb = 4 0 0 0 0 1 0

sb = 5 0 0 0 1 0 0

sb = 6 0 0 1 0 0 0

Hence, our complete model is

p(t, sa, sb) = p(t|sa, sb)p(sa)p(sb) (1.3.9)

where the terms on the right are explicitly defined.

p(t = 9|sa, sb)p(sa)p(sb):
sa = 1 sa = 2 sa = 3 sa = 4 sa = 5 sa = 6

sb = 1 0 0 0 0 0 0

sb = 2 0 0 0 0 0 0

sb = 3 0 0 0 0 0 1/36

sb = 4 0 0 0 0 1/36 0

sb = 5 0 0 0 1/36 0 0

sb = 6 0 0 1/36 0 0 0

The posterior is then given by,

p(sa, sb|t = 9) =
p(t = 9|sa, sb)p(sa)p(sb)

p(t = 9)
(1.3.10)

where

p(t = 9) =
∑
sa,sb

p(t = 9|sa, sb)p(sa)p(sb) (1.3.11)

p(sa, sb|t = 9):
sa = 1 sa = 2 sa = 3 sa = 4 sa = 5 sa = 6

sb = 1 0 0 0 0 0 0

sb = 2 0 0 0 0 0 0

sb = 3 0 0 0 0 0 1/4

sb = 4 0 0 0 0 1/4 0

sb = 5 0 0 0 1/4 0 0

sb = 6 0 0 1/4 0 0 0

The term p(t = 9) =
∑

sa,sb
p(t = 9|sa, sb)p(sa)p(sb) = 4×1/36 = 1/9. Hence the posterior is given by equal

mass in only 4 non-zero elements, as shown.

1.4 Summary

• The standard rules of probability are a consistent, logical way to reason with uncertainty.

• Bayes’ rule mathematically encodes the process of inference.

A useful introduction to probability is given in [292]. The interpretation of probability is contentious and
we refer the reader to [158, 197, 193] for detailed discussions. The website understandinguncertainty.org
contains entertaining discussions on reasoning with uncertainty.

2This example is due to Taylan Cemgil.
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1.5 Code

The BRMLtoolbox code accompanying this book is intended to give the reader some insight into repre-
senting discrete probability tables and performing simple inference. We provide here only the briefest of
descriptions of the code and the reader is encouraged to experiment with the demos to understand better
the routines and their purposes.

1.5.1 Basic Probability code

At the simplest level, we only need two basic routines. One for multiplying probability tables together
(called potentials in the code), and one for summing a probability table. Potentials are represented using a
structure. For example, in the code corresponding to the Inspector Clouseau example demoClouseau.m, we
define a probability table as

>> pot(1)

ans =

variables: [1 3 2]

table: [2x2x2 double]

This says that the potential depends on the variables 1, 3, 2 and the entries are stored in the array given
by the table field. The size of the array informs how many states each variable takes in the order given by
variables. The order in which the variables are defined in a potential is irrelevant provided that one indexes
the array consistently. A routine that can help with setting table entries is setstate.m. For example,

>> pot(1) = setstate(pot(1),[2 1 3],[2 1 1],0.3)

means that for potential 1, the table entry for variable 2 being in state 2, variable 1 being in state 1 and
variable 3 being in state 1 should be set to value 0.3.

The philosophy of the code is to keep the information required to perform computations to a minimum.
Additional information about the labels of variables and their domains can be useful to interpret results,
but is not actually required to carry out computations. One may also specify the name and domain of each
variable, for example

>>variable(3)

ans =

domain: {’murderer’ ’not murderer’}

name: ’butler’

The variable name and domain information in the Clouseau example is stored in the structure variable,
which can be helpful to display the potential table:

>> disptable(pot(1),variable);

knife = used maid = murderer butler = murderer 0.100000

knife = not used maid = murderer butler = murderer 0.900000

knife = used maid = not murderer butler = murderer 0.600000

knife = not used maid = not murderer butler = murderer 0.400000

knife = used maid = murderer butler = not murderer 0.200000

knife = not used maid = murderer butler = not murderer 0.800000

knife = used maid = not murderer butler = not murderer 0.300000

knife = not used maid = not murderer butler = not murderer 0.700000

Multiplying Potentials

In order to multiply potentials, (as for arrays) the tables of each potential must be dimensionally consistent
– that is the number of states of variable i must be the same for all potentials. This can be checked us-
ing potvariables.m. This consistency is also required for other basic operations such as summing potentials.

multpots.m: Multiplying two or more potentials
divpots.m: Dividing a potential by another
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Summing a Potential

sumpot.m: Sum (marginalise) a potential over a set of variables
sumpots.m: Sum a set of potentials together

Making a conditional Potential

condpot.m: Make a potential conditioned on variables

Setting a Potential

setpot.m: Set variables in a potential to given states
setevpot.m: Set variables in a potential to given states and return also an identity potential on the given
states

The philosophy of BRMLtoolbox is that all information about variables is local and is read off from a
potential. Using setevpot.m enables one to set variables in a state whilst maintaining information about
the number of states of a variable.

Maximising a Potential

maxpot.m: Maximise a potential over a set of variables
See also maxNarray.m and maxNpot.m which return the N -highest values and associated states.

Other potential utilities

setstate.m: Set a potential state to a given value
table.m: Return a table from a potential
whichpot.m: Return potentials which contain a set of variables
potvariables.m: Variables and their number of states in a set of potentials
orderpotfields.m: Order the fields of a potential structure
uniquepots.m: Merge redundant potentials by multiplication and return only unique ones
numstates.m: Number of states of a variable in a domain
squeezepots.m: Find unique potentials and rename the variables 1,2,...
normpot.m: Normalise a potential to form a distribution

1.5.2 General utilities

condp.m: Return a table p(x|y) from p(x, y)
condexp.m: Form a conditional distribution from a log value
logsumexp.m: Compute the log of a sum of exponentials in a numerically precise way
normp.m: Return a normalised table from an unnormalised table
assign.m: Assign values to multiple variables
maxarray.m: Maximize a multi-dimensional array over a subset

1.5.3 An example

The following code highlights the use of the above routines in solving the Inspector Clouseau, example(1.3),
and the reader is invited to examine the code to become familiar with how to numerically represent proba-
bility tables.
demoClouseau.m: Solving the Inspector Clouseau example

1.6 Exercises

Exercise 1.1. Prove

p(x, y|z) = p(x|z)p(y|x, z) (1.6.1)
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and also

p(x|y, z) =
p(y|x, z)p(x|z)

p(y|z) (1.6.2)

Exercise 1.2. Prove the Bonferroni inequality

p(a, b) ≥ p(a) + p(b)− 1 (1.6.3)

Exercise 1.3 (Adapted from [181]). There are two boxes. Box 1 contains three red and five white balls and
box 2 contains two red and five white balls. A box is chosen at random p(box = 1) = p(box = 2) = 0.5 and
a ball chosen at random from this box turns out to be red. What is the posterior probability that the red ball
came from box 1?

Exercise 1.4 (Adapted from [181]). Two balls are placed in a box as follows: A fair coin is tossed and a
white ball is placed in the box if a head occurs, otherwise a red ball is placed in the box. The coin is tossed
again and a red ball is placed in the box if a tail occurs, otherwise a white ball is placed in the box. Balls
are drawn from the box three times in succession (always with replacing the drawn ball back in the box). It
is found that on all three occasions a red ball is drawn. What is the probability that both balls in the box are
red?

Exercise 1.5 (From David Spiegelhalter understandinguncertainty.org). A secret government agency
has developed a scanner which determines whether a person is a terrorist. The scanner is fairly reliable;
95% of all scanned terrorists are identified as terrorists, and 95% of all upstanding citizens are identified
as such. An informant tells the agency that exactly one passenger of 100 aboard an aeroplane in which you
are seated is a terrorist. The agency decide to scan each passenger and the shifty looking man sitting next
to you is the first to test positive. What are the chances that this man is a terrorist?

Exercise 1.6. Consider three variable distributions which admit the factorisation

p(a, b, c) = p(a|b)p(b|c)p(c) (1.6.4)

where all variables are binary. How many parameters are needed to specify distributions of this form?

Exercise 1.7. Repeat the Inspector Clouseau scenario, example(1.3), but with the restriction that either the
maid or the butler is the murderer, but not both. Explicitly, the probability of the maid being the murderer
and not the butler is 0.04, the probability of the butler being the murderer and not the maid is 0.64. Modify
demoClouseau.m to implement this.

Exercise 1.8. Prove

p(a, (b or c)) = p(a, b) + p(a, c)− p(a, b, c) (1.6.5)

Exercise 1.9. Prove

p(x|z) =
∑
y

p(x|y, z)p(y|z) =
∑
y,w

p(x|w, y, z)p(w|y, z)p(y|z) (1.6.6)

Exercise 1.10. As a young man Mr Gott visits Berlin in 1969. He’s surprised that he cannot cross into
East Berlin since there is a wall separating the two halves of the city. He’s told that the wall was erected 8
years previously. He reasons that : The wall will have a finite lifespan; his ignorance means that he arrives
uniformly at random at some time in the lifespan of the wall. Since only 5% of the time one would arrive
in the first or last 2.5% of the lifespan of the wall he asserts that with 95% confidence the wall will survive
between 8/0.975 ≈ 8.2 and 8/0.025 = 320 years. In 1989 the now Professor Gott is pleased to find that
his prediction was correct and promotes his prediction method in prestigious journals. This ‘delta-t’ method
is widely adopted and used to form predictions in a range of scenarios about which researchers are ‘totally
ignorant’. Would you ‘buy’ a prediction from Prof. Gott? Explain carefully your reasoning.

Exercise 1.11. Implement the soft XOR gate, example(1.7) using BRMLtoolbox. You may find condpot.m

of use.

22 DRAFT November 21, 2011



Exercises

Exercise 1.12. Implement the hamburgers, example(1.2) (both scenarios) using BRMLtoolbox. To do so
you will need to define the joint distribution p(hamburgers,KJ) in which dom(hamburgers) = dom(KJ) =
{tr, fa}.

Exercise 1.13. Implement the two-dice example, section(1.3.1) using BRMLtoolbox.

Exercise 1.14. A redistribution lottery involves picking the correct four numbers from 1 to 9 (without
replacement, so 3,4,4,1 for example is not possible). The order of the picked numbers is irrelevant. Every
week a million people play this game, each paying £1 to enter, with the numbers 3,5,7,9 being the most
popular (1 in every 100 people chooses these numbers). Given that the million pounds prize money is split
equally between winners, and that any four (different) numbers come up at random, what is the expected
amount of money each of the players choosing 3,5,7,9 will win each week? The least popular set of numbers
is 1,2,3,4 with only 1 in 10,000 people choosing this. How much do they profit each week, on average? Do
you think there is any ‘skill’ involved in playing this lottery?

Exercise 1.15. In a test of ‘psychometry’ the car keys and wrist watches of 5 people are given to a medium.
The medium then attempts to match the wrist watch with the car key of each person. What is the expected
number of correct matches that the medium will make (by chance)? What is the probability that the medium
will obtain at least 1 correct match?

Exercise 1.16. 1. Show that for any function f∑
x

p(x|y)f(y) = f(y) (1.6.7)

2. Explain why, in general,∑
x

p(x|y)f(x, y) 6=
∑
x

f(x, y) (1.6.8)

Exercise 1.17 (Inspired by singingbanana.com). Seven friends decide to order pizzas by telephone from
Pizza4U based on a flyer pushed through their letterbox. Pizza4U has only 4 kinds of pizza, and each person
chooses a pizza independently. Bob phones Pizza4U and places the combined pizza order, simply stating
how many pizzas of each kind are required. Unfortunately, the precise order is lost, so the chef makes seven
randomly chosen pizzas and then passes them to the delivery boy.

1. How many different combined orders are possible?

2. What is the probability that the delivery boy has the right order?

Exercise 1.18. Sally is new to the area and listens to some friends discussing about another female friend.
Sally knows that they are talking about either Alice or Bella but doesn’t know which. From previous con-
versations Sally knows some independent pieces of information: She’s 90% sure that Alice has a white car,
but doesn’t know if Bella’s car is white or black. Similarly, she’s 90% sure that Bella likes sushi, but doesn’t
know if Alice likes sushi. Sally hears from the conversation that the person being discussed hates sushi and
drives a white car. What is the probability that the friends are talking about Alice?

Exercise 1.19. The weather in London can be summarised as: if it rains one day there’s a 70% chance it
will rain the following day; if it’s sunny one day there’s a 40% chance it will be sunny the following day.

1. Assuming that the prior probability it rained yesterday is 0.5, what is the probability that it was raining
yesterday given that it’s sunny today?

2. If the weather follows the same pattern as above, day after day, what is the probability that it will rain
on any day (based on an effectively infinite number of days of observing the weather)?

3. Use the result from part 2 above as a new prior probability of rain yesterday and recompute the proba-
bility that it was raining yesterday given that it’s sunny today.
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CHAPTER 2

Basic Graph Concepts

Often we have good reason to believe that one event affects another, or conversely that some events are
independent. Incorporating such knowledge can produce models that are better specified and computation-
ally more efficient. Graphs describe how objects are linked and provide a convenient picture for describing
related objects. We will ultimately introduce a graph structure among the variables of a probabilistic model
to produce a ‘graphical model’ that captures relations among the variables as well as their uncertainties. In
this chapter, we introduce the required basic concepts from graph theory.

2.1 Graphs

Definition 2.1 (Graph). A graph G consists of nodes (also called vertices) and edges (also called links)
between the nodes. Edges may be directed (they have an arrow in a single direction) or undirected. Edges
can also have associated weights. A graph with all edges directed is called a directed graph, and one with
all edges undirected is called an undirected graph.

A B

CD

E An directed graph G consists of directed edges between nodes.

A B

CD

E An undirected graph G consists of undirected edges between nodes.

Graphs with edge weights are often used to model networks and flows along ‘pipes’, or distances between
cities, where each node represents a city. We will also make use of these concepts in chapter(5) and chap-
ter(28). Our main use of graphs though will be to endow them with a probabilistic interpretation and we
develop a connection between directed graphs and probability in chapter(3). Undirected graphs also play a
central role in modelling and reasoning with uncertainty. Essentially, two variables will be independent if
they are not linked by a path on the graph. We will discuss this in more detail when we consider Markov
networks in chapter(4).

Definition 2.2 (Path, ancestors, descendants). A path A 7→ B from node A to node B is a sequence of
nodes that connects A to B. That is, a path is of the form A0, A1, . . . , An−1, An, with A0 = A and An = B
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and each edge (Ak−1, Ak), k = 1, . . . , n being in the graph. A directed path is a sequence of nodes which
when we follow the direction of the arrows leads us from A to B. In directed graphs, the nodes A such that
A 7→ B and B 67→ A are the ancestors of B. The nodes B such that A 7→ B and B 67→ A are the descendants
of A.

Definition 2.3 (Cycle, loop and chord). A cycle is a directed path that starts and returns to the same
node a→ b→ . . .→ z → a. A loop is a path containing more than two nodes, irrespective of edge direction,
that starts and returns to the same node. For example in fig(2.2b) 1− 2− 4− 3− 1 forms a loop, but the
graph is acyclic (contains no cycles). A chord is an edge that connects two non-adjacent nodes in a loop –
for example, the 2− 3 edge is a chord in the 1− 2− 4− 3− 1 loop of fig(2.2a).

Definition 2.4 (Directed Acyclic Graph (DAG)). A DAG is a graph G with directed edges (arrows on each
link) between the nodes such that by following a path of nodes from one node to another along the direction
of each edge no path will revisit a node. In a DAG the ancestors of B are those nodes who have a directed
path ending at B. Conversely, the descendants of A are those nodes who have a directed path starting at
A.

Definition 2.5 (Relationships in a DAG).

x4

x1 x2 x3

x5 x6

x7x8

The parents of x4 are pa (x4) = {x1, x2, x3}. The children of
x4 are ch (x4) = {x5, x6}. The family of a node is itself and its
parents. The Markov blanket of a node is its parents, children and
the parents of its children. In this case, the Markov blanket of x4 is
x1, x2, x3, x5, x6, x7.

DAGs will play a central role in modelling environments with many variables, in particular they are used
for the belief networks that we describe in the following chapter. One can view the directed links on a graph
as ‘direct dependencies’ between parent and child variables. Naively, the acyclic condition prevents circular
reasoning. These connections are discussed in detail in chapter(3).

Definition 2.6 (Neighbour). For an undirected graph G the neighbours of x, ne (x) are those nodes directly
connected to x.

Definition 2.7 (Clique).

A B

CD

E

Given an undirected graph, a clique is a fully connected subset of nodes.
All the members of the clique are neighbours; for a maximal clique there is
no larger clique that contains the clique. For example this graph has two
maximal cliques, C1 = {A,B,C,D} and C2 = {B,C,E}. Whilst A,B,C
are fully connected, this is a non-maximal clique since there is a larger
fully connected set, A,B,C,D that contains this. A non-maximal clique is
sometimes called a cliquo.

Cliques play a central role in both modelling and inference. In modelling they will describe variables
that are all dependent on each other, see chapter(4). In inference they describe sets of variables with no
simpler structure describing the relationship between them and hence for which no simpler efficient inference
procedure is likely to exist. We will discuss this issue in detail in chapter(5) and chapter(6).
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Figure 2.1: (a): Singly-connected graph.
(b): Multiply-connected graph.

Definition 2.8 (Connected graph). An undirected graph is connected if there is a path between every pair
of nodes (i.e. there are no isolated islands). For a graph which is not connected, the connected components
are those subgraphs which are connected.

Definition 2.9 (Singly Connected Graph). A graph is singly connected if there is only one path from any
node A to any other node B. Otherwise the graph is multiply connected . This definition applies regardless
of whether or not the edges in the graph are directed. An alternative name for a singly connected graph is
a tree. A multiply-connected graph is also called loopy .

Definition 2.10 (Spanning Tree).

A spanning tree of an undirected graph G is a singly-connected
subset of the existing edges such that the resulting singly-
connected graph covers all nodes of G. On the right is a graph
and an associated spanning tree. A maximum weight spanning
tree is a spanning tree such that the sum of all weights on the
edges of the tree is at least as large as any other spanning tree of
G.

Procedure 2.1 (Finding a maximal weight spanning tree). An algorithm to find a spanning tree with
maximal weight is as follows: Start by picking the edge with the largest weight and add this to the edge
set. Then pick the next candidate edge which has the largest weight and add this to the edge set – if this
results in an edge set with cycles, then reject the candidate edge and propose the next largest edge weight.
Note that there may be more than one maximal weight spanning tree.

2.2 Numerically Encoding Graphs

Our ultimate goal is to make computational implementations of inference. Therefore, if we want to incorpo-
rate graph structure into our models, we need to express graphs in a way that a computer can understand
and manipulate. There are several equivalent possibilities.

2.2.1 Edge list

As the name suggests, an edge list simply lists which node-node pairs are in the graph. For fig(2.2a), an
edge list is L = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3)}. Undirected edges are listed
twice, once for each direction.
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Figure 2.2: (a): An undirected graph can be represented as
a symmetric adjacency matrix. (b): A directed graph with
nodes labelled in ancestral order corresponds to a triangular
adjacency matrix.

2.2.2 Adjacency matrix

An alternative is to use an adjacency matrix

A =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 (2.2.1)

where Aij = 1 if there is an edge from node i to node j in the graph, and 0 otherwise. Some authors include
self-connections and place 1’s on the diagonal in this definition. An undirected graph has a symmetric
adjacency matrix.

Provided that the nodes are labelled in ancestral order (parents always come before children) a directed
graph fig(2.2b) can be represented as a triangular adjacency matrix:

T =


0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

 (2.2.2)

Adjacency matrix powers

Adjacency matrices may seem wasteful since many of the entries are zero. However, they have a useful
property that more than redeems them. For an N × N adjacency matrix A, powers of the adjacency
matrix

[
Ak
]
ij

specify how many paths there are from node i to node j in k edge hops. If we include 1’s

on the diagonal of A then
[
AN−1

]
ij

is non-zero when there is a path connecting i to j in the graph. If A

corresponds to a DAG the non-zero entries of the jth row of
[
AN−1

]
correspond to the descendants of node

j.

2.2.3 Clique matrix

For an undirected graph with N nodes and maximal cliques C1, . . . , CK a clique matrix is an N ×K matrix
in which each column ck has zeros except for ones on entries describing the clique. For example

C =


1 0
1 1
1 1
0 1

 (2.2.3)

is a clique matrix for fig(2.2a). A cliquo matrix relaxes the constraint that cliques are required to be
maximal1. A cliquo matrix containing only two-node cliques is called an incidence matrix . For example

Cinc =


1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1

 (2.2.4)

1The term ‘cliquo’ for a non-maximal clique is attributed to Julian Besag.
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is an incidence matrix for fig(2.2a). It is straightforward to show that CincC
T
inc is equal to the adjacency

matrix except that the diagonals now contain the degree of each node (the number of edges it touches).
Similarly, for any cliquo matrix the diagonal entry of [CCT]ii expresses the number of cliquos (columns)
that node i occurs in. Off diagonal elements [CCT]ij contain the number of cliquos that nodes i and j
jointly inhabit.

Remark 2.1 (Graph Confusions). Graphs are widely used, but differ markedly in what they represent.
Two potential pitfalls are described below.

State Transition Diagrams Such representations are used in Markov chains and finite state automata.
Each state is a node and a directed edge between node i and node j (with an associated weight pij)
represents that a transition from state i to state j can occur with probability pij . From the graphical
models perspective we use a directed graph x(t) → x(t + 1) to represent this Markov chain. The
state-transition diagram provides a more detailed graphical description of the conditional probability
table p(x(t+ 1)|x(t)).

Neural Networks Neural networks also have nodes and edges. In general, however, neural networks are
graphical representations of functions, whereas graphical models are representations of distributions.

2.3 Summary

• A graph is made of nodes and edges, which we will use to represent variables and relations between them.

• A DAG is an acyclic graph and will be useful for representing ’causal’ relationships between variables.

• Neighbouring nodes on an undirected graph will represent dependent variables.

• A graph is singly-connected if there is only one path from any node to any other – otherwise the graph is
multiply-connected.

• A clique is group of nodes all of which are connected to each other.

• The adjacency matrix is a machine-readable description of a graph. Powers of the adjacency matrix give
information on the paths between nodes.

Good reference for graphs, associated theories and their uses are [86, 121].

2.4 Code

2.4.1 Utility routines

drawNet.m: Draw a graph based on an adjacency matrix
ancestors.m: Find the ancestors of a node in a DAG
edges.m: Edge list from an adjacency matrix
ancestralorder.m: Ancestral order from a DAG
connectedComponents.m: Connected Components
parents.m: Parents of a node given an adjacency matrix
children.m: Children of a node given an adjacency matrix
neigh.m: Neighbours of a node given an adjacency matrix

A connected graph is a tree if the number of edges plus 1 is equal to the number of nodes. However, for a
disconnected graph this is not the case. The code istree.m below deals with the possibly disconnected case.
The routine is based on the observation that any singly-connected graph must always possess a simplical
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node (a leaf node) which can be eliminated to reveal a smaller singly-connected graph.

istree.m: If graph is singly connected return 1 and elimination sequence
spantree.m: Return a spanning tree from an ordered edge list
singleparenttree.m: Find a directed tree with at most one parent from an undirected tree

Additional routines for basic graph manipulations are given at the end of chapter(6).

2.5 Exercises

Exercise 2.1. Consider an adjacency matrix A with elements [A]ij = 1 if one can reach state i from state

j in one timestep, and 0 otherwise. Show that the matrix
[
Ak
]
ij

represents the number of paths that lead
from state j to i in k timesteps. Hence derive an algorithm that will find the minimum number of steps to
get from state j to state i.

Exercise 2.2. For an N ×N symmetric adjacency matrix A, describe an algorithm to find the connected
components. You may wish to examine connectedComponents.m.

Exercise 2.3. Show that for a connected graph that is singly-connected, the number of edges E must be
equal to the number of nodes minus 1, E = V − 1. Give an example graph with E = V − 1 that is not
singly-connected. Hence the condition E = V − 1 is a necessary but not sufficient condition for a graph to
be singly-connected.

Exercise 2.4. Describe a procedure to determine if a graph is singly-connected.

Exercise 2.5. Describe a procedure to determine all the ancestors of a set of nodes in a DAG.

Exercise 2.6. WikiAdjSmall.mat contains a random selection of 1000 Wiki authors, with a link between
two authors if they ‘know’ each other (see snap.stanford.edu/data/wiki-Vote.html). Plot a histogram
of the separation (the length of the path between two users on the graph corresponding to the adjacency
matrix) between all users based on separations from 1 to 20. That is the bin n(s) in the histogram contains
the number of pairs with separation s.

Exercise 2.7. The file cliques.mat contains a list of 100 non-maximal cliques defined on a graph of 10
nodes. Your task is to return a set of unique maximal cliques, eliminating cliques that are wholly contained
within another. Once you have found a clique, you can represent it in binary form as, for example

(1110011110)

which says that this clique contains variables 1, 2, 3, 6, 7, 8, 9, reading from left to right. Converting this
binary representation to decimal (with the rightmost bit being the units and the leftmost 29) this corresponds
to the number 926. Using this decimal representation, write the list of unique cliques, ordered from lowest
decimal representation to highest. Describe fully the stages of the algorithm you use to find these unique
cliques. Hint: you may find examining uniquepots.m useful.

Exercise 2.8. Explain how to construct a graph with N nodes, where N is even, that contains at least
(N/2)2 maximal cliques.

Exercise 2.9. Let N be divisible by 3. Construct a graph with N nodes by partitioning the nodes into N/3
subsets, each subset containing 3 nodes. Then connect all nodes, provided they are not in the same subset.
Show that such a graph has 3N/3 maximal cliques. This shows that a graph can have an exponentially large
number of maximal cliques[217].

30 DRAFT November 21, 2011



CHAPTER 3

Belief Networks

We can now make a first connection between probability and graph theory. A belief network introduces
structure into a probabilistic model by using graphs to represent independence assumptions among the vari-
ables. Probability operations such as marginalizing and conditioning then correspond to simple operations
on the graph, and details about the model can be ‘read’ from the graph. There is also a benefit in terms of
computational efficiency. Belief networks cannot capture all possible relations among variables. However,
they are natural for representing ‘causal’ relations, and they are a part of the family of graphical models we
study further in chapter(4).

3.1 The Benefits of Structure

It’s tempting to think of feeding a mass of undigested data and probability distributions into a computer
and getting back good predictions and useful insights in extremely complex environments. However, unfor-
tunately, such a naive approach is likely to fail. The possible ways variables can interact is extremely large,
so that without some sensible assumptions we are unlikely to make a useful model. Independently specifying
all the entries of a table p(x1, . . . , xN ) over binary variables xi takes O(2N ) space, which is impractical for
more than a handful of variables. This is clearly infeasible in many machine learning and related application
areas where we need to deal with distributions on potentially hundreds if not millions of variables. Structure
is also important for computational tractability of inferring quantities of interest. Given a distribution on N
binary variables, p(x1, . . . , xN ), computing a marginal such as p(x1) requires summing over the 2N−1 states
of the other variables. Even on the most optimistically fast supercomputer this would take far too long,
even for a N = 100 variable system.

The only way to deal with such large distributions is to constrain the nature of the variable interactions
in some manner, both to render specification and ultimately inference in such systems tractable. The key
idea is to specify which variables are independent of others, leading to a structured factorisation of the
joint probability distribution. For a distribution on a chain, p(x1, . . . , x100) =

∏99
i=1 φ(xi, xi+1), computing

a marginal p(x1) can be computed in the blink of an eye on modern computers. Belief networks are a con-
venient framework for representing such independence assumptions. We will discuss belief networks more
formally in section(3.3), first discussing their natural role as ‘causal’ models.

Belief networks (also called Bayes’ networks or Bayesian belief networks) are a way to depict the indepen-
dence assumptions made in a distribution [161, 182]. Their application domain is widespread, ranging from
troubleshooting[53] and expert reasoning under uncertainty to machine learning. Before we more formally
define a Belief Network (BN), an example will help motivate the development1.

1The scenario is adapted from [236].
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Figure 3.1: (a): Belief network structure for the
‘wet grass’ example. Each node in the graph rep-
resents a variable in the joint distribution, and
the variables which feed in (the parents) to an-
other variable represent which variables are to
the right of the conditioning bar. (b): Belief
network for the Burglar model.

3.1.1 Modelling independencies

One morning Tracey leaves her house and realises that her grass is wet. Is it due to overnight rain or did
she forget to turn off the sprinkler last night? Next she notices that the grass of her neighbour, Jack, is also
wet. This explains away to some extent the possibility that her sprinkler was left on, and she concludes
therefore that it has probably been raining.

We can model the above situation by first defining the variables we wish to include in our model. In the
above situation, the natural variables are

R ∈ {0, 1} R = 1 means that it has been raining, and 0 otherwise
S ∈ {0, 1} S = 1 means that Tracey has forgotten to turn off the sprinkler, and 0 otherwise
J ∈ {0, 1} J = 1 means that Jack’s grass is wet, and 0 otherwise
T ∈ {0, 1} T = 1 means that Tracey’s Grass is wet, and 0 otherwise

A model of Tracey’s world then corresponds to a probability distribution on the joint set of the variables of
interest p(T, J,R, S) (the order of the variables is irrelevant).

Since each of the variables in this example can take one of two states, it would appear that we naively
have to specify the values for each of the 24 = 16 states, e.g. p(T = 1, J = 0, R = 1, S = 1) = 0.7 etc.
However, since there are normalisation conditions for probabilities, we do not need to specify all the state
probabilities. To see how many states need to be specified, consider the following decomposition. Without
loss of generality and repeatedly using the definition of conditional probability, we may write

p(T, J,R, S) = p(T |J,R, S)p(J,R, S) (3.1.1)

= p(T |J,R, S)p(J |R,S)p(R,S) (3.1.2)

= p(T |J,R, S)p(J |R,S)p(R|S)p(S) (3.1.3)

That is, we may write the joint distribution as a product of conditional distributions. The first term
p(T |J,R, S) requires us to specify 23 = 8 values – we need p(T = 1|J,R, S) for the 8 joint states of J,R, S.
The other value p(T = 0|J,R, S) is given by normalisation : p(T = 0|J,R, S) = 1 − p(T = 1|J,R, S).
Similarly, we need 4 + 2 + 1 values for the other factors, making a total of 15 values in all. In general, for a
distribution on n binary variables, we need to specify 2n− 1 values in the range [0, 1]. The important point
here is that the number of values that need to be specified in general scales exponentially with the number
of variables in the model – this is impractical in general and motivates simplifications.

Conditional independence

The modeler often knows constraints on the system. For example, in the scenario above, we may assume
that Tracey’s grass is wet depends only directly on whether or not is has been raining and whether or not
her sprinkler was on. That is, we make a conditional independence assumption

p(T |J,R, S) = p(T |R,S) (3.1.4)

Similarly, we assume that Jack’s grass is wet is influenced only directly by whether or not it has been raining,
and write

p(J |R,S) = p(J |R) (3.1.5)
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Furthermore, we assume the rain is not directly influenced by the sprinkler,

p(R|S) = p(R) (3.1.6)

which means that our model equation (3.1.3) now becomes

p(T, J,R, S) = p(T |R,S)p(J |R)p(R)p(S) (3.1.7)

We can represent these conditional independencies graphically, as in fig(3.1a). This reduces the number of
values that we need to specify to 4 + 2 + 1 + 1 = 8, a saving over the previous 15 values in the case where
no conditional independencies had been assumed.

To complete the model, we need to numerically specify the values of each conditional probability table
(CPT). Let the prior probabilities for R and S be p(R = 1) = 0.2 and p(S = 1) = 0.1. We set the
remaining probabilities to p(J = 1|R = 1) = 1, p(J = 1|R = 0) = 0.2 (sometimes Jack’s grass is wet
due to unknown effects, other than rain), p(T = 1|R = 1, S = 0) = 1, p(T = 1|R = 1, S = 1) = 1,
p(T = 1|R = 0, S = 1) = 0.9 (there’s a small chance that even though the sprinkler was left on, it didn’t
wet the grass noticeably), p(T = 1|R = 0, S = 0) = 0.

Inference

Now that we’ve made a model of an environment, we can perform inference. Let’s calculate the probability
that the sprinkler was on overnight, given that Tracey’s grass is wet: p(S = 1|T = 1). To do this we use:

p(S = 1|T = 1) =
p(S = 1, T = 1)

p(T = 1)
=

∑
J,R p(T = 1, J, R, S = 1)∑
J,R,S p(T = 1, J, R, S)

(3.1.8)

=

∑
J,R p(J |R)p(T = 1|R,S = 1)p(R)p(S = 1)∑

J,R,S p(J |R)p(T = 1|R,S)p(R)p(S)
(3.1.9)

=

∑
R p(T = 1|R,S = 1)p(R)p(S = 1)∑

R,S p(T = 1|R,S)p(R)p(S)
(3.1.10)

=
0.9× 0.8× 0.1 + 1× 0.2× 0.1

0.9× 0.8× 0.1 + 1× 0.2× 0.1 + 0× 0.8× 0.9 + 1× 0.2× 0.9
= 0.3382 (3.1.11)

so the (posterior) belief that the sprinkler is on increases above the prior probability 0.1, due to the evidence
that the grass is wet. Note that in equation (3.1.9), the summation over J in the numerator is unity since, for
any function f(R), a summation of the form

∑
J p(J |R)f(R) equals f(R). This follows from the definition

that a distribution p(J |R) must sum to one, and the fact that f(R) does not depend on J . A similar effect
occurs for the summation over J in the denominator.

Let us now calculate the probability that Tracey’s sprinkler was on overnight, given that her grass is wet
and that Jack’s grass is also wet, p(S = 1|T = 1, J = 1). We use conditional probability again:

p(S = 1|T = 1, J = 1) =
p(S = 1, T = 1, J = 1)

p(T = 1, J = 1)
(3.1.12)

=

∑
R p(T = 1, J = 1, R, S = 1)∑
R,S p(T = 1, J = 1, R, S)

(3.1.13)

=

∑
R p(J = 1|R)p(T = 1|R,S = 1)p(R)p(S = 1)∑

R,S p(J = 1|R)p(T = 1|R,S)p(R)p(S)
(3.1.14)

=
0.0344

0.2144
= 0.1604 (3.1.15)

The probability that the sprinkler is on, given the extra evidence that Jack’s grass is wet, is lower than the
probability that the grass is wet given only that Tracey’s grass is wet. This occurs since the fact that Jack’s
grass is also wet increases the chance that the rain has played a role in making Tracey’s grass wet.

Naturally, we don’t wish to carry out such inference calculations by hand all the time. General purpose
algorithms exist for this, such as the junction tree algorithm, chapter(6).
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Example 3.1 (Was it the Burglar?). Here’s another example using binary variables, adapted from [236].
Sally comes home to find that the burglar alarm is sounding (A = 1). Has she been burgled (B = 1), or
was the alarm triggered by an earthquake (E = 1)? She turns the car radio on for news of earthquakes and
finds that the radio broadcasts an earthquake alert (R = 1).

Using Bayes’ rule, we can write, without loss of generality,

p(B,E,A,R) = p(A|B,E,R)p(B,E,R) (3.1.16)

We can repeat this for p(B,E,R), and continue

p(B,E,A,R) = p(A|B,E,R)p(R|B,E)p(E|B)p(B) (3.1.17)

However, the alarm is surely not directly influenced by any report on the Radio – that is, p(A|B,E,R) =
p(A|B,E). Similarly, we can make other conditional independence assumptions such that

p(B,E,A,R) = p(A|B,E)p(R|E)p(E)p(B) (3.1.18)

as depicted in fig(3.1b).

Specifying conditional probability tables

Alarm = 1 Burglar Earthquake

0.9999 1 1

0.99 1 0

0.99 0 1

0.0001 0 0

Radio = 1 Earthquake

1 1

0 0

The remaining tables are p(B = 1) = 0.01 and p(E = 1) = 0.000001. The tables and graphical structure
fully specify the distribution. Now consider what happens as we observe evidence.

Initial Evidence: The Alarm is sounding

p(B = 1|A = 1) =

∑
E,R p(B = 1, E,A = 1, R)∑
B,E,R p(B,E,A = 1, R)

(3.1.19)

=

∑
E,R p(A = 1|B = 1, E)p(B = 1)p(E)p(R|E)∑

B,E,R p(A = 1|B,E)p(B)p(E)p(R|E)
≈ 0.99 (3.1.20)

Additional Evidence: The Radio broadcasts an Earthquake warning: A similar calculation gives
p(B = 1|A = 1, R = 1) ≈ 0.01. Thus, initially, because the Alarm sounds, Sally thinks that she’s been
burgled. However, this probability drops dramatically when she hears that there has been an Earthquake.
That is, the Earthquake ‘explains away’ to an extent the fact that the Alarm is ringing. See demoBurglar.m.

Remark 3.1 (Causal intuitions). Belief networks as we’ve defined them are ways to express independence
statements. Nevertheless, in expressing these independencies it can be useful (though also potentially
misleading) to think of ‘what causes what’. In example(3.1) we chose the ordering of the variables as
(reading from right to left) B,E,R,A in equation (3.1.17) since B and E can be considered root ‘causes’
and A and R as ‘effects’.

3.1.2 Reducing the burden of specification

Consider a discrete variable y with many discrete parental variables x1, . . . , xn, fig(3.2a). Formally, the
structure of the graph implies nothing about the form of the parameterisation of the table p(y|x1, . . . , xn).
If each parent xi has dim (xi) states, and there is no constraint on the table, then the table p(y|x1, . . . , xn)
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Figure 3.2: (a): If all variables are binary 25 = 32 states are required to specify p(y|x1, . . . , x5). (b):
Here only 16 states are required. (c): Noisy logic gates.

contains (dim (y) − 1)
∏
i dim (xi) entries. If stored explicitly for each state, this would require potentially

huge storage. An alternative is to constrain the table to have a simpler parametric form. For example, one
might write a decomposition in which only a limited number of parental interactions are required (this is
called divorcing parents in [161]). For example, in fig(3.2b), we have

p(y|x1, . . . , x5) =
∑
z1,z2

p(y|z1, z2)p(z1|x1, x2, x3)p(z2|x4, x5) (3.1.21)

Assuming all variables are binary, the number of states requiring specification is 23 +22 +22 = 16, compared
to the 25 = 32 states in the unconstrained case.

Logic gates

Another technique to constrain tables uses simple classes of conditional tables. For example, in fig(3.2c),
one could use a logical OR gate on binary zi, say

p(y|z1, . . . , z5) =

{
1 if at least one of the zi is in state 1
0 otherwise

(3.1.22)

We can then make a table p(y|x1, . . . , x5) by including the additional terms p(zi = 1|xi). When each xi
is binary there are in total only 2 + 2 + 2 + 2 + 2 = 10 quantities required for specifying p(y|x). In this
case, fig(3.2c) can be used to represent any noisy logic gate, such as the noisy OR or noisy AND , where the
number of parameters required to specify the noisy gate is linear in the number of parents.

The noisy-OR is particularly common in disease-symptom networks in which many diseases x can give rise
to the same symptom y– provided that at least one of the diseases is present, the probability that the
symptom will be present is high.

3.2 Uncertain and Unreliable Evidence

In the following we make a distinction between evidence that is uncertain, and evidence that is unreliable.

3.2.1 Uncertain evidence

In soft or uncertain evidence, the evidence variable is in more than one state, with the strength of our belief
about each state being given by probabilities. For example, if x has the states dom(x) = {red, blue, green}
the vector (0.6, 0.1, 0.3) represents the belief in the respective states. In contrast, for hard evidence we are
certain that a variable is in a particular state. In this case, all the probability mass is in one of the vector
components, for example (0, 0, 1).

Performing inference with soft-evidence is straightforward and can be achieved using Bayes’ rule. For
example, for a model p(x, y), consider that we have some soft evidence ỹ about the variable y, and wish to
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know what effect this has on the variable x – that is we wish to compute p(x|ỹ). From Bayes’ rule, and the
assumption p(x|y, ỹ) = p(x|y), we have

p(x|ỹ) =
∑
y

p(x, y|ỹ) =
∑
y

p(x|y, ỹ)p(y|ỹ) =
∑
y

p(x|y)p(y|ỹ) (3.2.1)

where p(y = i|ỹ) represents the probability that y is in state i under the soft-evidence. This is a generalisation
of hard-evidence in which the vector p(y|ỹ) has all zero component values, except for a single component.
This procedure in which we first define the model conditioned on the evidence, and then average over the
distribution of the evidence is also known as Jeffrey’s rule.

In the BN we use a dashed circle to represent that a variable is in a soft-evidence
state.

x y

Example 3.2 (soft-evidence). Revisiting the burglar scenario, example(3.1), imagine that we are only 70 per
cent sure we heard the burglar alarm sounding. For this binary variable case we represent this soft-evidence
for the states (1, 0) as Ã = (0.7, 0.3). What is the probability of a burglary under this soft-evidence?

p(B = 1|Ã) =
∑
A

p(B = 1|A)p(A|Ã) = p(B = 1|A = 1)× 0.7 + p(B = 1|A = 0)× 0.3 (3.2.2)

The probabilities p(B = 1|A = 1) ≈ 0.99 and p(B = 1|A = 0) ≈ 0.0001 are calculated using Bayes’ rule as
before to give

p(B = 1|Ã) ≈ 0.6930 (3.2.3)

This is lower than 0.99, the probability of having been burgled when we are sure we heard the alarm.

Holmes, Watson and Mrs Gibbon

An entertaining example of uncertain evidence is given by Pearl[236] that we adapt for our purposes here.
The environment contains four variables

B ∈ {tr, fa} B = tr means that Holmes’ house has been burgled
A ∈ {tr, fa} A = tr means that Holmes’ house Alarm went off
W ∈ {tr, fa} W = tr means that Watson heard the alarm
G ∈ {tr, fa} G = tr means that Mrs Gibbon heard the alarm

The BN below for this scenario is depicted in fig(3.3a)

p(B,A,G,W ) = p(A|B)p(B)p(W |A)p(G|A). (3.2.4)

Watson states that he heard the alarm is sounding. Mrs Gibbon is a little deaf and cannot be sure herself
that she heard the alarm, being 80 per cent sure she heard it. This can be dealt with using the soft evidence
technique, fig(3.3b). From Jeffrey’s rule, one uses the original model equation (3.2.4) to first compute the
model conditioned on the evidence

p(B = tr|W = tr, G) =
p(B = tr,W = tr, G)

p(W = tr, G)
=

∑
A p(G|A)p(W = tr|A)p(A|B = tr)p(B = tr)∑

B,A p(G|A)p(W = tr|A)p(A|B)p(B)
(3.2.5)

and then uses the soft-evidence

p(G|G̃) =

{
0.8 G = tr
0.2 G = fa

(3.2.6)

to compute

p(B = tr|W = tr, G̃) = p(B = tr|W = tr, G = tr)p(G = tr|G̃)+p(B = tr|W = tr, G = fa)p(G = fa|G̃) (3.2.7)

A full calculation requires us to numerically specify all the terms in equation (3.2.4); see for example
exercise(3.8).
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Figure 3.3: (a): Mr Holmes’ burglary worries as given in [236]: (B)urglar, (A)larm, (W)atson, Mrs
(G)ibbon. (b): Mrs Gibbon’s uncertain evidence represented by a dashed circle. (c): Virtual evidence or
the replacement of unreliable evidence can be represented by a dashed line. (d): Mrs Gibbon is uncertain
in her evidence. Holmes also replaces the unreliable Watson with his own interpretation.

3.2.2 Unreliable evidence

Holmes telephones Mrs Gibbon and realises that he doesn’t trust her evidence (he suspects that she’s been
drinking) and he believes that, based on his interpretation of Mrs Gibbon’s evidence, there is an 80 per
cent chance that the alarm sounded. Note that this is not the same as Mrs Gibbon being 80 per cent sure
herself that she heard the alarm – this would be soft evidence whose effect on our calculations would also
contain the term p(G|A), as in equation (3.2.5). Holmes rather wishes to discard all of this and simply
replace it with his own interpretation of events. Mr Holmes can achieve this by replacing the term p(G|A)
by a so-called virtual evidence term

p(G|A)→ p(H|A), where p(H|A) =

{
0.8 A = tr
0.2 A = fa

(3.2.8)

Here the state H is arbitrary and fixed. This is used to modify the joint distribution to

p(B,A,H,W ) = p(A|B)p(B)p(W |A)p(H|A), (3.2.9)

see fig(3.3c). When we then compute p(B = tr|W = tr,H) the effect of Mr Holmes’ judgement will count
for a factor of 4 times more in favour of the alarm sounding than not. The values of the table entries are
irrelevant up to normalisation since any constants can be absorbed into the proportionality constant. Note
also that p(H|A) is not a distribution in A, and hence no normalisation is required. This form of evidence
is also called likelihood evidence.

Uncertain and unreliable evidence

To demonstrate how to combine such effects as unreliable and uncertain evidence, consider the situation in
which Mrs Gibbon is uncertain in her evidence, and Mr Holmes feels that Watson’s evidence is unreliable
and wishes to replaces it with his own interpretation, see fig(3.3d). To account for this we first deal with
the unreliable evidence

p(B,A,W,G)→ p(B,A,H, G) = p(B)p(A|B)p(G|A)p(H|A) (3.2.10)

Using this modified model, we can now use Jeffrey’s rule to compute the model conditioned on the evidence

p(B,A|H, G) =
p(B)p(A|B)p(G|A)p(H|A)∑
A,B p(B)p(A|B)p(G|A)p(H|A)

(3.2.11)

We now include the uncertain evidence G̃ to form the final model

p(B,A|H, G̃) =
∑
G

p(B,A|H, G)p(G|G̃) (3.2.12)

from which we may compute the marginal p(B|H, G̃)

p(B|H, G̃) =
∑
A

p(B,A|H, G̃) (3.2.13)
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3.3 Belief Networks

Definition 3.1 (Belief network). A belief network is a distribution of the form

p(x1, . . . , xD) =

D∏
i=1

p(xi|pa (xi)) (3.3.1)

where pa (xi) represent the parental variables of variable xi. Represented as a directed graph, with an arrow
pointing from a parent variable to child variable, a belief network corresponds to a Directed Acyclic Graph
(DAG), with the ith node in the graph corresponding to the factor p(xi|pa (xi)).

Remark 3.2 (Graphs and distributions). A somewhat subtle point is whether or not a belief network
corresponds to a specific instance of a distribution (as given in definition(3.1)) requiring also the numerical
specification of the conditional probability tables, or whether or not it refers to any distribution which is
consistent with the specified structure. In this one can potentially distinguish between a belief network
distribution (containing a numerical specification) and a belief network graph (which contains no numerical
specification). Normally this issue will not arise much throughout the book, but is potentially important in
clarifying the scope of independence/dependence statements.

In the Wet Grass and Burglar examples, we had a choice as to how we recursively used Bayes’ rule. In a
general 4 variable case we could choose the factorisation,

p(x1, x2, x3, x4) = p(x1|x2, x3, x4)p(x2|x3, x4)p(x3|x4)p(x4) (3.3.2)

An equally valid choice is (see fig(3.4))

p(x1, x2, x3, x4) = p(x3|x4, x1, x2)p(x4|x1, x2)p(x1|x2)p(x2). (3.3.3)

In general, two different graphs may represent the same independence assumptions, as we will discuss further
in section(3.3.1). If one wishes to make independence assumptions, then the choice of factorisation becomes
significant.

The observation that any distribution may be written in the cascade form, fig(3.4), gives an algorithm for
constructing a BN on variables x1, . . . , xn : write down the n−node cascade graph; label the nodes with
the variables in any order; now each successive independence statement corresponds to deleting one of the
edges. More formally, this corresponds to an ordering of the variables which, without loss of generality, we
may write as x1, . . . , xn. Then, from Bayes’ rule, we have

p(x1, . . . , xn) = p(x1|x2, . . . , xn)p(x2, . . . , xn) (3.3.4)

= p(x1|x2, . . . , xn)p(x2|x3, . . . , xn)p(x3, . . . , xn) (3.3.5)

= p(xn)
n−1∏
i=1

p(xi|xi+1, . . . , xn) (3.3.6)

The representation of any BN is therefore a Directed Acyclic Graph (DAG).

Every probability distribution can be written as a BN, even though it may correspond to a fully connected
‘cascade’ DAG. The particular role of a BN is that the structure of the DAG corresponds to a set of
conditional independence assumptions, namely which ancestral parental variables are sufficient to specify
each conditional probability table. Note that this does not mean that non-parental variables have no influ-
ence. For example, for distribution p(x1|x2)p(x2|x3)p(x3) with DAG x1 ← x2 ← x3, this does not imply
p(x2|x1, x3) = p(x2|x3). The DAG specifies conditional independence statements of variables on their an-
cestors – namely which ancestors are direct ‘causes’ for the variable. The ‘effects’, given by the descendants
of the variable, will generally be dependent on the variable. See also remark(3.3).
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x1 x2 x3 x4

(a)

x3 x4 x1 x2

(b)

Figure 3.4: Two BNs for a 4 variable distribution. Both graphs (a) and (b) represent the same distribution
p(x1, x2, x3, x4). Strictly speaking they represent the same (lack of) independence assumptions – the graphs
say nothing about the content of the tables. The extension of this ‘cascade’ to many variables is clear and
always results in a Directed Acyclic Graph.

Remark 3.3 (Dependencies and the Markov Blanket). Consider a distribution on a set of variables X . For
a variable xi ∈ X and corresponding belief network represented by a DAG G, let MB(xi) be the variables
in the Markov blanket of xi. Then for any other variable y that is also not in the Markov blanket of xi
(y ∈ X\ {xi ∪MB(xi)}), then xi ⊥⊥ y|MB(xi). That is, the Markov blanket of xi carries all information
about xi. As an example, for fig(3.2b), MB(z1) = {x1, x2, x3, y, z2} and z1⊥⊥x4|MB(z1).

The DAG corresponds to a statement of conditional independencies in the model. To complete the speci-
fication of the BN we need to define all elements of the conditional probability tables p(xi|pa (xi)). Once
the graphical structure is defined, the entries of the conditional probability tables (CPTs) p(xi|pa (xi)) can
be expressed. For every possible state of the parental variables pa (xi), a value for each of the states of xi
needs to be specified (except one, since this is determined by normalisation). For a large number of parents,
writing out a table of values is intractable, and the tables are usually parameterised in a low dimensional
manner. This will be a central topic of our discussion on the application of BNs in machine learning.

3.3.1 Conditional independence

Whilst a BN corresponds to a set of conditional independence assumptions, it is not always immediately
clear from the DAG whether a set of variables is conditionally independent of a set of other variables (see
definition(1.7)). For example, in fig(3.5) are x1 and x2 independent, given the state of x4? The answer is
yes, since we have

p(x1, x2|x4) =
1

p(x4)

∑
x3

p(x1, x2, x3, x4) =
1

p(x4)

∑
x3

p(x1|x4)p(x2|x3, x4)p(x3)p(x4) (3.3.7)

= p(x1|x4)
∑
x3

p(x2|x3, x4)p(x3) (3.3.8)

Now

p(x2|x4) =
1

p(x4)

∑
x1,x3

p(x1, x2, x3, x4) =
1

p(x4)

∑
x1,x3

p(x1|x4)p(x2|x3, x4)p(x3)p(x4) (3.3.9)

=
∑
x3

p(x2|x3, x4)p(x3) (3.3.10)

Combining the two results above we have

p(x1, x2|x4) = p(x1|x4)p(x2|x4) (3.3.11)

x1 x2 x3 x4

Figure 3.5: p(x1, x2, x3, x4) = p(x1|x4)p(x2|x3, x4)p(x3)p(x4).
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x1

x3

x2

(a)

x1

x3

x2

(b)

x1

x3

x2

(c)

x1

x3

x2

(d)

Figure 3.6: By dropping say the connection between variables x1 and x2, we reduce the 6 possible BN graphs
amongst three variables to 4. (The 6 fully connected ‘cascade’ graphs correspond to (a) with x1 → x2, (a)
with x2 → x1, (b) with x1 → x2, (b) with x2 → x1, (c) with x1 → x3 and (d) with x2 → x1. Any other
graphs would be cyclic and therefore not distributions).

so that x1 and x2 are indeed independent conditioned on x4.

We would like to have a general algorithm that will allow us to avoid doing such tedious manipulations by
reading the result directly from the graph. To help develop intuition towards constructing such an algorithm,
consider the three variable distribution p(x1, x2, x3). We may write this in any of the 6 ways

p(x1, x2, x3) = p(xi1 |xi2 , xi3)p(xi2 |xi3)p(xi3) (3.3.12)

where (i1, i2, i3) is any of the 6 permutations of (1, 2, 3). Whilst each factorisation produces a different DAG,
all represent the same distribution, namely one that makes no independence statements. If the DAGs are of
the cascade form, no independence assumptions have been made. The minimal independence assumptions
then correspond to dropping a single link in the cascade graph. This gives rise to the 4 DAGs in fig(3.6).
Are any of these graphs equivalent, in the sense that they represent the same distribution? Applying Bayes’
rule gives :

p(x2|x3)p(x3|x1)p(x1)︸ ︷︷ ︸
graph(c)

= p(x2, x3)p(x3, x1)/p(x3) = p(x1|x3)p(x2, x3) (3.3.13)

= p(x1|x3)p(x3|x2)p(x2)︸ ︷︷ ︸
graph(d)

= p(x1|x3)p(x2|x3)p(x3)︸ ︷︷ ︸
graph(b)

(3.3.14)

so that DAGs (b), (c) and (d) represent the same conditional independence (CI) assumptions — given the
state of variable x3, variables x1 and x2 are independent, x1⊥⊥x2|x3.

However, graph (a) represents something fundamentally different, namely: p(x1, x2) = p(x1)p(x2). There is
no way to transform the distribution p(x3|x1, x2)p(x1)p(x2) into any of the others.

Remark 3.4 (Graphical Dependence). Belief network (graphs) are good for encoding conditional indepen-
dence but are not well suited for encoding dependence. For example, consider the graph a → b. This may
appear to encode the relation that a and b are dependent. However, a specific numerical instance of a belief
network distribution could be such that p(b|a) = p(b), for which a⊥⊥ b. The lesson is that even when the
DAG appears to show ‘graphical’ dependence, there can be instances of the distributions for which depen-
dence does not follow. The same caveat holds for Markov networks, section(4.2). We discuss this issue in
more depth in section(3.3.5).

3.3.2 The impact of collisions

Definition 3.2. Given a path P, a collider is a node c on P with neighbours a and b on P such that
a→ c← b. Note that a collider is path specific, see fig(3.8).
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x

z

y

(a)

x

z

y

(b)

x

z

y

(c)

x y

w

z

(d)

Figure 3.7: In graphs (a) and (b), variable z is not a collider. (c): Variable z is a collider. Graphs
(a) and (b) represent conditional independence x⊥⊥ y| z. In graphs (c) and (d), x and y are ‘graphically’
conditionally dependent given variable z.

In a general BN, how can we check if x⊥⊥y|z? In fig(3.7a), x and y are independent when conditioned on
z since

p(x, y|z) = p(x|z)p(y|z) (3.3.15)

Similarly, for fig(3.7b), x and y are independent conditioned on z since

p(x, y|z) ∝ p(z|x)p(x)p(y|z) (3.3.16)

which is a function of x multiplied by a function of y. In fig(3.7c), however, x and y are graphically
dependent since p(x, y|z) ∝ p(z|x, y)p(x)p(y); in this situation, variable z is called a collider — the arrows
of its neighbours are pointing towards it. What about fig(3.7d)? In (d), when we condition on z, x and y
will be graphically dependent, since

p(x, y|z) =
p(x, y, z)

p(z)
=

1

p(z)

∑
w

p(z|w)p(w|x, y)p(x)p(y) 6= p(x|z)p(y|z) (3.3.17)

— intuitively, variable w becomes dependent on the value of z, and since x and y are conditionally dependent
on w, they are also conditionally dependent on z.

If there is a non-collider z which is conditioned along the path between x and y (as in fig(3.7)(a,b)), then
this path cannot induce dependence between x and y. Similarly, if there is a path between x and y which
contains a collider, provided that this collider is not in the conditioning set (and neither are any of its
descendants) then this path does not make x and y dependent. If there is a path between x and y which
contains no colliders and no conditioning variables, then this path ‘d-connects’ x and y. Note that a collider
is defined relative to a path. In fig(3.8a), the variable d is a collider along the path a − b − d − c, but not
along the path a− b− d− e (since, relative to this path, the two arrows do not point inwards to d).

Consider the BN: A → B ← C. Here A and C are (unconditionally) independent. However, conditioning
of B makes them ‘graphically’ dependent. Intuitively, whilst we believe the root causes are independent,
given the value of the observation, this tells us something about the state of both the causes, coupling them
and making them (generally) dependent. In definition(3.3) below we describe the effect that condition-
ing/marginalisation has on the graph of the remaining variables.

Definition 3.3 (Some properties of belief networks). It is useful to understand what effect conditioning or
marginalising a variable has on a belief network. We state here how these operations effect the remaining
variables in the graph and use this intuition to develop a more complete description in section(3.3.4).

A B

C

p(A,B,C) = p(C|A,B)p(A)p(B) (3.3.18)

From a ‘causal’ perspective, this models the ‘causes’ A and B as a priori independent,
both determining the effect C.
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d

b c

a

e

(a): The variable d is a collider along the path a − b − d − c,
but not along the path a − b − d − e. Is a ⊥⊥ e | b? a and e
are not d-connected since there are no colliders on the only path
between a and e, and since there is a non-collider b which is in the
conditioning set. Hence a and e are d-separated by b, ⇒ a⊥⊥e|b.

a b

c

e d

(b): The variable d is a collider along the path a−d− e, but not
along the path a− b− c− d− e. Is a⊥⊥e|c? There are two paths
between a and e, namely a − d − e and a − b − c − d − e. The
path a−d− e is not blocked since although d is a collider on this
path and d is not in the conditioning set, we have a descendant
of the collider d in the conditioning set, namely c. For the path
a − b − c − d − e, the node c is a collider on this path and c is
in the conditioning set. For this path d is not a collider. Hence
this path is not blocked and a and e are (graphically) dependent
given c.

Figure 3.8: Collider examples for d-separation and d-connection.

A B

C

→ A B
Marginalising over C makes A and B independent. A
and B are (unconditionally) independent : p(A,B) =
p(A)p(B). In the absence of any information about
the effect C, we retain this belief.

A B

C

→ A B

Conditioning on C makes A and B (graphically) de-
pendent — in general p(A,B|C) 6= p(A|C)p(B|C). Al-
though the causes are a priori independent, knowing
the effect C in general tells us something about how
the causes colluded to bring about the effect observed.

A B

C

D

→ A B

Conditioning on D, a descendent of a collider C,
makes A and B (graphically) dependent — in general
p(A,B|D) 6= p(A|D)p(B|D).

A B

C

p(A,B,C) = p(A|C)p(B|C)p(C) (3.3.19)

Here there is a ‘cause’ C and independent ‘effects’ A and B.

A B

C

→ A B
Marginalising over C makes A and B (graphically) de-
pendent. In general, p(A,B) 6= p(A)p(B). Although
we don’t know the ‘cause’, the ‘effects’ will neverthe-
less be dependent.
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A B

C

→ A B

Conditioning on C makes A and B independent:
p(A,B|C) = p(A|C)p(B|C). If you know the ‘cause’
C, you know everything about how each effect occurs,
independent of the other effect. This is also true for
reversing the arrow from A to C – in this case A would
‘cause’ C and then C ‘cause’ B. Conditioning on C
blocks the ability of A to influence B.

A B

C

= A B

C

= A B

C

= These graphs all express the same
conditional independence assump-
tions.

3.3.3 Graphical path manipulations for independence

Intuitively, we now have all the tools we need to understand when x is independent of y conditioned on z.
Examining the rules in definition(3.3), we need to look at each path between x and y. Colouring x as red
and y as green and the conditioning node z as yellow, we need to examine each path between x and y and
adjust the edges, following the intuitive rules in fig(3.9).

3.3.4 d-Separation

The above description is intuitive. A more formal treatment that is amenable to computational implemen-
tation is straightforward to obtain from these intuitions. First we define the DAG concepts of d-separation
and d-connection that are central to determining conditional independence in any BN with structure given
by the DAG[304].

Definition 3.4 (d-connection, d-separation). If G is a directed graph in which X , Y and Z are disjoint
sets of vertices, then X and Y are d-connected by Z in G if and only if there exists an undirected path
U between some vertex in X and some vertex in Y such that for every collider C on U , either C or a
descendent of C is in Z, and no non-collider on U is in Z.

X and Y are d-separated by Z in G if and only if they are not d-connected by Z in G.

One may also phrase this as follows. For every variable x ∈ X and y ∈ Y, check every path U between x
and y. A path U is said to be blocked if there is a node w on U such that either

1. w is a collider and neither w nor any of its descendants is in Z, or

2. w is not a collider on U and w is in Z.

If all such paths are blocked then X and Y are d-separated by Z. If the variable sets X and Y are d-separated
by Z, they are independent conditional on Z in all probability distributions such a graph can represent.

Remark 3.5 (Bayes Ball). The Bayes Ball algorithm[258] provides a linear time complexity algorithm
which given a set of nodes X and Z determines the set of nodes Y such that X ⊥⊥Y|Z. Y is called the set
of irrelevant nodes for X given Z.

3.3.5 Graphical and distributional in/dependence

We have shown

X and Y d-separated by Z ⇒ X ⊥⊥Y|Z in all distributions consistent with the belief network structure.
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x y

z

u

⇒ x y

z

u

If z is a collider (bottom path) keep undirected links
between the neighbours of the collider.

x y

w

z

u

⇒
x y

w

z

u

If z is a descendant of a collider, this could induce
dependence so we retain the links (making them undi-
rected)

x y

z

u

⇒ x y

z

u

If there is a collider not in the conditioning set (upper
path) we cut the links to the collider variable. In this
case the upper path between x and y is ‘blocked’.

x y

z

u

⇒ x y

z

u
If there is a non-collider which is in the conditioning
set (bottom path), we cut the link between the neigh-
bours of this non-collider which cannot induce depen-
dence between x and y. The bottom path is ‘blocked’.

x y

z

u

⇒ x y

z

u

In this case, neither path contributes to dependence
and hence x⊥⊥y|z. Both paths are ‘blocked’.

x u

z

y

w

⇒
x u

z

y

w

Whilst z is a collider in the conditioning
set, w is a collider that is not in the con-
ditioning set. This means that there is no
path between x and y, and hence x and y
are independent given z.

Figure 3.9: Graphical manipulations to determine independence x ⊥⊥ y | z. After these manipulations,
if there is no undirected path between x and y, then x and y are independent, conditioned on z. Note
that the graphical rules here differ from those in definition(3.3) which considered the effect on the graph
having eliminated a variable (via conditioning or marginalisation). Here we consider rules for determining
independence based on a graphical representation in which the variables remain in the graph.

In other words, if one takes any instance of a distribution P which factorises according to the belief network
structure and then writes down a list LP of all the conditional independence statements that can be obtained
from P , if X and Y are d-separated by Z then this list must contain the statement X ⊥⊥Y|Z. Note that
the list LP could contain more statements than those obtained from the graph. For example for the belief
network graph

p(a, b, c) = p(c|a, b)p(a)p(b) (3.3.20)
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Figure 3.10: (a): t and f are d-connected by g. (b):
b and f are d-separated by u.

which is representable by the DAG a → c ← b, then a⊥⊥ b is the only graphical independence statement
we can make. Consider a distribution consistent with equation (3.3.20), for example, on binary variables
dom(a) = dom(b) = dom(c) = {0, 1}

p[1](c = 1|a, b) = (a− b)2, p[1](a = 1) = 0.3, p[1](b = 1) = 0.4 (3.3.21)

then numerically we must have a⊥⊥b for this distribution p[1]. Indeed the list L[1] contains only the statement
a⊥⊥b. On the other hand, we can also consider the distribution

p[2](c = 1|a, b) = 0.5, p[2](a = 1) = 0.3, p[2](b = 1) = 0.4 (3.3.22)

from which L[2] = {a⊥⊥b, a⊥⊥c, b⊥⊥c}. In this case L[2] contains more statements than a⊥⊥b.

An interesting question is whether or not d-connection similarly implies dependence? That is, do all distri-
butions P consistent with the belief network possess the dependencies implied by the graph? If we consider
the belief network structure equation (3.3.20) above, a and b are d-connected by c, so that graphically a and
b are dependent, conditioned on c. For the specific instance p[1] we have numerically a>>b|c so that the list
of dependence statements for p[1] contains the graphical dependence statement. Now consider p[2]. The list
of dependence statements for p[2] is empty. Hence the graphical dependence statements are not necessarily
found in all distributions consistent with the belief network. Hence

X and Y d-connected by Z 6⇒ X>>Y|Z in all distributions consistent with the belief network structure.

See also exercise(3.17). This shows that belief networks are powerful in ensuring that distributions necessarily
obey the independence assumptions we expect from the graph. However, belief networks are not suitable
for ensuring that distributions obey desired dependency statements.

Example 3.3. Consider the graph in fig(3.10a).

1. Are the variables t and f unconditionally independent, i.e. t⊥⊥ f | ∅? Here there are two colliders,
namely g and s – however, these are not in the conditioning set (which is empty), and hence t and f
are d-separated and therefore unconditionally independent.

2. What about t⊥⊥ f | g? There is a path between t and f for which all colliders are in the conditioning
set. Hence t and f are d-connected by g, and therefore t and f are graphically dependent conditioned
on g.

Example 3.4. Is {b, f}⊥⊥u|∅ in fig(3.10b)? Since the conditioning set is empty and every path from either
b or f to u contains a collider, b and f are unconditionally independent of u.

3.3.6 Markov equivalence in belief networks

We have invested a lot of effort in learning how to read conditional independence relations from a DAG.
Happily, we can determine whether two DAGs represent the same set of conditional independence statements
(even when we don’t know what they are) by using a relatively simple rule.
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Figure 3.11: (a): Two treatments t1, t2 and corresponding
outcomes y1, y2. The health of a patient is represented by
h. This DAG embodies the conditional independence state-
ments t1 ⊥⊥ t2, y2 | ∅, t2 ⊥⊥ t1, y1 | ∅, namely that the treat-
ments have no effect on each other. (b): One could repre-
sent the effect of marginalising over h using a bi-directional
edge.

Definition 3.5 (Markov equivalence). Two graphs are Markov equivalent if they both represent the same
set of conditional independence statements. This definition holds for both directed and undirected graphs.

Example 3.5. Consider the belief network with edges A → C ← B, from which the set of conditional
independence statements is A⊥⊥B| ∅. For another belief network with edges A→ C ← B and A→ B, the
set of conditional independence statements is empty. In this case, the two belief networks are not Markov
equivalent.

Procedure 3.1 (Determining Markov equivalence). Define an immorality in a DAG as a configuration of
three nodes, A, B, C such that C is a child of both A and B, with A and B not directly connected. Define
the skeleton of a graph by removing the directions on the arrows. Two DAGs represent the same set of
independence assumptions (they are Markov equivalent) if and only if they have the same skeleton and the
same set of immoralities [78].

Using procedure(3.1) we see that in fig(3.6), BNs (b,c,d) have the same skeleton with no immoralities and
are therefore equivalent. However BN (a) has an immorality and is therefore not equivalent to BNs (b,c,d).

3.3.7 Belief networks have limited expressibility

Belief networks fit well with our intuitive notion of modelling ‘causal’ independencies. However, formally
speaking they cannot necessarily graphically represent all the independence properties of a given distribu-
tion.

Consider the DAG in fig(3.11a), (from [249]). This DAG could be used to represent two successive ex-
periments where t1 and t2 are two treatments and y1 and y2 represent two outcomes of interest; h is the
underlying health status of the patient; the first treatment has no effect on the second outcome hence
there is no edge from y1 to y2. Now consider the implied independencies in the marginal distribution
p(t1, t2, y1, y2), obtained by marginalising the full distribution over h. There is no DAG containing only
the vertices t1, y1, t2, y2 which represents the independence relations and does not also imply some other
independence relation that is not implied by fig(3.11a). Consequently, any DAG on vertices t1, y1, t2, y2

alone will either fail to represent an independence relation of p(t1, t2, y1, y2), or will impose some additional
independence restriction that is not implied by the DAG. In the above example

p(t1, t2, y1, y2) = p(t1)p(t2)
∑
h

p(y1|t1, h)p(y2|t2, h)p(h) (3.3.23)

cannot in general be expressed as a product of functions defined on a limited set of the variables. However,
it is the case that the conditional independence conditions t1⊥⊥(t2, y2), t2⊥⊥(t1, y1) hold in p(t1, t2, y1, y2) —
they are there, encoded in the form of the conditional probability tables. It is just that we cannot ‘see’ this
independence since it is not present in the structure of the marginalised graph (though one can naturally
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infer this in the larger graph p(t1, t2, y1, y2, h)). For example, for the BN with link from y2 to y1, we have
t1⊥⊥ t2|y2, which is not true for the distribution in (3.3.23). Similarly, for the BN with link from y1 to y2,
the implied statement t1⊥⊥ t2|y1 is also not true for (3.3.23).

This example demonstrates that BNs cannot express all the conditional independence statements that could
be made on that set of variables (the set of conditional independence statements can be increased by consid-
ering additional variables however). This situation is rather general in the sense that any graphical model
has limited expressibility in terms of independence statements[281]. It is worth bearing in mind that BNs
may not always be the most appropriate framework to express one’s independence assumptions and intu-
itions.

A natural consideration is to use a bi-directional arrow when a variable is marginalised. For fig(3.11a), one
could depict the marginal distribution using a bi-directional edge, fig(3.11b). For a discussion of extensions
of BNs using bi-directional edges see [249].

3.4 Causality

Causality is a contentious topic and the purpose of this section is to make the reader aware of some pitfalls
that can occur and which may give rise to erroneous inferences. The reader is referred to [237] and [78] for
further details.

The word ‘causal’ is contentious particularly in cases where the model of the data contains no explicit tem-
poral information, so that formally only correlations or dependencies can be inferred. For a distribution
p(a, b), we could write this as either (i) p(a|b)p(b) or (ii) p(b|a)p(a). In (i) we might think that b ‘causes’
a, and in (ii) a ‘causes’ b. Clearly, this is not very meaningful since they both represent exactly the same
distribution, see fig(3.12). Formally BNs only make independence statements, not causal ones. Neverthe-
less, in constructing BNs, it can be helpful to think about dependencies in terms of causation since our
intuitive understanding is usually framed in how one variable ‘influences’ another. First we discuss a classic
conundrum that highlights potential pitfalls that can arise.

3.4.1 Simpson’s paradox

Simpson’s ‘paradox’ is a cautionary tale in causal reasoning in BNs. Consider a medical trial in which
patient treatment and outcome are recovered. Two trials were conducted, one with 40 females and one with
40 males. The data is summarised in table(3.1). The question is : Does the drug cause increased recovery?
According to the table for males, the answer is no, since more males recovered when they were not given the
drug than when they were. Similarly, more females recovered when not given the drug than recovered when
given the drug. The conclusion appears that the drug cannot be beneficial since it aids neither subpopulation.

However, ignoring the gender information, and collating both the male and female data into one combined
table, we find that more people recovered when given the drug than when not. Hence, even though the
drug doesn’t seem to work for either males or females, it does seem to work overall! Should we therefore
recommend the drug or not?

A B

(a)

A B

(b)

R W

(c)

R W

(d)

Figure 3.12: Both (a) and (b) represent the same distribution p(a, b) = p(a|b)p(b) = p(b|a)p(a). (c):
The graph represents p(rain, grasswet) = p(grasswet|rain)p(rain). (d): We could equally have written
p(rain|grasswet)p(grasswet), although this appears to be causally non-sensical.
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G

D R

(a)

FD

G

D R

(b)

Figure 3.13: (a): A DAG for the relation be-
tween Gender (G), Drug (D) and Recovery (R), see
table(3.1). (b): Influence diagram. No decision vari-
able is required for G since G has no parents.

Resolution of the paradox

The ‘paradox’ occurs because we are asking a causal (interventional) question – If we give someone the drug,
what happens? – but we are performing an observational calculation. Pearl[237] would remind us that there
is a difference between ‘given that we see’ (observational evidence) and ‘given that we do’ (interventional
evidence). We want to model a causal experiment in which we first intervene, setting the drug state, and
then observe what effect this has on recovery.

A model of the Gender, Drug and Recovery data (which makes no conditional independence assumptions)
is, fig(3.13a),

p(G,D,R) = p(R|G,D)p(D|G)p(G) (3.4.1)

In a causal interpretation, however, if we intervene and give the drug, then the term p(D|G) in equation
(3.4.1) should play no role in the experiment – we decide to give the drug or not independent of gender.
The term p(D|G) therefore needs to be replaced by a term that reflects the set-up of the experiment. We
use the idea of an atomic intervention, in which a single variable is set in a particular state. In our atomic
causal intervention, where we set D, we deal with the modified distribution

p̃(G,R|D) = p(R|G,D)p(G) (3.4.2)

where the terms on the right hand side of this equation are taken from the original BN of the data. To
denote an intervention we use ||:

p(R||G,D) ≡ p̃(R|G,D) =
p(R|G,D)p(G)∑
R p(R|G,D)p(G)

= p(R|G,D) (3.4.3)

(One can also consider here G as being interventional – in this case it doesn’t matter since the fact that the
variable G has no parents means that for any distribution conditional on G, the prior factor p(G) will not be
present). Using equation (3.4.3), for the males given the drug 60percent recover, versus 70percent recovery
when not given the drug. For the females given the drug 20percent recover, versus 30percent recovery when
not given the drug.

Males Recovered Not Recovered Rec. Rate

Given Drug 18 12 60%

Not Given Drug 7 3 70%

Females Recovered Not Recovered Rec. Rate

Given Drug 2 8 20%

Not Given Drug 9 21 30%

Combined Recovered Not Recovered Rec. Rate

Given Drug 20 20 50%

Not Given Drug 16 24 40%

Table 3.1: Table for Simpson’s Paradox (from [237])
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Similarly,

p(R||D) ≡ p̃(R|D) =

∑
G p(R|G,D)p(G)∑
R,G p(R|G,D)p(G)

=
∑
G

p(R|G,D)p(G) (3.4.4)

Using the post intervention distribution, equation (3.4.4), we have

p(recovery|drug) = 0.6× 0.5 + 0.2× 0.5 = 0.4 (3.4.5)

p(recovery|no drug) = 0.7× 0.5 + 0.3× 0.5 = 0.5 (3.4.6)

Hence we infer that the drug is overall not helpful, as we intuitively expect, and is consistent with the
results from both subpopulations.

Summarising the above argument, p(G,D,R) = p(R|G,D)p(G)p(D) means that we choose either a Male
or Female patient and give them the drug or not independent of their gender, hence the absence of the
term p(D|G) from the joint distribution. One way to think about such models is to consider how to draw
a sample from the joint distribution of the random variables – in most cases this should clarify the role of
causality in the experiment.

In contrast to the interventional calculation, the observational calculation makes no conditional independence
assumptions. This means that, for example, the term p(D|G) plays a role in the calculation (the reader
might wish to verify that the result given in the combined data in table(3.1) is equivalent to inferring with
the full distribution equation (3.4.1)).

3.4.2 The do-calculus

In making causal inferences we’ve seen above that we must adjust the model to reflect any causal experi-
mental conditions. In setting any variable into a particular state we need to surgically remove all parental
links of that variable. Pearl calls this the do operator , and contrasts an observational (‘see’) inference p(x|y)
with a causal (‘make’ or ‘do’) inference p(x|do(y)).

Definition 3.6 (Pearl’s Do Operator).

Inferring the effect of setting variables Xc1 , . . . , XcK , ck ∈ C, in states xc1 , . . . , xcK , is equivalent to standard
evidential inference in the post intervention distribution:

p(X|do(Xc1 = xc1), . . . , do(XcK = xcK )) =
p(X1, . . . , Xn|xc1 , . . . , xcK )∏K

i=1 p(Xci |pa (Xci))
=
∏
j 6∈C

p (Xj |pa (Xj)) (3.4.7)

where any parental states pa (Xj) of Xj are set in their evidential states. An alternative notation is
p(X||xc1 , . . . , xcK ).

In words, for those variables for which we causally intervene and set in a particular state, the corresponding
terms p(Xci |pa (Xci)) are removed from the original Belief Network. For variables which are evidential but
non-causal, the corresponding factors are not removed from the distribution. The interpretation is that the
post intervention distribution corresponds to an experiment in which the causal variables are first set and
non-causal variables are subsequently observed.

3.4.3 Influence diagrams and the do-calculus

Another way to represent intervention is to modify the basic BN by appending a parental decision variable
FX to any variable X on which an intervention can be made, giving rise to a so-called influence diagram[78].
For example2, for the Simpson’s paradox example, we may use, fig(3.13b),

p̃(D,G,R, FD) = p(D|FD, G)p(G)p(R|G,D)p(FD) (3.4.8)

2Here the influence diagram is a distribution over variables including decision variables, in contrast to the application of
IDs in chapter(7).
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where

p(D|FD = ∅, G) ≡ p(D|pa (D)), p(D|FD = d, G) = 1 for D = d and 0 otherwise

Hence, if the decision variable FD is set to the empty state, the variable D is determined by the standard
observational term p(D|pa (D)). If the decision variable is set to a state of D, then the variable puts all its
probability in that single state of D = d. This has the effect of replacing the conditional probability term by
a unit factor and any instances of D set to the variable in its interventional state3. A potential advantage
of this influence diagram approach over the do-calculus is that conditional independence statements can be
derived using standard techniques for the augmented BN. Additionally, for learning, standard techniques
apply in which the decision variables are set to the condition under which each data sample was collected
(a causal or non-causal sample).

Remark 3.6 (Learning the edge directions). In the absence of data from causal experiments, one should
be justifiably sceptical about learning ‘causal’ networks. Nevertheless, one might prefer a certain direction
of a link based on assumptions of the ‘simplicity’ of the CPTs. This preference may come from a physical
intuition that whilst root causes may be uncertain, the relationship from cause to effect is clear. In this
sense a measure of the complexity of a CPT is required, such as entropy. Such heuristics can be numerically
encoded and the edge directions learned in an otherwise Markov equivalent graph. See also exercise(12.6).

3.5 Summary

• We can reason with certain or uncertain evidence using repeated application of Bayes’ rule.

• A belief network represents a factorisation of a distribution into conditional probabilities of variables de-
pendent on parental variables.

• Belief networks correspond to directed acyclic graphs.

• Variables are conditionally independent x⊥⊥y|z if p(x, y|z) = p(x|z)p(y|z); the absence of a link in a belief
network corresponds to a conditional independence statement.

• If in the graph representing the belief network, two variables are independent, then they are independent
in any distribution consistent with the belief network structure.

• Belief networks are natural for representing ‘causal’ influences.

• Causal questions must be addressed by an appropriate causal model.

3.6 Code

3.6.1 Naive inference demo

demoBurglar.m: Was it the Burglar demo
demoChestClinic.m: Naive Inference on Chest Clinic. See exercise(3.4).

3.6.2 Conditional independence demo

The following demo determines whether X ⊥⊥ Y | Z for the Chest Clinic network, fig(3.15), and checks
the result numerically4. The independence test is based on the Markov method of section(4.2.4). This

3More general cases can be considered in which the variables are placed in a distribution of states [78].
4The code for graphical conditional independence is given in chapter(4).
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U

P D

H

A

Figure 3.14: Party animal. Here all variables are binary. P = Been to
Party, H = Got a Headache, D = Demotivated at work, U = Underperform
at work, A =Boss Angry. Shaded variables are observed in the true state.

x d

e

t l b

a

s

x = Positive X-ray

d = Dyspnea (Shortness of breath)

e = Either Tuberculosis or Lung Cancer

t = Tuberculosis

l = Lung Cancer

b = Bronchitis

a = Visited Asia

s = Smoker

Figure 3.15: Belief network structure for the Chest Clinic example.

is an alternative to the d-separation method and also more general in that it deals also with conditional
independence in Markov Networks as well as belief networks. Running the demo code below, it may happen
that the numerical dependence is very small – that is

p(X ,Y|Z) ≈ p(X|Z)p(Y|Z) (3.6.1)

even though X>>Y|Z. This highlights the difference between ‘structural’ and ‘numerical’ independence.

condindepPot.m: Numerical measure of conditional independence
demoCondindep.m: Demo of conditional independence (using Markov method)

3.6.3 Utility routines

dag.m: Find the DAG structure for a belief network

3.7 Exercises

Exercise 3.1 (Party Animal). The party animal problem corresponds to the network in fig(3.14). The boss
is angry and the worker has a headache – what is the probability the worker has been to a party? To complete
the specifications, the probabilities are given as follows:
p(U = tr|P = tr, D = tr) = 0.999 p(U = tr|P = fa, D = tr) = 0.9 p(H = tr|P = tr) = 0.9
p(U = tr|P = tr, D = fa) = 0.9 p(U = tr|P = fa, D = fa) = 0.01 p(H = tr|P = fa) = 0.2
p(A = tr|U = tr) = 0.95 p(A = tr|U = fa) = 0.5 p(P = tr) = 0.2, p(D = tr) = 0.4

Exercise 3.2. Consider the distribution p(a, b, c) = p(c|a, b)p(a)p(b). (i) Is a⊥⊥b|∅? (ii) Is a⊥⊥b|c?

Exercise 3.3. The Chest Clinic network[184] concerns the diagnosis of lung disease (tuberculosis, lung
cancer, or both, or neither), see fig(3.15). In this model a visit to Asia is assumed to increase the probability
of tuberculosis. State if the following conditional independence relationships are true or false

1. tuberculosis⊥⊥smoking|shortness of breath

2. lung cancer⊥⊥bronchitis|smoking

3. visit to Asia⊥⊥smoking| lung cancer

4. visit to Asia⊥⊥smoking| lung cancer, shortness of breath
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Gauge

Battery Fuel

Turn Over Start

Figure 3.16: Belief network of car starting, see exercise(3.6).

Exercise 3.4. Consider the Chest Clinic belief network in fig(3.15)[184]. Calculate by hand the values for
p(d), p(d|s = tr), p(d|s = fa). The table values are:

p(a = tr) = 0.01 p(s = tr) = 0.5
p(t = tr|a = tr) = 0.05 p(t = tr|a = fa) = 0.01
p(l = tr|s = tr) = 0.1 p(l = tr|s = fa) = 0.01
p(b = tr|s = tr) = 0.6 p(b = tr|s = fa) = 0.3
p(x = tr|e = tr) = 0.98 p(x = tr|e = fa) = 0.05
p(d = tr|e = tr, b = tr) = 0.9 p(d = tr|e = tr, b = fa) = 0.7
p(d = tr|e = fa, b = tr) = 0.8 p(d = tr|e = fa, b = fa) = 0.1

p(e = tr|t, l) = 0 only if both t and l are fa, 1 otherwise.

Exercise 3.5. If we interpret the Chest Clinic network exercise(3.4) causally, how can we help a doctor
answer the question ‘If I could cure my patients of Bronchitis, how would this affect my patients’ chance of
being short of breath?’. How does this compare with p(d = tr|b = fa) in a non-causal interpretation, and
what does this mean?

Exercise 3.6 ([140]). The network in fig(3.16) concerns the probability of a car starting, with

p(b = bad) = 0.02 p(f = empty) = 0.05
p(g = empty|b = good, f = not empty) = 0.04 p(g = empty|b = good, f = empty) = 0.97
p(g = empty|b = bad, f = not empty) = 0.1 p(g = empty|b = bad, f = empty) = 0.99
p(t = fa|b = good) = 0.03 p(t = fa|b = bad) = 0.98
p(s = fa|t = tr, f = not empty) = 0.01 p(s = fa|t = tr, f = empty) = 0.92
p(s = fa|t = fa, f = not empty) = 1.0 p(s = fa|t = fa, f = empty) = 0.99

Calculate P (f = empty|s = no), the probability of the fuel tank being empty conditioned on the observation
that the car does not start.

Exercise 3.7. There is a synergistic relationship between Asbestos (A) exposure, Smoking (S) and Cancer
(C). A model describing this relationship is given by

p(A,S,C) = p(C|A,S)p(A)p(S) (3.7.1)

1. Is A⊥⊥S|∅?

2. Is A⊥⊥S|C?

3. How could you adjust the model to account for the fact that people who work in the building industry
have a higher likelihood to also be smokers and also a higher likelihood to asbestos exposure?

Exercise 3.8.

Consider the belief network on the right which represents Mr
Holmes’ burglary worries as given in fig(3.3a) : (B)urglar,
(A)larm, (W)atson, Mrs (G)ibbon.

B A

G

W

All variables are binary with states {tr, fa}. The table entries are

p(B = tr) = 0.01
p(A = tr|B = tr) = 0.99 p(A = tr|B = fa) = 0.05
p(W = tr|A = tr) = 0.9 p(W = tr|A = fa) = 0.5
p(G = tr|A = tr) = 0.7 p(G = tr|A = fa) = 0.2

(3.7.2)
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1. Compute ‘by hand’ (i.e. show your working) :

(a) p(B = tr|W = tr)

(b) p(B = tr|W = tr, G = fa)

2. Consider the same situation as above, except that now the evidence is uncertain. Mrs Gibbon thinks
that the state is G = fa with probability 0.9. Similarly, Dr Watson believes in the state W = fa with
value 0.7. Compute ‘by hand’ the posteriors under these uncertain (soft) evidences:

(a) p(B = tr|W̃ )

(b) p(B = tr|W̃ , G̃)

Exercise 3.9. A doctor gives a patient a (D)rug (drug or no drug) dependent on their (A)ge (old or young)
and (G)ender (male or female). Whether or not the patient (R)ecovers (recovers or doesn’t recover) depends
on all D,A,G. In addition A⊥⊥G|∅.

1. Write down the belief network for the above situation.

2. Explain how to compute p(recover|drug).

3. Explain how to compute p(recover|do(drug), young).

Exercise 3.10. Implement the Wet Grass scenario in section(3.1.1) using the BRMLtoolbox.

Exercise 3.11 (LA Burglar). Consider the Burglar scenario, example(3.1). We now wish to model the
fact that in Los Angeles the probability of being burgled increases if there is an earthquake. Explain how to
include this effect in the model.

Exercise 3.12. Given two belief networks represented as DAGs with associated adjacency matrices A and
B, write a MATLAB function MarkovEquiv(A,B).m that returns 1 if A and B are Markov equivalent, and
zero otherwise.

Exercise 3.13. The adjacency matrices of two belief networks are given below (see ABmatrices.mat). State
if they are Markov equivalent.

A =



0 0 1 1 0 1 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, B =



0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 1 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(3.7.3)

Exercise 3.14. There are three computers indexed by i ∈ {1, 2, 3}. Computer i can send a message in
one timestep to computer j if Cij = 1, otherwise Cij = 0. There is a fault in the network and the task is
to find out some information about the communication matrix C (C is not necessarily symmetric). To do
this, Thomas, the engineer, will run some tests that reveal whether or not computer i can send a message to
computer j in t timesteps, t ∈ {1, 2}. This is expressed as Cij(t), with Cij(1) ≡ Cij. For example, he might
know that C13(2) = 1, meaning that according to his test, a message sent from computer 1 will arrive at
computer 3 in at most 2 timesteps. Note that this message could go via different routes – it might go directly
from 1 to 3 in one timestep, or indirectly from 1 to 2 and then from 2 to 3, or both. You may assume
Cii = 1. A priori Thomas thinks there is a 10 per cent probability that Cij = 1, i 6= j, and assumes that
each such connection is independent of the rest. Given the test information C = {C12(2) = 1, C23(2) = 0},
compute the a posteriori probability vector

[p(C12 = 1|C), p(C13 = 1|C), p(C23 = 1|C), p(C32 = 1|C), p(C21 = 1|C), p(C31 = 1|C)] (3.7.4)
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Exercise 3.15. A belief network models the relation between the variables oil, inf, eh, bp, rt which stand for
the price of oil, inflation rate, economy health, British Petroleum Stock price, retailer stock price. Each
variable takes the states low, high, except for bp which has states low, high, normal. The belief network model
for these variables has tables

p(eh=low)=0.2

p(bp=low|oil=low)=0.9 p(bp=normal|oil=low)=0.1
p(bp=low|oil=high)=0.1 p(bp=normal|oil=high)=0.4
p(oil=low|eh=low)=0.9 p(oil=low|eh=high)=0.05
p(rt=low|inf=low,eh=low)=0.9 p(rt=low|inf=low,eh=high)=0.1
p(rt=low|inf=high,eh=low)=0.1 p(rt=low|inf=high,eh=high)=0.01
p(inf=low|oil=low,eh=low)=0.9 p(inf=low|oil=low,eh=high)=0.1
p(inf=low|oil=high,eh=low)=0.1 p(inf=low|oil=high,eh=high)=0.01

1. Draw a belief network for this distribution.

2. Given that the BP stock price is normal and the retailer stock price is high, what is the probability that
inflation is high?

Exercise 3.16. There are a set of C potentials with potential c defined on a subset of variables Xc. If
Xc ⊆ Xd we can merge (multiply) potentials c and d since the variables in potential c are contained within
potential d. With reference to suitable graph structures, describe an efficient algorithm to merge a set of
potentials so that for the new set of potentials no potential is contained within the other.

Exercise 3.17. This exercise explores the distinction between d-connection and dependence. Consider the
distribution class

p(a, b, c) = p(c|b)p(b|a)p(a) (3.7.5)

for which a is d-connected to c. One might expect that this means that a and c are dependent, a>>c. Our
interest is to show that there are non-trivial distributions for which a⊥⊥c.

1. Consider dom(a) = dom(c) = {1, 2} and dom(b) = {1, 2, 3}. For

p(a) =

(
3/5
2/5

)
, p(b|a) =

 1/4 15/40
1/12 1/8
2/3 1/2

 , p(c|b) =

(
1/3 1/2 15/40
2/3 1/2 5/8

)
(3.7.6)

show that a⊥⊥c.

2. Consider

p(a, b, c) =
1

Z
φ(a, b)ψ(b, c) (3.7.7)

for positive function φ, ψ and Z =
∑

a,b,c φ(a, b)ψ(b, c). Defining matrices M and N with elements

Mij = φ(a = i, b = j), Nkj = ψ(b = j, c = k) (3.7.8)

show that the marginal distribution p(a = i, c = k) is represented by the matrix elements

p(a = i, c = k) =
1

Z

[
MNT

]
ik

(3.7.9)

3. Show that if

MNT = m0n
T
0 (3.7.10)

for some vectors m0 and n0, then a⊥⊥c.
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4. Writing

M = [m1 m2 m3] , N = [n1 n2 n3] (3.7.11)

for two dimensional vectors mi,ni, i = 1, . . . , 3, show that

MNT = m1n
T
1 + m2n

T
2 + m3n

T
3 (3.7.12)

5. Show that by setting

m2 = λm1, n3 = γ (n1 + λn2) (3.7.13)

for scalar λ, γ then MNT can be written as m0n
T
0 where

m0 ≡m1 + γm3, n0 ≡ n1 + λn2 (3.7.14)

6. Hence construct example tables p(a), p(b|a), p(c|b) for which a⊥⊥ c. Verify your examples explicitly
using BRMLtoolbox.

Exercise 3.18. Alice and Bob share a bank account which contains an a priori unknown total amount of
money T . Whenever Alice goes to the cash machine, the available amount for withdrawal A for Alice is
always 10percent of the total T . Similarly, when Bob goes to the cash machine the available amount for
withdrawal B for Bob is 10percent of the total T . Whatever the amount in the bank, Alice and Bob check
their available amounts for withdrawal independently. Draw a belief network that expresses this situation
and show that A>>B.

Exercise 3.19. Assume that the day of the week that females are born on, x, is independent of the day of
the week, y, on which males are born. Assume, however, that the old rhyme is true and that personality
is dependent on the day of the week you’re born on. If a represents the female personality type and b the
male personality type, then a>>x and b>>y, but a⊥⊥b. Whether or not a male and a female are married, m,
depends strongly on their personality types, m>>{a, b}, but is independent of x and y if we know a and b.
Draw a belief network that can represent this setting. What can we say about the (graphical) dependency
between the days of the week that John and Jane are born on, given that they are not married?

Exercise 3.20. A survey of households in which the husband and wife each own their own car is made.
The survey also know whether the household income (inc) is high or low. There are 4 car types, dom(h) =
dom(w) = {1, 2, 3, 4}, the first two being ‘cheap’ and the last two being ‘expensive’. The survey finds that
the types of cars owned by the husband and wife are independent, given their income:

wife’s car type⊥⊥husband’s car type| family income

Specifically, p(inc = low) = 0.8 and

p(w|inc = low) =


0.7
0.3
0
0

 , p(w|inc = high) =


0.2
0.1
0.4
0.3



p(h|inc = low) =


0.2
0.8
0
0

 , p(h|inc = high) =


0
0

0.3
0.7


Use BRMLtoolbox to find the marginal p(w, h) and show that whilst h ⊥⊥ w | inc, it is not the case that
h⊥⊥w.
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CHAPTER 4

Graphical Models

In chapter(3) we saw how belief networks are used to represent statements about independence of variables in
a probabilistic model. Belief networks are simply one way to unite probability and graphical representation.
Many others exist, all under the general heading of ‘graphical models’. Each has specific strengths and
weaknesses. Broadly, graphical models fall into two classes: those useful for modelling, such as belief
networks, and those useful for inference. This chapter will survey the most popular models from each class.

4.1 Graphical Models

Graphical Models (GMs) are depictions of independence/dependence relationships for distributions. Each
class of GM is a particular union of graph and probability constructs and details the form of independence
assumptions represented. GMs are useful since they provide a framework for studying a wide class of prob-
abilistic models and associated algorithms. In particular they help to clarify modelling assumptions and
provide a unified framework under which inference algorithms in different communities can be related.

It needs to be emphasised that all forms of GM have a limited ability to graphically express conditional
(in)dependence statements[281]. As we’ve seen, belief networks are useful for modelling ancestral condi-
tional independence. In this chapter we’ll introduce other types of GM that are more suited to representing
different assumptions. Here we’ll focus on Markov networks, chain graphs (which marry Belief and Markov
networks) and factor graphs. There are many more inhabitants of the zoo of graphical models, see [73, 314].

The general viewpoint we adopt is to describe the problem environment using a probabilistic model, after
which reasoning corresponds to performing probabilistic inference. This is therefore a two part process :

Modelling After identifying all potentially relevant variables of a problem environment, our task is to
describe how these variables can interact. This is achieved using structural assumptions as to the
form of the joint probability distribution of all the variables, typically corresponding to assumptions
of independence of variables. Each class of graphical model corresponds to a factorisation property of
the joint distribution.

Inference Once the basic assumptions as to how variables interact with each other is formed (i.e. the
probabilistic model is constructed) all questions of interest are answered by performing inference on
the distribution. This can be a computationally non-trivial step so that coupling GMs with accurate
inference algorithms is central to successful graphical modelling.

Whilst not a strict separation, GMs tend to fall into two broad classes – those useful in modelling, and those
useful in representing inference algorithms. For modelling, belief networks, Markov networks, chain graphs
and influence diagrams are some of the most popular. For inference one typically ‘compiles’ a model into a
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Figure 4.1: (a): φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x4, x1)/Za (b): φ(x1, x2, x3, x4)/Zb (c):
φ(x1, x2, x4)φ(x2, x3, x4)φ(x3, x5)φ(x3, x6)/Zc.

suitable GM for which an algorithm can be readily applied. Such inference GMs include factor graphs and
junction trees.

4.2 Markov Networks

Belief networks correspond to a special kind of factorisation of the joint probability distribution in which
each of the factors is itself a distribution. An alternative factorisation is, for example

p(a, b, c) =
1

Z
φ(a, b)φ(b, c) (4.2.1)

where φ(a, b) and φ(b, c) are potentials (see below) and Z is a constant which ensures normalisation, called
the partition function

Z =
∑
a,b,c

φ(a, b)φ(b, c) (4.2.2)

Definition 4.1 (Potential). A potential φ(x) is a non-negative function of the variable x, φ(x) ≥ 0. A joint
potential φ(x1, . . . , xn) is a non-negative function of the set of variables. A distribution is a special case
of a potential satisfying normalisation,

∑
x φ(x) = 1. This holds similarly for continuous variables, with

summation replaced by integration.

We will typically use the convention that the ordering of the variables in the potential is not relevant (as
for a distribution) – the joint variables simply index an element of the potential table. Markov Networks
are defined as products of potentials defined on maximal cliques of an undirected graph – see below and
fig(4.1).

Definition 4.2 (Markov Network). For a set of variables X = {x1, . . . , xn} a Markov network is defined as
a product of potentials on subsets of the variables Xc ⊆ X :

p(x1, . . . , xn) =
1

Z

C∏
c=1

φc(Xc) (4.2.3)

The constant Z ensures the distribution is normalised. Graphically this is represented by an undirected
graph G with Xc, c = 1, . . . , C being the maximal cliques of G. For the case in which clique potentials are
strictly positive, this is called a Gibbs distribution.

Definition 4.3 (Pairwise Markov network). In the special case that the graph contains cliques of only size
2, the distribution is called a pairwise Markov Network , with potentials defined on each link between two
variables.
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Figure 4.2: (a): φ(1, 2, 3)φ(2, 3, 4)φ(4, 5, 6)φ(5, 6, 7).
(b): By the global Markov property, since every path
from 1 to 7 passes through 4, then 1⊥⊥7|4.

Whilst a Markov network is formally defined on maximal cliques, in practice
authors often use the term to refer to non-maximal cliques. For example, in the
graph on the right, the maximal cliques are x1, x2, x3 and x2, x3, x4, so that the
graph describes a distribution p(x1, x2, x3, x4) = φ(x1, x2, x3)φ(x2, x3, x4)/Z. In
a pairwise network though the potentials are assumed to be over two-cliques,
giving p(x1, x2, x3, x4) = φ(x1, x2)φ(x1, x3)φ(x2, x3)φ(x2, x4)φ(x3, x4)/Z.

x1

x2 x3

x4

Example 4.1 (Boltzmann machine). A Boltzmann machine is a MN on binary variables dom(xi) = {0, 1}
of the form

p(x) =
1

Z(w, b)
e
∑
i<j wijxixj+

∑
i bixi (4.2.4)

where the interactions wij are the ‘weights’ and the bi the ‘biases’. This model has been studied in the
machine learning community as a basic model of distributed memory and computation[2]. The graphical
model of the BM is an undirected graph with a link between nodes i and j for wij 6= 0. Consequently, for
all but specially constrained W, the graph is multiply-connected and inference will be typically intractable.

Definition 4.4 (Properties of Markov Networks).

A B

C
p(A,B,C) = φAC(A,C)φBC(B,C)/Z (4.2.5)

A B

C

→ A B Marginalising over C makes A and B (graphically)
dependent. In general p(A,B) 6= p(A)p(B).

A B

C

→ A B
Conditioning on C makes A and B independent:
p(A,B|C) = p(A|C)p(B|C).

4.2.1 Markov properties

We consider here informally the properties of Markov networks and the reader is referred to [182] for detailed
proofs. Consider the MN in fig(4.2a) in which we use the shorthand p(1) ≡ p(x1), φ(1, 2, 3) ≡ φ(x1, x2, x3)
etc. We will use this undirected graph to demonstrate conditional independence properties. Note that
throughout we will be often dividing by potentials and, in order to ensure this is well defined, we assume the
potentials are positive. For positive potentials the following local, pairwise and global Markov properties
are all equivalent.
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x1
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(a)
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Figure 4.3: (a-d): Local conditional distributions. Note that no distribution is implied for the parents of
each variable. That is, in (a) we are given the conditional p(x4|x1, x3) – one should not read from the graph
that we imply x1 and x3 are marginally independent. (e): The Markov network consistent with the local
distributions. If the local distributions are positive, by the Hammersley-Clifford theorem, the only joint
distribution that can be consistent with the local distributions must be a Gibbs distribution with structure
given by (e).

Definition 4.5 (Separation). A subset S separates a subset A from a subset B (for disjoint A and B) if
every path from any member of A to any member of B passes through S. If there is no path from a member
of A to a member of B then A is separated from B. If S = ∅ then provided no path exists from A to B, A
and B are separated.

Definition 4.6 (Global Markov Property). For disjoint sets of variables, (A,B,S) where S separates A
from B in G, then A⊥⊥B|S.

As an example of the global Markov property, consider

p(1, 7|4) ∝
∑

2,3,5,6

p(1, 2, 3, 4, 5, 6, 7) (4.2.6)

=
∑

2,3,5,6

φ(1, 2, 3)φ(2, 3, 4)φ(4, 5, 6)φ(5, 6, 7) (4.2.7)

=

∑
2,3

φ(1, 2, 3)φ(2, 3, 4)


∑

5,6

φ(4, 5, 6)φ(5, 6, 7)

 (4.2.8)

This implies that p(1, 7|4) = p(1|4)p(7|4). This can be inferred since all paths from 1 to 7 pass through 4,
see fig(4.2a).

Procedure 4.1 (An algorithm for independence). The separation property implies a simple algorithm for
deciding A⊥⊥B| S. We simply remove all links that neighbour the set of variables S. If there is no path
from any member of A to any member of B, then A⊥⊥B|S is true – see also section(4.2.4).

For positive potentials, the so-called local Markov property holds

p(x|X\x) = p(x|ne (x)). (4.2.9)

That is, when conditioned on its neighbours, x is independent of the remaining variables of the graph. In
addition, the so-called pairwise Markov property holds that for any non-adjacent vertices x and y

x⊥⊥y|X\ {x, y} . (4.2.10)

4.2.2 Markov random fields

A MRF is a set of conditional distributions, one for each indexed ‘location’.
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Definition 4.7 (Markov Random Field). A MRF is defined by a set of distributions p(xi|ne (xi)) where
i ∈ {1, . . . , n} indexes the distributions and ne (xi) are the neighbours of variable xi, namely that subset of
the variables x1, . . . , xn that the distribution of variable xi depends on. The term Markov indicates that
this is a proper subset of the variables. A distribution is an MRF with respect to an undirected graph G if

p(xi|x\i) = p(xi|ne (xi)) (4.2.11)

where ne (xi) are the neighbouring variables of variable xi, according to the undirected graph G. The
notation x\i is shorthand for the set of all variables X excluding variable xi, namely X\xi in set notation.

4.2.3 Hammersley-Clifford Theorem

An undirected graph G specifies a set of independence statements. An interesting challenge is to find
the most general functional form of a distribution that satisfies these independence statements. A trivial
example is the graph x1 − x2 − x3, from which we have x1⊥⊥x3|x2. From this requirement we must have

p(x1|x2, x3) = p(x1|x2) (4.2.12)

Hence

p(x1, x2, x3) = p(x1|x2, x3)p(x2, x3) = p(x1|x2)p(x2, x3) = φ12(x1, x2)φ23(x2, x3) (4.2.13)

where the φ are potentials.

More generally, for any decomposable graph G, see definition(6.8), we can start at the edge and work inwards
to reveal that the functional form must be a product of potentials on the cliques of G. For example, for
fig(4.2a), we can start with the variable x1 and the corresponding local Markov statement x1⊥⊥x4, x5, x6, x6|
x2, x3 to write

p(x1, . . . , x7) = p(x1|x2, x3)p(x2, x3, x4, x5, x6, x7) (4.2.14)

Now we consider x1 eliminated and move to the neighbours of x1, namely x2, x3. The graph specifies that
x1, x2, x3 are independent of x5, x6, x7 given x4:

p(x1, x2, x3|x4, x5, x6, x7) = p(x1, x2, x3|x4) (4.2.15)

By summing both sides above over x1 we have that p(x2, x3|x4, x5, x6, x7) = p(x2, x3|x4). Hence

p(x2, x3, x4, x5, x6, x7) = p(x2, x3|x4, x5, x6, x7)p(x4, x5, x6, x7) = p(x2, x3|x4)p(x4, x5, x6, x7) (4.2.16)

and

p(x1, . . . , x7) = p(x1|x2, x3)p(x2, x3|x4)p(x4, x5, x6, x7) (4.2.17)

Having eliminated x2, x3, we now move to their neighbour(s) on the remaining graph, namely x4. Continuing
in this way, we necessarily end up with a distribution of the form

p(x1, . . . , x7) = p(x1|x2, x3)p(x2, x3|x4)p(x4|x5, x6)p(x5, x6|x7)p(x7) (4.2.18)

The pattern here is clear and shows that the Markov conditions mean that the distribution is expressible
as a product of potentials defined on the cliques of the graph. That is G ⇒ F where F is a factorisation
into clique potentials on G. The converse is easily shown, namely that given a factorisation into clique
potentials, the Markov conditions on G are implied. Hence G ⇔ F . It is clear that for any decomposable
G, this always holds since we can always work inwards from the edges of the graph.

The Hammersley-Clifford theorem is a stronger result and shows that this factorisation property holds for
any undirected graph, provided that the potentials are positive. For a formal proof, the reader is referred
to [182, 36, 219]. An informal argument can be made by considering a specific example, and we take the
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4-cycle x1− x2− x3− x4− x1 from fig(4.1a). The theorem states that for positive potentials φ, the Markov
conditions implied by the graph mean that the distribution must be of the form

p(x1, x2, x3, x4) = φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1) (4.2.19)

One may readily verify that for any distribution of this form x1⊥⊥x3|x2, x4. Consider including an additional
term that links x1 to a variable not a member of the cliques that x1 inhabits. That is we include a term
φ13(x1, x3). Our aim is to show that a distribution of the form

p(x1, x2, x3, x4) = φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1)φ13(x1, x3) (4.2.20)

cannot satisfy the Markov property x1⊥⊥x3|x2, x4. To do so we examine

p(x1|x2, x3, x4) =
φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1)φ13(x1, x3)∑
x1
φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1)φ13(x1, x3)

(4.2.21)

=
φ12(x1, x2)φ41(x4, x1)φ13(x1, x3)∑
x1
φ12(x1, x2)φ41(x4, x1)φ13(x1, x3)

(4.2.22)

If we assume that the potential φ13 is weakly dependent on x1 and x3,

φ13(x1, x3) = 1 + εψ(x1, x3) (4.2.23)

where ε� 1, then p(x1|x2, x3, x4) is given by

φ12(x1, x2)φ41(x4, x1)∑
x1
φ12(x1, x2)φ41(x4, x1)

(1 + εψ(x1, x3))

(
1 + ε

∑
x1
φ12(x1, x2)φ41(x4, x1)ψ(x1, x3)∑
x1
φ12(x1, x2)φ41(x4, x1)

)−1

(4.2.24)

By expanding (1 + εf)−1 = 1− εf +O
(
ε2
)

and retaining only terms that are first order in ε, we obtain

p(x1|x2, x3, x4) =
φ12(x1, x2)φ41(x4, x1)∑
x1
φ12(x1, x2)φ41(x4, x1)

×
(

1 + ε

[
ψ(x1, x3)−

∑
x1
φ12(x1, x2)φ41(x4, x1)ψ(x1, x3)∑
x1
φ12(x1, x2)φ41(x4, x1)

])
+ O

(
ε2
)

(4.2.25)

The first factor above is independent of x3, as required by the Markov condition. However, for ε 6= 0, the
second term varies as a function of x3. The reason for this is that one can always find a function ψ(x1, x3)
for which

ψ(x1, x3) 6=
∑

x1
φ12(x1, x2)φ41(x4, x1)ψ(x1, x3)∑
x1
φ12(x1, x2)φ41(x4, x1)

(4.2.26)

since the term ψ(x1, x3) on the left is functionally dependent on x1 whereas the term on the right is not a
function of x1. Hence, the only way we can ensure the Markov condition holds is if ε = 0, namely that there
is no connection between x1 and x3.

One can generalise this argument to show that if the graph of potentials in the distribution contains a
link which is not present in G, then there is some distribution for which a corresponding Markov condition
cannot hold. Informally, therefore, G⇒ F . The converse F ⇒ G is trivial.

The Hammersley-Clifford theorem also helps resolve questions as to when a set of positive local conditional
distributions p(xi|pa (xi)) could ever form a consistent joint distribution p(x1, . . . , xn). Each local conditional
distribution p(xi|pa (xi)) corresponds to a factor on the set of variables {xi,pa (xi)}, so we must include such
a term in the joint distribution. The MN can form a joint distribution consistent with the local conditional
distributions if and only if p(x1, . . . , xn) factorises according to

p(x1, . . . , xn) =
1

Z
exp

(
−
∑
c

Vc(Xc)
)

(4.2.27)
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Figure 4.4: (a): Belief network for
which we are interested in checking
conditional independence a⊥⊥b|{d, i}.
(b): Ancestral graph. (c): Ances-
tral, moralised and separated graph
for a ⊥⊥ b | {d, i}. There is no path
from a red to green node so a and b
are independent given d, i.

where the sum is over all cliques and Vc(Xc) is a real function defined over the variables in the clique
indexed by c. Equation (4.2.27) is equivalent to

∏
c φ(Xc), namely a MN on positive clique potentials.

The graph over which the cliques are defined is an undirected graph constructed by taking each local
conditional distribution p(xi|pa (xi)) and drawing a clique on {xi,pa (xi)}. This is then repeated over all
the local conditional distributions, see fig(4.3). Note that the HC theorem does not mean that, given a set
of conditional distributions, we can always form a consistent joint distribution from them – rather it states
what the functional form of a joint distribution has to be for the conditionals to be consistent with the joint,
see exercise(4.8).

4.2.4 Conditional independence using Markov networks

For X , Y, Z each being collections of variables, in section(3.3.4) we discussed an algorithm to determine
if X ⊥⊥ Y| Z for belief networks. An alternative and more general method (since it handles directed and
undirected graphs) uses the procedure below (see [78, 183]). See fig(4.4) for an example.

Procedure 4.2 (Ascertaining independence in Markov and belief networks). For Markov Networks only
the final separation criterion needs to be applied:

Ancestral Graph Identify the ancestors A of the nodes X ∪ Y ∪ Z. Retain the nodes X ∪ Y ∪ Z but
remove all other nodes which are not in A, together with any edges in or out of such nodes.

Moralisation Add a link between any two remaining nodes which have a common child, but are not already
connected by an arrow. Then remove remaining arrowheads.

Separation Remove links neighbouring Z. In the undirected graph so constructed, look for a path which
joins a node in X to one in Y. If there is no such path deduce that X ⊥⊥Y|Z.

Note that the ancestral step in procedure(4.2) for belief networks is intuitive since, given a set of nodes
X and their ancestors A, the remaining nodes D form a contribution to the distribution of the form
p(D|X ,A)p(X ,A), so that summing over D simply has the effect of removing these variables from the
DAG.

4.2.5 Lattice Models

Undirected models have a long history in different branches of science, especially statistical mechanics on
lattices and more recently as models in visual processing in which the models encourage neighbouring vari-
ables to be in the same states[36, 37, 116].
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Consider a model in which our desire is that states of the binary valued variables
x1, . . . , x9, arranged on a lattice (right) should prefer their neighbouring variables
to be in the same state

p(x1, . . . , x9) =
1

Z

∏
i∼j

φij(xi, xj) (4.2.28)

where i ∼ j denotes the set of indices where i and j are neighbours in the
undirected graph.

x1 x2 x3

x4 x5 x6

x7 x8 x9

The Ising model

A set of potentials for equation (4.2.28) that encourages neighbouring variables to have the same state is

φij(xi, xj) = e−
1
2T

(xi−xj)2 , xi ∈ {−1,+1} (4.2.29)

This corresponds to a well-known model of the physics of magnetic systems, called the Ising model which
consists of ‘mini-magnets’ which prefer to be aligned in the same state, depending on the temperature
T . For high T the variables behave independently so that no global magnetisation appears. For low T ,
there is a strong preference for neighbouring mini-magnets to become aligned, generating a strong macro-
magnet. Remarkably, one can show that, in a very large two-dimensional lattice, below the so-called Curie
temperature, Tc ≈ 2.269 (for ±1 variables), the system admits a phase change in that a large fraction of the
variables become aligned – above Tc, on average, the variables are unaligned. This is depicted in fig(4.5)

where M =
∣∣∣∑N

i=1 xi

∣∣∣ /N is the average alignment of the variables. That this phase change happens for

non-zero temperature has driven considerable research in this and related areas[41]. Global coherence effects
such as this that arise from weak local constraints are present in systems that admit emergent behaviour .
Similar local constraints are popular in image restoration algorithms to clean up noise, under the assumption
that noise will not show any local spatial coherence, whilst ‘signal’ will.

Example 4.2 (Cleaning up images).

Consider a binary image defined on a set of pixels xi ∈ {−1,+1}, i = 1, . . . , D. We
observe a noise corrupted version yi of each pixel xi, in which the state of yi ∈ {−1,+1}
is opposite to xi with some probability. Here the filled nodes indicate observed noisy
pixels and the unshaded nodes the latent clean pixels. Our interest is to ‘clean up’ the
observed dirty image Y, and find the most likely joint clean image X .

A model for this situation is

p(X ,Y) =
1

Z

[
D∏
i=1

φ(xi, yi)

]∏
i∼j

ψ(xi, xj)

 , φ(xi, yi) = eβxiyi , ψ(xi, xj) = eαxixj (4.2.30)

here i ∼ j indicates the set of latent variables that are neighbours. The potential φ encourages the noisy
and clean pixel to be in the same state. Similarly, the potential ψ(xi, xj) encourages neighbouring pixels to
be in the same state. To find the most likely clean image, we need to compute

argmax
X

p(X|Y) = argmax
X

p(X ,Y) (4.2.31)

This is a computationally difficult task but can be approximated using iterative methods, see section(28.9).

0 0.5 1 1.5 2
0

0.5

1

T/Tc

M Figure 4.5: Onsagar magnetisation. As the temperature T decreases
towards the critical temperature Tc a phase transition occurs in which
a large fraction of the variables become aligned in the same state.
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Figure 4.6: Chain graphs. The chain components are identified by deleting the directed edges and identifying
the remaining connected components. (a): Chain components are (a),(b),(c, d), which can be written as a
BN on the cluster variables in (b). (c): Chain components are (a, e, d, f, h), (b, g), (c), which has the cluster
BN representation (d).

On the left is the clean image, from which a noisy corrupted image Y is formed (middle). The most likely
restored image is given on the right. See demoMRFclean.m. Note that the parameter β is straightfor-
ward to set, given knowledge of the corruption probability pcorrupt, since p(yi 6= xi|xi) = σ (2β), so that
β = 1

2σ
−1(pcorrupt). Setting α is more complex since relating p(xi = xj) to α is not straightforward, see

section(28.4.1). In the demonstration we set α = 10, pcorrupt = 0.15.

4.3 Chain Graphical Models

Chain Graphs (CGs) contain both directed and undirected links. To develop the intuition, consider fig(4.6a).
The only terms that we can unambiguously specify from this depiction are p(a) and p(b) since there is no
mixed interaction of directed and undirected edges at the a and b vertices. By probability, therefore, we
must have

p(a, b, c, d) = p(a)p(b)p(c, d|a, b) (4.3.1)

Looking at the graph, we might expect the interpretation to be

p(c, d|a, b) = φ(c, d)p(c|a)p(d|b) (4.3.2)

However, to ensure normalisation, and also to retain generality, we interpret this as

p(c, d|a, b) = φ(c, d)p(c|a)p(d|b)φ(a, b), with φ(a, b) ≡

∑
c,d

φ(c, d)p(c|a)p(d|b)

−1

(4.3.3)

This leads to the interpretation of a CG as a DAG over the chain components see below.

Definition 4.8 (Chain Component). The chain components of a graph G are obtained by :

1. Forming a graph G′ with directed edges removed from G.

2. Then each connected component in G′ constitutes a chain component.
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Each chain component represents a distribution over the variables of the component, conditioned on the
parental components. The conditional distribution is itself a product over the cliques of the undirected
component and moralised parental components, including also a factor to ensure normalisation over the
chain component.

Definition 4.9 (Chain Graph distribution). The distribution associated with a chain graph G is found by
first identifying the chain components, τ . Then

p(x) =
∏
τ

p (Xτ |pa (Xτ )) (4.3.4)

and

p (Xτ |pa (Xτ )) ∝
∏
c∈Cτ

φ (XCτ ) (4.3.5)

where Cτ denotes the union of the cliques in component τ together with the moralised parental components
of τ , with φ being the associated functions defined on each clique. The proportionality factor is determined
implicitly by the constraint that the distribution sums to 1.

BNs are CGs in which the connected components are singletons. MNs are CGs in which the chain components
are simply the connected components of the undirected graph. CGs can be useful since they are more
expressive of CI statements than either belief networks or Markov networks alone. The reader is referred to
[182] and [106] for further details.

Example 4.3 (Chain graphs are more expressive than Belief or Markov networks). Consider the chain
graph in fig(4.7a), which has chain component decomposition

p(a, b, c, d, e, f) = p(a)p(b)p(c, d, e, f |a, b) (4.3.6)

where

p(c, d, e, f |a, b) = φ(a, c)φ(c, e)φ(e, f)φ(d, f)φ(d, b)φ(a, b) (4.3.7)

with the normalisation requirement

φ(a, b) ≡

 ∑
c,d,e,f

φ(a, c)φ(c, e)φ(e, f)φ(d, f)φ(d, b)

−1

(4.3.8)

The marginal p(c, d, e, f) is given by

φ(c, e)φ(e, f)φ(d, f)
∑
a,b

φ(a, b)p(a)p(b)φ(a, c)φ(d, b)︸ ︷︷ ︸
φ(c,d)

(4.3.9)

Since the marginal distribution of p(c, d, e, f) is an undirected 4-cycle, no DAG can express the CI statements
contained in the marginal p(c, d, e, f). Similarly no undirected distribution on the same skeleton as fig(4.7a)
could express that a and b are independent (unconditionally), i.e. p(a, b) = p(a)p(b).
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(a)

c d
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Figure 4.7: The CG (a) expresses a ⊥⊥ b| ∅ and d ⊥⊥
e| (c, f). No directed graph could express both these
conditions since the marginal distribution p(c, d, e, f)
is an undirected four cycle, (b). Any DAG on a 4 cycle
must contain a collider, as in (c) and therefore express
a different set of CI statements than (b). Similarly, no
connected Markov network can express unconditional
independence and hence (a) expresses CI statements
that no belief network or Markov network alone can
express.

a

bc

(a)

a

bc

(b)

a

bc

(c)

a

bc

(d)

a

bc
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Figure 4.8: (a): φ(a, b, c). (b): φ(a, b)φ(b, c)φ(c, a). (c): φ(a, b, c). Both (a) and (b) have the same
undirected graphical model, (c). (d): (a) is an undirected FG of (d). (e): Directed FG of the BN in (d).
A directed factor represents a term p(children|parents). The advantage of (e) over (a) is that information
regarding the marginal independence of variables b and c is clear from graph (e), whereas one could only
ascertain this by examination of the numerical entries of the factors in graph (a).

4.4 Factor Graphs

Factor Graphs (FGs) are mainly used as part of inference algorithms1.

Definition 4.10 (Factor Graph). Given a function

f(x1, . . . , xn) =
∏
i

ψi (Xi) (4.4.1)

The FG has a node (represented by a square) for each factor ψi, and a variable node (represented by
a circle) for each variable xj . For each xj ∈ Xi an undirected link is made between factor ψi and variable xj .

When used to represent a distribution

p(x1, . . . , xn) =
1

Z

∏
i

ψi (Xi) (4.4.2)

a normalisation constant Z =
∑
X
∏
i ψi (Xi) is assumed.

For a factor ψi (Xi) which is a conditional distribution p(xi|pa (xi)), we may use directed links from the
parents to the factor node, and a directed link from the factor node to the child xi. This has the same
structure as an (undirected) FG, but preserves the information that the factors are distributions.

Factor graphs are useful since they can preserve more information about the form of the distribution than

1Formally a FG is an alternative graphical depiction of a hypergraph[86] in which the vertices represent variables, and a
hyperedge a factor as a function of the variables associated with the hyperedge. A FG is therefore a hypergraph with the
additional interpretation that the graph represents a function defined as products over the associated hyperedges. Many thanks
to Robert Cowell for this observation.
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either a belief network or a Markov network (or chain graph) can do alone. Consider the distribution

p(a, b, c) = φ(a, b)φ(a, c)φ(b, c) (4.4.3)

Represented as a MN, this must have a single clique, as given in fig(4.8c). However, fig(4.8c) could equally
represent some unfactored clique potential φ(a, b, c) so that the factorised structure within the clique is lost.
In this sense, the FG representation in fig(4.8b) more precisely conveys the form of distribution equation
(4.4.3). An unfactored clique potential φ(a, b, c) is represented by the FG fig(4.8a). Hence different FGs
can have the same MN since information regarding the structure of the clique potential is lost in the MN.
Similarly, for a belief network, as in fig(4.8d) one can represent this using a standard undirected FG, although
more information about the independence is preserved by using a directed FG representation, as in fig(4.8e).
One can also consider partially directed FGs which contain both directed and undirected edges; this requires
a specification of how the structure is normalised, one such being to use an approach analogous to the chain
graph – see [103] for details.

4.4.1 Conditional independence in factor graphs

Conditional independence questions can be addressed using a rule which works with directed, undirected
and partially directed FGs[103]. To determine whether two variables are independent given a set of condi-
tioned variables, consider all paths connecting the two variables. If all paths are blocked, the variables are
conditionally independent. A path is blocked if one or more of the following conditions is satisfied:

• One of the variables in the path is in the conditioning set.

• One of the variables or factors in the path has two incoming edges that are part of the path (variable
or factor collider), and neither the variable or factor nor any of its descendants are in the conditioning
set.

4.5 Expressiveness of Graphical Models

It is clear that directed distributions can be represented as undirected distributions since one can asso-
ciate each (normalised) factor of the joint distribution with a potential. For example, the distribution
p(a|b)p(b|c)p(c) can be factored as φ(a, b)φ(b, c), where φ(a, b) = p(a|b) and φ(b, c) = p(b|c)p(c), with Z = 1.
Hence every belief network can be represented as some MN by simple identification of the factors in the
distributions. However, in general, the associated undirected graph (which corresponds to the moralised
directed graph) will contain additional links and independence information can be lost. For example, the
MN of p(c|a, b)p(a)p(b) is a single clique φ(a, b, c) from which one cannot graphically infer that a⊥⊥b.

The converse question is whether every undirected model can be represented by a BN with a readily derived
link structure. Consider the example in fig(4.9). In this case, there is no directed model with the same
link structure that can express the (in)dependencies in the undirected graph. Naturally, every probability
distribution can be represented by some BN though it may not necessarily have a simple structure and
be a ‘fully connected’ cascade style graph. In this sense the DAG cannot always graphically represent the
independence properties that hold for the undirected distribution.

Definition 4.11 (Independence Maps). A graph is an independence map (I-map) of a given distribution P
if every conditional independence statement that one can derive from the graph G is true in the distribution
P . That is

X ⊥⊥Y|ZG ⇒ X ⊥⊥Y|ZP (4.5.1)

for all disjoint sets X , Y, Z.

Similarly, a graph is a dependence map (D-map) of a given distribution P if every conditional independence
statement that one can derive from P is true in the graph G. That is

X ⊥⊥Y|ZG ⇐ X ⊥⊥Y|ZP (4.5.2)
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Figure 4.9: (a): An undirected model for which we wish to find a
directed equivalent. (b): Every DAG with the same structure as
the undirected model must have a situation where two arrows will
point to a node, such as node d (otherwise one would have a cyclic
graph). Summing over the states of variable d will leave a DAG
on the variables a, b, c with no link between a and c. This cannot
represent the undirected model since when one marginalises over
d this adds a link between a and c.

for all disjoint sets X , Y, Z.

A graph G which is both an I-map and a D-map for P is called a perfect map and

X ⊥⊥Y|ZG ⇔ X ⊥⊥Y|ZP (4.5.3)

for all disjoint sets X ,Y,Z. In this case, the set of all conditional independence and dependence statements
expressible in the graph G are consistent with P and vice versa.

Note that by contraposition, a dependence map is equivalent to

X>>Y|ZG ⇒ X>>Y|ZP (4.5.4)

meaning that if X and Y are graphically dependent given Z, then they are dependent in the distribution.

One way to think about this is to take a distribution P and write out a list LP of all the independence
statements. For a graph G, one writes a list of all the possible independence statements LG. Then:

LP ⊆ LG Dependence Map (D-map)
LP ⊇ LG Independence Map (I-map)
LP = LG Perfect Map

(4.5.5)

In the above we assume the statement l is contained in L if it is consistent with (can be derived from) the
independence statements in L.

One can also discuss whether or not a distribution class has an associated map. That is whether or not all
numerical instances of distributions consistent with the specified form obey the constraints required for the
map. To do so we take any numerical instance of a distribution Pi consistent with a given class P and write
out a list LPi of all the independence statements. One then takes the intersection LP = ∩iLPi of all the
lists from all possible distribution instances. This list is then used in equation (4.5.5) to determine if there
is an associated map. For example the distribution class

p(x, y, z) = p(z|x, y)p(x)p(y) (4.5.6)

has a directed perfect map x → z ← y. However, the undirected graph for the class equation (4.5.6) is
fully connected so that LG is empty. For any distribution consistent with equation (4.5.6) x and y are
independent, a statement which is not contained in LG – hence there is no undirected D-map and hence no
perfect undirected map for the class represented in equation (4.5.6).

Example 4.4. Consider the distribution (class) defined on variables t1, t2, y1, y2[249]:

p(t1, t2, y1, y2) = p(t1)p(t2)
∑
h

p(y1|t1, h)p(y2|t2, h)p(h) (4.5.7)

In this case the list of all independence statements (for all distribution instances consistent with p) is

LP = {t1⊥⊥(t2, y2), t2⊥⊥(t1, y1)} (4.5.8)
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Consider the graph of the BN

p(y2|y1, t2)p(y1|t1)p(t1)p(t2) (4.5.9)

For this we have

LG = {t2⊥⊥(t1, y1)} (4.5.10)

Hence LG ⊂ LP so that the BN is an I-MAP for (4.5.7) since every independence statement in the BN is
true for the distribution class in equation (4.5.7). However, it is not a D-MAP since LP 6⊆ LG. In this case
no perfect MAP (a BN or a MN) can represent (4.5.7).

Remark 4.1 (Forcing dependencies?). Whilst graphical models as we have defined them ensure specified
independencies, they seem to be inappropriate for ensuring specified dependencies. Consider the undirected
graph x − y − z. Graphically this expresses that x and z are dependent. However, there are numerical
instances of distributions for which this does not hold, for example

p(x, y, z) = φ(x, y)φ(y, z)/Z1 (4.5.11)

with φ(x, y) = const. One might complain that this is a pathological case since any graphical representation
of this particular instance contains no link between x and y. Maybe one should therefore ‘force’ potentials
to be non-trivial functions of their arguments and thereby ensure dependency? Consider

φ(x, y) =
x

y
, φ(y, z) = yz (4.5.12)

In this case both potentials are non-trivial in the sense that they are truly functionally dependent on their
arguments. Hence, the undirected network contains ‘genuine’ links x− y and y − z. Nevertheless,

p2(x, y, z) = φ(x, y)φ(y, z)/Z2 ∝
x

y
yz = xz (4.5.13)

Hence p2(x, z) ∝ xz ⇒ x ⊥⊥ z. So ‘forcing’ local non-trivial functions does not guarantee dependence of
path-connected variables. In this case, the algebraic cancellation is clear and the problem is again rather
trivial since for p2, x⊥⊥y and y⊥⊥z, so one might assume that x⊥⊥z (see however, remark(1.2)). However,
there may be cases where such algebraic simplifications are highly non-trivial, though nevertheless true.
See, for example, exercise(3.17) in which we construct p(x, y, z) ∝ φ(x, y)φ(y, z) for which x>>y and y>>z, yet
x⊥⊥z.

4.6 Summary

• Graphical modelling is the discipline of representing probability models graphically.

• Belief networks intuitively describe which variables ‘causally’ influence others and are represented using
directed graphs.

• A Markov network is represented by an undirected graph.

• Intuitively, linked variables in a Markov network are graphically dependent, describing local cliques of
graphically dependent variables.

• Markov networks are historically important in physics and may be used to understand how global collabo-
rative phenomena can emerge from only local dependencies.

• Graphical models are generally limited in their ability to represent all the possible logical consequences of
a probabilistic model.
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• Some special probabilistic models can be ‘perfectly’ mapped graphically.

• Factor graphs describe the factorisation of functions and are not necessarily related to probability distribu-
tions.

A detailed discussion of the axiomatic and logical basis of conditional independence is given in [47] and
[280].

4.7 Code

condindep.m: Conditional Independence test p(X,Y |Z) = p(X|Z)p(Y |Z)?

4.8 Exercises

Exercise 4.1. 1. Consider the pairwise Markov network,

p(x) = φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x4, x1) (4.8.1)

Express in terms of φ the following:

p(x1|x2, x4), p(x2|x1, x3), p(x3|x2, x4), p(x4|x1, x3) (4.8.2)

2. For a set of local distributions defined as

p1(x1|x2, x4), p2(x2|x1, x3), p3(x3|x2, x4), p4(x4|x1, x3) (4.8.3)

is it always possible to find a joint distribution p(x1, x2, x3, x4) consistent with these local conditional
distributions?

Exercise 4.2. Consider the Markov network

p(a, b, c) = φab(a, b)φbc(b, c) (4.8.4)

Nominally, by summing over b, the variables a and c are dependent. For binary b, explain a situation in
which this is not the case, so that marginally, a and c are independent.

Exercise 4.3. Show that for the Boltzmann machine defined on binary variables xi with

p(x) =
1

Z(W,b)
exp

(
xTWx + xTb

)
(4.8.5)

one may assume, without loss of generality, W = WT.

Exercise 4.4.

The restricted Boltzmann machine (or Harmonium[269]) is a constrained
Boltzmann machine on a bipartite graph, consisting of a layer of visible
variables v = (v1, . . . , vV ) and hidden variables h = (h1, . . . , hH):

p(v,h) =
1

Z(W,a,b)
exp

(
vTWh + aTv + bTh

)
(4.8.6)

All variables are binary taking states 0, 1.

h1 h2

v1 v2 v3

1. Show that the distribution of hidden units conditional on the visible units factorises as

p(h|v) =
∏
i

p(hi|v), with p(hi = 1|v) = σ

bi +
∑
j

Wjivj

 (4.8.7)

where σ(x) = ex/(1 + ex).
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2. By symmetry arguments, write down the form of the conditional p(v|h).

3. Is p(h) factorised?

4. Can the partition function Z(W,a,b) be computed efficiently for the RBM?

Exercise 4.5. You are given that

x⊥⊥y|(z, u) , u⊥⊥z|∅ (4.8.8)

Derive the most general form of probability distribution p(x, y, z, u) consistent with these statements. Does
this distribution have a simple graphical model?

Exercise 4.6. The undirected graph represents a Markov network with nodes x1, x2, x3, x4, x5, counting
clockwise around the pentagon with potentials φ(xi, xj). Show that the joint distribution can be written as

p(x1, x2, x3, x4, x5) =
p(x1, x2, x5)p(x2, x4, x5)p(x2, x3, x4)

p(x2, x5)p(x2, x4)
(4.8.9)

and express the marginal probability tables explicitly as functions of the potentials φ(xi, xj).

Exercise 4.7.

Consider the belief network on the right.

1. Write down a Markov network of p(x1, x2, x3).

2. Is your Markov network a perfect map of p(x1, x2, x3)?

h1 h2

x1 x2 x3

Exercise 4.8. Two research labs work independently on the relationship between discrete variables x and
y. Lab A proudly announces that they have ascertained distribution pA(x|y) from data. Lab B proudly
announces that they have ascertained pB(y|x) from data.

1. Is it always possible to find a joint distribution p(x, y) consistent with the results of both labs?

2. Is it possible to define consistent marginals p(x) and p(y), in the sense that p(x) =
∑

y pA(x|y)p(y)
and p(y) =

∑
x pB(y|x)p(x)? If so, explain how to find such marginals. If not, explain why not.

Exercise 4.9. Research lab A states its findings about a set of variables x1, . . . , xn as a list LA of conditional
independence statements. Lab B similarly provides a list of conditional independence statements LB.

1. Is it always possible to find a distribution which is consistent with LA and LB?

2. If the lists also contain dependence statements, how could one attempt to find a distribution that is
consistent with both lists?

Exercise 4.10.
Consider the distribution

p(x, y, w, z) = p(z|w)p(w|x, y)p(x)p(y) (4.8.10)

1. Write p(x|z) using a formula involving (all or some of) p(z|w), p(w|x, y), p(x), p(y).

2. Write p(y|z) using a formula involving (all or some of) p(z|w), p(w|x, y), p(x), p(y).

3. Using the above results, derive an explicit condition for x⊥⊥y|z and explain if this is satisfied for this
distribution.

Exercise 4.11. Consider the distribution

p(t1, t2, y1, y2, h) = p(y1|y2, t1, t2, h)p(y2|t2, h)p(t1)p(t2)p(h) (4.8.11)

1. Draw a belief network for this distribution.
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2. Does the distribution

p(t1, t2, y1, y2) =
∑
h

p(y1|y2, t1, t2, h)p(y2|t2, h)p(t1)p(t2)p(h) (4.8.12)

have a perfect map belief network?

3. Show that for p(t1, t2, y1, y2) as defined above t1⊥⊥y2|∅.

Exercise 4.12. Consider the distribution

p(a, b, c, d) = φab(a, b)φbc(b, c)φcd(c, d)φda(d, a) (4.8.13)

where the φ are potentials.

1. Draw a Markov network for this distribution.

2. Explain if the distribution can be represented as a (‘non-complete’) belief network.

3. Derive explicitly if a⊥⊥c|∅.

Exercise 4.13. Show how for any singly-connected Markov network, one may construct a Markov equivalent
belief network.

Exercise 4.14. Consider a pairwise binary Markov network defined on variables si ∈ {0, 1}, i = 1, . . . , N ,
with p(s) =

∏
ij∈E φij(si, sj), where E is a given edge set and the potentials φij are arbitrary. Explain how

to translate such a Markov network into a Boltzmann machine.
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CHAPTER 5

Efficient Inference in Trees

In previous chapters we discussed how to set up models. Inference then corresponds to operations such as
summing over subsets of variables. In machine learning and related areas we will often deal with distributions
containing hundreds of variables. In general inference is computationally very expensive and it is useful to
understand for which graphical structures this could be cheap in order that we may make models which we
can subsequently compute with. In this chapter we discuss inference in a cheap case, namely trees, which
has links to classical algorithms in many different fields from computer science (dynamic programming) to
physics (transfer matrix methods).

5.1 Marginal Inference

Given a distribution p(x1, . . . , xn), inference is the process of computing functions of the distribution.
Marginal inference is concerned with the computation of the distribution of a subset of variables, possibly
conditioned on another subset. For example, given a joint distribution p(x1, x2, x3, x4, x5) and evidence
x1 = tr, a marginal inference calculation is

p(x5|x1 = tr) ∝
∑

x2,x3,x4

p(x1 = tr, x2, x3, x4, x5). (5.1.1)

Marginal inference for discrete models involves summation and will be the focus of our development. In
principle the algorithms carry over to continuous variable models although the lack of closure of most
continuous distributions under marginalisation (the Gaussian being a notable exception) can make the
direct transference of these algorithms to the continuous domain problematic. The focus here is on efficient
inference algorithms for marginal inference in singly connected structures. An efficient algorithm for multiply
connected graphs will be considered in chapter(6).

5.1.1 Variable elimination in a Markov chain and message passing

A key concept in efficient inference is message passing in which information from the graph is summarised
by local edge information. To develop this idea, consider the four variable Markov chain (Markov chains are

a b c d

Figure 5.1: A Markov chain is of the form p(xT )
∏T−1
t=1 p(xt|xt+1)

for some assignment of the variables to labels xt. Variable Elimi-
nation can be carried out in time linear in the number of variables
in the chain.
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discussed in more depth in section(23.1))

p(a, b, c, d) = p(a|b)p(b|c)p(c|d)p(d) (5.1.2)

as given in fig(5.1), for which our task is to calculate the marginal p(a). For simplicity, we assume that each
of the variables has domain {0, 1}. Then

p(a = 0) =
∑

b∈{0,1},c∈{0,1},d∈{0,1}

p(a = 0, b, c, d) =
∑

b∈{0,1},c∈{0,1},d∈{0,1}

p(a = 0|b)p(b|c)p(c|d)p(d) (5.1.3)

We could carry out this computation by simply summing each of the probabilities for the 2 × 2 × 2 = 8
states of the variables b, c and d. This would therefore require 7 addition-of-two-numbers calls.

A more efficient approach is to push the summation over d as far to the right as possible:

p(a = 0) =
∑

b∈{0,1},c∈{0,1}

p(a = 0|b)p(b|c)
∑

d∈{0,1}

p(c|d)p(d)

︸ ︷︷ ︸
γd(c)

(5.1.4)

where γd (c) is a (two state) potential. Defining γd (c) requires two addition-of-two-numbers calls, one call
for each state of c. Similarly, we can distribute the summation over c as far to the right as possible:

p(a = 0) =
∑

b∈{0,1}

p(a = 0|b)
∑

c∈{0,1}

p(b|c)γd (c)

︸ ︷︷ ︸
γc(b)

(5.1.5)

Then, finally,

p(a = 0) =
∑

b∈{0,1}

p(a = 0|b)γc (b) (5.1.6)

By distributing the summations we have made 3×2 = 6 addition-of-two-numbers calls, compared to 23−1 = 7
from the naive approach. Whilst this saving may not appear much, the important point is that the number
of computations for a chain of length T + 1 would be linear, 2T , as opposed to exponential, 2T − 1 for the
naive approach.

This procedure is called variable elimination since each time we sum over the states of a variable we elimi-
nate it from the distribution. We can always perform variable elimination in a chain efficiently since there is
a natural way to distribute the summations, working inwards from the edges. Note that in the above case,
the potentials are in fact always distributions – we are just recursively computing the marginal distribution
of the right leaf of the chain.

One can view the elimination of a variable as passing a message (information) to a neighbouring node on
the graph. We can calculate a univariate-marginal of any tree (singly connected graph) by starting at a
leaf of the tree, eliminating the variable there, and then working inwards, nibbling off each time a leaf of
the remaining tree. Provided we perform elimination from the leaves inwards, then the structure of the
remaining graph is simply a subtree of the original tree, albeit with the conditional probability table entries
modified. This is guaranteed to enable us to calculate any marginal p(xi) using a number of summations
which scales linearly with the number of variables in the tree.

Finding conditional marginals for a chain

Consider the following inference problem, fig(5.1) : Given

p(a, b, c, d) = p(a|b)p(b|c)p(c|d)p(d), (5.1.7)

find p(d|a). This can be computed using

p(d|a) ∝
∑
b,c

p(a, b, c, d) =
∑
b,c

p(a|b)p(b|c)p(c|d)p(d) =
∑
c

∑
b

p(a|b)p(b|c)︸ ︷︷ ︸
γb(c)

p(c|d)p(d) ≡ γc (d) (5.1.8)
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The missing proportionality constant is found by repeating the computation for all states of variable d.
Since we know that p(d|a) = kγc (d), where γc (d) is the unnormalised result of the summation, we can use
the fact that

∑
d p(d|a) = 1 to infer that k = 1/

∑
d γc (d).

In this example, the potential γb (c) is not a distribution in c, nor is γc (d). In general, one may view variable
elimination as the passing of messages in the form of potentials from nodes to their neighbours. For belief
networks variable elimination passes messages that are distributions when following the direction of the
edge, and non-normalised potentials when passing messages against the direction of the edge.

Remark 5.1 (Variable elimination in trees as matrix multiplication). Variable elimination is related to the
associativity of matrix multiplication. For equation (5.1.2) above, we can define matrices

[Mab]i,j = p(a = i|b = j), [Mbc]i,j = p(b = i|c = j),

[Mcd]i,j = p(c = i|d = j), [Md]i = p(d = i), [Ma]i = p(a = i) (5.1.9)

Then the marginal Ma can be written

Ma = MabMbcMcdMd = Mab(Mbc(McdMd)) (5.1.10)

since matrix multiplication is associative. This matrix formulation of calculating marginals is called the
transfer matrix method, and is particularly popular in the physics literature[26].

Example 5.1 (Where will the fly be?).

You live in a house with three rooms, labelled 1, 2, 3. There is a door between rooms 1 and 2 and another
between rooms 2 and 3. One cannot directly pass between rooms 1 and 3 in one time-step. An annoying fly
is buzzing from one room to another and there is some smelly cheese in room 1 which seems to attract the
fly more. Using xt to indicate which room the fly is in at time t, with dom(xt) = {1, 2, 3}, the movement of
the fly can be described by a transition

p(xt+1 = i|xt = j) = Mij (5.1.11)

where Mij is an element of the transition matrix

M =

 0.7 0.5 0
0.3 0.3 0.5
0 0.2 0.5

 (5.1.12)

The matrix M is called ‘stochastic’ meaning that, as required of a conditional probability table, its columns
sum to 1,

∑3
i=1Mij = 1. Given that the fly is in room 1 at time t = 1, what is the probability of room

occupancy at time t = 5? Assume a Markov chain which is defined by the joint distribution

p(x1, . . . , xT ) = p(x1)

T−1∏
t=1

p(xt+1|xt) (5.1.13)

We are asked to compute p(x5|x1 = 1) which is given by∑
x4,x3,x2

p(x5|x4)p(x4|x3)p(x3|x2)p(x2|x1 = 1) (5.1.14)

Since the graph of the distribution is a Markov chain, we can easily distribute the summation over the terms.
This is most easily done using the transfer matrix method, giving

p(x5 = i|x1 = 1) = [M4v]i (5.1.15)
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where v is a vector with components (1, 0, 0)T, reflecting the evidence that at time t = 1 the fly is in room
1. Computing this we have (to 4 decimal places of accuracy)

M4v =

 0.5746
0.3180
0.1074

 (5.1.16)

Similarly, at time t = 6, the occupancy probabilities are (0.5612, 0.3215, 0.1173). The room occupancy
probability is converging to a particular distribution – the stationary distribution of the Markov chain. One
might ask where the fly is after an infinite number of time-steps. That is, we are interested in the large t
behaviour of

p(xt+1) =
∑
xt

p(xt+1|xt)p(xt) (5.1.17)

At convergence p(xt+1) = p(xt). Writing p for the vector describing the stationary distribution, this means

p = Mp (5.1.18)

In other words, p is the eigenvector of M with eigenvalue 1[134]. Computing this numerically, the stationary
distribution is (0.5435, 0.3261, 0.1304). Note that software packages usually return eigenvectors with

∑
i e

2
i =

1 — the unit eigenvector therefore will usually require normalisation to make this a probability with
∑

i ei =
1.

5.1.2 The sum-product algorithm on factor graphs

Both Markov and belief networks can be represented using factor graphs. For this reason it is convenient to
derive a marginal inference algorithm for FGs since this then applies to both Markov and belief networks.
This is termed the sum-product algorithm since to compute marginals we need to distribute the sum over
variable states over the product of factors. In other texts, this is also referred to as belief propagation.

Non-branching graphs : variable to variable messages

Consider the distribution

p(a, b, c, d) = f1 (a, b) f2 (b, c) f3 (c, d) f4 (d) (5.1.19)

which has the factor graph represented in fig(5.2). To compute the marginal p(a, b, c), since the variable d
only occurs locally, we use

p(a, b, c) =
∑
d

p(a, b, c, d) =
∑
d

f1 (a, b) f2 (b, c) f3 (c, d) f4 (d) = f1 (a, b) f2 (b, c)
∑
d

f3 (c, d) f4 (d)︸ ︷︷ ︸
µd→c(c)

(5.1.20)

Here µd→c (c) defines a message from node d to node c and is a function of the variable c. Similarly,

p(a, b) =
∑
c

p(a, b, c) = f1 (a, b)
∑
c

f2 (b, c)µd→c (c)︸ ︷︷ ︸
µc→b(b)

(5.1.21)

Hence

µc→b (b) =
∑
c

f2 (b, c)µd→c (c) (5.1.22)

It is clear how one can recurse this definition of messages so that for a chain of n variables the marginal
of the first node can be computed in time linear in n. The term µc→b (b) can be interpreted as carrying
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a b c d
f1 f2 f3 f4

Figure 5.2: For singly connected structures without
branches, simple messages from one variable to its
neighbour may be defined to form an efficient marginal
inference scheme.

marginal information from the graph beyond c. For simple linear structures with no branching, messages
from variables to variables are sufficient. However, as we will see below in more general structures with
branching, it is useful to consider two types of messages, namely those from variables to factors and vice
versa.

General singly connected factor graphs

The slightly more complex example,

p(a|b)p(b|c, d)p(c)p(d)p(e|d) (5.1.23)

has the factor graph depicted in fig(5.3)

f1 (a, b) f2 (b, c, d) f3 (c) f4 (d, e) f5 (d) (5.1.24)

The marginal p(a, b) can be represented by an amputated graph with a message, since

p(a, b) = f1 (a, b)
∑
c,d

f2 (b, c, d) f3 (c) f5 (d)
∑
e

f4 (d, e)︸ ︷︷ ︸
µf2→b(b)

(5.1.25)

where µf2→b (b) is a message from a factor to a variable. This message can be constructed from messages
arriving from the two branches through c and d, namely

µf2→b (b) =
∑
c,d

f2 (b, c, d) f3 (c)︸ ︷︷ ︸
µc→f2 (c)

f5 (d)
∑
e

f4 (d, e)︸ ︷︷ ︸
µd→f2 (d)

(5.1.26)

Similarly, we can interpret

µd→f2 (d) = f5 (d)︸ ︷︷ ︸
µf5→d(d)

∑
e

f4 (d, e)︸ ︷︷ ︸
µf4→d(d)

(5.1.27)

To complete the interpretation we identify µc→f2 (c) ≡ µf3→c (c). In a non-branching link, one can more
simply use a variable to variable message. To compute the marginal p(a), we then have

p(a) =
∑
b

f1 (a, b)µf2→b (b)︸ ︷︷ ︸
µf1→a(a)

(5.1.28)

a b

c

d e

f1 f2

f3

f4

f5

Figure 5.3: For a branching singly connected graph,
it is useful to define messages from both factors to
variables, and variables to factors.
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For consistency of interpretation, one also can view the above as

µf1→a (a) =
∑
b

f1 (a, b)µf2→b (b)︸ ︷︷ ︸
µb→f1 (b)

(5.1.29)

We can now see how a message from a factor to a node is formed from summing the product of incoming
node-to-factor messages. Similarly, a message from a node to a factor is given by the product of incoming
factor-to-node messages.

A convenience of this approach is that the messages can be reused to evaluate other marginal inferences.
For example, it is clear that p(b) is given by

p(b) =
∑
a

f1 (a, b)︸ ︷︷ ︸
µf1→b(b)

µf2→b (b) (5.1.30)

If we additionally desire p(c), we need to define the message from f2 to c,

µf2→c (c) =
∑
b,d

f2 (b, c, d)µb→f2 (b)µd→f2 (d) (5.1.31)

where µb→f2 (b) ≡ µf1→b (b). This demonstrates the reuse of already computed message from d to f2 to
compute the marginal p(c).

Definition 5.1 (Message schedule). A message schedule is a specified sequence of message updates. A valid
schedule is that a message can be sent from a node only when that node has received all requisite messages
from its neighbours. In general, there is more than one valid updating schedule.

Sum-Product algorithm

The sum-product algorithm is described below in which messages are updated as a function of incoming
messages. One then proceeds by computing the messages in a schedule that allows the computation of a
new message based on previously computed messages, until all messages from all factors to variables and
vice-versa have been computed.

Procedure 5.1 (Sum-Product messages on Factor Graphs).

Given a distribution defined as a product on subsets of the variables, p(X ) = 1
Z

∏
f φf (Xf ), provided the

factor graph is singly connected we can carry out summation over the variables efficiently.

Initialisation Messages from leaf node factors are initialised to the factor. Messages from leaf variable
nodes are set to unity.

Variable to Factor message

µx→f (x) =
∏

g∈{ne(x)\f}

µg→x (x)
f

f1

f2

f3

x
µx→f (x)

µ
f
1→

x (x)

µf2→x (x)

µf3
→x

(x
)

80 DRAFT November 21, 2011



Marginal Inference

Factor to Variable message

µf→x (x) =
∑
Xf\x

φf (Xf )
∏

y∈{ne(f)\x}

µy→f (y)

We write
∑
Xf\x to denote summation over all states in the set

of variables Xf\x.

x

y1

y2

y3

f µf→x (x)

µ
y
1→

f (y
1 )

µy2→f (y2)

µy3
→f

(y3
)

Marginal

p(x) ∝
∏

f∈ne(x)

µf→x (x)

f1

f2

f3x

µf1→x (x)

µf2→
x (x)

µx←f3(x)

For marginal inference, the important information is the relative size of the message states so that we may
renormalise messages as we wish. Since the marginal will be proportional to the incoming messages for that
variable, the normalisation constant is trivially obtained using the fact that the marginal must sum to 1.
However, if we wish to also compute any normalisation constant using these messages, we cannot normalise
the messages since this global information will then be lost.

5.1.3 Dealing with Evidence

For a distribution which splits into evidential and non-evidential variables, X = Xe ∪ Xn, the marginal of a
non-evidential variable p(xi,Xe) is given by summing over all the variables in Xn (except for xi) with Xe set
into their evidential states. There are two ways to reconcile this with the factor graph formalism. Either
we can simply say that by setting the variables Xe, we define a new factor graph on Xn, and then pass
messages on this new factor graph. Alternatively, we can define the potentials which contain the variables
Xe by multiplying each potential that contains an evidential variable by a delta function (an indicator) that
is zero unless the variable xn is in the specified evidential state. When we than perform a factor to variable
message, the sum of this modified potential over any of the evidential variable states will be zero except
for that state which corresponds to the evidential setting. Another way to view this is that the sum in
the factor to variable message is only over the non-evidential variables, with any evidential variables in the
potential set into their evidential states.

5.1.4 Computing the marginal likelihood

For a distribution defined as products over potentials φf (Xf )

p(X ) =
1

Z

∏
f

φf (Xf ) (5.1.32)

the normalisation is given by

Z =
∑
X

∏
f

φf (Xf ) (5.1.33)

To compute this summation efficiently we take the product of all incoming messages to an arbitrarily chosen
variable x and then sum over the states of that variable:

Z =
∑
x

∏
f∈ne(x)

µf→x (x) (5.1.34)

If the factor graph is derived from setting a subset of variables of a BN in evidential states then the
summation over all non-evidential variables will yield the marginal on the visible (evidential) variables. For
example

p(b, d) =
∑
a,c

p(a|b)p(b|c)p(c|d)p(d). (5.1.35)

DRAFT November 21, 2011 81



Marginal Inference

This can be interpreted as requiring the sum over a product of suitably defined factors. Hence one can
readily find the marginal likelihood of the evidential variables for singly connected BNs.

Log messages

For the above method to work, the absolute (not relative) values of the messages are required, which
prohibits renormalisation at each stage of the message passing procedure. However, without normalisation
the numerical value of messages can become very small, particularly for large graphs, and numerical precision
issues can occur. A remedy in this situation is to work with log messages,

λ = logµ (5.1.36)

For this, the variable to factor messages

µx→f (x) =
∏

g∈{ne(x)\f}

µg→x (x) (5.1.37)

become simply

λx→f (x) =
∑

g∈{ne(x)\f}

λg→x (x) (5.1.38)

More care is required for the factors to variable messages, which are defined by

µf→x (x) =
∑
Xf\x

φf (Xf )
∏

y∈{ne(f)\x}

µy→f (y) (5.1.39)

Naively, one may write

λf→x (x) = log

∑
Xf\x

φf (Xf )exp

 ∑
y∈{ne(f)\x}

λy→f (y)

 (5.1.40)

However, the exponentiation of the log messages will cause potential numerical precision problems. A
solution to this numerical difficulty is obtained by finding the largest value of the incoming log messages,

λ∗y→f = max
y∈{ne(f)\x}

λy→f (y) (5.1.41)

Then

λf→x (x) = λ∗y→f + log

∑
Xf\x

φf (Xf )exp

 ∑
y∈{ne(f)\x}

λy→f (y)− λ∗y→f

 (5.1.42)

By construction the terms exp
(∑

y∈{ne(f)\x} λy→f (y)− λ∗y→f
)

will be ≤ 1, with at least one term being

equal to 1. This ensures that the dominant numerical contributions to the summation are computed accu-
rately.

Log marginals are readily found using

log p(x) =
∑

f∈ne(x)

λf→x (x) (5.1.43)
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a b

cd

f1

f2

f3

f4

(a)

a b

c

f1

f2
f5

(b)

Figure 5.4: (a): Factor graph with a loop. (b): Elimi-
nating the variable d adds an edge between a and c, demon-
strating that, in general, one cannot perform marginal in-
ference in loopy graphs by simply passing messages along
existing edges in the original graph.

5.1.5 The problem with loops

Loops cause a problem with variable elimination (or message passing) techniques since once a variable is
eliminated the structure of the ‘amputated’ graph in general changes. For example, consider the FG

p(a, b, c, d) = f1 (a, b) f2 (b, c) f3 (c, d) f4 (a, d) (5.1.44)

depicted in fig(5.4a). The marginal p(a, b, c) is given by

p(a, b, c) = f1 (a, b) f2 (b, c)
∑
d

f3 (c, d) f4 (a, d)︸ ︷︷ ︸
f5(a,c)

(5.1.45)

which adds a link ac in the amputated graph, see fig(5.4b). This means that one cannot account for
information from variable d by simply updating potentials on links in the original graph – one needs to
account for the fact that the structure of the graph changes. The junction tree algorithm, chapter(6) deals
with this by combining variables to make a new singly connected graph for which the graph structure remains
singly connected under variable elimination.

5.2 Other Forms of Inference

5.2.1 Max-Product

A common interest is the most likely state of distribution. That is

argmax
x1,x2,...,xn

p (x1, x2, . . . , xn) (5.2.1)

To compute this efficiently for trees we exploit any factorisation structure of the distribution, analogous to
the sum-product algorithm. That is, we aim to distribute the maximization so that only local computations
are required. To develop the algorithm, consider a function which can be represented as an undirected chain,

f(x1, x2, x3, x4) = φ(x1, x2)φ(x2, x3)φ(x3, x4) (5.2.2)

for which we wish to find the joint state x∗1, x
∗
2, x
∗
3, x
∗
4 which maximises f . Firstly, we calculate the maximum

value of f . Since potentials are non-negative, we may write

max
x

f(x) = max
x1,x2,x3,x4

φ(x1, x2)φ(x2, x3)φ(x3, x4) = max
x1,x2,x3

φ(x1, x2)φ(x2, x3) max
x4

φ(x3, x4)︸ ︷︷ ︸
γ4(x3)

= max
x1,x2

φ(x1, x2) max
x3

φ(x2, x3)γ4(x3)︸ ︷︷ ︸
γ3(x2)

= max
x1,x2

φ(x1, x2)γ3(x2) = max
x1

max
x2

φ(x1, x2)γ3(x2)︸ ︷︷ ︸
γ2(x1)

The final equation corresponds to solving a single variable optimisation and determines both the optimal
value of the function f and also the optimal state x∗1 = argmax

x1
γ2(x1). Given x∗1, the optimal x2 is given

by x∗2 = argmax
x2

φ(x∗1, x2)γ3(x2), and similarly x∗3 = argmax
x3

φ(x∗2, x3)γ4(x3), x∗4 = argmax
x4

φ(x∗3, x4). This

procedure is called backtracking . Note that we could have equally started at the other end of the chain by
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defining messages γ that pass information from xi to xi+1. The chain structure of the function ensures that
the maximal value (and its state) can be computed in time which scales linearly with the number of factors
in the function. There is no requirement here that the function f corresponds to a probability distribution
(though the factors must be non-negative).

Example 5.2. Consider a distribution defined over binary variables:

p(a, b, c) ≡ p(a|b)p(b|c)p(c) (5.2.3)

with

p(a = tr|b = tr) = 0.3, p(a = tr|b = fa) = 0.2, p(b = tr|c = tr) = 0.75

p(b = tr|c = fa) = 0.1, p(c = tr) = 0.4

What is the most likely joint configuration, argmax
a,b,c

p(a, b, c)?

Naively, we could evaluate p(a, b, c) over all the 8 joint states of a, b, c and select that states with highest
probability. An alternative message passing approach is to define

γc(b) ≡ max
c
p(b|c)p(c) (5.2.4)

For the state b = tr,

p(b = tr|c = tr)p(c = tr) = 0.75× 0.4, p(b = tr|c = fa)p(c = fa) = 0.1× 0.6 (5.2.5)

Hence, γc(b = tr) = 0.75× 0.4 = 0.3. Similarly, for b = fa,

p(b = fa|c = tr)p(c = tr) = 0.25× 0.4 p(b = fa|c = fa)p(c = fa) = 0.9× 0.6 (5.2.6)

Hence, γc(b = fa) = 0.9× 0.6 = 0.54.

We now consider

γb(a) ≡ max
b
p(a|b)γc(b) (5.2.7)

For a = tr, the state b = tr has value

p(a = tr|b = tr)γc(b = tr) = 0.3× 0.3 = 0.09 (5.2.8)

and state b = fa has value

p(a = tr|b = fa)γc(b = fa) = 0.2× 0.54 = 0.108 (5.2.9)

Hence γb(a = tr) = 0.108. Similarly, for a = fa, the state b = tr has value

p(a = fa|b = tr)γc(b = tr) = 0.7× 0.3 = 0.21 (5.2.10)

and state b = fa has value

p(a = fa|b = fa)γc(b = fa) = 0.8× 0.54 = 0.432 (5.2.11)

giving γb(a = fa) = 0.432. Now we can compute the optimal state

a∗ = argmax
a

γb(a) = fa (5.2.12)

Given this optimal state, we can backtrack, giving

b∗ = argmax
b

p(a = fa|b)γc(b) = fa, c∗ = argmax
c

p(b = fa|c)p(c) = fa (5.2.13)

Note that in the backtracking process, we already have all the information required from the computation
of the messages γ.
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If we want to find the most likely state for a variable in the centre of the chain we can therefore pass
messages from one end to the other followed by backtracking. This is the approach for example taken by
the Viterbi algorithm for HMMs, section(23.2). Alternatively, we can send messages (carrying the result
of maximisations) simultaneously from both ends of the chain and then read off the maximal state of
the variable from the state which maximises the product of incoming messages. The first is a sequential
procedure since we must have passed messages along the chain before we can backtrack. The second is
a parallel procedure in which messages can be sent concurrently. The latter approach can be represented
using a factor graph as described below.

Using a factor graph

One can also use the factor graph to compute the joint most probable state. Provided that a full schedule
of message passing has occurred, the product of messages into a variable equals the maximum value of the
joint function with respect to all other variables. One can then simply read off the most probable state by
maximising this local potential.

Procedure 5.2 (Max-Product messages on Factor Graphs).

Given a distribution defined as a product on subsets of the variables, p(X ) = 1
Z

∏
f φf (Xf ), provided the

factor graph is singly connected we can carry out maximisation over the variables efficiently.

Initialisation Messages from leaf node factors are initialised to the factor. Messages from leaf variable
nodes are set to unity.

Variable to Factor message

µx→f (x) =
∏

g∈{ne(x)\f}

µg→x (x)
f

f1

f2

f3

x
µx→f (x)

µ
f
1→

x (x)

µf2→x (x)

µf3
→x

(x
)

Factor to Variable message

µf→x (x) = max
Xf\x

φf (Xf )
∏

y∈{ne(f)\x}

µy→f (y)
x

y1

y2

y3

f µf→x (x)

µ
y
1→

f (y
1 )

µy2→f (y2)

µy3
→f

(y3
)

Maximal State

x∗ = argmax
x

∏
f∈ne(x)

µf→x (x)

f1

f2

f3x

µf1→x (x)

µf2→
x (x)

µx←f3(x)

This algorithm is also called belief revision.

5.2.2 Finding the N most probable states

It is often of interest to calculate not just the most likely joint state, but the N most probable states,
particularly in cases where the optimal state is only slightly more probable than other states. This is an
interesting problem in itself and can be tackled with a variety of methods. A general technique is given by
Nilson[226] which is based on the junction tree formalism, chapter(6), and the construction of candidate
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lists, see for example [72].

For singly connected structures, several approaches have been developed [227, 319, 285, 272]. For the
hidden Markov model, section(23.2), a simple algorithm is the N -Viterbi approach which stores the N -most
probable messages at each stage of the propagation. For more general singly connected graphs one can
extend the max-product algorithm to an N -max-product algorithm by retaining at each stage the N most
probable messages, see below.

N-max-product

The algorithm for N -max-product is a minor modification of the standard max-product algorithm. Compu-
tationally, a straightforward way to accomplish this is to introduce an additional variable for each message
that is used to index the most likely messages. We will first develop this for message passing on an undi-
rected graph. Consider the distribution

e a b

c

d

p(a, b, c, d, e) = φ(e, a)φ(a, b)φ(b, c)φ(b, d) (5.2.14)

for which we wish to find the two most probable values. Using the notation

i
max
x

f(x) (5.2.15)

for the ith highest value of f(x), the maximisation over d can be expressed using the message

γd(b, 1) =
1

max
d
φ(b, d), γd(b, 2) =

2
max
d
φ(b, d) (5.2.16)

Defining messages similarly, the 2 most likely values of p(a, b, c, d, e) can be computed using

1:2
max
a,b,c,d,e

φ(e, a)φ(a, b)φ(b, c)φ(b, d) =
1:2

max
e,ma

1:2
max
a,mb

φ(e, a)
1:2

max
b,mc,md

φ(a, b)
1:2

max
c
φ(b, c)︸ ︷︷ ︸

γc(b,mc)

1:2
max
d
φ(b, d)︸ ︷︷ ︸

γd(b,md)︸ ︷︷ ︸
γb(a,mb)︸ ︷︷ ︸

γa(e,ma)

(5.2.17)

where ma, mb, mc and md index the two highest values. At the final stage we now have a table with dim(e)×2
entries, from which we compute the highest two joint states of e,ma. Given these first most likely joint
states, e∗,m∗a one then backtracks to find the most likely state of a, mb using arg max1:2

a,mb
φ(e∗, a)γb(a,mb).

One continues backtracking, then finding the most likely state of b,mc,md and finally c and d. One may
then restart the backtracking using the second most likely state of e,ma and continue to find the most likely
states to have given rise to this, leading to the second most likely joint state.

The translation of this to the factor graph formalism is straightforward and contained in maxNprodFG.m.
Essentially the only modification required is to define extended messages which contain the N -most likely
messages computed at each stage. A variable to factor message consists of the product of extended mes-
sages. For a factor to variable message, all extended messages from the neighbours are multiplied together
into a large table. The N -most probable messages are retained, defining a new extended message. The
N -most probable states for each variable can then be read off by finding the variable state that maximises
the product of incoming extended messages.

Branches are the bottleneck in the above computation. Consider a term as part of a larger system with

z a

b

c

φ(z, a)φ(a, b)φ(a, c) (5.2.18)
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34
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Figure 5.5: State transition diagram (weights not shown). The shortest
(unweighted) path from state 1 to state 7 is 1 − 2 − 7. Considered as a
Markov chain (random walk), the most probable path from state 1 to state
7 is 1− 8− 9− 7. The latter path is longer but more probable since for the
path 1 − 2 − 7, the probability of exiting from state 2 into state 7 is 1/5
(assuming each transition is equally likely). See demoMostProbablePath.m

We would like to pass a message along the branch from b to a and then from c to a and then from a to the
rest of the graph. To compute the most likely value we can find this from

max
a

φ(z, a)

{
max
b
φ(a, b)

}{
max
c
φ(a, c)

}
(5.2.19)

which represents an efficient approach since the maximisation can be carried out over each branch separately.
However, to find the second most likely value, we cannot write

2
max
a

φ(z, a)

{
max
b
φ(a, b)

}{
max
c
φ(a, c)

}
(5.2.20)

For a fixed z, this would erroneously always force a to be in a different state than the state corresponding to
the most likely value. Similarly, we cannot assume that the second most likely state corresponds to finding
the second most likely state of each factor. Unlike the single most likely state case, therefore, we cannot
distribute the maximisations over each branch but have to search over all branch contributions concurrently.
This therefore corresponds to an exponentially complex search for the N -highest joint branch states. Whilst
non branching links are non-problematic, the degree D of a variable’s node (in either the FG or undirected
representation) contributes an additional exponential term ND to the computational complexity.

5.2.3 Most probable path and shortest path

What is the most likely path from state a to state b for an N state Markov chain? Note that this is not
necessarily the same as the shortest path, as explained in fig(5.5). If we consider a path of length T , this
has probability

p(s2|s1 = a)p(s3|s2) . . . p(sT = b|sT−1) (5.2.21)

Finding the most probable path can then be readily solved using the max-product (or max-sum algorithm
for the log-transitions) on a simple serial factor graph. To deal with the issue that we don’t know the optimal
T , one approach is to redefine the probability transitions such that the desired state b is an absorbing state
of the chain (that is, one can enter this state but not leave it). With this redefinition, the most probable
joint state will correspond to the most probable state on the product of N − 1 transitions. This approach
is demonstrated in demoMostProbablePath.m, along with the more direct approaches described below.

An alternative, cleaner approach is as follows: for the Markov chain we can dispense with variable-to-factor
and factor-to-variable messages and use only variable-to-variable messages. If we want to find the most
likely set of states a, s2, . . . , sT−1, b to get us there, then this can be computed by defining the maximal path
probability E (a→ b, T ) to get from a to b in T -timesteps:

E (a→ b, T ) = max
s2,...,sT−1

p(s2|s1 = a)p(s3|s2)p(s4|s3) . . . p(sT = b|sT−1) (5.2.22)

= max
s3,...,sT−1

max
s2

p(s2|s1 = a)p(s3|s2)︸ ︷︷ ︸
γ2→3(s3)

p(s4|s3) . . . p(sT = b|sT−1) (5.2.23)

To compute this efficiently we define messages

γt→t+1 (st+1) = max
st

γt−1→t (st) p(st+1|st), t ≥ 2, γ1→2 (s2) = p(s2|s1 = a) (5.2.24)
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until the point

E (a→ b, T ) = max
sT−1

γT−2→T−1 (sT−1) p(sT = b|sT−1) = γT−1→T (sT = b) (5.2.25)

We can now proceed to find the maximal path probability for timestep T +1. Since the messages up to time
T − 1 will be the same as before, we need only compute one additional message, γT−1→T (sT ), from which

E (a→ b, T + 1) = max
sT

γT−1→T (sT ) p(sT+1 = b|sT ) = γT→T+1 (sT+1 = b) (5.2.26)

We can proceed in this manner until we reach E (a→ b, N) where N is the number of nodes in the graph.
We don’t need to go beyond this number of steps since those that do must necessarily contain non-simple
paths. (A simple path is one that does not include the same state more than once.) The optimal time t∗

is then given by which of E (a→ b, 2) , . . . , E (a→ b, N) is maximal. Given t∗ one can begin to backtrack1.
Since

E (a→ b, t∗) = max
st∗−1

γt∗−2→t∗−1 (st∗−1) p(st∗ = b|st∗−1) (5.2.27)

we know the optimal state

s∗t∗−1 = argmax
st∗−1

γt∗−2→t∗−1 (st∗−1) p(st∗ = b|st∗−1) (5.2.28)

We can then continue to backtrack:

s∗t∗−2 = argmax
st∗−2

γt∗−3→t∗−2 (st∗−2) p(s∗t∗−1|st∗−2) (5.2.29)

and so on. See mostprobablepath.m.

• In the above derivation we do not use any properties of probability, except that p must be non-negative
(otherwise sign changes can flip a whole sequence ‘probability’ and the local‘ message recursion no
longer applies). One can consider the algorithm as finding the optimal ‘product’ path from a to b.

• It is straightforward to modify the algorithm to solve the (single-source, single-sink) shortest weighted
path problem. One way to do this is to replace the Markov transition probabilities with exp(−u(st|st−1)),
where u(st|st−1) is the edge weight and is infinite if there is no edge from st−1 to st. This approach
is taken in shortestpath.m which is able to deal with either positive or negative edge weights. This
method is therefore more general than the well-known Dijkstra’s algorithm [121] which requires weights
to be positive. If a negative edge cycle exists, the code returns the shortest weighted length N path,
where N is the number of nodes in the graph. See demoShortestPath.m.

• The above algorithm is efficient for the single-source, single-sink scenario, since the messages contain
only N states, meaning that the overall storage is O(N2).

• As it stands, the algorithm is numerically impractical since the messages are recursively multiplied by
values usually less than 1 (at least for the case of probabilities). One will therefore quickly run into
numerical underflow (or possibly overflow in the case of non-probabilities) with this method.

To fix the final point above, it is best to work by defining the logarithm of E. Since this is a monotonic
transformation, the most probable path defined through logE is the same as that obtained from E. In this
case

L (a→ b, T ) = max
s2,...,sT−1

log [p(s2|s1 = a)p(s3|s2)p(s4|s3) . . . p(sT = b|sT−1)] (5.2.30)

= max
s2,...,sT−1

[
log p(s2|s1 = a) +

T−1∑
t=2

log p(st|st−1) + log p(sT = b|sT−1)

]
(5.2.31)

1An alternative to finding t∗ is to define self-transitions with probability 1, and then use a fixed time T = N . Once the
desired state b is reached, the self-transition then preserves the chain in state b for the remaining timesteps. This procedure is
used in mostprobablepathmult.m
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We can therefore define new messages

λt→t+1 (st+1) = max
st

[λt−1→t (st) + log p(st+1|st)] (5.2.32)

One then proceeds as before by finding the most probable t∗ defined on L, and backtracks.

Remark 5.2. A possible confusion is that optimal paths can be efficiently found ‘when the graph is loopy’.
Note that the graph in fig(5.5) is a state-transition diagram, not a graphical model. The graphical model
corresponding to this simple Markov chain is the Belief Network

∏
t p(st|st−1), a linear serial structure.

Hence the underlying graphical model is a simple chain, which explains why computation is efficient.

Most probable path (multiple-source, multiple-sink)

If we need the most probable path between all states a and b, one could re-run the above single-source-
single-sink algorithm for all a and b. A computationally more efficient approach is to observe that one can
define a message for each starting state a:

γt→t+1 (st+1|a) = max
st

γt−1→t (st|a) p(st+1|st) (5.2.33)

and continue until we find the maximal path probability matrix for getting from any state a to any state b
in T timesteps:

E (a→ b, T ) = max
sT−1

γT−2→T−1 (sT−1|a) p(sT = b|sT−1) (5.2.34)

Since we know the message γT−2→T−1 (sT−1|a) for all states a, we can readily compute the most probable
path from all starting states a to all states b after T steps. This requires passing an N ×N matrix message
γ. We can then proceed to the next timestep T + 1. Since the messages up to time T − 1 will be the same
as before, we need only compute one additional message, γT−1→T (sT ), from which

E (a→ b, T + 1) = max
sT

γT−1→T (sT |a) p(sT+1 = b|sT ) (5.2.35)

In this way one can then efficiently compute the optimal path probabilities for all starting states a and
end states b after t timesteps. To find the optimal corresponding path, backtracking proceeds as before,
see mostprobablepathmult.m and demoMostProbablePathMult.m. One can also use the same algorithm to
solve the multiple-source, multiple-sink shortest weighted path problem using exponentiated negative edge
weights, as before. This is a variant of the Floyd-Warshall-Roy algorithm[121].

5.2.4 Mixed inference

An often encountered situation is to infer the most likely state of a joint marginal, possibly given some
evidence. For example, given a distribution p(x1, . . . , xn), find

argmax
x1,x2,...,xm

p(x1, x2, . . . , xm) = argmax
x1,x2,...,xm

∑
xm+1,...,xn

p(x1, . . . , xn) (5.2.36)

In general, even for tree structured p(x1, . . . , xn), the optimal marginal state cannot be computed efficiently.
One way to see this is that due to the summation the resulting joint marginal does not have a structured
factored form as products of simpler functions of the marginal variables. Finding the most probable joint
marginal then requires a search over all the joint marginal states – a task exponential in m. An approximate
solution is provided by the EM algorithm (see section(11.2) and exercise(5.7)).

5.3 Inference in Multiply Connected Graphs

We briefly discuss here some relatively straightforward approaches to dealing with multiply connected graphs
that are conceptually straightforward, or build on the repeated use of singly connected structures. We discuss
a more general algorithm in chapter(6).
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Algorithm 5.1 Compute marginal p(x1|evidence) from distribution p(x) =
∏
f φf ({x}f ). Assumes non-

evidential variables are ordered x1, . . . , xn.

1: procedure Bucket Elimination(p(x) =
∏
f φf ({x}f ).)

2: Initialize all bucket potentials to unity. . Fill buckets
3: while There are potentials left in the distribution do
4: For each potential φf , find its highest variable xj (according to the ordering).
5: Multiply φf with the potential in bucket j and remove φf the distribution.
6: end while
7: for i = bucket n to 1 do . Empty buckets
8: For bucket i sum over the states of variable xi and call this potential γi
9: Identify the highest variable xh of potential γi

10: Multiply the existing potential in bucket h by γi
11: end for
12: The marginal p(x1|evidence) is proportional to γ1.
13: return p(x1|evidence) . The conditional marginal.
14: end procedure

5.3.1 Bucket elimination

We consider here a general conditional marginal variable elimination method that works for any distribu-
tion (including multiply connected graphs). Bucket elimination is presented in algorithm(5.1) and can be
considered a way to organise the distributed summation[83]. The algorithm is perhaps best explained by a
simple example, as given below.

Example 5.3 (Bucket Elimination). Consider the problem of calculating the marginal p(f) of

p(a, b, c, d, e, f, g) = p(f |d)p(g|d, e)p(c|a)p(d|a, b)p(a)p(b)p(e), (5.3.1)

see fig(2.1a). Whilst this is singly-connected, this serves to explain the general procedure.

p(f) =
∑

a,b,c,d,e,g

p(a, b, c, d, e, f, g) =
∑

a,b,c,d,e,g

p(f |d)p(g|d, e)p(c|a)p(d|a, b)p(a)p(b)p(e) (5.3.2)

We can distribute the summation over the various terms as follows: e, b and c are end nodes, so that we
can sum over their values:

p(f) =
∑
d,a,g

p(f |d)p(a)

(∑
b

p(d|a, b)p(b)
)(∑

c

p(c|a)

)(∑
e

p(g|d, e)p(e)
)

(5.3.3)

For convenience, lets write the terms in the brackets as
∑

b p(d|a, b)p(b) ≡ γb (a, d),
∑

e p(g|d, e)p(e) ≡
γe (d, g). The term

∑
c p(c|a) is equal to unity, and we therefore eliminate this node directly. Rearranging

terms, we can write

p(f) =
∑
d,a,g

p(f |d)p(a)γb (a, d) γe (d, g) (5.3.4)

If we think of this graphically, the effect of summing over b, c, e is effectively to remove or ‘eliminate’ those
variables. We can now carry on summing over a and g since these are end points of the new graph:

p(f) =
∑
d

p(f |d)

(∑
a

p(a)γb (a, d)

)(∑
g

γe (d, g)

)
(5.3.5)

Again, this defines new potentials γa (d), γg (d), so that the final answer can be found from

p(f) =
∑
d

p(f |d)γa (d) γg (d) (5.3.6)
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e p(e)p(g|d, e)

c p(c|a)

b p(b)p(d|a, b) p(b)p(d|a, b)

g γE (d, g) γE (d, g)

a p(a) p(a) p(a)γB (d, a) p(a)γB (d, a)

d p(f |d) p(f |d) p(f |d) p(f |d)γG (d) p(f |d)γG (d) γA (d)

f γD (f)

Figure 5.6: The bucket elimination algorithm applied to the graph fig(2.1). At each stage, at least one
node is eliminated from the graph. The second stage of eliminating c is trivial since

∑
c p(c|a) = 1 and has

therefore been skipped over since this bucket does not send any message.

We illustrate this in fig(5.6). Initially, we define an ordering of the variables, beginning with the one that
we wish to find the marginal for – a suitable ordering is therefore, f, d, a, g, b, c, e. Then starting with the
highest bucket e (according to our ordering f, d, a, g, b, c, e), we put all the potentials that mention e in the
e bucket. Continuing with the next highest bucket, c, we put all the remaining potentials that mention c
in this c bucket, etc. The result of this initialisation procedure is that terms (conditional distributions) in
the DAG are distributed over the buckets, as shown in the left most column of fig(5.6). Eliminating then
the highest bucket e, we pass a message to node g. Immediately, we can also eliminate bucket c since this
sums to unity. In the next column, we have now two fewer buckets, and we eliminate the highest remaining
bucket, this time b, passing a message to bucket a, and so on.

There are some important observations we can make about bucket elimination:

1. To compute say p(x2|evidence) we need to re-order the variables (so that the required marginal variable
is labelled x1) and repeat bucket elimination. Hence each query (calculation of a marginal in this
case) requires re-running the algorithm. It would be more efficient to reuse messages, rather than
recalculating them each time.

2. In general, bucket elimination constructs multi-variable messages γ from bucket to bucket. The storage
requirements of a multi-variable message are exponential in the number of variables of the message.

3. For trees we can always choose a variable ordering to render the computational complexity to be
linear in the number of variables. Such an ordering is called perfect, definition(6.9), and indeed it can
be shown that a perfect ordering can always easily be found for singly connected graphs (see [92]).
However, orderings exist for which bucket elimination will be extremely inefficient.

5.3.2 Loop-cut conditioning

For multiply connected distributions we run into some difficulty with the message passing routines such as
the sum-product algorithm which are designed to work on singly connected graphs only. One way to solve
the difficulties of multiply connected (loopy) graphs is to identify nodes that, when removed, would reveal
a singly connected subgraph[236]. Consider the example of fig(5.7). Imagine that we wish to calculate a
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Figure 5.7: A multiply con-
nected graph (a) reduced to a
singly connected graph (b) by
conditioning on the variable c.

marginal, say p(d). Then

p(d) =
∑
c

∑
a,b,e,f,g

p(c|a)p(a)︸ ︷︷ ︸
p∗(a)

p(d|a, b)p(b) p(f |c, d)︸ ︷︷ ︸
p∗(f |d)

p(g|d, e) (5.3.7)

where the p∗ potentials are not necessarily distributions. For each state of c, the product of the new po-
tentials on the variables a, b, e, f, g is singly connected, so that standard singly connected message passing
can be used to perform inference. We will need to perform inference for each state of variable c, each state
defining a new singly connected graph (with the same structure) but with modified potentials.

More generally, we can define a set of variables C, called the loop cut set and run singly connected inference
for each joint state of the cut-set variables C. This can also be used for finding the most likely state of a
multiply connected joint distribution as well. Hence, for a computational price exponential in the loop-cut
size, we can calculate the marginals (or the most likely state) for a multiply connected distribution. However,
determining a small cut set is in general difficult, and there is no guarantee that this will anyway be small for
a given graph. Whilst this method is able to handle loops in a general manner, it is not particularly elegant
since the concept of messages now only applies conditioned on the cut set variables, and how to re-use
messages for inference of additional quantities of interest becomes unclear. We will discuss an alternative
method for handling multiply connected distributions in chapter(6).

5.4 Message Passing for Continuous Distributions

For parametric continuous distributions p(x|θx), message passing corresponds to passing parameters θ of
the distributions. For the sum-product algorithm, this requires that the operations of multiplication and
integration over the variables are closed with respect to the family of distributions. This is the case, for
example, for the Gaussian distribution – the marginal (integral) of a Gaussian is another Gaussian, and
the product of two Gaussians is a Gaussian, see section(8.4). This means that we can then implement
the sum-product algorithm based on passing mean and covariance parameters. To implement this requires
some tedious algebra to compute the appropriate message parameter updates. At this stage, the complex-
ities from performing such calculations are a potential distraction, though the interested reader may refer
to demoSumprodGaussMoment.m, demoSumprodGaussCanon.m and demoSumprodGaussCanonLDS.m and also
chapter(24) for examples of message passing with Gaussians. For more general exponential family distri-
butions, message passing is essentially straightforward, though again the specifics of the updates may be
tedious to work out. In cases where the operations of marginalisation and products are not closed within the
family, the distributions need to be projected back to the chosen message family. Expectation propagation,
section(28.8), is relevant in this case.

5.5 Summary

• For a tree-structured factor graph, non-mixed inference is essentially linear in the number of nodes in the
graph (provided the variables are discrete or the inference operations form a tractable closed family).

• Computation on trees can be achieved using local ‘message passing’ algorithms, analogous to dynamic
programming.
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• The sum-product and max-product algorithm are particularly useful for computing marginal and most likely
inferences respectively.

• Message-passing also holds for continuous variables based on passing messages that update the parameters
of the distribution.

• Shortest-path problems can be solved using such message-passing approaches.

• Inference in non-trees (multiply connected distributions) is more complex since there is a fill-in effect when
variables are eliminated that adds additional links to the graph.

• Inference in multiply connected graphs can be achieved using techniques such as cut-set conditioning which,
by conditioning on a subset of variables, reveal a singly connected structure. However, this is generally
inefficient since the messages cannot be readily re-used.

A take-home message from this chapter is that (non-mixed) inference in singly connected structures is usu-
ally computationally tractable. Notable exceptions are when the message passing operations are not closed
within the message family, or representing messages explicitly requires an exponential amount of space. This
happens for example when the distribution can contain both discrete and continuous variables, such as the
Switching Linear Dynamical system, which we discuss in chapter(25).

Broadly speaking, inference in multiply connected structures is more complex and may be intractable.
However, we do not want to give the impression that this is always the case. Notable exceptions are:
finding the most likely state in an attractive pairwise MN, section(28.9); finding the most likely state and
marginals in a binary planar MN with pure interactions, see for example [127, 260]. For N variables in the
graph, a naive use of general purpose routines such as the junction tree algorithm for these inferences would
result in an O

(
2N
)

computation, whereas clever algorithms are able to return the exact results in O
(
N3
)

operations. Of interest is bond propagation[191] which is an intuitive node elimination method to perform
marginal inference in pure-interaction Ising models.

5.6 Code

The code below implements message passing on a tree structured factor graph. The FG is stored as an
adjacency matrix with the message between FG node i and FG node j given in Ai,j .

FactorGraph.m: Return a factor graph adjacency matrix and message numbers
sumprodFG.m: Sum-Product algorithm on a factor graph

In general it is recommended to work in log-space in the Max-Product case, particularly for large graphs
since the product of messages can become very small. The code provided does not work in log space and
as such may not work on large graphs; writing this using log-messages is straightforward but leads to less
readable code. An implementation based on log-messages is left as an exercise for the interested reader.

maxprodFG.m: Max-Product algorithm on a factor graph
maxNprodFG.m: N -Max-Product algorithm on a factor graph

5.6.1 Factor graph examples

For the distribution from fig(5.3), the following code finds the marginals and most likely joint states. The
number of states of each variable is chosen at random.

demoSumprod.m: Test the Sum-Product algorithm
demoMaxprod.m: Test the Max-Product algorithm
demoMaxNprod.m: Test the Max-N -Product algorithm

5.6.2 Most probable and shortest path

mostprobablepath.m: Most probable path
demoMostProbablePath.m: Most probable versus shortest path demo
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demoShortestPath.m: The shortest path demo works for both positive and negative edge weights. If
negative weight cycles exist, the code finds the best length N shortest path.
mostprobablepathmult.m: Most probable path – multi-source, multi-sink
demoMostProbablePathMult.m: Demo of most probable path – multi-source, multi-sink

5.6.3 Bucket elimination

The efficiency of Bucket Elimination depends critically on the elimination sequence chosen. In the demon-
stration below we find the marginal of a variable in the Chest Clinic exercise using a randomly chosen
elimination order. The desired marginal variable is specified as the last to be eliminated. For comparison
we use an elimination sequence based on decimating a triangulated graph of the model, as discussed in
section(6.5.1), again under the constraint that the last variable to be ‘decimated’ is the marginal variable of
interest. For this smarter choice of elimination sequence, the complexity of computing this single marginal
is roughly the same as that for the Junction Tree algorithm, using the same triangulation.
bucketelim.m: Bucket Elimination
demoBucketElim.m: Demo Bucket Elimination

5.6.4 Message passing on Gaussians

The following code hints at how message passing may be implemented for continuous distributions. The
reader is referred to the BRMLtoolbox for further details and also section(8.4) for the algebraic manipu-
lations required to perform marginalisation and products of Gaussians. The same principle holds for any
family of distributions which is closed under products and marginalisation, and the reader may wish to
implement specific families following the method outlined for Gaussians.
demoSumprodGaussMoment.m: Sum-product message passing based on Gaussian Moment parameterisation

5.7 Exercises

Exercise 5.1. Given a pairwise singly connected Markov network of the form

p(x) =
1

Z

∏
i∼j

φ (xi, xj) (5.7.1)

explain how to efficiently compute the normalisation factor (also called the partition function) Z as a function
of the potentials φ.

Exercise 5.2. Consider a pairwise Markov network defined on binary variables:

p(x) = φ(x1, x100)
99∏
i=1

φ(xi, xi+1) (5.7.2)

Is it possible to compute argmax
x1,...,x100

p(x) efficiently?

Exercise 5.3. You are employed by a web start up company that designs virtual environments, in which
players can move between rooms. The rooms which are accessible from another in one time step is given by
the 100× 100 matrix M, stored in virtualworlds.mat, where Mij = 1 means that there is a door between
rooms i and j (Mij = Mji). Mij = 0 means that there is no door between rooms i and j. Mii = 1 meaning
that in one time step, one can stay in the same room. You can visualise this matrix by typing imagesc(M).

1. Write a list of rooms which cannot be reached from room 2 after 10 time steps.

2. The manager complains that takes at least 13 time steps to get from room 1 to room 100. Is this true?

3. Find the most likely path (sequence of rooms) to get from room 1 to room 100.

4. If a single player were to jump randomly from one room to another (or stay in the same room), with no
preference between rooms, what is the probability at time t� 1 the player will be in room 1? Assume
that effectively an infinite amount of time has passed and the player began in room 1 at t = 1.
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5. If two players are jumping randomly between rooms (or staying in the same room), explain how to
compute the probability that, after an infinite amount of time, at least one of them will be in room 1?
Assume that both players begin in room 1.

Exercise 5.4. Consider the hidden Markov model:

p(v1, . . . , vT , h1, . . . , hT ) = p(h1)p(v1|h1)
T∏
t=2

p(vt|ht)p(ht|ht−1) (5.7.3)

in which dom(ht) = {1, . . . ,H} and dom(vt) = {1, . . . , V } for all t = 1, . . . , T .

1. Draw a belief network representation of the above distribution.

2. Draw a factor graph representation of the above distribution.

3. Use the factor graph to derive a Sum-Product algorithm to compute marginals p(ht|v1, . . . , vT ). Explain
the sequence order of messages passed on your factor graph.

4. Explain how to compute p(ht, ht+1|v1, . . . , vT ).

5. Show that the belief network for p(h1, . . . , hT ) is a simple linear chain, whilst p(v1, . . . , vT ) is a fully
connected cascade belief network.

Exercise 5.5. For a singly connected Markov Network, p(x) = p(x1, . . . , xn), the computation of a marginal
p(xi) can be carried out efficiently. Similarly, the most likely joint state x∗ = arg maxx1,...,xn p(x) can be
computed efficiently. Explain when the most likely joint state of a marginal can be computed efficiently, i.e.
under what circumstances could one efficiently (in O (m) time) compute argmax

x1,x2,...,xm
p(x1, . . . , xm) for m < n?

Exercise 5.6. Consider the internet with webpages labelled 1, . . . , N . If webpage j has a link to webpage i,
then we place an element of the matrix Lij = 1, otherwise Lij = 0. By considering a random jump from
webpage j to webpage i to be given by the transition probability

Mij =
Lij∑
i Lij

(5.7.4)

what is the probability that after an infinite amount of random surfing, one ends up on webpage i? How
could you relate this to the potential ‘relevance’ of a webpage in terms of a search engine?

Exercise 5.7. A special time-homogeneous hidden Markov model is given by

p(x1, . . . , xT , y1, . . . , yT , h1, . . . , hT ) = p(x1|h1)p(y1|h1)p(h1)
T∏
t=2

p(ht|ht−1)p(xt|ht)p(yt|ht) (5.7.5)

The variable xt has 4 states, dom(xt) = {A,C,G,T} (numerically labelled as states 1,2,3,4). The variable
yt has 4 states, dom(yt) = {A,C,G,T}. The hidden or latent variable ht has 5 states, dom(ht) = {1, . . . , 5}.
The HMM models the following (fictitious) process:

In humans, Z-factor proteins are a sequence on states of the variables x1, x2, . . . , xT . In bananas Z-factor
proteins are also present, but represented by a different sequence y1, y2, . . . , yT . Given a sequence x1, . . . , xT
from a human, the task is to find the corresponding sequence y1, . . . , yT in the banana by first finding the
most likely joint latent sequence, and then the most likely banana sequence given this optimal latent sequence.
That is, we require

argmax
y1,...,yT

p(y1, . . . , yT |h∗1, . . . , h∗T ) (5.7.6)

where

h∗1, . . . , h
∗
T = argmax

h1,...,hT

p(h1, . . . , hT |x1, . . . , xT ) (5.7.7)

The file banana.mat contains the emission distributions pxgh (p(x|h)), pygh (p(y|h)) and transition phtghtm

(p(ht|ht−1)). The initial hidden distribution is given in ph1 (p(h1)). The observed x sequence is given in x.
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1. Explain mathematically and in detail how to compute the optimal y-sequence, using the two-stage
procedure as stated above.

2. Write a MATLAB routine that computes and displays the optimal y-sequence, given the observed
x-sequence. Your routine must make use of the Factor Graph formalism.

3. Explain whether or not it is computationally tractable to compute

argmax
y1,...,yT

p(y1, . . . , yT |x1, . . . , xT ) (5.7.8)

4. Bonus question: By considering y1, . . . , yT as parameters, explain how the EM algorithm, section(11.2),
may be used to find argmax

y1,...,yT

p(y1, . . . , yT |x1, . . . , xT ). Implement this approach with a suitable initiali-

sation for the optimal parameters y1, . . . , yT .
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CHAPTER 6

The Junction Tree Algorithm

When the distribution is multiply-connected it would be useful to have a generic inference approach that is
efficient in its reuse of messages. In this chapter we discuss an important structure, the junction tree, that by
clustering variables enables one to perform message-passing efficiently (although the structure on which the
message-passing occurs may consist of intractably large clusters). The most important thing is the junction
tree itself, based on which different message-passing procedures can be considered. The junction tree helps
forge links with the computational complexity of inference in fields from computer science to statistics and
physics.

6.1 Clustering Variables

In chapter(5) we discussed efficient inference for singly-connected graphs, for which variable elimination and
message passing schemes are appropriate. In the multiply connected case, however, one cannot in general
perform inference by passing messages only along existing links in the graph. The idea behind the junction
tree algorithm (JTA) is to form a new representation of the graph in which variables are clustered together,
resulting in a singly-connected graph in the cluster variables (albeit on a different graph). The main focus
of the development will be on marginal inference, though similar techniques apply to different inferences,
such as finding the most probable state of the distribution.

At this stage it is important to point out that the JTA is not a magic method to deal with intractabilities
resulting from multiply connected graphs; it is simply a way to perform correct inference on a multiply
connected graph by transforming to a singly connected structure. Carrying out the inference on the resulting
junction tree may still be computationally intractable. For example, the junction tree representation of a
general two-dimensional Ising model is a single supernode containing all the variables. Inference in this case
is exponentially complex in the number of variables. Nevertheless, even in cases where implementing the
JTA may be intractable, the JTA provides useful insight into the representation of distributions that can
form the basis for approximate inference. In this sense the JTA is key to understanding issues related to
representations and complexity of inference and is central to the development of efficient inference algorithms.

6.1.1 Reparameterisation

Consider the chain

p(a, b, c, d) = p(a|b)p(b|c)p(c|d)p(d) (6.1.1)

From the definition of conditional probability, we can reexpress this as

p(a, b, c, d) =
p(a, b)

p(b)

p(b, c)

p(c)

p(c, d)

p(d)
p(d) =

p(a, b)p(b, c)p(c, d)

p(b)p(c)
(6.1.2)
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Figure 6.1: (a) Markov network
φ(a, b, c)φ(b, c, d). (b) Clique graph
representation of (a).

A useful insight is that the distribution can therefore be written as a product of marginal distributions, di-
vided by a product of the intersection of the marginal distributions: Looking at the numerator p(a, b)p(b, c)p(c, d)
this cannot be a distribution over a, b, c, d since we are overcounting b and c, where this overcounting of
b arises from the overlap between the sets {a, b} and {b, c}, which have b as their intersection. Similarly,
the overcounting of c arises from the overlap between the sets {b, c} and {c, d}. Intuitively, we need to
correct for this overcounting by dividing by the distribution on the intersections. Given the transformed
representation as a product of marginals divided by a product of their intersection (the right equation in
(6.1.2)), a marginal such as p(a, b) can be read off directly from the factors in the new expression. The aim
of the junction tree algorithm is to form just such a representation of the distribution which contains the
marginals explicitly. We want to do this in a way that works for belief and Markov networks, and also deals
with the multiply connected case. In order to do so, an appropriate way to parameterise the distribution is
in terms of a clique graph, as described in the next section.

6.2 Clique Graphs

Definition 6.1 (Clique Graph). A clique graph consists of a set of potentials, φ1(X 1), . . . , φn(X n) each
defined on a set of variables X i. For neighbouring cliques on the graph, defined on sets of variables X i and
X j , the intersection X s = X i ∩ X j is called the separator and has a corresponding potential φs(X s). A
clique graph represents the function∏

c φc(X c)∏
s φs(X s)

(6.2.1)

For notational simplicity we will usually drop the clique potential index c. Graphically clique potentials are
represented by circles/ovals, and separator potentials by rectangles.

X 1 X 1 ∩ X 2 X 2 The graph on the left represents φ(X 1)φ(X 2)/φ(X 1 ∩ X 2).

Clique graphs translate Markov networks into structures convenient for carrying out inference. Consider
the Markov network in fig(6.1a)

p(a, b, c, d) =
φ(a, b, c)φ(b, c, d)

Z
(6.2.2)

An equivalent representation is given by the clique graph in fig(6.1b), defined as the product of the numerator
clique potentials, divided by the product of the separator potentials. In this case the separator potential
may be set to the normalisation constant Z. By summing we have

Zp(a, b, c) = φ(a, b, c)
∑
d

φ(b, c, d), Zp(b, c, d) = φ(b, c, d)
∑
a

φ(a, b, c) (6.2.3)

Multiplying the two expressions, we have

Z2p(a, b, c)p(b, c, d) =

(
φ(a, b, c)

∑
d

φ(b, c, d)

)(
φ(b, c, d)

∑
a

φ(a, b, c)

)
= Z2p(a, b, c, d)

∑
a,d

p(a, b, c, d)
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(6.2.4)

In other words

p(a, b, c, d) =
p(a, b, c)p(b, c, d)

p(c, b)
(6.2.5)

The important observation is that the distribution can be written in terms of its marginals on the variables
in the original cliques and that, as a clique graph, it has the same structure as before. All that has changed is
that the original clique potentials have been replaced by the marginals of the distribution and the separator
by the marginal defined on the separator variables φ(a, b, c) → p(a, b, c), φ(b, c, d) → p(b, c, d), Z → p(c, b).
The usefulness of this representation is that if we are interested in the marginal p(a, b, c), this can be read off
from the transformed clique potential. To make use of this representation, we require a systematic way of
transforming the clique graph potentials so that at the end of the transformation the new potentials contain
the marginals of the distribution.

Remark 6.1. Note that, whilst visually similar, a Factor Graph and a Clique Graph are different rep-
resentations. In a clique graph the nodes contain sets of variables, which may share variables with other
nodes.

6.2.1 Absorption

Consider neighbouring cliques V and W, sharing the variables S in common. In this case, the distribution
on the variables X = V ∪W is

p(X ) =
φ (V)φ (W)

φ (S)
(6.2.6)

φ (V) φ (S) φ (W)

and our aim is to find a new representation

p(X ) =
φ̂ (V)φ̂ (W)

φ̂ (S)
(6.2.7) φ̂ (V) φ̂ (S) φ̂ (W)

in which the potentials are given by

φ̂ (V) = p(V), φ̂ (W) = p(W), φ̂ (S) = p(S) (6.2.8)

In the figures on the above right we denote also the potentials in the cliques to emphasise how the potentials
update under absorption. In this example, we can explicitly work out the new potentials as function of the
old potentials by computing the marginals as follows:

p(W) =
∑
V\S

p(X ) =
∑
V\S

φ (V)φ (W)

φ (S)
= φ (W)

∑
V\S φ (V)

φ (S)
(6.2.9)

and

p(V) =
∑
W\S

p(X ) =
∑
W\S

φ (V)φ (W)

φ (S)
= φ (V)

∑
W\S φ (W)

φ (S)
(6.2.10)

There is a symmetry present in the two equations above – they are the same under interchanging V and
W. One way to describe these equations is through ‘absorption’. We say that the cluster W ‘absorbs’
information from cluster V by the following updating procedure. First we define a new separator

φ∗ (S) =
∑
V\S

φ (V) (6.2.11)

and refine the W potential using

φ∗ (W) = φ (W)
φ∗ (S)

φ (S)
(6.2.12)
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3→ ←
4

←
5

6←

7
→

8→←
9

←
10

Figure 6.2: An example absorption schedule on a
clique tree. Many valid schedules exist under the con-
straint that messages can only be passed to a neigh-
bour when all other messages have been received.

The advantage of this interpretation is that the new representation is still a valid clique graph representation
of the distribution since

φ (V)φ∗ (W)

φ∗ (S)
=
φ (V)φ (W)φ

∗(S)
φ(S)

φ∗ (S)
=
φ (V)φ (W)

φ (S)
= p(X ) (6.2.13)

For this simple two clique graph, we see that after W absorbs information from V then φ∗ (W) = p(W),
which can be verified by comparing the right of equation (6.2.9) with equation (6.2.12). With these new
updated potentials, we now go back along the graph, from W to V. After V absorbs information from W
then φ∗ (V) contains the marginal p(V). After the separator S has participated in absorption along both
directions, then the separator potential will contain p(S) (this is not the case after only a single absorption).
To see this, consider absorbing from W to V using the updated potentials φ∗ (W) and φ∗ (S)

φ∗∗ (S) =
∑
W\S

φ∗ (W) =
∑
W\S

φ (W)φ∗ (S)

φ (S)
=

∑
{W∪V}\S

φ (W)φ (V)

φ (S)
= p(S) (6.2.14)

Continuing, we have the new potential φ∗ (V) given by

φ∗ (V) =
φ (V)φ∗∗ (S)

φ∗ (S)
=
φ (V)

∑
W\S φ (W)φ∗ (S)/φ (S)

φ∗ (S)
=

∑
W\S φ (V)φ (W)

φ (S)
= p(V) (6.2.15)

Hence, in terms of equation (6.2.7), the new representation is φ̂ (V) = φ∗ (V), φ̂ (S) = φ∗∗ (S), φ̂ (W) =
φ∗ (W).

Definition 6.2 (Absorption).

φ (V) φ∗ (S) φ∗ (W)

Let V and W be neighbours in a clique graph, let S be their
separator, and let φ (V), φ (W) and φ (S) be their potentials.
Absorption from V toW through S replaces the tables φ (S) and
φ (W) with

φ∗ (S) =
∑
V\S

φ (V) φ∗ (W) = φ (W)
φ∗ (S)

φ (S)
(6.2.16)

We say that clique W absorbs information from clique V. The
potentials are written on the clique graph (left) to highlight the
potential updating.

6.2.2 Absorption schedule on clique trees

Having defined the local message propagation approach, we need to define an update ordering for absorption.
In general, a node V can send exactly one message to a neighbour W, and it may only be sent when V has
received a message from each of its other neighbours. We continue this sequence of absorptions until a
message has been passed in both directions along every link. See, for example, fig(6.2). Note that there are
many valid message passing schemes in this case.
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x1

x2x3

x4

(a)

x1, x4

x2, x4x3, x4

x4x4

x4

(b)

x1, x4

x2, x4x3, x4

x4x4

(c)

Figure 6.3: (a): Singly connected Markov network. (b): Clique graph. (c): Clique tree.

Definition 6.3 (Absorption Schedule). A clique can send a message to a neighbour, provided it has already
received messages from all other neighbours.

6.3 Junction Trees

There are a few stages we need to go through in order to transform a distribution into an appropriate
structure for inference. Initially we explain how to do this for singly connected structures before moving
onto the multiply connected case.

Consider the singly connected Markov network, fig(6.3a)

p(x1, x2, x3, x4) = φ(x1, x4)φ(x2, x4)φ(x3, x4) (6.3.1)

The clique graph of this singly connected Markov network is multiply connected, fig(6.3b), where the sep-
arator potentials are all set to unity. Nevertheless, let’s try to reexpress the Markov network in terms of
marginals. First we have the relations

p(x1, x4) =
∑
x2,x3

p(x1, x2, x3, x4) = φ(x1, x4)
∑
x2

φ(x2, x4)
∑
x3

φ(x3, x4) (6.3.2)

p(x2, x4) =
∑
x1,x3

p(x1, x2, x3, x4) = φ(x2, x4)
∑
x1

φ(x1, x4)
∑
x3

φ(x3, x4) (6.3.3)

p(x3, x4) =
∑
x1,x2

p(x1, x2, x3, x4) = φ(x3, x4)
∑
x1

φ(x1, x4)
∑
x2

φ(x2, x4) (6.3.4)

Taking the product of the three marginals, we have

p(x1, x4)p(x2, x4)p(x3, x4) = φ(x1, x4)φ(x2, x4)φ(x3, x4)

(∑
x1

φ(x1, x4)
∑
x2

φ(x2, x4)
∑
x3

φ(x3, x4)

)2

︸ ︷︷ ︸
p(x4)2

(6.3.5)

This means that the Markov network can be expressed in terms of marginals as

p(x1, x2, x3, x4) =
p(x1, x4)p(x2, x4)p(x3, x4)

p(x4)p(x4)
(6.3.6)

Hence a valid clique graph is also given by the representation fig(6.3c). Indeed, if a variable (here x4) occurs
on every separator in a clique graph loop, one can remove that variable from an arbitrarily chosen separator
in the loop. If this leaves an empty separator, we may then simply remove it. This shows that in such cases
we can transform the clique graph into a clique tree (i.e. a singly connected clique graph). Provided that
the original Markov network is singly connected, one can always form a clique tree in this manner.
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6.3.1 The running intersection property

Sticking with the above example, consider the clique tree in fig(6.3)

φ(x3, x4)φ(x1, x4)φ(x2, x4)

φ1(x4)φ2(x4)
(6.3.7)

as a representation of the distribution (6.3.1) where we set φ1(x4) = φ2(x4) = 1 to make this match. Now
perform absorption on this clique tree:

We absorb (x3, x4) (x1, x4). The new separator is

φ∗1(x4) =
∑
x3

φ(x3, x4) (6.3.8)

and the new potential is

φ∗(x1, x4) = φ(x1, x4)
φ∗1(x4)

φ1(x4)
= φ(x1, x4)φ∗1(x4) (6.3.9)

Now (x1, x4) (x2, x4). The new separator is

φ∗2(x4) =
∑
x1

φ∗(x1, x4) (6.3.10)

and the new potential is

φ∗(x2, x4) = φ(x2, x4)
φ∗2(x4)

φ2(x4)
= φ(x2, x4)φ∗2(x4) (6.3.11)

Since we’ve ‘hit the buffers’ in terms of message passing, the potential φ(x2, x4) cannot be updated further.
Let’s examine more carefully the value of this new potential,

φ∗(x2, x4) = φ(x2, x4)φ∗2(x4) = φ(x2, x4)
∑
x1

φ∗(x1, x4) (6.3.12)

= φ(x2, x4)
∑
x1

φ(x1, x4)
∑
x3

φ(x3, x4) =
∑
x1,x3

p(x1, x2, x3, x4) = p(x2, x4) (6.3.13)

Hence the new potential φ∗(x2, x4) contains the marginal p(x2, x4).

To complete a full round of message passing we need to have passed messages in a valid schedule along both
directions of each separator. To do so, we continue as follows:

We absorb (x2, x4) (x1, x4). The new separator is

φ∗∗2 (x4) =
∑
x2

φ∗(x2, x4) (6.3.14)

and

φ∗∗(x1, x4) = φ∗(x1, x4)
φ∗∗2 (x4)

φ∗2(x4)
(6.3.15)

Note that φ∗∗2 (x4) =
∑

x2
φ∗(x2, x4) =

∑
x2
p(x2, x4) = p(x4) so that now, after absorbing through both

directions, the separator contains the marginal p(x4). The reader may show that φ∗∗(x1, x4) = p(x1, x4).

Finally, we absorb (x1, x4) (x3, x4). The new separator is

φ∗∗1 (x4) =
∑
x1

φ∗∗(x1, x4) = p(x4) (6.3.16)
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and

φ∗(x3, x4) = φ(x3, x4)
φ∗∗1 (x4)

φ∗1(x4)
= p(x3, x4) (6.3.17)

Hence, after a full round of message passing, the new potentials all contain the correct marginals.

The new representation is consistent in the sense that for any (not necessarily neighbouring) cliques V and
W with intersection I, and corresponding potentials φ (V) and φ (W),∑

V\I

φ (V) =
∑
W\I

φ (W) (6.3.18)

Note that bidirectional absorption following a valid schedule guarantees local consistency for neighbouring
cliques, as in the example above, provided that we started with a clique tree which is a correct representation
of the distribution. To ensure global consistency, if a variable occurs in two cliques it must be present in all
cliques on any path connecting these cliques. An extreme example would be if we removed the link between
cliques (x3, x4) and (x1, x4). In this case this is still a clique tree; however global consistency could not
be guaranteed since the information required to make clique (x3, x4) consistent with the rest of the graph
cannot reach this clique.

Formally, the requirement for the propagation of local to global consistency is that the clique tree is a
junction tree, as defined below. See also exercise(6.12).

Definition 6.4 (Junction Tree). A clique tree is a junction tree if, for each pair of nodes, V andW, all nodes
on the path between V and W contain the intersection V ∩W. This is also called the running intersection
property .

From this definition local consistency will be passed on to any neighbours and the distribution will be
globally consistent. Proofs for these results are contained in [161].

Example 6.1 (A consistent junction tree). To gain some intuition about the meaning of consistency,
consider the junction tree in fig(6.4d). After a full round of message passing on this tree, each link is
consistent, and the product of the potentials divided by the product of the separator potentials is just the
original distribution itself. Imagine that we are interested in calculating the marginal for the node abc. That
requires summing over all the other variables, defgh. If we consider summing over h then, because the link
is consistent,∑

h

φ∗ (e, h) = φ∗ (e) (6.3.19)

so that the ratio
∑

h
φ∗(e,h)
φ∗(e) is unity, and the effect of summing over node h is that the link between eh and

dce can be removed, along with the separator. The same happens for the link between node eg and dce,
and also for cf to abc. The only nodes remaining are now dce and abc and their separator c, which have so
far been unaffected by the summations. We still need to sum out over d and e. Again, because the link is
consistent,∑

de

φ∗ (d, c, e) = φ∗ (c) (6.3.20)

so that the ratio
∑

de
φ∗(d,c,e)
φ∗(c) = 1. The result of the summation of all variables not in abc therefore produces

unity for the cliques and their separators, and the summed potential representation reduces simply to the
potential φ∗ (a, b, c) which is the marginal p(a, b, c). It is clear that a similar effect will happen for other
nodes. We can then obtain the marginals for individual variables by simple brute force summation over the
other variables in that potential, for example p(f) =

∑
c φ
∗ (c, f).

DRAFT November 21, 2011 103



Constructing a Junction Tree for Singly-Connected Distributions

c

a b

d

e f

g h

(a)

c

a b

d

e f

g h

(b)

dce

abc

cf

eg eh

c

c

c

e e

e

(c)

dce

abc

cf

eg eh

c c
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Figure 6.4: (a): Belief Network. (b): Moralised version of (a). (c): Clique graph of (b). (d):
A junction tree. This satisfies the running intersection property that for any two nodes which contain a
variable in common, any clique on the path linking the two nodes also contains that variable.

6.4 Constructing a Junction Tree for Singly-Connected Distributions

6.4.1 Moralisation

For belief networks an initial step is required, which is not required in the case of undirected graphs.

Definition 6.5 (Moralisation). For each variable x add an undirected link between all parents of x and
replace the directed link from x to its parents by undirected links. This creates a ‘moralised’ Markov
network.

6.4.2 Forming the clique graph

The clique graph is formed by identifying the cliques in the Markov network and adding a link between
cliques that have a non-empty intersection. Add a separator between the intersecting cliques.

6.4.3 Forming a junction tree from a clique graph

For a singly connected distribution, any maximal weight spanning tree of a clique graph is a junction tree.

Definition 6.6 (Junction Tree). A junction tree is obtained by finding a maximal weight spanning tree of
the clique graph. The weight of the tree is defined as the sum of all the separator weights of the tree, where
the separator weight is the number of variables in the separator.

If the clique graph contains loops, then all separators on the loop contain the same variable. By continuing
to remove loop links until a tree is revealed, we obtain a junction tree.
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cd

(d)

abc acdac

(e)

Figure 6.5: (a): An undirected graph with a loop. (b): Eliminating node d adds a link between a
and c in the subgraph. (c): The induced representation for the graph in (a). (d): Equivalent induced
representation. (e): Junction tree for (a).

Example 6.2 (Forming a Junction Tree). Consider the Belief Network in fig(6.4a). The moralisation
procedure gives fig(6.4b). Identifying the cliques in this graph, and linking them together gives the clique
graph in fig(6.4c). There are several possible junction trees one could obtain from this clique graph, and
one is given in fig(6.4d).

6.4.4 Assigning potentials to cliques

Definition 6.7 (Clique Potential Assignment). Given a junction tree and a function defined as the product
of a set of potentials φ

(
X 1
)
, . . . , φ (X n), a valid clique potential assignment places potentials in JT cliques

whose variables can contain them such that the product of the JT clique potentials, divided by the JT
separator potentials, is equal to the function.

A simple way to achieve this assignment is to list all the potentials and order the JT cliques arbitrarily.
Then, for each potential, search through the JT cliques until the first is encountered for which the potential
variables are a subset of the JT clique variables. Subsequently the potential on each JT clique is taken as
the product of all clique potentials assigned to the JT clique. Lastly, we assign all JT separators to unity.
This approach is taken in jtassignpot.m. Note that in some instances it can be that a junction tree clique
is assigned to unity.

Example 6.3. For the belief network of fig(6.4a), we wish to assign its potentials to the junction tree
fig(6.4d). In this case the assignment is unique and is given by

φ (abc) = p(a)p(b)p(c|a, b)
φ (dce) = p(d)p(e|d, c)
φ (cf) = p(f |c)
φ (eg) = p(g|e)
φ (eh) = p(h|e)

(6.4.1)

All separator potentials are initialised to unity.

6.5 Junction Trees for Multiply-Connected Distributions

When the distribution contains loops, the construction outlined in section(6.4) does not result in a junction
tree. The reason is that, due to the loops, variable elimination changes the structure of the remaining graph.
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To see this, consider the following distribution,

p(a, b, c, d) = φ(a, b)φ(b, c)φ(c, d)φ(d, a) (6.5.1)

as shown in fig(6.5a). Let’s first try to make a clique graph. We have a choice about which variable first to
marginalise over. Let’s choose d:

p(a, b, c) = φ(a, b)φ(b, c)
∑
d

φ(c, d)φ(d, a) (6.5.2)

The remaining subgraph therefore has an extra connection between a and c, see fig(6.5b). We can express
the joint in terms of the marginals using

p(a, b, c, d) =
p(a, b, c)∑

d φ(c, d)φ(d, a)
φ(c, d)φ(d, a) (6.5.3)

To continue the transformation into marginal form, let’s try to replace the numerator terms with probabil-
ities. We can do this by considering

p(a, c, d) = φ(c, d)φ(d, a)
∑
b

φ(a, b)φ(b, c) (6.5.4)

Plugging this into the above equation, we have

p(a, b, c, d) =
p(a, b, c)p(a, c, d)∑

d φ(c, d)φ(d, a)
∑

b φ(a, b)φ(b, c)
(6.5.5)

We recognise that the denominator is simply p(a, c), hence

p(a, b, c, d) =
p(a, b, c)p(a, c, d)

p(a, c)
. (6.5.6)

This means that a valid clique graph for the distribution fig(6.5a) must contain cliques larger than those
in the original distribution. To form a JT based on products of cliques divided by products of separators,
we could start from the induced representation fig(6.5c). Alternatively, we could have marginalised over
variables a and c, and ended up with the equivalent representation fig(6.5d).

Generally, the result from variable elimination and re-representation in terms of the induced graph is that a
link is added between any two variables on a loop (of length 4 or more) which does not have a chord. This
is called triangulation. A Markov network on a triangulated graph can always be written in terms of the
product of marginals divided by the product of separators. Armed with this new induced representation,
we can form a junction tree.

Example 6.4. A slightly more complex loopy distribution is depicted in fig(6.6a),

p(a, b, c, d, e, f) = φ(a, b)φ(b, c)φ(c, d)φ(d, e)φ(e, f)φ(a, f)φ(b, e) (6.5.7)

There are different induced representations depending on which variables we decide to eliminate. The reader
may convince herself that one such induced representation is given by fig(6.6b).

a b c

def

(a)

a b c

def

(b)

Figure 6.6: (a): Loopy ‘ladder’
Markov network. (b): Induced rep-
resentation.
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Definition 6.8 (Triangulated (Decomposable) Graph). An undirected graph is triangulated if every loop
of length 4 or more has a chord. An equivalent term is that the graph is decomposable or chordal . From
this definition, one may show that an undirected graph is triangulated if and only if its clique graph has a
junction tree.

6.5.1 Triangulation algorithms

When a variable is eliminated from a graph, links are added between all the neighbours of the eliminated
variable. A triangulation algorithm is one that produces a graph for which there exists a variable elimination
order that introduces no extra links in the graph.

For discrete variables the complexity of inference scales exponentially with clique sizes in the triangulated
graph since absorption requires computing tables on the cliques. It is therefore of some interest to find
a triangulated graph with small clique sizes. However, finding the triangulated graph with the smallest
maximal clique is a computationally hard problem for a general graph, and heuristics are unavoidable.
Below we describe two simple algorithms that are generically reasonable, although there may be cases where
an alternative algorithm may be considerably more efficient[56, 28, 206].

Remark 6.2 (‘Triangles’). Note that a triangulated graph is not one in which ‘squares in the original graph
have triangles within them in the triangulated graph’. Whilst this is the case for fig(6.6b), this is not true
for fig(6.10d). The term triangulation refers to the fact that every ‘square’ (i.e. loop of length 4) must have
a ‘triangle’, with edges added until this criterion is satisfied. See also fig(6.7).

Greedy variable elimination

An intuitive way to think of triangulation is to first start with simplical nodes, namely those which, when
eliminated do not introduce any extra links in the remaining graph. Next consider a non-simplical node of
the remaining graph that has the minimal number of neighbours. Then add a link between all neighbours
of this node and then eliminate this node from the graph. Continue until all nodes have been eliminated.
(This procedure corresponds to Rose-Tarjan Elimination[250] with a particular node elimination choice).
By labelling the nodes eliminated in sequence, we obtain a perfect ordering (see below). In the case that
(discrete) variables have different numbers of states, a more refined version is to choose the non-simplical
node i which, when eliminated, leaves the smallest clique table size (the product of the size of all the state
dimensions of the neighbours of node i). See fig(6.8) for an example.

Procedure 6.1 (Variable Elimination). In Variable Elimination, one simply picks any non-deleted node x
in the graph, and then adds links to all the neighbours of x. Node x is then deleted. One repeats this until
all nodes have been deleted[250].

Definition 6.9 (Perfect Elimination Order). Let the n variables in a Markov network be ordered from 1 to
n. The ordering is perfect if, for each node i, the neighbours of i that are later in the ordering, and i itself,
form a (maximal) clique. This means that when we eliminate the variables in sequence from 1 to n, no
additional links are induced in the remaining marginal graph. A graph which admits a perfect elimination
order is decomposable, and vice versa.

a

b

c

d e Figure 6.7: This graph is not triangulated, despite its ‘triangular’
appearance. The loop a− b− c− d− a does not have a chord.

DRAFT November 21, 2011 107



The Junction Tree Algorithm

a b c d e

f g h i

j k

l

(a)

a b c d e

f g h i

j k

l

(b)

a b c d e

f g h i

j k

l

(c)

a b c d e

f g h i

j k

l

(d)

a b c d e

f g h i

j k

l

(e)

a b c d e

f g h i

j k

l

a b c d e

f g h i

j k

l

(f)

Figure 6.8: (a): Markov network for which we seek a triangulation via greedy variable elimination. We
first eliminate the simplical nodes a, e, l. (b): We then eliminate variables b, d since these only add a
single extra link to the induced graph. (c): There are no simplical nodes at this stage, and we choose
to eliminate f and i, each elimination adding only a single link. (d): We eliminate g and h since this
adds only single extra links. (e): The remaining variables {c, j, k} may be eliminated in any order. (f):
Final triangulation. The variable elimination (partial) order is {a, e, l} , {b, d} , {f, i} , {g, h} , {c, j, k} where
the brackets indicate that the order in which the variables inside the bracket are eliminated is irrelevant.
Compared with the triangulation produced by the max-cardinality checking approach in fig(6.10d), this
triangulation is more parsimonious.

Whilst this variable elimination guarantees a triangulated graph, its efficiency depends heavily on the se-
quence of nodes chosen to be eliminated. Several heuristics for this have been proposed, including the one
below, which corresponds to choosing x to be the node with the minimal number of neighbours.

Maximum cardinality checking

Algorithm(6.1) terminates with success if the graph is triangulated. Not only is this a sufficient condition
for a graph to be triangulated, but it is also necessary [287]. It processes each node and the time to process
a node is quadratic in the number of adjacent nodes. This triangulation checking algorithm also suggests
a triangulation construction algorithm – we simply add a link between the two neighbours that caused the
algorithm to FAIL, and then restart the algorithm. The algorithm is restarted from the beginning, not just
continued from the current node. This is important since the new link may change the connectivity between
previously labelled nodes. See fig(6.10) for an example1.

6.6 The Junction Tree Algorithm

We now have all the steps required for inference in multiply connected graphs, given in the procedure below.

Procedure 6.2 (Junction tree algorithm).

1This example is due to David Page www.cs.wisc.edu/∼dpage/cs731
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abf bcfg cdhi deibf di

cfgj chik

cjk

jkl

cfg chi

cj ck

jk

Figure 6.9: Junction tree formed from the triangulation fig(6.8f).
One may verify that this satisfies the running intersection prop-
erty.

Algorithm 6.1 A check if a graph is decomposable (triangulated). The graph is triangulated if, after
cycling through all the n nodes in the graph, the FAIL criterion is not encountered.

1: Choose any node in the graph and label it 1.
2: for i = 2 to n do
3: Choose the node with the most labeled neighbours and label it i.
4: If any two labeled neighbours of i are not adjacent to each other, FAIL.
5: end for

Where there is more than one node with the most labeled neighbours, the tie may be broken arbitrarily.

Moralisation Marry the parents. This is required only for directed distributions. Note that all the parents
of a variable are married together – a common error is to marry only the ‘neighbouring’ parents.

Triangulation Ensure that every loop of length 4 or more has a chord.

Junction Tree Form a junction tree from cliques of the triangulated graph, removing any unnecessary
links in a loop on the cluster graph. Algorithmically, this can be achieved by finding a tree with
maximal spanning weight with weight wij given by the number of variables in the separator between
cliques i and j. Alternatively, given a clique elimination order (with the lowest cliques eliminated
first), one may connect each clique i to the single neighbouring clique j > i with greatest edge weight
wij .

Potential Assignment Assign potentials to junction tree cliques and set the separator potentials to unity.

Message Propagation Carry out absorption until updates have been passed along both directions of every
link on the JT. The clique marginals can then be read off from the JT.

An example is given in fig(6.11).

6.6.1 Remarks on the JTA

• The algorithm provides an upper bound on the computation required to calculate marginals in the
graph. There may exist more efficient algorithms in particular cases, although generally it is believed
that there cannot be much more efficient approaches than the JTA since every other approach must
perform a triangulation[160, 187]. One particular special case is that of marginal inference for a binary
variable Markov network on a two-dimensional lattice containing only pure quadratic interactions. In
this case the complexity of computing a marginal inference is O

(
n3
)

where n is the number of variables
in the distribution. This is in contrast to the pessimistic exponential complexity suggested by the JTA.

• One might think that the only class of distributions for which essentially a linear time algorithm is
available are singly connected distributions. However, there are decomposable graphs for which the
cliques have limited size meaning that inference is tractable. For example an extended version of the
‘ladder’ in fig(6.6a) has a simple induced decomposable representation fig(6.6b), for which marginal
inference would be linear in the number of rungs in the ladder. Effectively these structures are hyper
trees in which the complexity is then related to the tree width of the graph[86].
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Figure 6.10: Starting with the Markov network in (a), the maximum cardinality check algorithm proceeds
until (b), where an additional link is required, see (c). One continues until the fully triangulated graph (d)
is found.
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(b)

Figure 6.11: (a): Original loopy Belief Network.
(b): The moralisation links (dashed) are between
nodes e and f and between nodes f and g. The other
additional links come from triangulation. The clique
size of the resulting clique tree (not shown) is four.

• Ideally, we would like to find a triangulated graph which has minimal clique size. However, it can be
shown to be a computationally hard problem to find the most efficient triangulation. In practice, most
general purpose triangulation algorithms are chosen to provide reasonable, but clearly not always
optimal, generic performance.

• Numerical over/under flow issues can occur under repeated multiplication of potentials. If we only
care about marginals we can avoid numerical difficulties by normalising potentials at each step; these
missing normalisation constants can always be found under the normalisation constraint. If required
one can always store the values of these local renormalisations, should, for example, the global nor-
malisation constant of a distribution be required, see section(6.6.2).

• After clamping variables in evidential states, running the JTA returns the joint distribution on the
non-evidential variables Xc in a clique with all the evidential variables clamped in their evidential
states, p(Xc, evidence). From this conditionals are straightforward to calculate.

• Representing the marginal distribution of a set of variables X which are not contained within a single
clique is in general computationally difficult. Whilst the probability of any state of p(X ) may be
computed efficiently, there are in general an exponential number of such states. A classical example in
this regard is the HMM, section(23.2) which has a singly connected joint distribution p(V,H). However
the marginal distribution p(V) is fully connected. This means that for example whilst the entropy of
p(V,H) is straightforward to compute, the entropy of the marginal p(V) is intractable.

6.6.2 Computing the normalisation constant of a distribution

For a Markov network

p(X ) =
1

Z

∏
i

φ(Xi) (6.6.1)

how can we find Z efficiently? If we used the JTA on the unnormalised distribution
∏
i φ(Xi), we would

have the equivalent representation:

p(X ) =
1

Z

∏
c φ(Xc)∏
s φ(Xs)

(6.6.2)
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where s and c are the separator and clique indices. Since the distribution must normalise, we can obtain Z
from

Z =
∑
X

∏
c φ(Xc)∏
s φ(Xs)

(6.6.3)

For a consistent JT, summing first over the variables of a simplical JT clique (not including the separator
variables), the marginal clique will cancel with the corresponding separator to give a unity term so that the
clique and separator can be removed. This forms a new JT for which we then eliminate another simplical
clique. Continuing in this manner we will be left with a single numerator potential so that

Z =
∑
Xc

φ(Xc) (6.6.4)

This is true for any clique c, so it makes sense to choose one with a small number of states so that the
resulting raw summation is efficient. Hence in order to compute the normalisation constant of a distribution
one runs the JT algorithm on an unnormalised distribution and the global normalisation is then given by
the local normalisation of any clique. Note that if the graph is disconnected (there are isolated cliques), the
normalisation is the product of the connected component normalisation constants.

6.6.3 The marginal likelihood

Our interest here is the computation of p(V) where V ⊂ X is a subset of the full variable set X . Naively,
one could carry out this computation by summing over all the non-evidential variables (hidden variables
H = X\V) explicitly. In cases where this is computationally impractical an alternative is to use

p(H|V) =
p(V,H)

p(V)
(6.6.5)

One can view this as a product of clique potentials divided by the normalisation p(V), for which the general
method of section(6.6.2) may be directly applied. See demoJTree.m.

6.6.4 Some small JTA examples

Example 6.5 (A simple example of the JTA).
Consider running the JTA on the simple graph

p(a, b, c) = p(a|b)p(b|c)p(c) (6.6.6)
a b c

The moralisation and triangulation steps are trivial, and the JTA is given
immediately by the figure on the right. A valid assignment is

φ (a, b) = p(a|b), φ (b) = 1, φ (b, c) = p(b|c)p(c) (6.6.7)

ab bcb

To find a marginal p(b) we first run the JTA:

• Absorbing from ab through b, the new separator is φ∗ (b) =
∑

a φ (a, b) =
∑

a p(a|b) = 1.

• The new potential on (b, c) is given by

φ∗ (b, c) =
φ (b, c)φ∗ (b)

φ (b)
=
p(b|c)p(c)× 1

1
(6.6.8)

• Absorbing from bc through b, the new separator is

φ∗∗ (b) =
∑
c

φ∗ (b, c) =
∑
c

p(b|c)p(c) (6.6.9)
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• The new potential on (a, b) is given by

φ∗ (a, b) =
φ (a, b)φ∗∗ (b)

φ∗ (b)
=
p(a|b)∑c p(b|c)p(c)

1
(6.6.10)

This is therefore indeed equal to the marginal since
∑

c p(a, b, c) = p(a, b).
The new separator φ∗∗ (b) contains the marginal p(b) since

φ∗∗ (b) =
∑
c

p(b|c)p(c) =
∑
c

p(b, c) = p(b) (6.6.11)

Example 6.6 (Finding a conditional marginal). Continuing with the distribution in example(6.5), we
consider how to compute p(b|a = 1, c = 1). First we clamp the evidential variables in their states. Then we
claim that the effect of running the JTA is to produce on a set of clique variables X the marginals on the
cliques p(X ,V). We demonstrate this below:

• In general, the new separator is given by φ∗ (b) =
∑

a φ (a, b) =
∑

a p(a|b) = 1. However, since
a is clamped in state a = 1, then the summation is not carried out over a, and we have instead
φ∗ (b) = p(a = 1|b).
• The new potential on the (b, c) clique is given by

φ∗ (b, c) =
φ (b, c)φ∗ (b)

φ (b)
=
p(b|c = 1)p(c = 1)p(a = 1|b)

1
(6.6.12)

• The new separator is normally given by

φ∗∗ (b) =
∑
c

φ∗ (b, c) =
∑
c

p(b|c)p(c) (6.6.13)

However, since c is clamped in state 1, we have instead

φ∗∗ (b) = p(b|c = 1)p(c = 1)p(a = 1|b) (6.6.14)

• The new potential on (a, b) is given by

φ∗ (a, b) =
φ (a, b)φ∗∗ (b)

φ∗ (b)
=
p(a = 1|b)p(b|c = 1)p(c = 1)p(a = 1|b)

p(a = 1|b) = p(a = 1|b)p(b|c = 1)p(c = 1)

(6.6.15)

The effect of clamping a set of variables V in their evidential states and running the JTA is that, for a clique
i which contains the set of non-evidential variables Hi, the consistent potential from the JTA contains the
marginal p(Hi,V). Finding a conditional marginal is then straightforward by ensuring normalisation.

Example 6.7 (finding the likelihood p(a = 1, c = 1)). One may also use the JTA to compute the marginal
likelihood for variables not in the same clique since the effect of clamping the variables in their evidential
states and running the JTA produces the joint marginals, such as φ∗ (a, b) = p(a = 1, b, c = 1). Then
calculating the likelihood is easy since we just sum out over the non-evidential variables of any converged
potential : p(a = 1, c = 1) =

∑
b φ
∗ (a, b) =

∑
b p(a = 1, b, c = 1).
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6.6.5 Shafer-Shenoy propagation

Consider the Markov network in fig(6.12a) for which a junction tree is given in fig(6.12b). We use the
obvious notation shortcut of writing the variable indices alone. In the absorption procedure, we essentially
store the result of message passing in the potentials and separators. An alternative message passing scheme
for the junction tree can be derived as follows: Consider computing the marginal on the variables 2, 3, 4,
which involves summing over variables 1, 5, 6:

p(2, 3, 4) =
∑
1,5,6

φ(1, 2, 5)φ(1, 3, 6)φ(1, 2, 3)φ(2, 3, 4) (6.6.16)

=
∑

1

∑
5

φ(1, 2, 5)︸ ︷︷ ︸
λ125→123

∑
6

φ(1, 3, 6)︸ ︷︷ ︸
λ136→123

φ(1, 2, 3)

︸ ︷︷ ︸
λ123→234

φ(2, 3, 4) (6.6.17)

In general, for a clique i with potential φ(Vi), and neighbouring clique j with potential φ(Vj), provided we
have received messages from the other neighbours of i, we can send a message

λi→j =
∑
Vi\Vj

φ(Vi)
∏
k 6=j

λk→i (6.6.18)

Once a full round of message passing has been completed, the marginal of any clique is given by the product
of incoming messages.

This message passing scheme is called Shafer-Shenoy propagation and has the property that no division of
potentials is required, unlike absorption. On the other hand, to compute a message we need to take the
product of all incoming messages; in absorption this is not required since the effect of the message passing
is stored in the clique potentials. The separators are not required in the Shafer-Shenoy approach and we
use them here only to indicate which variables the messages depend on. Both absorption and Shafer-Shenoy
propagation are valid message passing schemes on the junction tree and the relative efficacy of the approaches
depends on the topology of the junction tree[187].

6.7 Finding the Most Likely State

It is often of interest to compute the most likely joint state of a distribution:

argmax
x1,...,xn

p(x1, . . . , xn) (6.7.1)
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123
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(b)
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125
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234

12

13

23

(c)

Figure 6.12: (a): Markov network. (b): Junction tree. Under absorption, once we have absorbed from
125 to 123 and 136 to 123, the result of these absorptions is stored in the new potential on 123. After this
we can absorb from 123 to 234 by operating on the 123 potential and then sending this information to 234.
(c): In Shafer-Shenoy updating, we send a message from a clique to a neighbouring clique based on the
product of all incoming messages.
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Since the development of the JTA is based around a variable elimination procedure and the max operator
distributes over the distribution as well, eliminating a variable by maximising over that variable will have
the same effect on the graph structure as summation did. This means that a junction tree is again an
appropriate structure on which to perform max operations. Once a JT has been constructed, one then uses
the Max Absorption procedure (see below), to perform maximisation over the variables. After a full round
of absorption has been carried out, the cliques contain the distribution on the variables of the clique with
all remaining variables set to their optimal states. The optimal local states can then be found by explicit
optimisation of each clique potential separately.

Note that this procedure holds also for non-distributions – in this sense this is an example of a more general
dynamic programming procedure applied in a case where the underlying graph is multiply connected. This
demonstrates how to efficiently compute the optimum of a multiply connected function defined as the product
on potentials.

Definition 6.10 (Max Absorption).

φ (V) φ∗ (S) φ∗ (W)

Let V and W be neighbours in a clique graph, let S be their
separator, and let φ (V), φ (W) and φ (S) be their potentials.
Absorption replaces the tables φ (S) and φ (W) with

φ∗ (S) = max
V\S

φ (V) φ∗ (W) = φ (W)
φ∗ (S)

φ (S)

Once messages have been passed in both directions over all separators, according to a valid schedule, the
most-likely joint state can be read off from maximising the state of the clique potentials. This is implemented
in absorb.m and absorption.m where a flag is used to switch between either sum or max absorption.

6.8 Reabsorption : Converting a Junction Tree to a Directed Network

It is sometimes useful to be able to convert the JT back to a BN of a desired form. For example, if one
wishes to draw samples from a Markov network, this can be achieved by ancestral sampling on an equivalent
directed structure, see section(27.2.2).

Definition 6.11 (Reabsorption).

V S W ⇒ V W\S

Let V and W be neighbouring cliques in a directed JT in which each clique in the tree has at most one
parent. Furthermore, let S be their separator, and φ (V), φ (W) and φ (S) be the potentials. Reabsorption
into W removes the separator and forms a (set) conditional distribution

p(W\S|V) =
φ (W)

φ (S)
(6.8.1)

We say that clique W reabsorbs the separator S.

Revisiting the example from fig(6.4), we have the JT given in fig(6.13a). To find a valid directed represen-
tation we first orient the JT edges consistently away from a chosen root node (see singleparenttree.m),
thereby forming a directed JT which has the property that each clique has at most one parent clique.
Consider fig(6.13a) which represents

p(a, b, c, d, e, f, g, h) =
p(e, g)p(d, c, e)p(a, b, c)p(c, f)p(e, h)

p(e)p(c)p(c)p(e)
(6.8.2)
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Figure 6.13: (a): Junction tree. (b): Directed junction tree in which all edges are consistently oriented
away from the clique (abc). (c): A set chain formed from the junction tree by reabsorbing each separator
into its child clique.

We now have many choices as to which clique re-absorbs a separator. One such choice would give

p(a, b, c, d, e, f, g, h) = p(g|e)p(d, e|c)p(a, b, c, )p(f |c)p(h|e) (6.8.3)

This can be represented using a so-called set chain[184] in fig(6.13c) (set chains generalise Belief Networks
to a product of clusters of variables conditioned on parents). By writing each of the set conditional proba-
bilities as local conditional BNs, one may also form a BN. For example, one such would be given from the
decomposition

p(c|a, b)p(b|a)p(a)p(g|e)p(f |c)p(h|e)p(d|e, c)p(e|c) (6.8.4)

6.9 The Need For Approximations

The JTA provides an upper bound on the complexity of (marginal/max) inference and attempts to exploit
the structure of the graph to reduce computations. However, in a great deal of interesting applications the
use of the JTA algorithm would result in clique-sizes in the triangulated graph that are prohibitively large.
A classical situation in which this can arise are disease-symptom networks. For example, for the graph in
fig(6.14), the triangulated graph of the diseases is fully connected, meaning that no simplification can occur
in general. This situation is common in such bipartite networks, even when the children only have a small
number of parents. Intuitively, as one eliminates each parent, links are added between other parents, me-
diated via the common children. Unless the graph is highly regular, analogous to a form of hidden Markov
model, this fill-in effect rapidly results in large cliques and intractable computations.

Dealing with large cliques in the triangulated graph is an active research topic and we’ll discuss strategies
for approximate inference in chapter(28).

6.9.1 Bounded width junction trees

In some applications we may be at liberty to choose the structure of the Markov network. For example,
if we wish to fit a Markov network to data, we may wish to use as complex a Markov network as we
can computationally afford. In such cases we desire that the clique sizes of the resulting triangulated
Markov network are smaller than a specified ‘tree width’ (considering the corresponding junction tree as
a hypertree). This results in a ‘thin’ junction tree. A simple way to do this is to start with a graph and
include a randomly chosen edge provided that the size of all cliques in the resulting triangulated graph is
below a specified maximal width. See demoThinJT.m and makeThinJT.m which assumes an initial graph G
and a graph of candidate edges C, iteratively expanding G until a maximal tree width limit is reached. See
also [10] for a discussion on learning an appropriate Markov structure based on data.
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d1 d2 d3 d4 d5

s1 s2 s3

Figure 6.14: 5 diseases giving rise to 3 symptoms. The triangulated graph
contains a 5 clique of all the diseases.

6.10 Summary

• The junction tree is a structure on clusters of variables such that, under inference operations such as
marginalisation, the junction-tree structure remains invariant. This resolves the fill-in issue when using
message-passing on a multiply connected graph.

• The key stages are moralisation, triangulation, potential assignment, and message-passing.

• There are different propagation algorithms, including absorption and Shafer-Shenoy. These are both valid
message-passing algorithms on the junction tree and differ in their efficiency depending on the branch-
structure of the junction tree.

• The junction tree algorithm does not make a difficult inference problem necessarily any easier. It is simply
a way to organise the computations required to correctly carry out message-passing. The computational
complexity is dominated by the clique-size and there is no guarantee that one can find cliques with small
sizes in general.

• The junction tree algorithm is clever, but not clairvoyant. It provides only an upper bound on the com-
putational complexity of inference. It may be that there are problems which possess additional structure,
not immediately apparent, that can be exploited to reduce the computational complexity of inference much
below that suggested by the junction-tree approach.

6.11 Code

absorb.m: Absorption update V → S → W
absorption.m: Full absorption schedule over tree
jtree.m: Form a junction tree
triangulate.m: Triangulation based on simple node elimination

6.11.1 Utility routines

Knowing if an undirected graph is a tree, and returning a valid elimination sequence is useful. A connected
graph is a tree if the number of edges plus 1 is equal to the number of nodes. However, for a possibly discon-
nected graph this is not the case. The code istree.m deals with the possibly disconnected case, returning a
valid elimination sequence if the graph is singly connected. The routine is based on the observation that any
singly connected graph must always possess a simplical node which can be eliminated to reveal a smaller
singly connected graph.

istree.m: If graph is singly connected return 1 and elimination sequence
elimtri.m: Node elimination on a triangulated graph, with given end node
demoJTree.m: Chest clinic demo
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6.12 Exercises

Exercise 6.1. Show that the Markov network 1 2 3

4

is not perfect elimination ordered and give a perfect
elimination labelling for this graph.

Exercise 6.2. Consider the following distribution:

p(x1, x2, x3, x4) = φ(x1, x2)φ(x2, x3)φ(x3, x4) (6.12.1)

1. Draw a clique graph that represents this distribution and indicate the separators on the graph.

2. Write down an alternative formula for the distribution p(x1, x2, x3, x4) in terms of the marginal prob-
abilities p(x1, x2), p(x2, x3), p(x3, x4), p(x2), p(x3)

Exercise 6.3. Consider the distribution

p(x1, x2, x3, x4) = φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x4, x1) (6.12.2)

1. Write down a junction tree for the above distribution.

2. Carry out the absorption procedure and demonstrate that this gives the correct result for the marginal
p(x1).

Exercise 6.4. Consider the distribution

p(a, b, c, d, e, f, g, h, i) = p(a)p(b|a)p(c|a)p(d|a)p(e|b)p(f |c)p(g|d)p(h|e, f)p(i|f, g) (6.12.3)

1. Draw the belief network for this distribution.

2. Draw the moralised graph.

3. Draw the triangulated graph. Your triangulated graph should contain cliques of the smallest size pos-
sible.

4. Draw a junction tree for the above graph and verify that it satisfies the running intersection property.

5. Describe a suitable initialisation of clique potentials.

6. Describe the absorption procedure and write down an appropriate message updating schedule.

Exercise 6.5. This question concerns the distribution

p(a, b, c, d, e, f) = p(a)p(b|a)p(c|b)p(d|c)p(e|d)p(f |a, e) (6.12.4)

1. Draw the Belief Network for this distribution.

2. Draw the moralised graph.

3. Draw the triangulated graph. Your triangulated graph should contain cliques of the smallest size pos-
sible.

4. Draw a junction tree for the above graph and verify that it satisfies the running intersection property.

5. Describe a suitable initialisation of clique potentials.

6. Describe the Absorption procedure and an appropriate message updating schedule.

7. Show that the distribution can be expressed in the form

p(a|f)p(b|a, c)p(c|a, d)p(d|a, e)p(e|a, f)p(f) (6.12.5)
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Exercise 6.6.

For the undirected graph on the square lattice as shown, draw a triangulated graph with
the smallest clique sizes possible.

Exercise 6.7.
Consider a binary variable Markov Random Field p(x) = Z−1

∏
i>j φ(xi, xj), defined

on the n × n lattice with φ(xi, xj) = eI[xi=xj ] for i a neighbour of j on the lattice and
i > j. A naive way to perform inference is to first stack all the variables in the tth

column and call this cluster variable Xt, as shown. The resulting graph is then singly
connected. What is the complexity of computing the normalisation constant based on
this cluster representation? Compute logZ for n = 10. X1 X2 X3

Exercise 6.8. Given a consistent junction tree on which a full round of message passing has occurred,
explain how to form a belief network from the junction tree.

Exercise 6.9. The file diseaseNet.mat contains the potentials for a disease bi-partite belief network, with
20 diseases d1, . . . , d20 and 40 symptoms, s1, . . . , s40. The disease variables are numbered from 1 to 20 and
the symptoms from 21 to 60. Each disease and symptom is a binary variable, and each symptom connects
to 3 parent diseases.

1. Using the BRMLtoolbox, construct a junction tree for this distribution and use it to compute all the
marginals of the symptoms, p(si = 1).

2. Explain how to compute the marginals p(si = 1) in a way more efficient than using the junction tree
formalism. By implementing this method, compare it with the results from the junction tree algorithm.

3. Symptoms 1 to 5 are present (state 1), symptoms 6 to 10 not present (state 2), and the rest not known.
Compute the marginal p(di = 1|s1:10) for all diseases.

Exercise 6.10. Consider the distribution

p(y|x1, . . . , xT )p(x1)
T∏
t=2

p(xt|xt−1)

where all variables are binary.

1. Draw a junction tree for this distribution and explain the computational complexity of computing p(xT ),
as suggested by the junction tree algorithm.

2. By using an approach different from the plain JTA above, explain how p(xT ) can be computed in time
that scales linearly with T .

Exercise 6.11. Analogous to jtpot=absorption(jtpot,jtsep,infostruct), write a routine
[jtpot jtmess]=ShaferShenoy(jtpot,infostruct) that returns the clique marginals and messages for a
junction tree under Shafer-Shenoy updating. Modify demoJTree.m to additionally output your results for
marginals and conditional marginals alongside those obtained using absorption.

Exercise 6.12 (Clique elimination). Since a junction tree is indeed a tree, it must have an extremal (‘edge’)
clique X1 that connects to only one other clique through their separator S1. More generally, we must be able
to label the cliques in an elimination order, 1, 2, . . . , n such that by eliminating clique i we only have cliques
left with label greater than i. For a separator connected to two cliques j and k, we then number this separator
the lower of the two values, min (j, k). Using this elimination ordering of the cliques we can write the JT in
the form

p(X ) =
φ(X1)

φ(S1)

∏
c≥2 φ(Xc)∏
s≥2 φ(Xs)

(6.12.6)
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1. Now eliminate clique 1 by summing over all variables in clique 1 that are not in the separator S1.
Show that this gives a new JT on cliques c ≥ 2 and separators s ≥ 2 of the form

φ′(Xd)
∏
c≥2,c 6=d φ(Xc)∏
s≥2 φ(Xs)

(6.12.7)

where d is the clique neighbouring clique 1 and

φ′(Xd) =
φ(Xd)

∑
X1\S1 φ(S1)

φ(S1)
(6.12.8)

and relate this to the absorption procedure.

2. Show that by continuing in this manner, eliminating cliques one by one, the last clique must contain
the marginal p(Xn).

3. Explain how by now reversing the elimination schedule, and eliminating cliques one by one, updating
their potentials in a similar manner to Equation(6.12.8), the updated cliques φ(Xj) will contain the
marginals p(Xj).

4. Hence explain why, after updating cliques according to the forward and reversed elimination schedules,
the cliques must be globally consistent.
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CHAPTER 7

Making Decisions

So far we’ve considered modelling and inference of distributions. In cases where we need to make decisions
under uncertainty, we need to additionally express how useful making the right decision is. In this chapter
we are particularly interested in the case when a sequence of decisions need to be taken. The corresponding
sequential decision theory problems can be solved using either a general decision tree approach or by ex-
ploiting structure in the problem based on extending the belief network framework and the corresponding
inference routines. The framework is related to problems in control theory and reinforcement learning.

7.1 Expected Utility

This chapter concerns situations in which decisions need to be taken under uncertainty. Consider the
following scenario: you are asked if you wish to take a bet on the outcome of tossing a fair coin. If you
bet and win, you gain £100. If you bet and lose, you lose £200. If you don’t bet, the cost to you is
zero. We can set this up using a two state variable x, with dom(x) = {win, lose}, a decision variable d with
dom(d) = {bet, no bet} and utilities as follows:

U(win, bet) = 100, U(lose, bet) = −200, U(win, no bet) = 0, U(lose, no bet) = 0 (7.1.1)

Since we don’t know the state of x, in order to make a decision about whether or not to bet, arguably the
best we can do is work out our expected winnings/losses under the situations of betting and not betting[257].
If we bet, we would expect to gain

U(bet) = p(win)× U(win, bet) + p(lose)× U(lose, bet) = 0.5× 100− 0.5× 200 = −50

If we don’t bet, the expected gain is zero, U(no bet) = 0. Based on taking the decision which maximises
expected utility, we would therefore be advised not to bet.

Definition 7.1 (Subjective Expected Utility). The utility of a decision is

U(d) = 〈U(d, x)〉p(x) (7.1.2)

where p(x) is the distribution of the outcome x and d represents the decision.

7.1.1 Utility of money

You are a wealthy individual, with £1, 000, 000 in your bank account. You are asked if you would like to
participate in a fair coin tossing bet in which, if you win, your bank account will become £1, 000, 000, 000.
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Figure 7.1: A decision tree containing chance nodes (denoted
with ovals), decision nodes (denoted with rectangles) and utility
nodes (denoted with diamonds). Note that a decision tree is not
a graphical representation of a belief network with additional
nodes. Rather, a decision tree is an explicit enumeration of the
possible choices that can be made, beginning with the leftmost
decision node, with probabilities on the links out of chance nodes.

However, if you lose, your bank account will contain only £1000. Assuming the coin is fair, should you take
the bet? If we take the bet our expected bank balance would be

U(bet) = 0.5× 1, 000, 000, 000 + 0.5× 1000 = 500, 000, 500.00 (7.1.3)

If we don’t bet, our bank balance will remain at £1, 000, 000. Based on expected utility, we are therefore
advised to take the bet. (Note that if one considers instead the amount one will win or lose, one may show
that the difference in expected utility between betting and not betting is the same, exercise(7.7)).

Whilst the above makes mathematical sense, few people who are millionaires are likely to be willing to risk
losing almost everything in order to become a billionaire. This means that the subjective utility of money is
not simply the quantity of money. In order to better reflect the situation, the utility of money would need
to be a non-linear function of money, growing slowly for large quantities of money and decreasing rapidly
for small quantities of money, exercise(7.2).

7.2 Decision Trees

Decision trees (DTs) are a way to graphically organise a sequential decision process. A decision tree contains
decision nodes, each with branches for each of the alternative decisions. Chance nodes (random variables)
also appear in the tree, with the utility of each branch computed at the leaf of each branch. The expected
utility of any decision can then be computed on the basis of the weighted summation of all branches from
the decision to all leaves from that branch.

Example 7.1 (Party). Consider the decision problem as to whether or not to go ahead with a fund-raising
garden party. If we go ahead with the party and it subsequently rains, then we will lose money (since very
few people will show up); on the other hand, if we don’t go ahead with the party and it doesn’t rain we’re
free to go and do something else fun. To characterise this numerically, we use:

p(Rain = rain) = 0.6, p(Rain = no rain) = 0.4 (7.2.1)

The utility is defined as

U (party, rain) = −100, U (party, no rain) = 500, U (no party, rain) = 0, U (no party, no rain) = 50 (7.2.2)

We represent this situation in fig(7.1). The question is, should we go ahead with the party? Since we don’t
know what will actually happen to the weather, we compute the expected utility of each decision:

U (party) =
∑
Rain

U(party, Rain)p(Rain) = −100× 0.6 + 500× 0.4 = 140 (7.2.3)

U (no party) =
∑
Rain

U(no party, Rain)p(Rain) = 0× 0.6 + 50× 0.4 = 20 (7.2.4)
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Based on expected utility, we are therefore advised to go ahead with the party. The maximal expected
utility is given by (see demoDecParty.m)

max
Party

∑
Rain

p(Rain)U(Party,Rain) = 140 (7.2.5)

Example 7.2 (Party-Friend). An extension of the Party problem is that if we decide not to go ahead with
the party, we have the opportunity to visit a friend. However, we’re not sure if this friend will be in. The
question is should we still go ahead with the party?

We need to quantify all the uncertainties and utilities. If we go ahead with the party, the utilities are as
before:

Uparty (party, rain) = −100, Uparty (party, no rain) = 500 (7.2.6)

with

p(Rain = rain) = 0.6, p(Rain = no rain) = 0.4 (7.2.7)

If we decide not to go ahead with the party, we will consider going to visit a friend. In making the decision
not to go ahead with the party we have utilities

Uparty (no party, rain) = 0, Uparty (no party, no rain) = 50 (7.2.8)

The probability that the friend is in depends on the weather according to

p(Friend = in|rain) = 0.8, p(Friend = in|no rain) = 0.1, (7.2.9)

The other probabilities are determined by normalisation. We additionally have

Uvisit (friend in, visit) = 200, Uvisit (friend out, visit) = −100 (7.2.10)

with the remaining utilities zero. The two sets of utilities add up so that the overall utility of any decision
sequence is Uparty + Uvisit. The decision tree for the Party-Friend problem is shown is fig(7.2). For each
decision sequence the utility of that sequence is given at the corresponding leaf of the DT. Note that the
leaves contain the total utility Uparty + Uvisit. Solving the DT corresponds to finding for each decision
node the maximal expected utility possible (by optimising over future decisions). At any point in the tree
choosing that action which leads to the child with highest expected utility will lead to the optimal strategy.
Using this, we find that the optimal expected utility has value 140 and is given by going ahead with the
party, see demoDecPartyFriend.m.

Mathematically, we can express the optimal expected utility for the Party-Friend example by summing over
un-revealed variables and optimising over future decisions:

max
Party

∑
Rain

p(Rain) max
V isit

∑
Friend

p(Friend|Rain) [Uparty(Party,Rain) + Uvisit(V isit, Friend)I [Party = no]]

(7.2.11)

where the term I [Party = no] has the effect of curtailing the DT if the party goes ahead. To answer the
question as to whether or not to go ahead with the party, we take that state of Party that corresponds to
the maximal expected utility above. The way to read equation (7.2.11) is to start from the last decision
that needs to be taken, in this case V isit. When we are at the V isit stage we assume that we will have
previously made a decision about Party and also will have observed whether or not it is raining. However,
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Figure 7.2: Solving a Decision Tree. (a):
Decision Tree for the Party-Friend problem,
example(7.2). (b): Solving the DT cor-
responds to making the decision with the
highest expected future utility. This can be
achieved by starting at the leaves (utilities).
For a chance parent node x, the utility of
the parent is the expected utility of that
variable. For example, at the top of the DT
we have the Rain variable with the children
−100 (probability 0.6) and 500 (probabil-
ity 0.4). Hence the expected utility of the
Rain node is −100× 0.6 + 500× 0.4 = 140.
For a decision node, the value of the node
is the optimum of its child values. One re-
curses thus backwards from the leaves to
the root. For example, the value of the
Rain chance node in the lower branch is
given by 140×0.6+50×0.4 = 104. The opti-
mal decision sequence is then given at each
decision node by finding which child node
has the maximal value. Hence the overall
best decision is to decide to go ahead with
the party. If we decided not to do so, and
it does not rain, then the best decision we
could take would be to not visit the friend
(which has an expected utility of 50). A
more compact description of this problem
is given by the influence diagram, fig(7.4).
See also demoDecPartyFriend.m.

we don’t know whether or not our friend will be in, so we compute the expected utility by averaging over
this unknown. We then take the optimal decision by maximising over V isit. Subsequently we move to the
next-to-last decision, assuming that what we will do in the future is optimal. Since in the future we will
have taken a decision under the uncertain Friend variable, the current decision can then be taken under
uncertainty about Rain and maximising this expected optimal utility over Party. Note that the sequence
of maximisations and summations matters – changing the order will in general result in a different problem
with a different expected utility1.

For the Party-Friend example the DT is asymmetric since if we decide to go ahead with the party we will not
visit the friend, curtailing the further decisions present in the lower half of the tree. Whilst the DT approach
is flexible and can handle decision problems with arbitrary structure, a drawback is that the same nodes are
often repeated throughout the decision tree. For a longer sequence of decisions, the number of branches in
the tree can grow exponentially with the number of decisions, making this representation impractical.

1If one only had a sequence of summations, the order of the summations is irrelevant – likewise for the case of all maximi-
sations. However, summation and maximisation operators do not in general commute.
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RainParty

Utility

Figure 7.3: An influence diagram which contains random vari-
ables (denoted with ovals/circles) Decision nodes (denoted with
rectangles) and Utility nodes (denoted with diamonds). Con-
trasted with fig(7.1) this is a more compact representation of the
structure of the problem. The diagram represents the expres-
sion p(rain)u(party, rain). In addition the diagram denotes an
ordering of the variables with party ≺ rain (according to the
convention given by equation (7.3.1)).

7.3 Extending Bayesian Networks for Decisions

An influence diagram is a Bayesian Network with additional Decision nodes and Utility nodes [149, 161, 175].
The decision nodes have no associated distribution and the utility nodes are deterministic functions of their
parents. The utility and decision nodes can be either continuous or discrete; for simplicity, in the examples
here the decisions will be discrete.

A benefit of decision trees is that they are general and explicitly encode the utilities and probabilities
associated with each decision and event. In addition, we can readily solve small decision problems using
decision trees. However, when the sequence of decisions increases, the number of leaves in the decision tree
grows and representing the tree can become an exponentially complex problem. In such cases it can be
useful to use an Influence Diagram (ID). An ID states which information is required in order to make each
decision, and the order in which these decisions are to be made. The details of the probabilities and utilities
are not specified in the ID, and this can enable a more compact description of the decision problem.

7.3.1 Syntax of influence diagrams

Information Links An information link from a random variable into a decision node

X D d

indicates that the state of the variable X will be known before decision D is taken. Information links
from another decision node d in to D similarly indicate that decision d is known before decision D is
taken. We use a dashed link to denote that decision D is not functionally related to its parents.

Random Variables Random variables may depend on the states of parental random variables (as in belief
networks), but also decision node states:

YXD

As decisions are taken, the states of some random variables will be revealed. To emphasise this we
typically shade a node to denote that its state will be revealed during the sequential decision process.

Utilities A utility node is a deterministic function of its parents. The parents can be either random
variables or decision nodes.

XUD

In the party example, the BN trivially consists of a single node, and the Influence Diagram is given in fig(7.3).
The more complex Party-Friend problem is depicted in fig(7.4). The ID generally provides a more compact
representation of the structure of problem than a DT, although details about the specific probabilities and
utilities are not present in the ID.
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Rain

Party

Uparty

V isit

Friend

Uvisit

Figure 7.4: An influence diagram for the Party-Friend problem,
example(7.2). The partial ordering is Party∗ ≺ Rain ≺ V isit∗ ≺
Friend. The dashed-link from party to visit is not strictly nec-
essary but retained in order to satisfy the convention that there
is a directed path connecting all decision nodes.

Partial ordering

An ID defines a partial ordering of the nodes. We begin by writing those variables X0 whose states are
known (evidential variables) before the first decision D1. We then find that set of variables X1 whose states
are revealed before the second decision D2. Subsequently the set of variables Xt is revealed before decision
Dt+1. The remaining fully-unobserved variables are placed at the end of the ordering:

X0 ≺ D1 ≺ X1 ≺ D2, . . . ,≺ Xn−1 ≺ Dn ≺ Xn (7.3.1)

with Xk being the variables revealed between decision Dk and Dk+1. The term ‘partial’ refers to the fact
that there is no order implied amongst the variables within the set Xn. For notational clarity, at points
below we will indicate decision variables with ∗ to reinforce that we maximise over these variables, and sum
over the non-starred variables. Where the sets are empty we omit writing them. For example, in fig(7.5a)
the ordering is Test∗ ≺ Seismic ≺ Drill∗ ≺ Oil.

The optimal first decision D1 is determined by computing

U(D1|X0) ≡
∑
X1

max
D2

. . .
∑
Xn−1

max
Dn

∑
Xn

∏
i∈I

p (xi|pa (xi))
∑
j∈J

Uj (pa (uj)) (7.3.2)

for each state of the decision D1, given X0. In equation (7.3.2) above I denotes the set of indices for the
random variables, and J the indices for the utility nodes. For each state of the conditioning variables, the
optimal decision D1 is found using

argmax
D1

U(D1|X0) (7.3.3)

Remark 7.1 (Reading off the partial ordering). Sometimes it can be tricky to read the partial ordering from
the ID. A method is to identify the first decision D1 and then any variables X0 that need to be observed to
make that decision. Then identify the next decision D2 and the variables X1 that are revealed after decision
D1 is taken and before decision D2 is taken, etc. This gives the partial ordering X0 ≺ D1 ≺ X1 ≺ D2, . . ..
Place any unrevealed variables at the end of the ordering.

Implicit and explicit information links

The information links are a potential source of confusion. An information link specifies explicitly which
quantities are known before that decision is taken2. We also implicitly assume the no forgetting assumption
that all past decisions and revealed variables are available at the current decision (the revealed variables are
necessarily the parents of all past decision nodes). If we were to include all such information links, IDs would
get potentially rather messy. In fig(7.5), both explicit and implicit information links are demonstrated. We
call an information link fundamental if its removal would alter the partial ordering.

2Some authors prefer to write all information links where possible, and others prefer to leave them implicit. Here we largely
take the implicit approach. For the purposes of computation, all that is required is a partial ordering; one can therefore view
this as ‘basic’ and the information links as superficial (see [72]).
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Test

DrillU1

U2Oil

Seismic

(a)

Test

DrillU1

U2Oil

Seismic

(b)

Figure 7.5: (a): The partial ordering is Test∗ ≺ Seismic ≺ Drill∗ ≺ Oil. The explicit information links
from Test to Seismic and from Seismic to Drill are both fundamental in the sense that removing either
results in a different partial ordering. The shaded node emphasises that the state of this variable will be
revealed during the sequential decision process. Conversely, the non-shaded node will never be observed.
(b): Based on the ID in (a), there is an implicit link from Test to Drill since the decision about Test is
taken before Seismic is revealed.

Causal consistency

For an Influence Diagram to be consistent a current decision cannot affect the past. This means that any
random variable descendants of a decision D in the ID must come later in the partial ordering. Assuming
the no-forgetting principle, this means that for any valid ID there must be a directed path connecting all
decisions. This can be a useful check on the consistency of an ID.

Asymmetry

IDs are most convenient when the corresponding DT is symmetric. However, some forms of asymmetry
are relatively straightforward to deal with in the ID framework. For our Party-Friend example, the DT is
asymmetric. However, this is easily dealt with in the ID by using a link from Party to Uvisit which removes
the contribution from Uvisit when the party goes ahead.

More complex issues arise when the set of variables that can be observed depends on the decision sequence
taken. In this case the DT is asymmetric. In general, Influence Diagrams are not well suited to modelling
such asymmetries, although some effects can be mediated either by careful use of additional variables, or
extending the ID notation. See [72] and [161] for further details of these issues and possible resolutions.

Example 7.3 (Should I do a PhD?). Consider a decision whether or not to do PhD as part of our education
(E). Taking a PhD incurs costs, UC both in terms of fees, but also in terms of lost income. However, if
we have a PhD, we are more likely to win a Nobel Prize (P ), which would certainly be likely to boost our
Income (I), subsequently benefitting our finances (UB). This setup is depicted in fig(7.6a). The ordering is
(excluding empty sets)

E∗ ≺ {I, P} (7.3.4)

and

dom(E) = (do PhD, no PhD) , dom(I) = (low, average, high) , dom(P ) = (prize, no prize) (7.3.5)

The probabilities are

p(win Nobel prize|no PhD) = 0.0000001 p(win Nobel prize|do PhD) = 0.001 (7.3.6)

p(low|do PhD, no prize) = 0.1 p(average|do PhD, no prize) = 0.5 p(high|do PhD, no prize) = 0.4
p(low|no PhD, no prize) = 0.2 p(average|no PhD, no prize) = 0.6 p(high|no PhD, no prize) = 0.2
p(low|do PhD, prize) = 0.01 p(average|do PhD, prize) = 0.04 p(high|do PhD, prize) = 0.95
p(low|no PhD, prize) = 0.01 p(average|no PhD, prize) = 0.04 p(high|no PhD, prize) = 0.95

(7.3.7)
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E

UC

P

I

UB

(a)

SE

UC

P

USI

UB

(b)

Figure 7.6: (a): Education E incurs some
cost, but also gives a chance to win a pres-
tigious science prize. Both of these affect
our likely Incomes, with corresponding long
term financial benefits. (b): The start-up
scenario.

The utilities are

UC (do PhD) = −50000, UC (no PhD) = 0, (7.3.8)

UB (low) = 100000, UB (average) = 200000, UB (high) = 500000 (7.3.9)

The expected utility of Education is

U(E) =
∑
I,P

p(I|E,P )p(P |E) [UC(E) + UB(I)] (7.3.10)

so that U(do phd) = 260174.000, whilst not taking a PhD is U(no phd) = 240000.0244, making it on average
beneficial to do a PhD. See demoDecPhD.m.

Example 7.4 (PhDs and Start-up companies). Influence Diagrams are particularly useful when a
sequence of decisions is taken. For example, in fig(7.6b) we model a new situation in which someone
has first decided whether or not to take a PhD. Ten years later in their career they decide whether
or not to make a start-up company. This decision is based on whether or not they won the Nobel
Prize. The start-up decision is modelled by S with dom(S) = (tr, fa). If we make a start-up, this will
cost some money in terms of investment. However, the potential benefit in terms of our income could be high.

We model this with (the other required table entries being taken from example(7.3)):

p(low|start up, no prize) = 0.1 p(average|start up, no prize) = 0.5 p(high|start up, no prize) = 0.4
p(low|no start up, no prize) = 0.2 p(average|no start up, no prize) = 0.6 p(high|no start up, no prize) = 0.2
p(low|start up, prize) = 0.005 p(average|start up, prize) = 0.005 p(high|start up, prize) = 0.99
p(low|no start up, prize) = 0.05 p(average|no start up, prize) = 0.15 p(high|no start up, prize) = 0.8

(7.3.11)

and

US (start up) = −200000, US (no start up) = 0 (7.3.12)

Our interest is to advise whether or not it is desirable (in terms of expected utility) to take a PhD, now
bearing in mind that later one may or may not win the Nobel Prize, and may or may not make a start-up
company.

The ordering is (eliding empty sets)

E∗ ≺ P ≺ S∗ ≺ I (7.3.13)

The expected optimal utility for any state of E is

U(E) =
∑
P

max
S

∑
I

p(I|S, P )p(P |E) [US(S) + UC(E) + UB(I)] (7.3.14)
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where we assume that the optimal decisions are taken in the future. Computing the above, we find

U(do PhD) = 190195.00, U(no PhD) = 240000.02 (7.3.15)

Hence, we are better off not doing a PhD. See demoDecPhd.m.

7.4 Solving Influence Diagrams

Solving an influence diagram means computing the optimal decision or sequence of decisions. The direct
variable elimination approach is to take equation (7.3.2) and perform the required sequence of summations
and maximisations explicitly. Due to the causal consistency requirement the future cannot influence the
past. To help matters with notation, we order the variables and decisions such that we may write the belief
network of the influence diagram as

p(x1:T , d1:T ) =

T∏
t=1

p(xt|x1:t−1, d1:t) (7.4.1)

For a general utility u(x1:T , d1:T ), solving the ID the corresponds to carrying out the operations

max
d1

∑
x1

. . .max
dT

∑
xT

T∏
t=1

p(xt|x1:t−1, d1:t)u(x1:T , d1:T ) (7.4.2)

Let’s look at eliminating first xT and then dT . Our aim is to write a new ID on the reduced variables
x1:T−1, d1:T−1. Since xT and dT only appear in the final factor of the belief network, we can write

max
d1

∑
x1

. . .max
dT−1

∑
xT−1

T−1∏
t=1

p(xt|x1:t−1, d1:t) max
dT

∑
xT

p(xT |x1:T−1, d1:T )u(x1:T , d1:T ) (7.4.3)

which is then a new ID

max
d1

∑
x1

. . .max
dT−1

∑
xT−1

T−1∏
t=1

p(xt|x1:t−1, d1:t)ũ(x1:T−1, d1:T−1) (7.4.4)

with modified potential

ũ(x1:T−1, d1:T−1) ≡ max
dT

∑
xT

p(xT |x1:T−1, d1:T )u(x1:T , d1:T ) (7.4.5)

This however doesn’t exploit the fact that the utilities will typically have structure. Without loss of gen-
erality, we may also write the utility as one that is independent of xT , dT and one that depends on xT , dT :

u(x1:T , d1:T ) = ua(x1:T−1, d1:T−1) + ub(x1:T , d1:T ) (7.4.6)

Then eliminating xT , dT updates the utility to

ũ(x1:T−1, d1:T−1) = ua(x1:T−1, d1:T−1) + max
dT

∑
xT

p(xT |x1:T−1, d1:T )ub(x1:T , d1:T ) (7.4.7)

7.4.1 Messages on an ID

For an ID with two sets of variables X1,X2 and associated decision sets D1 and D2, we can write the belief
network as

p(X|D) = p(X2|X1,D1,D2)p(X1|D1) (7.4.8)
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where D1 ≺ X1 ≺ D2 ≺ X2, and corresponding utilities

u(X ,D) = u(X1,D) + u(X1,X2,D) (7.4.9)

The optimal utility is given by

uopt = max
D1

∑
X1

max
D2

∑
X2

p(X|D)u(X ,D) (7.4.10)

After eliminating X2 and D2, we obtain the ID

p(X1|D1)

u(X1,D) + max
D2

∑
X2

u(X1,X∈,D)

 (7.4.11)

which we can express in terms of the original distribution p(X|D) as ∗∑
(X ,D)2

p(X|D)

u(X1,D) +
1∑∗

(X ,D)2
p(X|D)

∗∑
(X ,D)2

p(X|D)u(X1,X2,D)

 (7.4.12)

where
∑∗
Y refers to summing first over the chance variables in Y and then maximising over the decision

variables in Y. These updates then define an ID on a reduced set of variables and can be viewed as messages.
The potential usefulness of equation (7.4.12) is that it may be applied to IDs that are causally consistent
(future decisions cannot affect the past) but which are not expressed directly in a causal form.

7.4.2 Using a junction tree

In complex IDs computational efficiency in carrying out the series of summations and maximisations may
be an issue and one therefore seeks to exploit structure in the ID. It is intuitive that some form of junction
tree style algorithm is applicable. The treatment here is inspired by [159]; a related approach which deals
with more general chain graphs is given in [72]. We can first represent an ID using decision potentials which
consist of two parts, as defined below.

Definition 7.2 (Decision Potential). A decision potential on a clique C contains two potentials: a probability
potential ρC and a utility potential µC . The joint potentials for the junction tree are defined as

ρ =
∏
C∈C

ρC , µ =
∑
C∈C

µC (7.4.13)

with the junction tree representing the term ρµ.

In this case there are constraints on the triangulation, imposed by the partial ordering which restricts the
variables elimination sequence. This results in a so-called strong Junction Tree. The sequence of steps
required to construct a JT for an ID is given by the following procedure:

Procedure 7.1 (Making a strong junction tree).

Remove Information Edges Parental links of decision nodes are removed.

Moralization Marry all parents of the remaining nodes.

Remove Utility Nodes Remove the utility nodes and their parental links.

Strong Triangulation Form a triangulation based on an elimination order which obeys the partial ordering
of the variables.

Strong Junction Tree From the strongly triangulated graph, form a junction tree and orient the edges
towards the strong root (the clique that appears last in the elimination sequence).
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The cliques are then ordered according to the sequence in which they are eliminated. The separator prob-
ability cliques are initialised to the identity, with the separator utilities initialised to zero. The probability
cliques are then initialised by placing conditional probability factors into the lowest available clique (that is
the probability factors are placed in the cliques closest to the leaves of the tree, furthest from the root) that
can contain them, and similarly for the utilities. Remaining probability cliques are set to the identity and
utility cliques to zero.

Example 7.5 (Junction Tree). An example of a junction tree for an ID is given in fig(7.7a). The
moralisation and triangulation links are given in fig(7.7b). The orientation of the edges follows the
partial ordering with the leaf cliques being the first to disappear under the sequence of summations and
maximisations.

A by-product of the above steps is that the cliques describe the fundamental dependencies on previous
decisions and observations. In fig(7.7a), for example, the information link from f to D2 is not present in the
moralised-triangulated graph fig(7.7b), nor in the associated cliques of fig(7.7c). This is because once e is
revealed, the utility U4 is independent of f , giving rise to the two-branch structure in fig(7.7b). Nevertheless,
the information link from f to D2 is fundamental since it specifies that f will be revealed – removing this
link would therefore change the partial ordering.

Absorption

By analogy with the definition of messages in section(7.4.1), for two neighbouring cliques C1 and C2, where
C1 is closer to the strong root of the JT (the last clique defined through the elimination order), we define

ρS =

∗∑
C2\S

ρC2 , µS =

∗∑
C2\S

ρC2µC2 (7.4.14)

ρnewC1
= ρC1ρS , µnewC1

= µC1 +
µS
ρS

(7.4.15)

In the above
∑∗

C is a ‘generalised marginalisation’ operation – it sums over those elements of clique C which
are random variables and maximises over the decision variables in the clique. The order of this sequence of
sums and maximisations follows the partial ordering defined by ≺.

Absorption is then carried out from the leaves inwards to the root of the strong JT. The optimal setting
of a decision D1 can then be computed from the root clique. Subsequently backtracking may be applied to
infer the optimal decision trajectory. The optimal decision for D can be obtained by working with the clique
containing D which is closest to the strong root and setting any previously taken decisions and revealed
observations into their evidential states. See demoDecAsia.m for an example.

Example 7.6 (Absorption on a chain). For the ID of fig(7.8), the moralisation and triangulation steps are
trivial and give the JT:

3: x1, x2, d1 x2 2: x2, x3, d2 x3 1: x3, x4, d3

where the cliques are indexed according the elimination order. The probability and utility cliques are
initialised to

ρ3 (x1, x2, d1) = p(x2|x1, d1) µ3 (x1, x2, d1) = 0
ρ2 (x2, x3, d2) = p(x3|x2, d2) µ2 (x2, x3, d2) = u(x2)
ρ1 (x3, x4, d3) = p(x4|x3, d3) µ1 (x3, x4, d3) = u(x3) + u(x4)

(7.4.16)
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Figure 7.7: (a): Influence Diagram, adapted from [159]. Causal consistency is satisfied since there is a
directed path linking all decisions in sequence. The partial ordering is b ≺ D1 ≺ (e, f) ≺ D2 ≺ (·) ≺ D3 ≺
g ≺ D4 ≺ (a, c, d, h, i, j, k, l). (b): Moralised and strongly triangulated graph. Moralisation links are in
green, strong triangulation links are in red. (c): Strong Junction Tree. Absorption passes information
from the leaves of the tree towards the root.

with the separator cliques initialised to

ρ1−2 (x3) = 1 µ1−2 (x3) = 0
ρ2−3 (x2) = 1 µ2−3 (x2) = 0

(7.4.17)

Updating the separator we have the new probability potential

ρ1−2 (x3)∗ = max
d3

∑
x4

ρ1 (x3, x4, d3) = 1 (7.4.18)

and utility potential

µ1−2 (x3)∗ = max
d3

∑
x4

ρ1 (x3, x4, d3)µ1 (x3, x4, d3) = max
d3

∑
x4

p(x4|x3, d3) (u(x3) + u(x4)) (7.4.19)

= max
d3

(
u(x3) +

∑
x4

p(x4|x3, d3)u(x4)

)
(7.4.20)

At the next step we update the probability potential

ρ2 (x2, x3, d2)∗ = ρ2 (x2, x3, d2) ρ1−2 (x3)∗ = 1 (7.4.21)
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x1 x2 x3 x4

u2 u3 u4

d1 d2 d3

Figure 7.8: Markov Decision Process. These can be
used to model planning problems of the form ‘how
do I get to where I want to be incurring the lowest
total cost?’. They are readily solvable using a message
passing algorithm.

and utility potential

µ2 (x2, x3, d2)∗ = µ2 (x2, x3, d2) +
µ1−2 (x3)∗

ρ1−2 (x3)
= u(x2) + max

d3

(
u(x3) +

∑
x4

p(x4|x3, d3)u(x4)

)
(7.4.22)

The next separator decision potential is

ρ2−3 (x2)∗ = max
d2

∑
x3

ρ2 (x2, x3, d2)∗ = 1 (7.4.23)

µ2−3 (x2)∗ = max
d2

∑
x3

ρ2 (x2, x3, d2)µ2 (x2, x3, d2)∗ (7.4.24)

= max
d2

∑
x3

p(x3|x2, d2)

(
u(x2) + max

d3

(
u(x3) +

∑
x4

p(x4|x3, d3)u(x4)

))
(7.4.25)

Finally we end up with the root decision potential

ρ3 (x1, x2, d1)∗ = ρ3 (x1, x2, d1) ρ2−3 (x2)∗ = p(x2|x1, d1) (7.4.26)

and

µ3 (x1, x2, d1)∗ = µ3 (x2, x1, d1) +
µ2−3 (x2)∗

ρ2−3 (x2)∗
(7.4.27)

= max
d2

∑
x3

p(x3|x2, d2)

(
u(x2) + max

d3

(
u(x3) +

∑
x4

p(x4|x3, d3)u(x4)

))
(7.4.28)

From the final decision potential we have the expression

ρ3 (x1, x2, d1)∗ µ3 (x1, x2, d1)∗ (7.4.29)

which is equivalent to that which would be obtained by simply distributing the summations and maximi-
sations over the original ID. At least for this special case, we therefore have verified that the JT approach
yields the correct root clique potentials.

7.5 Markov Decision Processes

Consider a Markov chain with transition probabilities p(xt+1 = i|xt = j). At each time t we consider an
action (decision), which affects the state at time t+ 1. We describe this by

p(xt+1 = i|xt = j, dt = k) (7.5.1)

Associated with each state xt is a utility u(xt), and is schematically depicted in fig(7.8). More generally
one could consider utilities that depend on transitions and decisions, u(xt+1 = i, xt = j, dt = k) and also
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time dependent versions of all of these, pt(xt+1 = i|xt = j, dt = k), ut(xt+1 = i, xt = j, dt = k). We’ll stick
with the time-independent (stationary) case here since the generalisations are conceptually straightforward
at the expense of notational complexity. Markov Decision Processes (MDPs) can be used to solve planning
tasks such as how to get to a desired goal state as quickly as possible.

For positive utilities, the total utility of any state-decision path x1:T , d1:T is defined as (assuming we know
the initial state x1)

U(x1:T ) ≡
T∑
t=2

u(xt) (7.5.2)

and the probability with which this happens is given by

p(x2:T |x1, d1:T−1) =
T−1∏
t=1

p(xt+1|xt, dt) (7.5.3)

At time t = 1 we want to make that decision d1 that will lead to maximal expected total utility

U(d1|x1) ≡
∑
x2

max
d2

∑
x3

max
d3

∑
x4

. . .max
dT−1

∑
xT

p(x2:T |x1, d1:T−1)U(x1:T ) (7.5.4)

Our task is to compute U(d1|x1) for each state of d1 and then choose that state with maximal expected
total utility. To carry out the summations and maximisations efficiently, we could use the junction tree
approach, as described in the previous section. However, in this case, the ID is sufficiently simple that a
direct message passing approach can be used to compute the expected utility.

7.5.1 Maximising expected utility by message passing

Consider the time-dependent decisions (non-stationary policy) MDP

T−1∏
t=1

p(xt+1|xt, dt)
T∑
t=2

u(xt) (7.5.5)

For the specific example in fig(7.8) the joint model of the BN and utility is

p(x4|x3, d3)p(x3|x2, d2)p(x2|x1, d1) (u(x2) + u(x3) + u(x4)) (7.5.6)

To decide on how to take the first optimal decision, we need to compute

U(d1|x1) =
∑
x2

max
d2

∑
x3

max
d3

∑
x4

p(x4|x3, d3)p(x3|x2, d2)p(x2|x1, d1) (u(x2) + u(x3) + u(x4)) (7.5.7)

Since only u(x4) depends on x4 explicitly, we can write

U(d1|x1) =
∑
x2

max
d2

∑
x3

p(x3|x2, d2)p(x2|x1, d1)

(
u(x2) + u(x3) + max

d3

∑
x4

p(x4|x3, d3)u(x4)

)
(7.5.8)

Defining a message and corresponding value

u3←4(x3) ≡ max
d3

∑
x4

p(x4|x3, d3)u(x4), v(x3) ≡ u(x3) + u3←4(x3) (7.5.9)

we can write

U(d1|x1) =
∑
x2

max
d2

∑
x3

p(x3|x2, d2)p(x2|x1, d1) (u(x2) + v(x3)) (7.5.10)

In a similar manner, only the last term depends on x3 and hence

U(d1|x1) =
∑
x2

p(x2|x1, d1)

(
u(x2) + max

d2

∑
x3

p(x3|x2, d2)v(x3)

)
(7.5.11)
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Defining similarly the value

v(x2) ≡ u(x2) + max
d2

∑
x3

p(x3|x2, d2)v(x3) (7.5.12)

then

U(d1|x1) =
∑
x2

p(x2|x1, d1)v(x2) (7.5.13)

Given U(d1|x1) above, we can then find the optimal decision d1 by

d∗1(x1) = argmax
d1

U(d1|x1) (7.5.14)

7.5.2 Bellman’s equation

In a Markov Decision Process, as above, we can define utility messages recursively as

ut−1←t(xt−1) ≡ max
dt−1

∑
xt

p(xt|xt−1, dt−1) [u(xt) + ut←t+1(xt)] (7.5.15)

It is more common to define the value of being in state xt as

vt(xt) ≡ u(xt) + ut←t+1(xt), vT (xT ) = u(xT ) (7.5.16)

and write then the equivalent recursion

vt−1(xt−1) = u(xt−1) + max
dt−1

∑
xt

p(xt|xt−1, dt−1)vt(xt) (7.5.17)

The optimal decision d∗t is then given by

d∗t (xt) = argmax
dt

∑
xt+1

p(xt+1|xt, dt)vt+1(xt+1) (7.5.18)

Equation(7.5.17) is called Bellman’s equation[30]3.

7.6 Temporally Unbounded MDPs

In the previous discussion about MDPs we assumed a given end time, T , from which one can propagate
messages back from the end of the chain. The infinite T case would appear to be ill-defined since the sum
of utilities

u(x1) + u(x2) + . . .+ u(xT ) (7.6.1)

will in general be unbounded. There is a simple way to avoid this difficulty. If we let u∗ = maxs u(s) be the
largest value of the utility and consider the sum of modified utilities for a chosen discount factor 0 < γ < 1

T∑
t=1

γtu(xt) ≤ u∗
T∑
t=1

γt = γu∗
1− γT
1− γ (7.6.2)

where we used the result for a geometric series. In the limit T →∞ this means that the summed modified
utility γtu(xt) is finite. The only modification required to our previous discussion is to include a factor γ
in the message definition. Assuming that we are at convergence, we define a value v(xt = s) dependent
only on the state s, and not the time. This means we replace the time-dependent Bellman’s value recursion
equation (7.5.17) with the time-independent equation

v(s) ≡ u(s) + γmax
d

∑
s′

p(xt = s′|xt−1 = s, dt−1 = d)v(s′) (7.6.3)

3The continuous-time analog has a long history in physics and is called the Hamilton-Jacobi equation.
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Figure 7.9: States defined on a two dimensional grid. In each square the top
left value is the state number, and the bottom right is the utility of being
in that state. An ‘agent’ can move from a state to a neighbouring state, as
indicated. The task is to solve this problem such that for any position (state)
one knows how to move optimally to maximise the expected utility. This
means that we need to move towards the goal states (states with non-zero
utility). See demoMDP.

We then need to solve equation (7.6.3) for the value v(s) for all states s. The optimal decision policy when
one is in state xt = s is then given by

d∗(s) = argmax
d

∑
s′

p(xt+1 = s′|xt = s, dt = d)v(s′) (7.6.4)

For a deterministic transition p (i.e. for each decision d, only one state s′ is available), this means that the
best decision is the one that takes us to the accessible state with highest value.

Equation(7.6.3) seems straightforward to solve. However, the max operation means that the equations
are non-linear in the value v and no closed form solution is available. Two popular techniques for solving
equation (7.6.3), are Value and Policy iteration, which we describe below. When the number of states S
is very large, approximate solutions are required. Sampling and state-dimension reduction techniques are
described in [61].

7.6.1 Value iteration

A naive procedure is to iterate equation (7.6.3) until convergence, assuming some initial guess for the values
(say uniform). One can show that this value iteration procedure is guaranteed to converge to a unique
optimum[35]. The convergence rate depends on γ — the smaller γ is, the faster is the convergence. An
example of value iteration is given in fig(7.10).

7.6.2 Policy iteration

In policy iteration we first assume we know the optimal decision d∗(s) for any state s. We may use this in
equation (7.6.3) to give

v(s) = u(s) + γ
∑

s′

p(xt = s′|xt−1 = s, d∗(s))v(s′) (7.6.5)

The maximisation over d has disappeared since we have assumed we already know the optimal decision for
each state s. For fixed d∗(s), equation (7.6.5) is now linear in the value. Defining the value v and utility u
vectors and transition matrix P,

[v]s = v(s), [u]s = u(s), [P]s′,s = p(s’|s, d∗ (s)) (7.6.6)

in matrix notation, equation (7.6.5) becomes

v = u + γPTv⇔
(
I− γPT

)
v = u⇔ v =

(
I− γPT

)−1
u (7.6.7)

These linear equations are readily solved with Gaussian Elimination. Using this, the optimal policy is
recomputed using equation (7.6.4). The two steps of solving for the value, and recomputing the policy are
iterated until convergence. The procedure may be initialised by guessing an initial d∗(s), then solve the
linear equations (7.6.5) for the value, or alternatively guessing the initial values and solving for the initial
policy.
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Figure 7.10: Value Iteration on a set of 225 states,
corresponding to a 15× 15 two dimensional grid. De-
terministic transitions are allowed to neighbours on
the grid, {stay, left, right, up, down}. There are three
goal states, each with utility 1 – all other states have
utility 0. Plotted is the value v(s) for γ = 0.9 after
30 updates of Value Iteration, where the states index
a point on the x − y grid. The optimal decision for
any state on the grid is to go to the neighbouring state
with highest value. See demoMDP.

Example 7.7 (A grid-world MDP). We define a set of states on a grid with corresponding utilities for each
state, as given in fig(7.9). The agent is able to deterministically move to a neighbouring grid state at each
time step. After initialising the value of each grid state to unity, the converged value for each state is given
in fig(7.10). The optimal policy is then given by moving to the neighbouring grid state with highest value.

7.6.3 A curse of dimensionality

Consider the following Tower of Hanoi problem. There are 4 pegs a, b, c, d and 10 disks numbered from 1
to 10. You may move a single disk from one peg to another – however, you are not allowed to put a bigger
numbered disk on top of a smaller numbered disk. Starting with all disks on peg a, how can you move them
all to peg d in the minimal number of moves?

This would appear to be a straightforward Markov decision process in which the transitions are allowed disk
moves. If we use x to represent the state of the disks on the 4 pegs, naively this has 410 = 1048576 states
(some are equivalent up to permutation of the pegs, which reduces this by a factor of 2). This large number
of states renders this naive approach computationally problematic.

Many interesting real-world problems suffer from this large number of states issue so that a naive approach
to find the best decision is computationally infeasible. Finding efficient exact and also approximate state
representations is a key aspect to solving large scale MDPs, see for example [208].

7.7 Variational Inference and Planning

For the finite-horizon stationary policy MDP, learning the optimal policy can be addressed by a variety of
methods. Two popular approaches are policy gradients and EM style procedures – see for example [109]
and section(11.2).
For many MDPs of interest the optimal policy is deterministic[283], so that methods which explicitly seek
for deterministic policies are of interest. For this reason and to remain close to our discussion on policy
and value iteration, which involved deterministic policies, we focus on this case in our brief discussion here,
referring the reader to other texts [81, 298, 107, 108] for the details on the non-deterministic case. For a
time-independent deterministic policy d(s) that maps a state s to a decision d (which we write as π for
short), we have the expected utility

U(π) =
T∑
t=1

∑
xt

ut(xt)
∑
x1:t−1

t∏
τ=1

p(xτ |xτ−1, d(xτ−1)) (7.7.1)

with the convention p(x1|x0, d(x0)) = p(x1). Viewed as a factor graph, this is simply a set of chains, so
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that for any policy π, the expected utility can be computed easily. In principle one could then attempt to
optimise U with respect to the policy directly. An alternative is to use an EM style procedure[107]. To do
this we define a (trans-dimensional) distribution

p̂(x1:t, t) =
ut(xt)

Z(π)

t∏
τ=1

p(xτ |xτ−1, d(xτ−1)) (7.7.2)

The normalisation constant Z(π) of this distribution is

T∑
t=1

∑
x1:t

ut(xt)

t∏
τ=1

p(xτ |xτ−1, d(xτ−1)) =

T∑
t=1

∑
x1:t

ut(xt)

t∏
τ=1

p(xτ |xτ−1, d(xτ−1)) = U(π) (7.7.3)

If we now define a variational distribution q(x1:t, t), and consider

KL(q(x1:t, t)|p̂(x1:t, t)) ≥ 0 (7.7.4)

this gives the lower bound

logU(π) ≥ −H(q(x1:t, t)) +

〈
log ut(xt)

t∏
τ=1

p(xτ |xτ−1, d(xτ−1))

〉
q(x1:t,t)

(7.7.5)

where H(q(x1:t, t)) is the entropy of the distribution q(x1:t, t). In terms of an EM algorithm, the M-step
requires the dependency on π alone, which is

E(π) =
T∑
t=1

t∑
τ=1

〈log p(xτ |xτ−1, d(xτ−1))〉q(xτ ,xτ−1,t)
(7.7.6)

=
T∑
t=1

t∑
τ=1

q(xτ = s′, xτ−1 = s, t) log p(xτ = s′|xτ−1 = s, d(xτ−1) = d) (7.7.7)

For each given state s we now attempt to find the optimal decision d, which corresponds to maximising

Ê(d|s) =
∑

s′

{
T∑
t=1

t∑
τ=1

q(xτ = s′, xτ−1 = s, t)

}
log p(s′|s, d) (7.7.8)

Defining

q(s′|s) ∝
T∑
t=1

t∑
τ=1

q(xτ = s′, xτ−1 = s, t) (7.7.9)

we see that for given s, up to a constant, Ê(d|s) is the Kullback-Leibler divergence between q(s′|s) and
p(s′|s, d) so that the optimal decision d is given by the index of the distribution p(s′|s, d) most closely aligned
with q(s′|s):

d∗(s) = argmin
d

KL
(
q(s′|s)|p(s′|s, d)

)
(7.7.10)

The E-step concerns the computation of the marginal distributions required in the M-step. The optimal q
distribution is proportional to p̂ evaluated at the previous decision function d:

q(x1:t, t) ∝ ut(xt)
t∏

τ=1

p(xτ |xτ−1, d(xτ−1)) (7.7.11)

For a constant discount factor γ at each time-step and an otherwise time-independent utility4

ut(xt) = γtu(xt) (7.7.12)

4In the standard MDP framework it is more common to define ut(xt) = γt−1u(xt) so that for comparison with the standard
Policy/Value routines one needs to divide the expected utility by γ.
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Figure 7.11: Options pricing: An asset has market value £S at time
t = 1. We assume that the asset will have market value either £Su
or £Sd at time T . The owner and ‘options buyer’ (client) agree that
if the market value is greater than the ‘strike price’ £S∗ at time T ,
the client has the right to purchase the asset for £S∗. The question
is: how much should the owner of the asset charge the client for the
privilege of having the right to purchase the asset?

using this

q(x1:t, t) ∝ γtu(xt)
t∏

τ=1

p(xτ |xτ−1, d(xτ−1)) (7.7.13)

For each t this is a simple Markov chain for which the pairwise transition marginals required for the M-step,
equation (7.7.9) are straightforward. This requires inference in a series of Markov models of different lengths.
This can be done efficiently using a single forward and backward pass [298, 109].

EM and related methods follow closely the spirit of inference in graphical models, but can exhibit disappoint-
ingly slow convergence. More recently, an alternative method using Lagrange Duality shows very promising
performance and the reader is referred to [110] for details. Note that this EM algorithm formally fails in
the case of a deterministic environment (the transition p(xt|xt−1, dt−1) is deterministic) – see exercise(7.8)
for an explanation and exercise(7.9) for a possible resolution.

Remark 7.2 (Solving an MDP – easy or hard?). The discussion in section(7.5.1) highlights that solving a
linear-chain influence diagram (finding the optimal decision at each timestep) is straightforward, and can
be achieved using a simple message passing algorithm, scaling linearly with the length of the chain. In
contrast, finding the optimal time-independent policy π typically is much more complex – hence the reason
for many different algorithms that attempt to find optimal policies in areas such as time-independent control,
reinforcement learning and games. Mathematically, the reason for this difference is that the constraint in the
time-independent case that the policy must be the same over all time steps, leads to a graphical structure
that is no longer a chain, with all timepoints connected to a single π. In this case, in general, no simple
linear time message passing algorithm is available to optimise the resulting objective.

7.8 Financial Matters

Utility and decision theory play a major role in finance, both in terms of setting prices based on expected
future gains, but also in determining optimal investments. In the following sections we briefly outline two
such basic applications.

7.8.1 Options pricing and expected utility

An owner has an asset currently priced by the market at £S. The owner wants to give us the opportunity
to purchase this asset at time T for an agreed price of £S∗. At time T , if the market price goes ‘up’ beyond
the strike price to £Su we will decide to purchase the asset from the owner for £S∗ and sell the asset at
this increased value, see fig(7.11). If, however, the price remains ‘down’ below the strike price at £Sd, we
will walk away, leaving the owner with the asset. The question is, how much should the owner charge, £C
for this option of us being able to buy the asset for the agreed price at time T? To help answer this, we also
need to know how much a risk-free investment would make over the same time period (i.e. how much we
would get from putting money in a safe bank). We assume the interest rate R is known for the time period
T , say 0.06. We call the two people the owner and the client (who may or may not buy the asset).
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Two possibilities case

For simplicity, we assume the asset can take only the prices Su or Sd at time T . We also assume we know
the probabilities of these events (see below), namely ρ and 1 − ρ. Let’s work out the expected utilities for
both parties:

Asset goes up:

U(up, client) = Su − S∗︸ ︷︷ ︸
immediate profit from selling

− C︸︷︷︸
option cost

− CR︸︷︷︸
lost interest on option cost

(7.8.1)

U(up, owner) = S∗ − S︸ ︷︷ ︸
immediate loss from sale

+ C︸︷︷︸
option cost

+ CR︸︷︷︸
gained interest on option cost

− SR︸︷︷︸
lost interest

(7.8.2)

The final SR term above comes from entering into the option deal – otherwise the owner could have just
sold the asset at time 1, and then put the resulting sum in the bank.

Asset goes down:

U(down, client) = − C︸︷︷︸
option cost

− CR︸︷︷︸
lost interest on option cost

(7.8.3)

The above follows since in this case the client doesn’t act on his option to sell the asset.

U(down, owner) = Sd − S︸ ︷︷ ︸
change in asset value

+ C︸︷︷︸
option cost

+ CR︸︷︷︸
gained interest on option cost

− SR︸︷︷︸
lost interest

(7.8.4)

The expected utility for the client is

U(client) = ρ× U(up, client) + (1− ρ)× U(down, client) (7.8.5)

= ρ (Su − S∗ − C − CR) + (1− ρ) (−C − CR) (7.8.6)

= ρ (Su − S∗)− C(1 +R) (7.8.7)

The expected utility for the owner is

U(owner) = ρ× U(up, owner) + (1− ρ)× U(down, owner) (7.8.8)

= ρ (S∗ − S + C + CR− SR) + (1− ρ) (Sd − S + C + CR− SR) (7.8.9)

= ρ (S∗ − Sd) + Sd − S + C(1 +R)− SR (7.8.10)

It seems reasonable to assume that both the client and the owner should have the same expected benefit,
U(client) = U(owner). Hence

ρ (Su − S∗)− C(1 +R) = ρ (S∗ − Sd) + Sd − S + C(1 +R)− SR (7.8.11)

Solving for C, we find

C =
ρ (Su − 2S∗ + Sd)− Sd + S(1 +R)

2(1 +R)
(7.8.12)

All the quantities required to price the option are assumed known, except for ρ. One way to set this is
described below.

Setting ρ

It seems reasonable to expect ρ to be set by some process which describes the true probability of the price
increase. However, given a value for ρ and knowing the two possible prices Su and Sd, the owner can compute
the expected utility of just holding on to the asset. This is

ρSu + (1− ρ)Sd − S (7.8.13)
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Alternatively, the owner could sell the asset for £S and put his money in the bank, collecting the interest
RS at time T . In a fair market we must have that the expected reward for holding on to the asset is the
same as the risk-free return on the asset:

ρSu + (1− ρ)Sd − S = RS ⇒ ρ =
S(1 +R)− Sd

Su − Sd
(7.8.14)

Using this value to price the option in equation (7.8.12) ensures that the expected gain from offering the
option and not offering the option is the same to the owner and, furthermore that if the option is available,
the expected reward for both parties is the same.

7.8.2 Binomial options pricing model

If we have more than two timepoints, we can readily extend the above. It’s easiest to assume that at each
time t we have two price change possibilities – either the price can go up by a factor u > 1 or down by
a factor d < 1. For T timesteps, we then have a set of possible values the asset can take at time T . For
some of them the client will sell the asset (when ST > S∗) otherwise not. We need to work out the expected
gains for both the owner and client as before, assuming first that we know ρ (which is the probability of the
price increasing by a factor u in one time step). For a sequence of n ups and T − n downs, we have a price
ST = SundT−n. If this is greater than S∗, then the client will sell the asset and have utility

I
[
SundT−n > S∗

]
(SundT−n − S∗ − C(1 +R)) (7.8.15)

The probability of n ups and T − n downs is

β(T, n, ρ) ≡
(
T

n

)
ρn(1− ρ)T−n (7.8.16)

where
(
T
n

)
is the binomial coefficient. Hence the total expected utility for the client on the upside is

U(client, up) =

T∑
n=0

β(T, n, ρ)I
[
SundT−n > S∗

]
(SundT−n − S∗ − C(1 +R)) (7.8.17)

Similarly,

U(client, down) = −C(1 +R)
T∑
n=0

β(T, n, ρ)I
[
SundT−n < S∗

]
(7.8.18)

The total expected utility for the client is then

U(client) = U(client, up) + U(client, down) (7.8.19)

Similarly, for the owner

U(owner, up) = (S∗ − S(1 +R) + C(1 +R))
T∑
n=0

β(T, n, ρ)I
[
SundT−n > S∗

]
(7.8.20)

and

U(owner, down) = −C(1+R)

T∑
n=0

β(T, n, ρ)I
[
SundT−n < S∗

] (
SundT−n − S(1 +R) + C(1 +R)

)
(7.8.21)

and

U(owner) = U(owner, up) + U(owner, down) (7.8.22)

Setting

U(client) = U(owner) (7.8.23)

results in a simple linear equation for C.
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Figure 7.12: (a): Two assets through time – a risky asset whose value fluctuates wildly, and a stable asset
that grows slowly. (b): The wealth of our portfolio over time, based on investing with the hope to achieve
a wealth of 1.5 at T = 40. (c): The optimal investment decisions through time, with 1 corresponding to
placing all wealth in the safe asset and 0 placing all the money on the risky asset.

Setting ρ

To set ρ, we can use a similar logic as in the two timestep case. First we compute the expected value of the
asset at time T , which is

T∑
n=0

β(T, n, ρ)SundT−n (7.8.24)

and equate the expected gain equal to the gain from a risk free investment in the asset:

T∑
n=0

β(T, n, ρ)SundT−n − S = RS ⇒
T∑
n=0

β(T, n, ρ)undT−n = R+ 1 (7.8.25)

Knowing u and d, we can solve the above for ρ, and then use this in the equation for C. We can learn u and
d from past observed data (in the literature they are often related to the observed variance in the prices[74]).

The binomial options pricing approach is a relatively simplistic way to price options. The celebrated Black-
Scholes method [45] is essentially a limiting case in which the number of timepoints becomes infinite[150].

7.8.3 Optimal investment

Another example of utility in finance, and which is related to Markov decision processes, is the issue of
how best to invest your wealth in order to maximise some future criterion. We’ll consider here a very
simple setup, but one which can be readily extended to more complex scenarios. We assume that we have
two assets, a and b with prices at time t given by sat , s

b
t . The prices are assumed to independently follow

Markovian updating:

sat = sat−1(1 + εat ) ⇒ p(sat |sat−1, ε
a
t ) = δ

(
sat − (1 + εat )s

a
t−1

)
(7.8.26)

where δ(·) is the Dirac delta function. The price increments follow a Markov transition

p(εat , ε
b
t |εat−1, ε

b
t−1) = p(εat |εat−1)p(εbt |εbt−1) (7.8.27)

Using this one can model effects such as price increments being likely to stay the same (as in bank interest)
or more variable (as in the stock market).

We have an investment decision 0 ≤ dt ≤ 1 that says what fraction of our current wealth wt we buy of asset
a at time t. We will invest the rest of our wealth in asset b. If asset a is priced at sat and we decide to use
a fraction dt of our current wealth wt to purchase a quantity qat of asset a and quantity qbt of asset b, these
are given by

qat =
dtwt
sat

, qbt =
wt(1− dt)

sbt
(7.8.28)
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At time step t+ 1, the prices of assets a and b will have changed to sat+1, sbt+1, so that our new wealth will
be

wt+1 = qat s
a
t+1 + qbts

b
t+1 =

dtwts
a
t+1

sat
+
wt(1− dt)sbt+1

sbt
= wt

(
dt(1 + εat+1) + (1− dt)(1 + εbt+1)

)
(7.8.29)

This can be expressed as a transition

p(wt+1|wt, εat+1, ε
b
t+1, dt) = δ

(
wt+1 − wt

(
dt(1 + εat+1) + (1− dt)(1 + εbt+1)

))
(7.8.30)

At an end time T we have a utility u(wT ) that expresses our satisfaction with our wealth. Given that we
start with a wealth w1 and assume we know εa1, ε

b
1, we want to find the best decision d1 that will maximise

our expected utility at time T . To do so, we also bear in mind that at any intermediate time 1 < t < T we
can adjust the fraction dt of wealth in asset a. The Markov chain is given by (see also section(23.1))

p(εa1:T , ε
b
1:T , w2:T |εa1, εb1, w1, d1:T−1) =

T∏
t=2

p(εat |εat−1)p(εbt |εbt−1)p(wt|wt−1, ε
a
t , ε

b
t , dt−1) (7.8.31)

The expected utility of a decision d1 is

U(d1|εa1, εb1, w1) =
∑

εa2 ,ε
b
2,w2

. . .max
dT−2

∑
εaT−1,ε

b
T−1,wT−1

max
dT−1

∑
εaT ,ε

b
T ,wT

p(εa1:T , ε
b
1:T , w2:T |εa1, εb1, w1, d1:T−1)u(wT ) (7.8.32)

which, for the corresponding influence diagram, corresponds to the ordering

d1 ≺
{
εa2, ε

b
2, w2

}
≺ d2 ≺ . . . ≺

{
εaT−1, ε

b
T−1, wT−1

}
≺ dT−1 ≺

{
εaT , ε

b
T , wT

}
(7.8.33)

To compute U(d1|εa1, εb1, w1), we first can carry out the operations at T to give a message

γT−1←T (εaT−1, ε
b
T−1, wT−1) ≡ max

dT−1

∑
εaT ,ε

b
T ,wT

p(εaT |εaT−1)p(εbT |εbT−1)p(wT |wT−1, ε
a
T , ε

b
T , dT−1)u(wT ) (7.8.34)

And, generally,

γt−1←t(ε
a
t−1, ε

b
t−1, wt−1) ≡ max

dt−1

∑
εat ,ε

b
t ,wt

p(εat |εat−1)p(εbt |εbt−1)p(wt|wt−1, ε
a
t , ε

b
t , dt−1)γt←t+1(εat , ε

b
t , wt) (7.8.35)

so that

U(d1|εa1, εb1, w1) =
∑

εa2 ,ε
b
2,w2

p(εa2|εa1)p(εb2|εb1)p(w2|w1, ε
a
2, ε

b
2, d1)γ2←3(εa2, ε

b
2, w2) (7.8.36)

Note that this process is not equivalent to a ‘myopic’ strategy which would make an investment decision to
maximise the expected next-period wealth.

For a continuous wealth wt the above messages are difficult to represent. A simple strategy, therefore, is to
discretise all wealth values and also the price changes εat , ε

b
t and investment decisions dt, see exercise(7.13).

In this case, one needs to approximate the delta function δ(x) by the distribution which is zero for every
state except that discrete state which is closest to the real value x.

Example 7.8 (Optimal investment). We demonstrate a simple optimal portfolio investment problem in
fig(7.12), in which there is a safe bank asset and a risky ‘stock market’ asset. We start with a unit wealth
and wish to obtain a wealth of 1.5 at time t = 40. If we place all our money in the bank, we will not be
able to reach this desired amount, so we must place some of our wealth at least in the risky asset. In the
beginning the stock market does poorly, and our wealth is correspondingly poor. The stock market picks
up sufficiently so that after around t = 20, we no longer need to take many risks and may place most of our
money in the bank, confident that we will reach our investment objective.
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h1 h2 h3 h4

v1 v2 v3 v4

u2 u3 u4

d1 d2 d3 Figure 7.13: An example Partially Observable Markov
Decision Process (POMDP). The ‘hidden’ variables h
are never observed. In solving the Influence Diagram
we are required to first sum over variables that are
never observed; doing so will couple together all past
observed variables and decisions; any decision at time
t will then depend on all previous decisions. Note that
the no-forgetting principle means that we do not need
to explicitly write that each decision depends on all
previous observations – this is implicitly assumed.

7.9 Further Topics

7.9.1 Partially observable MDPs

In a POMDP there are states that are not observed. This seemingly innocuous extension of the MDP case
can lead however to computational difficulties. Let’s consider the situation in fig(7.13), and attempt to
compute the optimal expected utility based on the sequence of summations and maximisations. The sum
over the hidden variables couples all the decisions and observations, meaning that we no longer have a simple
chain structure for the remaining maximisations. For a POMDP of length t, this leads to an intractable
problem with complexity exponential in t. An alternative view is to recognise that all past decisions and
observations v1:t, d1:t−1, can be summarised in terms of a belief in the current latent state, p(ht|v1:t, d1:t−1).
This suggests that instead of having an actual state, as in the MDP case, we need to use a distribution
over states to represent our current knowledge. One can therefore write down an effective MDP albeit over
belief distributions, as opposed to finite states. Approximate techniques are required to solve the resulting
‘infinite’ state MDPs, and the reader is referred to more specialised texts for a study of approximation
procedures. See for example [161, 164].

7.9.2 Reinforcement learning

Reinforcement Learning deals mainly with time-independent Markov Decision Processes. The added twist
is that the transition p(s′|s, d) (and possibly the utility) is unknown. Initially an ‘agent’ begins to explore
the set of states and utilities (rewards) associated with taking decisions. The set of accessible states and
their rewards populates as the agent traverses its environment. Consider for example a maze problem with a
given start and goal state, though with an unknown maze structure. The task is to get from the start to the
goal in the minimum number of moves on the maze. Clearly there is a balance required between curiosity
and acting to maximise the expected reward. If we are too curious (don’t take optimal decisions given the
currently available information about the maze structure) and continue exploring the possible maze routes,
this may be bad. On the other hand, if we don’t explore the possible maze states, we might never realise
that there is a much more optimal short-cut to follow than that based on our current knowledge. This
exploration-exploitation tradeoff is central to the difficulties of RL. See [283] for an extensive discussion of
reinforcement learning.

From model based to model free learning

Consider a MDP with state transitions p(xt+1|xt, dt) and policy p(dt|xt). For simplicity we consider utilities
that depend only on the state xt. The expected utility of taking decision dt in state xt, U(xt, dt), can be
derived using a similar argument as in section(7.5.2), for a discount factor γ. As a shortcut, consider

U(xt, dt) = u(xt) + γ
∑
xt+1

u(xt+1)p(xt+1|xt, dt)

+ γ2 max
dt+1

∑
xt+1,xt+2

u(xt+2)p(xt+2|xt+1, dt+1)p(dt+1|xt+1)p(xt+1|xt, dt) + . . . (7.9.1)
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Similarly,

U(xt+1, dt+1) = u(xt+1) + γ
∑
xt+2

u(xt+2)p(xt+2|xt+1, dt+1)

+ γ2 max
dt+2

∑
xt+2,xt+3

u(xt+3)p(xt+3|xt+2, dt+2)p(dt+2|xt+2)p(xt+2|xt+1, dt+1) + . . . (7.9.2)

From these we derive a Bellman recursion for the expected utility of taking decision dt in state xt:

U(xt, dt) = u(xt) + γmax
d

∑
xt+1

U(xt+1, d)p(xt+1|xt, dt) (7.9.3)

If we know the model p(xt+1|xt, dt) we can solve equation (7.9.3) for U(x, d). Given this solution, when we
are in state x, the optimal policy is to take the decision d that maximises U(x, d): d = arg maxd U(x, d). In
the case that we do not wish to explicitly store or describe a model p(xt+1|xt, dt) we can use a sample from
this transition to approximate equation (7.9.3); if we are in state xt and take decision dt the environment
returns for us a sample xt+1. This gives the one-sample estimate to equation (7.9.3):

Ũ(xt, dt) = u(xt) + γmax
d
Ũ(xt+1, d) (7.9.4)

This gives a procedure called Q-learning for updating the approximation to U based on samples from the
environment. This is a simple and powerful scheme and as such is one of the most popular model-free methods
in reinforcement learning. A complicating factor is that if we select a decision based on d = arg maxd Ũ(x, d)
this influences the sample that will be next drawn. Nevertheless, under certain conditions (essentially all
decisions are repeatedly sampled for each state), this sample estimate Ũ(x, d) converges to the exact U(x, d)
in the limit t→∞ [311].

Bayesian reinforcement learning

For a given set of environment data X (observed transitions and utilities) one aspect of the RL problem
can be considered as finding the policy that maximises expected reward, given only prior belief about the
environment and observed decisions and states. If we assume we know the utility function but not the
transition, we may write

U(π|X ) = 〈U(π|θ)〉p(θ|X ) (7.9.5)

where θ represents the environment state transition,

θ = p(xt+1|xt, dt) (7.9.6)

Given a set of observed states and decisions,

p(θ|X ) ∝ p(X|θ)p(θ) (7.9.7)

where p(θ) is a prior on the transition. Similar techniques to the EM style training can be carried through
in this case as well[81, 298, 108]. Rather than the policy being a function of the state and the environment
θ, optimally one needs to consider a policy p(dt|xt, b(θ)) as a function of the state and the belief in the
environment, b(θ) ≡ p(θ|X ). This means that, for example, if the belief in the environment has high
entropy, the agent can recognise this and explicitly carry out decisions/actions to explore the environment.
A further complication in RL is that the data collected X depends on the policy π. If we write t for an
‘episode’ in which policy πt is followed and data Xt collected, then the utility of the policy π given all the
historical information is

U(π|π1:t,X1:t) = 〈U(π|θ)〉p(θ|X1:t,π1:t)
(7.9.8)

Depending on the prior on the environment, and also on how long each episode is, we will have different
posteriors for the environment parameters. If we then set

πt+1 = argmax
π

U(π|π1:t,X1:t) (7.9.9)
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s = Smoking

x = Positive X-ray

d = Dyspnea (Shortness of breath)

e = Either Tuberculosis or Lung Cancer

t = Tuberculosis

l = Lung Cancer

b = Bronchitis

a = Visited Asia

dh = Hospitalise?

dx = Take X-ray?

Figure 7.14: Influence Diagram for the ‘Chest Clinic’ Decision example.

this affects the data we collect at the next episode Xt+1. In this way, the trajectory of policies π1, π2, . . . can
be very different depending on the episodes and priors.

7.10 Summary

• One way to take decisions is to take that decision that maximises the expected utility of the decision.

• Sequential decision problems can be modelled using decision trees. These are powerful but unwieldy in long
decision sequences.

• Influence diagrams extend belief networks to the decision arena. Efficient inference approaches carry over
to this case as well, including extensions using the strong junction tree formalism.

• The sequence in which information is revealed and decisions are taken is specified in the influence diagram.
The optimal utility is not invariant to the corresponding partial-ordering.

• Markov decision processes correspond to a simple chain-like influence diagram, for which inference is
straightforward, and corresponds to the classical Bellman equations.

• Reinforcement learning can be considered an extension of the Markov decision framework when the model
of the environment in which the agent acts needs to be learned on the basis of experience.

In this chapter we discussed planning and control as an inference problem with particular attention to
discrete variables. See example(28.2) for an application of approximate inference to continuous control.

7.11 Code

7.11.1 Sum/Max under a partial order

maxsumpot.m: Generalised elimination operation according to a partial ordering
sumpotID.m: Sum/max an ID with probability and decision potentials
demoDecParty.m: Demo of summing/maxing an ID

7.11.2 Junction trees for influence diagrams

There is no need to specify the information links provided that a partial ordering is given. In the code
jtreeID.m no check is made that the partial ordering is consistent with the influence diagram. In this
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case, the first step of the junction tree formulation in section(7.4.2) is not required. Also the moralisation
and removal of utility nodes is easily dealt with by defining utility potentials and including them in the
moralisation process.

The strong triangulation is found by a simple variable elimination scheme which seeks to eliminate a variable
with the least number of neighbours, provided that the variable may be eliminated according to the specified
partial ordering. The junction tree is constructed based only on the elimination clique sequence C1, . . . , CN .
obtained from the triangulation routine. The junction tree is then obtained by connecting a clique Ci to
the first clique j > i that is connected to this clique. Clique Ci is then eliminated from the graph. In this
manner a junction tree of connected cliques is formed. We do not require the separators for the influence
diagram absorption since these can be computed and discarded on the fly.

Note that the code only computes messages from the leaves to the root of the junction tree, which is
sufficient for taking decisions at the root. If one desires an optimal decision at a non-root, one would need
to absorb probabilities into a clique which contains the decision required. These extra forward probability
absorptions are required because information about any unobserved variables can be affected by decisions
and observations in the past. This extra forward probability schedule is not given in the code and left as an
exercise for the interested reader.

jtreeID.m: Junction Tree for an Influence Diagram
absorptionID.m: Absorption on an Influence Diagram
triangulatePorder.m: Triangulation based on a partial ordering
demoDecPhD.m: Demo for utility of Doing PhD and Startup

7.11.3 Party-Friend example

The code below implements the Party-Friend example in the text. To deal with the asymmetry the V isit
utility is zero if Party is in state yes.

demoDecPartyFriend.m: Demo for Party-Friend

7.11.4 Chest Clinic with Decisions

The table for the Chest Clinic Decision network, fig(7.14) is taken from exercise(3.4), see [131, 72]. There is
a slight modification however to the p(x|e) table. If an x-ray is taken, then information about x is available.
However, if the decision is not to take an x-ray no information about x is available. This is a form of
asymmetry. A straightforward approach in this case is to make dx a parent of the x variable and set the
distribution of x to be uninformative if dx = fa.

p(a = tr) = 0.01 p(s = tr) = 0.5
p(t = tr|a = tr) = 0.05 p(t = tr|a = fa) = 0.01
p(l = tr|s = tr) = 0.1 p(l = tr|s = fa) = 0.01
p(b = tr|s = tr) = 0.6 p(b = tr|s = fa) = 0.3
p(x = tr|e = tr, dx = tr) = 0.98 p(x = tr|e = fa, dx = tr) = 0.05
p(x = tr|e = tr, dx = fa) = 0.5 p(x = tr|e = fa, dx = fa) = 0.5
p(d = tr|e = tr, b = tr) = 0.9 p(d = tr|e = tr, b = fa) = 0.3
p(d = tr|e = fa, b = tr) = 0.2 p(d = tr|e = fa, b = fa) = 0.1

(7.11.1)

The two utilities are designed to reflect the costs and benefits of taking an x-ray and hospitalising a patient:

dh = tr t = tr l = tr 180
dh = tr t = tr l = fa 120
dh = tr t = fa l = tr 160
dh = tr t = fa l = fa 15
dh = fa t = tr l = tr 2
dh = fa t = tr l = fa 4
dh = fa t = fa l = tr 0
dh = fa t = fa l = fa 40

(7.11.2)

dx = tr t = tr 0
dx = tr t = fa 1
dx = fa t = tr 10
dx = fa t = fa 10

(7.11.3)
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We assume that we know whether or not the patient has been to Asia, before deciding on taking an x-ray.
The partial ordering is then

a ≺ dx ≺ {d, x} ≺ dh ≺ {b, e, l, s, t} (7.11.4)

The demo demoDecAsia.m produces the results:

utility table:

asia = yes takexray = yes 49.976202

asia = no takexray = yes 46.989441

asia = yes takexray = no 48.433043

asia = no takexray = no 47.460900

which shows that optimally one should take an x-ray only if the patient has been to Asia.

demoDecAsia.m: Junction Tree Influence Diagram demo

7.11.5 Markov decision processes

In demoMDP.m we consider a simple two dimensional grid in which an ‘agent’ can move to a grid square either
above, below, left, right of the current square, or stay in the current square. We defined goal states (grid
squares) that have high utility, with others having zero utility.

demoMDPclean.m: Demo of Value and policy iteration for a simple MDP
MDPsolve.m: MDP solver using value or policy iteration

Routines for efficient MDP variational solvers are available from the book website. There is also code for
fast Lagrange duality techniques, which are beyond the scope of our discussion here.

7.12 Exercises

Exercise 7.1. You play a game in which you have a probability p of winning. If you win the game you gain
an amount £S and if you lose the game you lose an amount £S. Show that the expected gain from playing
the game is £(2p− 1)S.

Exercise 7.2. It is suggested that the utility of money is based, not on the amount, but rather how much we
have relative to other people. Assume a distribution p(i), i = 1, . . . , 10 of incomes using a histogram with 10
bins, each bin representing an income range. Use a histogram to roughly reflect the distribution of incomes
in society, namely that most incomes are around the average with few very wealthy and few extremely poor
people. Now define the utility of an income x as the chance that income x will be higher than a randomly
chosen income y (under the distribution you defined) and relate this to the cumulative distribution of p.
Write a program to compute this probability and plot the resulting utility as a function of income. Now
repeat the coin tossing bet of section(7.1.1) so that if one wins the bet one’s new income will be placed in the
top histogram bin, whilst if one loses one’s new income is in the lowest bin. Compare the optimal expected
utility decisions under the situations in which one’s original income is (i) average, and (ii) much higher
than average.

Exercise 7.3.

Derive a partial ordering for the ID on the right, and
explain how this ID differs from that of fig(7.5).

Test

DrillU1

U2Oil

Seismic

Exercise 7.4. This question follows closely demoMDP.m, and represents a problem in which a pilot wishes
to land an airplane. The matrix U(x, y) in the file airplane.mat contains the utilities of being in position
x, y and is a very crude model of a runway and taxiing area. The airspace is represented by an 18× 15 grid
(Gx = 18, Gy = 15 in the notation employed in demoMDP.m). The matrix U(8, 4) = 2 represents that position
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(8, 4) is the desired parking bay of the airplane (the vertical height of the airplane is not taken in to account).
The positive values in U represent runway and areas where the airplane is allowed. Zero utilities represent
neutral positions. The negative values represent unfavourable positions for the airplane. By examining the
matrix U you will see that the airplane should preferably not veer off the runway, and also should avoid two
small villages close to the airport.

At each timestep the plane can perform one of the following actions stay up down left right:
For stay, the airplane stays in the same x, y position.
For up, the airplane moves to the x, y + 1 position.
For down, the airplane moves to the x, y − 1 position.
For left, the airplane moves to the x− 1, y position.
For right, the airplane moves to the x+ 1, y position.

A move that takes the airplane out of the airspace is not allowed.

1. The airplane begins in at point x = 1, y = 13. Assuming that an action deterministically results in the
intended grid move, find the optimal xt, yt sequence for times t = 1, . . . , for the position of the aircraft.

2. The pilot tells you that there is a fault with the airplane. When the pilot instructs the plane to go
right, with probability 0.1 it actually goes up (provided this remains in the airspace). Assuming again
that the airplane begins at point x = 1, y = 13, return the optimal xt, yt sequence for times t = 1, . . . ,
for the position of the aircraft.

Exercise 7.5.

The influence diagram depicted describes the first stage of a game. The decision
variable dom(d1) = {play, not play}, indicates the decision to either play the first
stage or not. If you decide to play, there is a cost c1(play) = C1, but no cost oth-
erwise, c1(no play) = 0. The variable x1 describes if you win or lose the game,
dom(x1) = {win, lose}, with probabilities:

p(x1 = win|d1 = play) = p1, p(x1 = win|d1 = no play) = 0 (7.12.1)

The utility of winning/losing is

u1(x1 = win) = W1, u1(x1 = lose) = 0 (7.12.2)

x1

u1

c1

d1

Show that the expected utility gain of playing this game is

U(d1 = play) = p1W1 − C1 (7.12.3)

Exercise 7.6. Exercise(7.5) above describes the first stage of a new two-stage game. If you win the first
stage x1 = win, you have to make a decision d2 as to whether or not play in the second stage dom(d2) =
{play, not play}. If you do not win the first stage, you cannot enter the second stage. If you decide to play
the second stage, you win with probability p2:

p(x2 = win|x1 = win, d2 = play) = p2 (7.12.4)

If you decide not to play the second stage there is no chance to win:

p(x2 = win|x1 = win, d2 = not play) = 0 (7.12.5)

The cost of playing the second stage is

c2(d2 = play) = C2, c2(d2 = no play) = 0 (7.12.6)

and the utility of winning/losing the second stage is

u2(x2 = win) = W2, u2(x2 = lose) = 0 (7.12.7)
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1. Draw an Influence Diagram that describes this two-stage game.

2. A gambler needs to decide if he should even enter the first stage of this two-stage game. Show that
based on taking the optimal future decision d2 the expected utility based on the first decision is:

U(d1 = play) =

{
p1(p2W2 − C2) + p1W1 − C1 if p2W2 − C2 ≥ 0
p1W1 − C1 if p2W2 − C2 ≤ 0

(7.12.8)

Exercise 7.7. You have £B in your bank account. You are asked if you would like to participate in a bet in
which, if you win, your bank account will become £W . However, if you lose, your bank account will contain
only £L. You win the bet with probability pw.

1. Assuming that the utility is given by the number of pounds in your bank account, write down a formula
for the expected utility of taking the bet, U(bet) and also the expected utility of not taking the bet,
U(no bet).

2. The above situation can be formulated differently. If you win the bet you gain £(W −B). If you lose
the bet you lose £(B−L). Compute the expected amount of money you gain if you bet Ugain(bet) and
if you don’t bet Ugain(no bet).

3. Show that U(bet)− U(no bet) = Ugain(bet)− Ugain(no bet).

Exercise 7.8. Consider an objective

F (θ) =
∑
x

U(x)p(x|θ) (7.12.9)

for a positive function U(x) and that our task is to maximise F with respect to θ. An Expectation-
Maximisation style bounding approach (see section(11.2)) can be derived by defining the auxiliary distribution

p̃(x|θ) =
U(x)p(x|θ)

F (θ)
(7.12.10)

so that by considering KL(q(x)|p̃(x)) for some variational distribution q(x) we obtain the bound

logF (θ) ≥ −〈log q(x)〉q(x) + 〈logU(x)〉q(x) + 〈log p(x|θ)〉q(x) (7.12.11)

The M-step states that the optimal q distribution is given by

q(x) = p̃(x|θold) (7.12.12)

At the E-step of the algorithm the new parameters θnew are given by maximising the ‘energy’ term

θnew = argmax
θ

〈log p(x|θ)〉p̃(x|θold) (7.12.13)

Show that for a deterministic distribution

p(x|θ) = δ (x, f(θ)) (7.12.14)

the E-step fails, giving θnew = θold.

Exercise 7.9. Consider an objective

Fε(θ) =
∑
x

U(x)pε(x|θ) (7.12.15)

for a positive function U(x) and

pε(x|θ) = (1− ε)δ (x, f(θ)) + εn(x), 0 ≤ ε ≤ 1 (7.12.16)

and an arbitrary distribution n(x). Our task is to maximise F with respect to θ. As the previous exercise
showed, if we attempt an EM algorithm in the limit of a deterministic model ε = 0, then no-updating occurs
and the EM algorithm fails to find θ that optimises F0(θ).
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1. Show that

Fε(θ) = (1− ε)F0(θ) + ε
∑
x

n(x)U(x) (7.12.17)

and hence

Fε(θnew)− Fε(θold) = (1− ε) [F0(θnew)− F0(θold)] (7.12.18)

2. Show that if for ε > 0 we can find a θnew such that Fε(θnew) > Fε(θold), then necessarily F0(θnew) >
F0(θold).

3. Using this result, derive an EM-style algorithm that guarantees to increase Fε(θ) (unless we are already
at an optimum) for ε > 0 and therefore guarantees to increase F0(θ). Hint: use

p̃(x|θ) =
U(x)pε(x|θ)

Fε(θ)
(7.12.19)

and consider KL(q(x)|p̃(x)) for some variational distribution q(x).

Exercise 7.10. The file IDjensen.mat contains probability and utility tables for the influence diagram of
fig(7.7a). Using BRMLtoolbox, write a program that returns the maximal expected utility for this ID using
a strong junction tree approach, and check the result by explicit summation and maximisation. Similarly,
your program should output the maximal expected utility for both states of d1, and check that the computation
using the strong junction tree agrees with the result from explicit summation and maximisation.

Exercise 7.11. For a POMDP, explain the structure of the strong junction tree, and relate this to the
complexity of inference in the POMDP.

Exercise 7.12.

(i) Define a partial order for the ID depicted. (ii) Draw a (strong) junction
tree for this ID.

c

a b

d

e f

g h

i

u1

u2

Exercise 7.13. exerciseInvest.m contains the parameters for a simple investment problem in which the
prices of two assets, a and b follow Markovian updating, as in section(7.8.3). The transition matrices of
these are given, as is the end time T , initial wealth w1, and initial price movements εa1, εb1, wealth and
investment states. Write a function of the form

[d1 val]=optdec(epsilonA1,epsilonB1,desired,T,w1,pars)

where desired is the desired wealth level at time T . The end utility is defined by

u(wT ) =

{
10000 wT ≥ 1.5w1

0 wT < 1.5w1
(7.12.20)

Using your routine, compute the optimal expected utility and decision at time 1. Draw also an influence
diagram that describes this Markov decision problem.
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Learning in Probabilistic Models
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Introduction to Part II

In Part II we address how to learn a model from data. In particular we will discuss
learning a model as a form of inference on an extended distribution, now taking into
account the parameters of the model.

Learning a model or model parameters from data forces us to deal with uncertainty
since with only limited data we can never be certain which is the ‘correct’ model. We
also address how the structure of a model, not just its parameters, can in principle be
learned.

In Part II we show how learning can be achieved under simplifying assumptions, such
as maximum likelihood that set parameters by those that would most likely reproduce
the observed data. We also discuss the problems that arise when, as is often the case,
there is missing data.

Together with Part I, Part II prepares the basic material required to embark on under-
standing models in Machine Learning, having the tools required to learn models from
data and subsequently query them to answer questions of interest.
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CHAPTER 8

Statistics for Machine Learning

In this chapter we discuss some classical distributions and their manipulations. In previous chapters we’ve
assumed that we know the distributions and have concentrated on the inference problem. In machine
learning we will typically not fully know the distributions and need to learn them from available data. This
means we need familiarity with standard distributions, for which the data will later be used to set the
parameters.

8.1 Representing Data

The numeric encoding of data can have a significant effect on performance and an understanding of the
options for representing data is therefore of considerable importance. We briefly outline three central
encodings below.

8.1.1 Categorical

For categorical (or nominal) data, the observed value belongs to one of a number of classes, with no intrinsic
ordering, and can be represented simply by an integer. An example of a categorical variable would be the
description of the type of job that someone does, e.g. healthcare, education, financial services, transport,
homeworker, unemployed, engineering etc. which could be represented by the values 1, 2, . . . , 7. Another
way to transform such data into numerical values would be to use 1-of-m encoding. For example, if there
are four kinds of jobs: soldier, sailor, tinker, spy, we could represent a soldier as (1,0,0,0), a sailor as (0,1,0,0),
a tinker as (0,0,1,0) and a spy as (0,0,0,1). In this encoding the distance between the vectors representing
two different professions is constant. Note that 1-of-m encoding induces dependencies in the profession
attributes since if one of the attributes is 1, the others must be zero.

8.1.2 Ordinal

An ordinal variable consists of categories with an ordering or ranking of the categories, e.g. cold, cool, warm,
hot. In this case, to preserve the ordering, we could use say -1 for cold, 0 for cool, +1 for warm and +2 for
hot. This choice is somewhat arbitrary, and one should bear in mind that results may be dependent on the
numerical coding used.

8.1.3 Numerical

Numerical data takes on values that are real numbers, e.g. a temperature measured by a thermometer, or
the salary that someone earns.
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8.2 Distributions

Distributions over discrete variables, section(1.1) have been the focus of much of the book up to this point.
Here we discuss also distributions over continuous variables, for which the concepts of marginalisation and
conditioning carry over from the discrete case, simply on replacing summation over the discrete states with
integration over the continuous domain of the variable.

Definition 8.1 (Probability Density Functions). For a continuous variable x, the probability density p(x)
is defined such that

p(x) ≥ 0,

∫ ∞
−∞

p(x)dx = 1, p(a ≤ x ≤ b) =

∫ b

a
p(x)dx (8.2.1)

We will also refer to continuous probability densities as distributions.

Definition 8.2 (Averages and Expectation).

〈f(x)〉p(x) (8.2.2)

denotes the average or expectation of f(x) with respect to the distribution p(x). A common alternative
notation is

E (f(x)) (8.2.3)

When the context is clear, one may drop the notational dependency on p(x). The notation

〈f(x)|y〉 (8.2.4)

is shorthand for the average of f(x) conditioned on knowing the state of variable y, i.e. the average of f(x)
with respect to the distribution p(x|y).

An advantage of the expectation notations is that they hold whether the distribution is over continuous or
discrete variables. In the discrete case

〈f(x)〉 ≡
∑

x

f(x = x)p(x = x) (8.2.5)

and for continuous variables,

〈f(x)〉 ≡
∫ ∞
−∞

f(x)p(x)dx (8.2.6)

The reader might wonder what 〈x〉 means when x is discrete. For example, if dom(x) = {apple, orange, pear},
with associated probabilities p(x) for each of the states, what does 〈x〉 refer to? Clearly, 〈f(x)〉 makes sense
if f(x = x) maps the state x to a numerical value. For example f(x = apple) = 1, f(x = orange) = 2,
f(x = pear) = 3 for which 〈f(x)〉 is meaningful. Unless the states of the discrete variable are associated
with a numerical value, then 〈x〉 has no meaning.

Result 8.1 (Change of variables). For a univariate continuous random variable x with distribution p(x)
the transformation y = f(x), where f(x) is a monotonic function, has distribution

p(y) = p(x)

(
df

dx

)−1

, x = f−1(y) (8.2.7)

For multivariate x and bijection f(x), then y = f(x) has distribution

p(y) = p(x = f−1(y))

∣∣∣∣det

(
∂f

∂x

)∣∣∣∣−1

(8.2.8)
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where the Jacobian matrix has elements[
∂f

∂x

]
ij

=
∂fi(x)

∂xj
(8.2.9)

Sometimes one needs to consider transformations between different dimensions. For example, if z has lower
dimension than x, then one may introduce additional variables z′ to define a new multivariate y = (z, z′)
with the same dimension as x. Then one applies the above transformation to give the distribution on the
joint variables y, from which p(z) can be obtained by marginalisation.

Definition 8.3 (Moments). The kth moment of a distribution is given by the average of xk under the
distribution:〈

xk
〉
p(x)

(8.2.10)

For k = 1, we have the mean, typically denoted by µ,

µ ≡ 〈x〉 (8.2.11)

Definition 8.4 (Cumulative Distribution Function). For a univariate distribution p(x), the CDF is defined
as

cdf(y) ≡ p(x ≤ y) = 〈I [x ≤ y]〉p(x) (8.2.12)

For an unbounded domain, cdf(−∞) = 0 and cdf(∞) = 1.

Definition 8.5 (Moment Generating Function). For a distribution p(x), we define the moment generating
function g(t) as

g(t) =
〈
etx
〉
p(x)

(8.2.13)

The usefulness of this is that by differentiating g(t), we ‘generate’ the moments,

lim
t→0

dk

dtk
g(t) =

〈
xk
〉
p(x)

(8.2.14)

Definition 8.6 (Mode). The mode x∗ of a distribution p(x) is the state of x at which the distribution takes
its highest value, x∗ = arg maxx p(x). A distribution could have more than one mode (be multi-modal). A
widespread abuse of terminology is to refer to any isolated local maximum of p(x) to be a mode.

Definition 8.7 (Variance and Correlation).

σ2 ≡
〈

(x− 〈x〉)2
〉
p(x)

(8.2.15)

The variance measures the ‘spread’ of a distribution around the mean. The square root of the variance, σ
is called the standard deviation and is a natural length scale suggesting how far typical values drawn from
p(x) might be from the mean. The notation var(x) is also used to emphasise for which variable the variance
is computed. The reader may show that an equivalent expression is

σ2 ≡
〈
x2
〉
− 〈x〉2 (8.2.16)
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For a multivariate distribution the matrix with elements

Σij = 〈(xi − µi) (xj − µj)〉 (8.2.17)

where µi = 〈xi〉 is called the covariance matrix . The diagonal entries of the covariance matrix contain the
variance of each variable. An equivalent expression is

Σij = 〈xixj〉 − 〈xi〉 〈xj〉 (8.2.18)

The correlation matrix has elements

ρij =

〈
(xi − µi)

σi

(xj − µj)
σj

〉
(8.2.19)

where σi is the deviation of variable xi. The correlation is a normalised form of the covariance so that each
element is bounded −1 ≤ ρij ≤ 1. The reader will note a resemblance of the correlation coefficient and the
scalar product, equation (29.1.3). See also exercise(8.40).

For independent variables xi and xj , xi ⊥⊥ xj the covariance Σij is zero. Similarly independent variables
have zero correlation – they are ‘uncorrelated’. Note however that the converse is not generally true – two
variables can be uncorrelated but dependent. A special case is for when xi and xj are Gaussian distributed
for which independence is equivalent to being uncorrelated, see exercise(8.2).

Definition 8.8 (Skewness and Kurtosis). The skewness is a measure of the asymmetry of a distribution:

γ1 ≡

〈
(x− 〈x〉)3

〉
p(x)

σ3
(8.2.20)

where σ2 is the variance of x with respect to p(x). A positive skewness means the distribution has a heavy
tail to the right. Similarly, a negative skewness means the distribution has a heavy tail to the left.

The kurtosis is a measure of how peaked around the mean a distribution is:

γ2 ≡

〈
(x− 〈x〉)4

〉
p(x)

σ4
− 3 (8.2.21)

A distribution with positive kurtosis has more mass around its mean than would a Gaussian with the same
mean and variance. These are also called super Gaussian. Similarly a negative kurtosis (sub Gaussian)
distribution has less mass around its mean than the corresponding Gaussian. The kurtosis is defined such
that a Gaussian has zero kurtosis (which accounts for the -3 term in the definition).

Definition 8.9 (Delta function). For continuous x, we define the Dirac delta function

δ(x− x0) (8.2.22)

which is zero everywhere expect at x0, where there is a spike.
∫∞
−∞ δ(x− x0)dx = 1 and∫ ∞

−∞
δ(x− x0)f(x)dx = f(x0) (8.2.23)

One can view the Dirac delta function as an infinitely narrow Gaussian: δ(x− x0) = limσ→0N
(
x x0, σ

2
)
.

The Kronecker delta,

δx,x0 (8.2.24)

is similarly zero everywhere, except for δx0,x0 = 1. The Kronecker delta is equivalent to δx,x0 = I [x = x0].
We use the expression δ (x, x0) to denote either the Dirac or Kronecker delta, depending on the context.
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Definition 8.10 (Empirical Distribution). For a set of datapoints x1, . . . , xN , which are states of a random
variable x, the empirical distribution has probability mass distributed evenly over the datapoints, and zero
elsewhere.

For a discrete variable x the empirical distribution is, see fig(8.1),

p(x) =
1

N

N∑
n=1

I [x = xn] (8.2.25)

where N is the number of datapoints.

For a continuous distribution we have

p(x) =
1

N

N∑
n=1

δ (x− xn) (8.2.26)

where δ (x) is the Dirac Delta function.

The mean of the empirical distribution is given by the sample mean of the datapoints

µ̂ =
1

N

N∑
n=1

xn (8.2.27)

Similarly, the variance of the empirical distribution is given by the sample variance

σ̂2 =
1

N

N∑
n=1

(xn − µ̂)2 (8.2.28)

For vectors the sample mean vector has elements

µ̂i =
1

N

N∑
n=1

xni (8.2.29)

and sample covariance matrix has elements

Σ̂ij =
1

N

N∑
n=1

(xni − µ̂i)
(
xnj − µ̂j

)
(8.2.30)

8.2.1 The Kullback-Leibler Divergence KL(q|p)
The Kullback-Leibler divergence KL(q|p) measures the ‘difference’ between distributions q and p[71].

Definition 8.11 (KL divergence). For two distributions q(x) and p(x)

KL(q|p) ≡ 〈log q(x)− log p(x)〉q(x) ≥ 0 (8.2.31)

1 2 3 4

Figure 8.1: Empirical distribution over a discrete variable with
4 states. The empirical samples consist of n samples at each
of states 1, 2, 4 and 2n samples at state 3 where n > 0. On
normalising this gives a distribution with values 0.2, 0.2, 0.4, 0.2
over the 4 states.
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The KL divergence is ≥ 0

The KL divergence is widely used and it is therefore important to understand why the divergence is positive.

To see this, consider the following linear bound on the function log(x)

log(x) ≤ x− 1 (8.2.32)

as plotted in the figure on the right. Replacing x by p(x)/q(x) in the above bound

p(x)

q(x)
− 1 ≥ log

p(x)

q(x)
(8.2.33)

Since probabilities are non-negative, we can multiply both sides by q(x) to obtain

p(x)− q(x) ≥ q(x) log p(x)− q(x) log q(x) (8.2.34)
1 2 3 4

−4

−3

−2

−1

0

1

2

3

We now integrate (or sum in the case of discrete variables) both sides. Using
∫
p(x)dx = 1,

∫
q(x)dx = 1,

1− 1 ≥ 〈log p(x)− log q(x)〉q(x) (8.2.35)

Rearranging gives

〈log q(x)− log p(x)〉q(x) ≡ KL(q|p) ≥ 0 (8.2.36)

The KL divergence is zero if and only if the two distributions are exactly the same.

Definition 8.12 (α-divergence). For two distributions q(x) and p(x) and real α the α-divergence is defined
as

Dα(p|q) ≡
1−

〈
pα−1(x)
qα−1(x)

〉
p(x)

α(1− α)
≥ 0 (8.2.37)

The Kullback-Leibler divergence KL(p|q) corresponds to D1(p|q) and KL(q|p) = D0(p|q), which is readily
verified using L’Hôpital’s rule.

8.2.2 Entropy and information

For both discrete and continuous variables, the entropy is defined as

H(p) ≡ −〈log p(x)〉p(x) (8.2.38)

For continuous variables, this is also called the differential entropy , see also exercise(8.34). The entropy is
a measure of the uncertainty in a distribution. One way to see this is that

H(p) = −KL(p|u) + const. (8.2.39)

where u is a uniform distribution. Since KL(p|u) ≥ 0, the less like a uniform distribution p is, the smaller
will be the entropy. Or, vice versa, the more similar p is to a uniform distribution, the greater will be the
entropy. Since the uniform distribution contains the least information a prior about which state p(x) is
in, the entropy is therefore a measure of the a priori uncertainty in the state occupancy. For a discrete
distribution we can permute the state labels without changing the entropy. For a discrete distribution the
entropy is positive, whereas the differential entropy can be negative.

The mutual information is a measure of dependence between (sets of) variables X and Y, conditioned on
variables Z.
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Definition 8.13 (Mutual Information).

MI(X ;Y|Z) ≡ 〈KL(p(X ,Y|Z)|p(X|Z)p(Y|Z))〉p(Z) ≥ 0 (8.2.40)

If X ⊥⊥Y|Z is true, then MI(X ;Y|Z) is zero, and vice versa. When Z = ∅, the average over p(Z) is absent
and one writes MI(X ;Y).

8.3 Classical Distributions

Definition 8.14 (Bernoulli Distribution). The Bernoulli distribution concerns a discrete binary variable x,
with dom(x) = {0, 1}. The states are not merely symbolic, but real values 0 and 1.

p(x = 1) = θ (8.3.1)

From normalisation, it follows that p(x = 0) = 1− θ. From this

〈x〉 = 0× p(x = 0) + 1× p(x = 1) = θ (8.3.2)

The variance is given by var(x) = θ (1− θ).

Definition 8.15 (Categorical Distribution). The categorical distribution generalises the Bernoulli distribu-
tion to more than two (symbolic) states. For a discrete variable x, with symbolic states dom(x) = {1, . . . , C},

p(x = c) = θc,
∑
c

θc = 1 (8.3.3)

The Dirichlet is conjugate to the categorical distribution.

Definition 8.16 (Binomial Distribution). The Binomial describes the distribution of a discrete two-state
variable x, with dom(x) = {1, 0} where the states are symbolic. The probability that in n Bernoulli Trials
(independent samples), x1, . . . , xn there will be k ‘success’ states 1 observed is

p(y = k|θ) =

(
n

k

)
θk (1− θ)n−k , y ≡

n∑
i=1

I
[
xi = 1

]
(8.3.4)

where
(
n
k

)
≡ n!/(k!(n− k)!) is the binomial coefficient. The mean and variance are

〈y〉 = nθ, var(y) = nθ (1− θ) (8.3.5)

The Beta distribution is the conjugate prior for the Binomial distribution.

Definition 8.17 (Multinomial Distribution). Consider a multi-state variable x, with dom(x) = {1, . . . ,K},
with corresponding state probabilities θ1, . . . , θK . We then draw n samples from this distribution. The
probability of observing the state 1 y1 times, state 2 y2 times, . . . , state K yK times in the n samples is

p(y1, . . . , yK |θ) =
n!

y1! . . . yK !

n∏
i=1

θyii (8.3.6)

where n =
∑n

i=1 yi.

〈yi〉 = nθi, var(yi) = nθi (1− θi) , 〈yiyj〉 − 〈yi〉 〈yj〉 = −nθiθj (i 6= j) (8.3.7)

The Dirichlet distribution is the conjugate prior for the multinomial distribution.
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Figure 8.2: (a): Exponential distribution. (b): Laplace (double exponential) distribution.

Definition 8.18 (Poisson Distribution). The Poisson distribution can be used to model situations in which
the expected number of events scales with the length of the interval within which the events can occur. If λ
is the expected number of events per unit interval, then the distribution of the number of events x within
an interval tλ is

p(x = k|λ) =
1

k!
e−λt (λt)k , k = 0, 1, 2, . . . (8.3.8)

For a unit length interval (t = 1),

〈x〉 = λ, var(x) = λ (8.3.9)

The Poisson distribution can be derived as a limiting case of a Binomial distribution in which the success
probability scales as θ = λ/n, in the limit n→∞.

Definition 8.19 (Uniform distribution). For a variable x, the distribution is uniform if p(x) = const. over
the domain of the variable.

Definition 8.20 (Exponential Distribution). For x ≥ 0, see fig(8.2a),

p(x|λ) ≡ λe−λx (8.3.10)

One can show that for rate λ

〈x〉 =
1

λ
, var(x) =

1

λ2
(8.3.11)

The alternative parameterisation b = 1/λ is called the scale.

Definition 8.21 (Gamma Distribution).

Gam (x|α, β) =
1

βΓ(α)

(
x

β

)α−1

e
− x
β , x ≥ 0, α > 0, β > 0 (8.3.12)

α is called the shape parameter, β is the scale parameter and the Gamma function is defined as

Γ(a) =

∫ ∞
0

ta−1e−tdt (8.3.13)

The parameters are related to the mean and variance through

α =
(µ
s

)2
, β =

s2

µ
(8.3.14)
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Figure 8.3: Gamma distribution. (a): varying α for fixed β. (b): varying β for fixed α.

where µ is the mean of the distribution and s is the standard deviation. The mode is given by (α− 1)β,
for α ≥ 1, see fig(8.3).

An alternative parameterisation uses the inverse scale

Gamis (x|α, β) = Gam (x|α, 1/β) ∝ xα−1e−βx (8.3.15)

Definition 8.22 (Inverse Gamma distribution).

InvGam (x|α, β) =
βα

Γ (α)

1

xα+1
e−β/x (8.3.16)

This has mean β/(α− 1) for α > 1 and variance β2

(α−1)2(α−2)
for α > 2.

Definition 8.23 (Beta Distribution).

p(x|α, β) = B (x|α, β) =
1

B(α, β)
xα−1 (1− x)β−1 , 0 ≤ x ≤ 1 (8.3.17)

where the Beta function is defined as

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(8.3.18)

and Γ(x) is the Gamma function. Note that the distribution can be flipped by interchanging x for 1 − x,
which is equivalent to interchanging α and β. See fig(8.4).
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Figure 8.4: Beta distribution. The parameters α and β can also be written in terms of the mean and
variance, leading to an alternative parameterisation, see exercise(8.16).
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Figure 8.5: Top: 200 datapoints x1, . . . , x200 drawn from a Gaussian distribution.
Each vertical line denotes a datapoint at the corresponding x value on the hori-
zontal axis. Middle: Histogram using 10 equally spaced bins of the datapoints.
Bottom: Gaussian distribution N (x µ = 5, σ = 3) from which the datapoints
were drawn. In the limit of an infinite amount of data, and limitingly small bin
size, the normalised histogram tends to the Gaussian probability density function.

The mean and variance are given by

〈x〉 =
α

α+ β
, var(x) =

αβ

(α+ β)2 (α+ β + 1)
(8.3.19)

Definition 8.24 (Laplace Distribution).

p(x|λ) ≡ λe− 1
b
|x−µ| (8.3.20)

For scale b

〈x〉 = µ, var(x) = 2b2 (8.3.21)

The Laplace distribution is also known as the Double Exponential distribution, fig(8.2b).

Definition 8.25 (Univariate Gaussian Distribution).

p(x|µ, σ2) = N
(
x µ, σ2

)
≡ 1√

2πσ2
e−

1
2σ2

(x−µ)2 (8.3.22)

where µ is the mean of the distribution, and σ2 the variance. This is also called the normal distribution.

One can show that the parameters indeed correspond to

µ = 〈x〉N (x µ,σ2) , σ2 =
〈

(x− µ)2
〉
N (x µ,σ2)

(8.3.23)

For µ = 0 and σ = 1, the Gaussian is called the standard normal distribution. See fig(8.5) for a depiction of
the univariate Gaussian and samples therefrom.

Definition 8.26 (Student’s t-distribution).

p(x|µ, λ, ν) = Student (x|µ, λ, ν) =
Γ(ν+1

2 )

Γ(ν2 )

(
λ

νπ

) 1
2

[
1 +

λ (x− µ)2

ν

]− ν+1
2

(8.3.24)

where µ is the mean, ν the degrees of freedom, and λ scales the distribution. The variance is given by

var(x) =
ν

λ (ν − 2)
, for ν > 2 (8.3.25)

For ν →∞ the distribution tends to a Gaussian with mean µ and variance 1/λ. As ν decreases the tails of
the distribution become fatter.
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Figure 8.6: Dirichlet distribution with parameter (u1, u2, u3) displayed on the simplex x1, x2, x3 ≥ 0, x1 +
x2 + x3 = 1. Black denotes low probability and white high probability. (a): (3, 3, 3) (b): (0.1, 1, 1). (c):
(4, 3, 2). (d): (0.05, 0.05, 0.05).

The t-distribution can be derived from a scaled mixture

p(x|µ, a, b) =

∫ ∞
τ=0
N
(
x µ, τ−1

)
Gamis (τ |a, b) dτ (8.3.26)

=

∫ ∞
τ=0

( τ
2π

) 1
2
e−

τ
2

(x−µ)2bae−bττa−1 1

Γ(a)
dτ (8.3.27)

=
ba

Γ(a)

Γ(a+ 1
2)√

2π

1(
b+ 1

2 (x− µ)2
)a+ 1

2

(8.3.28)

This matches equation (8.3.24) on setting ν = 2a and λ = a/b.

Definition 8.27 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions, α = (α1, . . . , αQ), αi ≥ 0,

∑
i αi = 1:

p(α) =
1

Z(u)
δ

(
Q∑
i=1

αi − 1

)
Q∏
q=1

α
uq−1
q I [αq ≥ 0] (8.3.29)

where

Z(u) =

∏Q
q=1 Γ(uq)

Γ
(∑Q

q=1 uq

) (8.3.30)

It is conventional to denote the distribution as

Dirichlet (α|u) (8.3.31)

The parameter u controls how strongly the mass of the distribution is pushed to the corners of the simplex.
Setting uq = 1 for all q corresponds to a uniform distribution, fig(8.6). In the binary case Q = 2, this is
equivalent to a Beta distribution.

The product of two Dirichlet distributions is another Dirichlet distribution

Dirichlet (θ|u1) Dirichlet (θ|u2) = Dirichlet (θ|u1 + u2) (8.3.32)

The marginal of a Dirichlet is also Dirichlet:

∫
θj

Dirichlet (θ|u) = Dirichlet
(
θ\j |u\j

)
(8.3.33)
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Figure 8.7: (a): Bivariate Gaussian with mean (0, 0) and covariance [1, 0.5; 0.5, 1.75]. Plotted on the
vertical axis is the probability density value p(x). (b): Probability density contours for the same bivariate
Gaussian. Plotted are the unit eigenvectors scaled by the square root of their eigenvalues,

√
λi.

The marginal of a single component θi is a Beta distribution:

p(θi) = B

θi|ui,∑
j 6=i

uj

 (8.3.34)

8.4 Multivariate Gaussian

The multivariate Gaussian plays a central role in data analysis and as such we discuss its properties in some
detail.

Definition 8.28 (Multivariate Gaussian Distribution).

p(x|µ,Σ) = N (x µ,Σ) ≡ 1√
det (2πΣ)

e−
1
2

(x−µ)TΣ−1(x−µ) (8.4.1)

where µ is the mean vector of the distribution, and Σ the covariance matrix. The inverse covariance Σ−1

is called the precision.

One may show

µ = 〈x〉N (x µ,Σ) , Σ =
〈

(x− µ) (x− µ)T
〉
N (x µ,Σ)

(8.4.2)

Note that det (ρM) = ρDdet (M), where M is a D ×D matrix, which explains the dimension independent
notation in the normalisation constant of definition(8.28).

The moment representation uses µ and Σ to parameterise the Gaussian. The alternative canonical repre-
sentation

p(x|b,M, c) = ce−
1
2
xTMx+xTb (8.4.3)

is related to the moment representation via

Σ = M−1, µ = M−1b,
1√

det (2πΣ)
= ce

1
2
bTM−1b (8.4.4)
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The multivariate Gaussian is widely used and it is instructive to understand the geometric picture. This
can be achieved by viewing the distribution in a different co-ordinate system. First we use the fact that
every real symmetric matrix D ×D has an eigen-decomposition

Σ = EΛET (8.4.5)

where ETE = I and Λ = diag (λ1, . . . , λD). In the case of a covariance matrix, all the eigenvalues λi are
positive. This means that one can use the transformation

y = Λ−
1
2 ET (x− µ) (8.4.6)

so that

(x− µ)T Σ−1 (x− µ) = (x− µ)T EΛ−1ET (x− µ) = yTy (8.4.7)

Under this transformation, the multivariate Gaussian reduces to a product of D univariate zero-mean unit
variance Gaussians (since the Jacobian of the transformation is a constant). This means that we can view a
multivariate Gaussian as a shifted, scaled and rotated version of a ‘standard’ (zero mean, unit covariance)
Gaussian in which the centre is given by the mean, the rotation by the eigenvectors, and the scaling by the
square root of the eigenvalues, as depicted in fig(8.7b). A Gaussian with covariance Σ = ρI for some scalar
ρ is an example of an isotropic meaning ‘same under rotation’. For any isotropic distribution, contours of
equal probability are spherical around the origin.

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

N (x µ1,Σ1)N (x µ2,Σ2) = N (x µ,Σ)
exp

(
−1

2 (µ1 − µ2)T S−1 (µ1 − µ2)
)

√
det (2πS)

(8.4.8)

where S ≡ Σ1 + Σ2 and the mean and covariance are given by

µ = Σ1S
−1µ2 + Σ2S

−1µ1 Σ = Σ1S
−1Σ2 (8.4.9)

8.4.1 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression

exp

(
−1

2
xTAx + bTx

)
(8.4.10)

can be transformed as follows. First we complete the square:

1

2
xTAx− bTx =

1

2

(
x−A−1b

)T
A
(
x−A−1b

)
− 1

2
bTA−1b (8.4.11)

Hence

exp

(
−1

2
xTAx− bTx

)
= N

(
x A−1b,A−1

)√
det
(
2πA−1

)
exp

(
1

2
bTA−1b

)
(8.4.12)

From this one can derive∫
exp

(
−1

2
xTAx + bTx

)
dx =

√
det
(
2πA−1

)
exp

(
1

2
bTA−1b

)
(8.4.13)
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Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through

y = Mx + η (8.4.14)

where x⊥⊥η, η ∼ N (µ,Σ), and x ∼ N (µx,Σx). Then the marginal p(y) =
∫
x p(y|x)p(x) is a Gaussian

p(y) = N
(
y Mµx + µ,MΣxM

T + Σ
)

(8.4.15)

Result 8.4 (Partitioned Gaussian). Consider a distribution N (z µ,Σ) defined jointly over two vectors x
and y of potentially differing dimensions,

z =

(
x
y

)
(8.4.16)

with corresponding mean and partitioned covariance

µ =

(
µx
µy

)
Σ =

(
Σxx Σxy

Σyx Σyy

)
(8.4.17)

where Σyx ≡ ΣT
xy. The marginal distribution is given by

p(x) = N (x µx,Σxx) (8.4.18)

and conditional

p(x|y) = N
(
x µx + ΣxyΣ

−1
yy

(
y − µy

)
,Σxx −ΣxyΣ

−1
yy Σyx

)
(8.4.19)

Result 8.5 (Gaussian average of a quadratic function).〈
xTAx

〉
N (x µ,Σ)

= µTAµ+ trace (AΣ) (8.4.20)

8.4.2 Conditioning as system reversal

For a joint Gaussian distribution p(x,y), consider the conditional p(x|y). The formula for this Gaussian is
given in equation (8.4.19). An equivalent and useful way to write this result is to consider a ‘reversed’ linear
system of the form

x =
←−
Ay +←−η , where ←−η ∼ N

(←−η ←−µ ,←−Σ) (8.4.21)

and show that the marginal over the ‘reverse’ noise ←−η is equivalent to conditioning. That is, for a Gaussian

p(x|y) =

∫
δ
(
x−←−Ay −←−η

)
p(←−η ), p(←−η ) = N

(←−η ←−µ ,←−Σ) (8.4.22)

for suitably defined
←−
A, ←−µ ,

←−
Σ . To show this, we need to make the statistics of x under this linear system

match those given by the conditioning operation, (8.4.19). The mean and covariance of the linear system
equation (8.4.21) are given by

µx =
←−
Ay +←−µ , Σxx =

←−
Σ . (8.4.23)

We can make these match equation (8.4.19) by setting
←−
A = ΣxyΣ

−1
yy ,

←−
Σ = Σxx −ΣxyΣ

−1
yy Σyx,

←−µ = µx −ΣxyΣ
−1
yy µy (8.4.24)

This means that we can write an explicit linear system of the form equation (8.4.21) where the parameters
are given in terms of the statistics of the original system. This is particularly useful in deriving results in
inference with Linear Dynamical Systems, section(24.3).
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8.4.3 Whitening and centering

For a set of data x1, . . . ,xN , with dim xn = D, we can transform this data to y1, . . . ,yN with zero mean
using centering :

yn = xn −m (8.4.25)

where the mean m of the data is given by

m =
1

N

N∑
n=1

xn (8.4.26)

Furthermore, we can transform to values z1, . . . , zN that have zero mean and unit covariance using whitening

zn = S−
1
2 (xn −m) (8.4.27)

where the covariance S of the data is given by

S =
1

N

N∑
n=1

(xn −m) (xn −m)T (8.4.28)

An equivalent approach is to compute the SVD decomposition of the matrix of centered datapoints

USVT = Y, Y =
[
y1, . . . ,yN

]
(8.4.29)

then for the D ×N matrix

Z =
√
Ndiag (1/S1,1, . . . , 1/SD,D) UTY (8.4.30)

the columns of Z =
(
z1, . . . , zN

)
have zero mean and unit covariance, see exercise(8.32).

Result 8.6 (Entropy of a Gaussian). The differential entropy of a multivariate Gaussian p(x) = N (x µ,Σ)
is

H(x) ≡ −〈log p(x)〉p(x) =
1

2
log det (2πΣ) +

D

2
(8.4.31)

where D = dim x. Note that the entropy is independent of the mean µ.

8.5 Exponential Family

A theoretically convenient class of distributions are the exponential family, which contains many standard
distributions, including the Gaussian, Gamma, Poisson, Dirichlet, Wishart, Multinomial.

Definition 8.29 (Exponential Family). For a distribution on a (possibly multidimensional) variable x
(continuous or discrete) an exponential family model is of the form

p(x|θ) = h(x)exp

(∑
i

ηi (θ)Ti(x)− ψ(θ)

)
(8.5.1)

θ are the parameters, Ti(x) the test statistics, and ψ (θ) is the log partition function that ensures normali-
sation

ψ (θ) = log

∫
x
h(x)exp

(∑
i

ηi (θ)Ti(x)

)
. (8.5.2)

One can always transform the parameters to the form η (θ) = θ in which case the distribution is in canonical
form:

p(x|θ) = h(x)exp
(
θTT(x)− ψ (θ)

)
(8.5.3)
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For example the univariate Gaussian can be written

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
= exp

(
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
− 1

2
log πσ2

)
. (8.5.4)

Defining t1(x) = x, t2(x) = −x2/2 and , θ1 = µ, θ2 = σ2, h(x) = 1, then

η1(θ) =
θ1

θ2
, η2(θ) =

1

θ2
, ψ(θ) =

1

2

(
θ2

1

θ2
+ log πθ2

)
(8.5.5)

Note that the parameterisation is not necessarily unique – we can for example rescale the functions Ti(x)
and inversely scale ηi by the same amount to arrive at an equivalent representation.

8.5.1 Conjugate priors

For an exponential family likelihood

p(x|θ) = h(x)exp
(
θTT(x)− ψ (θ)

)
(8.5.6)

and prior with hyperparameters α, γ,

p(θ|α, γ) ∝ exp
(
θTα− γψ (θ)

)
(8.5.7)

the posterior is

p(θ|x,α, γ) ∝ p(x|θ)p(θ|α, γ) ∝ exp
(
θT [T(x) +α]− [γ + 1]ψ (θ)

)
(8.5.8)

= p(θ|T(x) +α, 1 + γ) (8.5.9)

so that the prior, equation (8.5.7), is conjugate for the exponential family likelihood equation (8.5.6); that
is, the posterior is of the same form as the prior, but with modified hyperparameters. Whilst the likelihood
is in the exponential family, the conjugate prior is not necessarily in the exponential family.

8.6 Learning distributions

For a distribution p(x|θ), parameterised by θ, and data X =
{
x1, . . . , xN

}
, learning corresponds to inferring

the θ that best explains the data X . There are various criteria for defining this:

Bayesian Methods In this one examines the posterior p(θ|X ) ∝ p(X|θ)p(θ). This gives rise to a distribu-
tion over θ. The Bayesian method itself says nothing about how to best summarise this posterior.

Maximum A posteriori This is a summarisation of the posterior, that is

θMAP = argmax
θ

p(θ|X ) (8.6.1)

Maximum Likelihood Under a flat prior, p(θ) = const., the MAP solution is equivalent to setting θ to
that value that maximises the likelihood of observing the data

θML = argmax
θ

p(X|θ) (8.6.2)

Moment Matching Based on an empirical estimate of a moment (say the mean), θ is set such that the
moment (or moments) of the distribution matches the empirical moment.

Pseudo Likelihood For multivariate x = (x1, . . . , xN ), one sets the parameters based on

θ = argmax
θ

N∑
n=1

D∑
i=1

log p(xni |xn\i, θ) (8.6.3)

The pseudo-likelihood method is sometimes used when the full likelihood p(x|θ) is difficult to compute.
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In seeking the ‘best’ single parameter θ, we are often required to carry out a numerical optimisation. This
is not necessarily a trivial step, and considerable effort is often spent either in attempting to define models
for which the resulting computational difficulties are minimal, or in finding good approximations that find
useful optima of complex objective functions, see section(29.5).

In this book we focus on the Bayesian methods and maximum likelihood. We first reiterate some of the
basic ground covered in section(1.3), in which the Bayesian and maximum likelihood methods are related.

Definition 8.30. Prior, Likelihood and Posterior

For data X and variable θ, Bayes’ rule tells us how to update our prior beliefs about the variable θ in light
of the data to a posterior belief:

p(θ|X )︸ ︷︷ ︸
posterior

=

p(X|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

p(X )︸ ︷︷ ︸
evidence

(8.6.4)

The evidence is also called the marginal likelihood . Note that the term ‘evidence’ is (rather unfortunately)
used for both the marginal likelihood of observations and the observations themselves.

The term ‘likelihood’ is used for the probability that a model generates observed data. More fully, if we
condition on the model M , we have

p(θ|X ,M) =
p(X|θ,M)p(θ|M)

p(X|M)

where we see the role of the likelihood p(X|θ,M) and model likelihood p(X|M).

The most probable a posteriori (MAP) setting is that which maximises the posterior,

θMAP = argmax
θ

p(θ|X ,M) (8.6.5)

For a ‘flat prior’, p(θ|M) being a constant, the MAP solution is equivalent to maximum likelihood namely
that θ that maximises p(X|θ,M),

θML = argmax
θ

p(X|θ,M) (8.6.6)

Definition 8.31 (conjugacy). If the posterior is of the same parametric form as the prior, then we call
the prior the conjugate distribution for the likelihood distribution. That is, for a prior on parameter θ,
with hyperparameter α, p(θ|α), the posterior given data D is the same form as the prior, but with updated
hyperparameters, p(θ|D, α) = p(θ|α′).

Definition 8.32 (Independent and Identically distributed). For a variable x, and a set of i.i.d. observations,
x1, . . . , xN , conditioned on θ, we assume there is no dependence between the observations

p(x1, . . . , xN |θ) =
N∏
n=1

p(xn|θ) (8.6.7)

For non-Bayesian methods which return a single value for θ, based on the data X , it is interesting to know
how ‘good’ the procedure is. Concepts that can help in this case are ‘bias’ and ‘consistency’. The bias
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measures if the estimate of θ is correct ‘on average’. The property of an estimator such that the parameter
θ converges to the true model parameter θ0 as the sequence of data increases is termed consistency .

Definition 8.33 (Unbiased estimator). Given data X =
{
x1, . . . , xN

}
, formed from i.i.d. samples of a

distribution p(x|θ) we can use the data X to estimate the parameter θ that was used to generate the data.
The estimator is a function of the data, which we write θ̂(X ). For an unbiased (parameter) estimator〈

θ̂(X )
〉
p(X|θ)

= θ (8.6.8)

More generally, one can consider any function of the distribution p(x), with scalar value θ, for example the
mean θ = 〈x〉p(x). Then θ̂(X ) is an unbiased estimator of θ with respect to the data distribution p̃(X ) if〈
θ̂(X )

〉
p̃(X )

= θ.

A classical example for estimator bias are those of the mean and variance. Let

µ̂(X ) =
1

N

N∑
n=1

xn (8.6.9)

This is an unbiased estimator of the mean 〈x〉p(x) since, for iid data

〈µ̂(X )〉p(X ) =
1

N

N∑
n=1

〈xn〉p(xn) =
1

N
N 〈x〉p(x) = 〈x〉p(x) (8.6.10)

On the other hand, consider the estimator of the variance,

σ̂2(X ) =
1

N

N∑
n=1

(xn − µ̂(X ))2 (8.6.11)

This is biased since (omitting a few lines of algebra)

〈
σ̂2(X )

〉
p(X )

=
1

N

N∑
n=1

〈
(xn − µ̂(X ))2

〉
=
N − 1

N
σ2 (8.6.12)

8.7 Properties of Maximum Likelihood

A crude summary of the posterior is given by a distribution with all its mass in a single most likely state,
δ
(
θ, θMAP

)
, see definition(8.30) . In making such an approximation, potentially useful information concern-

ing the reliability of the parameter estimate is lost. In contrast the full posterior reflects our beliefs about
the range of possibilities and their associated credibilities.

The term ‘maximum likelihood’ refers to the parameter θ for which the observed data is most likely to be
generated by the model. One can motivate MAP from a decision theoretic perspective. If we assume a
utility that is zero for all but the correct θ,

U(θtrue, θ) = I [θtrue = θ] (8.7.1)

then the expected utility of θ is

U(θ) =
∑
θtrue

I [θtrue = θ] p(θtrue|X ) = p(θ|X ) (8.7.2)

This means that the maximum utility decision is to return that θ with the highest posterior value.
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When a ‘flat’ prior p(θ) = const. is used the MAP parameter assignment is equivalent to the maximum
likelihood setting

θML = argmax
θ

p(X|θ) (8.7.3)

Since the logarithm is a strictly increasing function, then for a positive function f(θ)

θopt = argmax
θ

f(θ)⇔ θopt = argmax
θ

log f(θ) (8.7.4)

so that the MAP parameters can be found either by optimising the MAP objective or, equivalently, its
logarithm,

log p(θ|X ) = log p(X|θ) + log p(θ)− log p(X ) (8.7.5)

where the normalisation constant, p(X ), is not a function of θ. The log likelihood is convenient since, under
the i.i.d. assumption, it is a summation of data terms,

log p(θ|X ) =
∑
n

log p(xn|θ) + log p(θ)− log p(X ) (8.7.6)

so that quantities such as derivatives of the log-likelihood w.r.t. θ are straightforward to compute.

8.7.1 Training assuming the correct model class

Consider a dataset X = {xn, n = 1, . . . , N} generated from an underlying parametric model p(x|θ0). Our
interest is to fit a model p(x|θ) of the same form as the correct underlying model p(x|θ0) and examine if,
in the limit of a large amount of data, the parameter θ learned by maximum likelihood matches the correct
parameter θ0. Our derivation below is non-rigorous, but highlights the essence of the argument.

Assuming the data is i.i.d., the scaled log likelihood is

L(θ)≡ 1

N
log p(X|θ) =

1

N

N∑
n=1

log p(xn|θ) (8.7.7)

In the limit N → ∞, the sample average can be replaced by an average with respect to the distribution
generating the data

L(θ) =N→∞ 〈log p(x|θ)〉p(x|θ0) = −KL
(
p(x|θ0)|p(x|θ)

)
+
〈
log p(x|θ0)

〉
p(x|θ0)

(8.7.8)

Up to a negligible constant, this is the Kullback-Leibler divergence between two distributions in x, just
with different parameter settings. The θ that maximises L(θ) is that which minimises the Kullback-Leibler
divergence, namely θ = θ0. In the limit of a large amount of data we can therefore, in principle, learn the
correct parameters (assuming we know the correct model class). That is, maximum likelihood is a consistent
estimator.

8.7.2 Training when the assumed model is incorrect

We write q(x|θ) for the assumed model, and p(x|φ) for the correct generating model. Repeating the above
calculations in the case of the assumed model being correct, we have that, in the limit of a large amount of
data, the scaled log likelihood is

L(θ) = 〈log q(x|θ)〉p(x|φ) = −KL(p(x|φ)|q(x|θ)) + 〈log p(x|φ)〉p(x|φ) (8.7.9)

Since q and p are not of the same form, setting θ to φ does not necessarily minimise KL(p(x|φ)|q(x|θ)), and
therefore does not necessarily optimize L(θ).
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8.7.3 Maximum likelihood and the empirical distribution

Given a dataset of discrete variables X =
{
x1, . . . , xN

}
we define the empirical distribution as

q(x) =
1

N

N∑
n=1

I [x = xn] (8.7.10)

in the case that x is a vector of variables,

I [x = xn] =
∏
i

I [xi = xni ] (8.7.11)

The Kullback-Leibler divergence between the empirical distribution q(x) and a distribution p(x) is

KL(q|p) = 〈log q(x)〉q(x) − 〈log p(x)〉q(x) (8.7.12)

Our interest is the functional dependence of KL(q|p) on p. Since the entropic term 〈log q(x)〉q(x) is indepen-
dent of p(x) we may consider this constant and focus on the second term alone. Hence

KL(q|p) = −〈log p(x)〉q(x) + const. = − 1

N

N∑
n=1

log p(xn) + const. (8.7.13)

We recognise
∑N

n=1 log p(xn) as the log likelihood under the model p(x), assuming that the data is i.i.d. This
means that setting parameters by maximum likelihood is equivalent to setting parameters by minimising the
Kullback-Leibler divergence between the empirical distribution and the parameterised distribution. In the
case that p(x) is unconstrained, the optimal choice is to set p(x) = q(x), namely the maximum likelihood
optimal distribution corresponds to the empirical distribution.

8.8 Learning a Gaussian

Given the importance of the Gaussian distribution, it is instructive to explicitly consider maximum likelihood
and Bayesian methods for fitting a Gaussian to data.

8.8.1 Maximum likelihood training

Given a set of training data X =
{
x1, . . . ,xN

}
, drawn from a Gaussian N (x µ,Σ) with unknown mean µ

and covariance Σ, how can we find these parameters? Assuming the data are drawn i.i.d. the log likelihood
is

L(µ,Σ) ≡
N∑
n=1

log p(x|µ,Σ) = −1

2

N∑
n=1

(xn − µ)T Σ−1 (xn − µ)− N

2
log det (2πΣ) (8.8.1)

Optimal µ

Taking the partial derivative with respect to the vector µ we obtain the vector derivative

∇µL(µ,Σ) =
N∑
n=1

Σ−1 (xn − µ) (8.8.2)

Equating to zero gives that at the optimum of the log likelihood,

N∑
n=1

Σ−1xn = NµΣ−1 (8.8.3)

and therefore, optimally µ is given by the sample mean

µ =
1

N

N∑
n=1

xn (8.8.4)
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(a) Prior (b) Posterior

Figure 8.8: Bayesian approach to inferring the mean and precision (inverse variance) of a Gaussian based
on N = 10 randomly drawn datapoints. (a): A Gauss-Gamma prior with µ0 = 0, α = 2, β = 1, γ = 1.
(b): Gauss-Gamma posterior conditional on the data. For comparison, the sample mean of the data is 1.87
and maximum likelihood optimal variance is 1.16 (computed using the N normalisation). The 10 datapoints
were drawn from a Gaussian with mean 2 and variance 1. See demoGaussBayes.m.

Optimal Σ

The derivative of L with respect to the matrix Σ requires more work. It is convenient to isolate the
dependence on the covariance, and also parameterise using the inverse covariance, Σ−1,

L = −1

2
trace

Σ−1
N∑
n=1

(xn − µ) (xn − µ)T

︸ ︷︷ ︸
≡M

+
N

2
log det

(
2πΣ−1

)
(8.8.5)

Using M = MT, we obtain

∂

∂Σ−1L = −1

2
M +

N

2
Σ (8.8.6)

Equating the derivative to the zero matrix and solving for Σ gives the sample covariance

Σ =
1

N

N∑
n=1

(xn − µ) (xn − µ)T (8.8.7)

Equations (8.8.4) and (8.8.7) define the maximum likelihood solution mean and covariance for training data
X . Consistent with our previous results, in fact these equations simply set the parameters to their sample
statistics of the empirical distribution. That is, the mean is set to the sample mean of the data and the
covariance to the sample covariance.

8.8.2 Bayesian inference of the mean and variance

For simplicity we here deal only with the univariate case. Assuming i.i.d. data the likelihood is

p(X|µ, σ2) =
1

(2πσ2)N/2
exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2

)
(8.8.8)

For a Bayesian treatment, we require the posterior of the parameters

p(µ, σ2|X ) ∝ p(X|µ, σ2)p(µ, σ2) = p(X|µ, σ2)p(µ|σ2)p(σ2) (8.8.9)

Our aim is to find conjugate priors for the mean and variance. A convenient choice for a prior on the mean
µ is that it is a Gaussian centred on µ0:

p(µ|µ0, σ
2
0) =

1√
2πσ2

0

exp

(
− 1

2σ2
0

(µ0 − µ)2

)
(8.8.10)
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The posterior is then

p(µ, σ2|X ) ∝ 1

σ0

1

σN
exp

(
− 1

2σ2
0

(µ0 − µ)2 − 1

2σ2

∑
n

(xn − µ)2

)
p(σ2) (8.8.11)

It is convenient to write this in the form

p(µ, σ2|X ) = p(µ|σ2,X )p(σ2|X ) (8.8.12)

Since equation (8.8.11) has quadratic contributions in µ in the exponent, the conditional posterior p(µ|σ2,X )
is Gaussian. To identify this Gaussian we multiply out the terms in the exponent to arrive at

exp

(
−1

2

(
aµ2 − 2bµ+ c

))
(8.8.13)

with

a =
1

σ2
0

+
N

σ2
, b =

µ0

σ2
0

+

∑
n x

n

σ2
, c =

µ2
0

σ2
0

+
∑
n

(xn)2

σ2
(8.8.14)

Using the identity

aµ2 − 2bµ+ c = a

(
µ− b

a

)2

+

(
c− b2

a

)
(8.8.15)

we can write

p(µ, σ2|X ) ∝ √aexp

(
−1

2
a

(
µ− b

a

)2
)

︸ ︷︷ ︸
p(µ|X ,σ2)

1√
a

exp

(
−1

2

(
c− b2

a

))
1

σ0

1

σN
p(σ2)︸ ︷︷ ︸

p(σ2|X )

(8.8.16)

We encounter a difficulty in attempting to find a conjugate prior for σ2 because the term b2/a is not a simple
expression of σ2. For this reason we constrain

σ2
0 ≡ γσ2 (8.8.17)

for some fixed hyperparameter γ. Defining the constants

ã =
1

γ
+N, b̃ =

µ0

γ
+
∑
n

xn, c̃ =
µ2

0

γ
+
∑
n

(xn)2 (8.8.18)

we have

c− b2

a
=

1

σ2

(
c̃− b̃2

ã

)
(8.8.19)

Using this expression in equation (8.8.16) we obtain

p(σ2|X ) ∝
(
σ2
)−N/2

exp

(
− 1

2σ2

(
c̃− b̃2

ã

))
p(σ2) (8.8.20)

An inverse Gamma distribution for the prior p(σ2) is therefore conjugate. For a Gauss-Inverse-Gamma
prior:

p(µ, σ2) = N
(
µ µ0, γσ

2
)
InvGam

(
σ2|α, β

)
(8.8.21)

the posterior is also Gauss-Inverse-Gamma with

p(µ, σ2|X ) = N
(
µ
b̃

ã
,
σ2

ã

)
InvGam

(
σ2|α+

N

2
, β +

1

2

(
c̃− b̃2

ã

))
(8.8.22)
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8.8.3 Gauss-Gamma distribution

It is common to use a prior on the precision, defined as the inverse variance

λ ≡ 1

σ2
(8.8.23)

If we then use a Gamma prior

p(λ|α, β) = Gam (λ|α, β) =
1

βαΓ(α)
λα−1e−λ/β (8.8.24)

the posterior will be

p(λ|X , α, β) = Gam
(
λ|α+N/2, β̃

)
(8.8.25)

where

1

β̃
=

1

β
+

1

2

(
c̃− b̃2

ã

)
(8.8.26)

The Gauss-Gamma prior distribution

p(µ, λ|µ0, α, β, γ) = N
(
µ µ0, γλ

−1
)
Gam (λ|α, β) (8.8.27)

is therefore the conjugate prior for a Gaussian with unknown mean µ and precision λ. The posterior for
this prior is a Gauss-Gamma distribution with parameters

p(µ, λ|X , µ0, α, β, γ) = N
(
µ
b̃

ã
,

1

ãλ

)
Gam

(
λ|α+N/2, β̃

)
(8.8.28)

The marginal p(µ|X , µ0, α, β, γ) is a Student’s t-distribution. An example of a Gauss-Gamma prior/posterior
is given in fig(8.8). The maximum likelihood solution is recovered in the limit of a ‘flat’ prior µ0 = 0, γ →
∞, α = 1/2, β →∞, see exercise(8.23). The unbiased estimators for the mean and variance are given using
the prior µ0 = 0, γ →∞, α = 1, β →∞, exercise(8.24).

For the multivariate case, the extension of these techniques uses a multivariate Gaussian distribution for
the conjugate prior on the mean, and an Inverse Wishart distribution for the conjugate prior on the
covariance[136].

8.9 Summary

• Classical univariate distributions include the exponential, Gamma, Beta, Gaussian and Poisson.

• A classical distribution of distributions is the Dirichlet distribution.

• Multivariate distributions are often difficult to deal with computationally. A special case is the multivariate
Gaussian, for which marginals and normalisation constants can be computed in time cubic in the number
of variables in the model.

• A useful measure of the difference between distributions is the Kullback-Leibler divergence.

• Bayes’ rule enables us to achieve parameter learning by translating a priori parameter belief into a posterior
parameter belief based on observed data.

• Bayes’ rule itself says nothing about how best to summarise the posterior distribution.

• Conjugate distributions are such that the prior and posterior are from the same distribution, just with
different parameters.

• Maximum likelihood corresponds to a simple summarisation of the posterior under a flat prior.
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• Provided that we are using the correct model class, maximum likelihood will learn the optimal parameters
in the limit of a large amount of data – otherwise there is no such guarantee.

8.10 Code

demoGaussBayes.m: Bayesian fitting of a univariate Gaussian
logGaussGamma.m: Plotting routine for a Gauss-Gamma distribution

8.11 Exercises

Exercise 8.1. In a public lecture, the following phrase was uttered by a Professor of Experimental Psy-
chology: ‘In a recent data survey, 90% of people claim to have above average intelligence, which is clearly
nonsense!’ [Audience Laughs]. Is it theoretically possible for 90% of people to have above average intelli-
gence? If so, give an example, otherwise explain why not. What about above median intelligence?

Exercise 8.2. Consider the distribution defined on real variables x, y:

p(x, y) ∝ (x2 + y2)2e−x
2−y2 , dom(x) = dom(y) = {−∞ . . .∞} (8.11.1)

Show that 〈x〉 = 〈y〉 = 0. Furthermore show that x and y are uncorrelated, 〈xy〉 = 〈x〉 〈y〉. Whilst x and y
are uncorrelated, show that they are nevertheless dependent.

Exercise 8.3. For a variable x with dom(x) = {0, 1}, and p(x = 1) = θ, show that in n independent draws
x1, . . . , xn from this distribution, the probability of observing k states 1 is the Binomial distribution(

n

k

)
θk (1− θ)n−k (8.11.2)

Exercise 8.4 (Normalisation constant of a Gaussian). The normalisation constant of a Gaussian distribu-
tion is related to the integral

I =

∫ ∞
−∞

e−
1
2
x2dx (8.11.3)

By considering

I2 =

∫ ∞
−∞

e−
1
2
x2dx

∫ ∞
−∞

e−
1
2
y2dy =

∫ ∞
−∞

∫ ∞
−∞

e−
1
2(x2+y2)dxdy (8.11.4)

and transforming to polar coordinates,

x = r cos θ, y = r sin θ, dxdy → rdrdθ, r = 0, . . . ,∞, θ = 0, . . . , 2π

show that

1. I =
√

2π

2.
∫∞
−∞ e

− 1
2σ2

(x−µ)2dx =
√

2πσ2

Exercise 8.5. For a univariate Gaussian distribution, show that

1. µ = 〈x〉N (x µ,σ2)

2. σ2 =
〈

(x− µ)2
〉
N (x µ,σ2)

180 DRAFT November 21, 2011



Exercises

Exercise 8.6. Using

xTAx = trace
(
AxxT

)
(8.11.5)

derive result(8.5).

Exercise 8.7. Show that the marginal of a Dirichlet distribution is another Dirichlet distribution:∫
θj

Dirichlet (θ|u) = Dirichlet
(
θ\j |u\j

)
(8.11.6)

Exercise 8.8. For a Beta distribution, show that〈
xk
〉

=
B(α+ k, β)

B(α, β)
=

(α+ k − 1)(α+ k − 2) . . . (α)

(α+ β + k − 1)(α+ β + k) . . . (α+ β)
(8.11.7)

where we used Γ(x+ 1) = xΓ(x).

Exercise 8.9. For the moment generating function g(t) ≡
〈
etx
〉
p(x)

, show that

lim
t→0

dk

dtk
g(t) =

〈
xk
〉
p(x)

(8.11.8)

Exercise 8.10 (Change of variables). Consider a one dimensional continuous random variable x with
corresponding p(x). For a variable y = f(x), where f(x) is a monotonic function, show that the distribution
of y is

p(y) = p(x)

(
df

dx

)−1

, x = f−1(y) (8.11.9)

More generally, for vector variables, and y = f(x), we have:

p(y) = p(x = f−1(y))

∣∣∣∣det

(
∂f

∂x

)∣∣∣∣−1

(8.11.10)

where the Jacobian matrix has elements[
∂f

∂x

]
ij

=
∂fi(x)

∂xj
(8.11.11)

Exercise 8.11 (Normalisation of a Multivariate Gaussian). Consider

I =

∫ ∞
−∞

exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
dx (8.11.12)

By using the transformation

z = Σ−
1
2 (x− µ) (8.11.13)

show that

I =
√

det (2πΣ) (8.11.14)

Exercise 8.12. Consider the partitioned matrix

M =

(
A B
C D

)
(8.11.15)

for which we wish to find the inverse M−1. We assume that A is m×m and invertible, and D is n×n and
invertible. By definition, the partitioned inverse

M−1 =

(
P Q
R S

)
(8.11.16)
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must satisfy(
A B
C D

)(
P Q
R S

)
=

(
Im 0
0 In

)
(8.11.17)

where Im is the m×m identity matrix, and 0 the zero matrix of the same dimension as D. Using the above,
derive the results

P =
(
A−BD−1C

)−1
Q = −A−1B

(
D−CA−1B

)−1

R = −D−1C
(
A−BD−1C

)−1
S =

(
D−CA−1B

)−1 (8.11.18)

Exercise 8.13. Show that for Gaussian distribution p(x) = N
(
x µ, σ2

)
the skewness and kurtosis are both

zero.

Exercise 8.14. Consider a small interval of time δt and let the probability of an event occurring in this
small interval be θδt. Derive a distribution that expresses the probability of at least one event in an interval
from 0 to t.

Exercise 8.15. Consider a vector variable x = (x1, . . . , xn)T and set of functions defined on each component
of x, φi(xi). For example for x = (x1, x2)T we might have

φ1(x1) = − |x1| , φ2(x2) = −x2
2 (8.11.19)

Consider the distribution

p(x|θ) =
1

Z
exp

(
θTφ(x)

)
(8.11.20)

where φ(x) is a vector function with ith component φi(xi), and θ is a parameter vector. Each component is
tractably integrable in the sense that∫ ∞

−∞
exp (θiφi(xi))dxi (8.11.21)

can be computed either analytically or to an acceptable numerical accuracy. Show that

1. xi⊥⊥xj.

2. The normalisation constant Z can be tractably computed.

3. Consider the transformation

x = My (8.11.22)

for an invertible matrix M. Show that the distribution p(y|M,θ) is tractable (its normalisation con-
stant is known), and that, in general, yi>>yj. Explain the significance of this in deriving tractable
multivariate distributions.

Exercise 8.16. Show that we may reparameterise the Beta distribution, definition(8.23) by writing the
parameters α and β as functions of the mean m and variance s using

α = βγ, γ ≡ m/(1−m) (8.11.23)

β =
1

1 + γ

(
γ

s (1 + γ)2 − 1

)
(8.11.24)

Exercise 8.17. Consider the function

f(γ + α, β, θ) ≡ θγ+α−1 (1− θ)β−1 (8.11.25)
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show that

lim
γ→0

∂

∂γ
f(γ + α, β, θ) = θα−1 (1− θ)β−1 log θ (8.11.26)

and hence that∫
θα−1 (1− θ)β−1 log θdθ = lim

γ→0

∂

∂γ

∫
f(γ + α, β, θ)dθ =

∂

∂α

∫
f(α, β, θ)dθ (8.11.27)

Using this result, show therefore that

〈log θ〉B(θ|α,β) =
∂

∂α
logB(α, β) (8.11.28)

where B(α, β) is the Beta function. Show additionally that

〈log (1− θ)〉B(θ|α,β) =
∂

∂β
logB(α, β) (8.11.29)

Using the fact that

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(8.11.30)

where Γ(x) is the gamma function, relate the above averages to the digamma function, defined as

ψ(x) =
d

dx
log Γ(x) (8.11.31)

Exercise 8.18. Using a similar ‘generating function’ approach as in exercise(8.17), explain how to compute

〈log θi〉Dirichlet(θ|u) (8.11.32)

Exercise 8.19. Consider the function

f(x) =

∫ ∞
0

δ

(
n∑
i=1

θi − x
)∏

i

θui−1
i dθ1 . . . dθn (8.11.33)

Show that the Laplace transform f̃(s) ≡
∫∞

0 e−sxf(x)dx is

f̃(s) =
n∏
i=1

{∫ ∞
0

e−sθiθui−1
i dθi

}
=

1

s
∑
i ui

n∏
i=1

Γ (ui) (8.11.34)

By using that the inverse Laplace transform of 1/s1+q is xq/Γ(1 + q), show that

f(x) =

∏n
i=1 Γ (ui)

Γ (
∑

i ui)
x
∑
i ui (8.11.35)

Hence show that the normalisation constant of a Dirichlet distribution with parameters u is given by∏n
i=1 Γ (ui)

Γ (
∑

i ui)
(8.11.36)

Exercise 8.20. Derive the formula for the differential entropy of a multi-variate Gaussian.

Exercise 8.21. Show that for a gamma distribution Gam (x|α, β) the mode is given by

x∗ = (α− 1)β (8.11.37)

provided that α ≥ 1.

Exercise 8.22. Consider a distribution p(x|θ) and a distribution p(x|θ + δ) for small δ.
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1. Take the Taylor expansion of

KL(p(x|θ)|p(x|θ + δ)) (8.11.38)

for small δ and show that this is equal to

−δ
2

2

〈
∂2

∂θ2
log p(x|θ)

〉
p(x|θ)

(8.11.39)

2. More generally for a distribution parameterised by a vector with elements θi + δi, show that a small
change in the parameter results in∑

i,j

δiδj
2
Fij (8.11.40)

where the Fisher Information matrix is defined as

Fij = −
〈

∂2

∂θi∂θj
log p(x|θ)

〉
p(x|θ)

(8.11.41)

3. Show that the Fisher information matrix is positive semidefinite by expressing it equivalently as

Fij =

〈
∂

∂θi
log p(x|θ) ∂

∂θj
log p(x|θ)

〉
p(x|θ)

(8.11.42)

Exercise 8.23. Consider the joint prior distribution

p(µ, λ|µ0, α, β, γ) = N
(
µ µ0, γλ

−1
)
Gam (λ|α, β) (8.11.43)

Show that for µ0 = 0, γ → ∞, β → ∞, then the prior distribution becomes ‘flat’ (independent of µ and λ)
for α = 1/2. Show that for these settings the mean and variance that jointly maximise the posterior equation
(8.8.28) are given by the standard maximum likelihood settings

µ∗ =
1

N

∑
n

xn, σ2
∗ =

1

N

∑
n

(xn − µ∗)2 (8.11.44)

Exercise 8.24. Show that for equation (8.8.28) in the limit µ0 = 0, γ → ∞, α = 1, β → ∞, the jointly
optimal mean and variance obtained from

argmax
µ,λ

p(µ, λ|X , µ0,α, β, γ) (8.11.45)

is given by

µ∗ =
1

N

∑
n

xn, σ2
∗ =

1

N + 1

∑
n

(xn − µ∗)2 (8.11.46)

where σ2
∗ = 1/λ∗. Note that these correspond to the standard ‘unbiased’ estimators of the mean and variance.

Exercise 8.25. For the Gauss-Gamma posterior p(µ, λ|µ0, α, β,X ) given in equation (8.8.28) compute the
marginal posterior p(µ|µ0, α, β,X ). What is the mean of this distribution?

Exercise 8.26. This exercise concerns the derivation of equation (8.4.15).

1. By considering

p(y) =

∫
p(y|x)p(x)dx (8.11.47)

∝
∫

exp

(
−1

2
(y −Mx− µ)T Σ−1 (y −Mx− µ)− 1

2
(x− µx)T Σ−1

x (x− µx)

)
dx

(8.11.48)

show that

p(y) ∝ exp

(
−1

2
yTΣ−1y

)∫
exp

(
−1

2
xTAx + xT (By + c)

)
(8.11.49)

for suitably defined A,B, c.
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2. Using equation (8.4.13), show that

p(y) ∝ exp

(
−1

2
yTΣ−1y − 1

2
(By + c)T A−1 (By + c)

)
3. This establishes that p(y) is Gaussian. We now need to find the mean and covariance of this Gaussian.

We can do this by the lengthly process of completing the square. Alternatively, we can appeal to

〈y〉 = M 〈x〉+ 〈η〉 = Mµx + µ

By considering〈
(y − 〈y〉) (y − 〈y〉)T

〉
=
〈

(Mx + η −Mµx − µ) (Mx + η −Mµx − µ)T
〉

(8.11.50)

and the independence of x and η, derive the formula for the covariance of p(y).

Exercise 8.27. Consider the multivariate Gaussian distribution p(x) ∼ N (x µ,Σ) on the vector x with
components x1, . . . , xn:

p(x) =
1√

det (2πΣ)
e−

1
2

(x−µ)TΣ−1(x−µ) (8.11.51)

Calculate p(xi|x1, . . . , xi−1, xi+1, . . . , xn). Hint: make use of equation (8.4.19).

Exercise 8.28. Observations y0, . . . , yn−1 are noisy i.i.d. measurements of an underlying variable x with
p(x) ∼ N

(
x 0, σ2

0

)
and p(yi|x) ∼ N

(
yi x, σ

2
)

for i = 0, . . . , n− 1. Show that p(x|y0, . . . , yn−1) is Gaussian
with mean

µ =
nσ2

0

nσ2
0 + σ2

y (8.11.52)

where y = (y0 + y1 + . . .+ yn−1)/n and variance σ2
n such that

1

σ2
n

=
n

σ2
+

1

σ2
0

. (8.11.53)

Exercise 8.29. Consider a set of data X = x1, . . . , xN where each xn is independently drawn from a
Gaussian with known mean µ and unknown variance σ2. Assume a gamma distribution prior on τ = 1/σ2,

p(τ) = Gamis (τ |a, b) (8.11.54)

1. Show that the posterior distribution is

p(τ |X ) = Gamis

(
τ |a+

N

2
, b+

1

2

N∑
n=1

(xn − µ)2

)
(8.11.55)

2. Show that the distribution for x is

p(x|X ) =

∫
p(x|τ)p(τ |X )dτ = Student

(
x|µ, λ =

a′

b′
, ν = 2a′

)
(8.11.56)

where a′ = a+ 1
2N , b′ = b+ 1

2

∑N
n=1 (xn − µ)2.

Exercise 8.30. The Poisson distribution is a discrete distribution on the non-negative integers, with

p(x) =
e−λλx

x!
x = 0, 1, 2, . . . (8.11.57)

You are given a sample of n observations x1, . . . , xn independently drawn from this distribution. Determine
the maximum likelihood estimator of the Poisson parameter λ.
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Exercise 8.31. For a Gaussian mixture model

p(x) =
∑
i

piN (x µi,Σi) , pi > 0,
∑
i

pi = 1 (8.11.58)

show that p(x) has mean

〈x〉 =
∑
i

piµi (8.11.59)

and covariance∑
i

pi

(
Σi + µiµ

T
i

)
−
∑
i

piµi
∑
j

pjµ
T
j (8.11.60)

Exercise 8.32. Show that for the whitened data matrix, given in equation (8.4.30), ZZT = NI.

Exercise 8.33. Consider a uniform distribution pi = 1/N defined on states i = 1, . . . , N . Show that the
entropy of this distribution is

H = −
N∑
i=1

pi log pi = logN (8.11.61)

and that therefore as the number of states N increases to infinity, the entropy diverges to infinity.

Exercise 8.34. Consider a continuous distribution p(x), x ∈ [0, 1]. We can form a discrete approximation
with probabilities pi to this continuous distribution by identifying a continuous value i/N for each state
i = 1, . . . , N . With this

pi =
p(i/N)∑
i p(i/N)

(8.11.62)

show that the entropy H = −∑i pi log pi is given by

H = − 1∑
i p(i/N)

∑
i

p(i/N) log p(i/N) + log
∑
i

p(i/N) (8.11.63)

Since for a continuous distribution∫ 1

0
p(x)dx = 1 (8.11.64)

a discrete approximation of this integral into bins of size 1/N gives

1

N

N∑
i=1

p(i/N) = 1 (8.11.65)

Hence show that for large N ,

H ≈ −
∫ 1

0
p(x) log p(x)dx+ const. (8.11.66)

where the constant tends to infinity as N → ∞. Note that this result says that as a continuous distribu-
tion has essentially an infinite number of states, the amount of uncertainty in the distribution is infinite
(alternatively, we would need an infinite number of bits to specify a continuous value). This motivates the
definition of the differential entropy, which neglects the infinite constant of the limiting case of the discrete
entropy.

Exercise 8.35. Consider two multivariate Gaussians N (x µ1,Σ1) and N (x µ2,Σ2).
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1. Show that the log product of the two Gaussians is given by

−1

2
xT
(
Σ−1

1 + Σ−1
2

)
x+xT

(
Σ−1

1 µ1 + Σ−1
2 µ2

)
− 1

2

(
µT

1 Σ−1
1 µ1 + µT

2 Σ−1
2 µ2

)
− 1

2
log det (2πΣ1) det (2πΣ2)

2. Defining A = Σ−1
1 + Σ−1

2 and b = Σ−1
1 µ1 + Σ−1

2 µ2 we can write the above as

−1

2

(
x−A−1b

)T
A
(
x−A−1b

)
+

1

2
bTA−1b− 1

2

(
µT

1 Σ−1
1 µ1 + µT

2 Σ−1
2 µ2

)
− 1

2
log det (2πΣ1) det (2πΣ2)

Writing Σ = A−1 and µ = A−1b show that the product of two Gaussians is a Gaussian with covariance

Σ = Σ1 (Σ1 + Σ2)−1 Σ2 (8.11.67)

mean

µ = Σ1 (Σ1 + Σ2)−1µ2 + Σ2 (Σ1 + Σ2)−1µ1 (8.11.68)

and log prefactor

1

2
bTA−1b− 1

2

(
µT

1 Σ−1
1 µ1 + µT

2 Σ−1
2 µ2

)
− 1

2
log det (2πΣ1) det (2πΣ2) +

1

2
log det (2πΣ)

3. Show that this can be written as

N (x µ1,Σ1)N (x µ2,Σ2) = N (x µ,Σ)
exp

(
−1

2 (µ1 − µ2)T S−1 (µ1 − µ2)
)

√
det (2πS)

(8.11.69)

where S = Σ1 + Σ2.

Exercise 8.36. Show that

∂

∂θ
〈log p(x|θ)〉p(x|θ0) |θ=θ0 = 0 (8.11.70)

Exercise 8.37. Using
〈
f2(x)

〉
− 〈f(x)〉2 ≥ 0, and a suitably chosen function f(x), show that〈

p(x)

q(x)

〉
p(x)

≥ 1 (8.11.71)

for distributions q(x) and p(x). This is related to the α = 2 divergence.

Exercise 8.38. Show that for any α, Dα(p|p) = 0 and that Dα(p|q) ≥ 0 for any distributions p(x), q(x).

Exercise 8.39. Show that for two D dimensional Gaussians,

2KL(N (x µ1,Σ1) |N (x µ2,Σ2)) = trace
(
Σ−1

2 Σ1

)
+ (µ1 − µ2)T Σ−1

2 (µ1 − µ2) + log det
(
Σ2Σ

−1
1

)
−D

Exercise 8.40. For data pairs (xn, yn), n = 1, . . . , N , the correlation can be considered a measure of the
extent to which a linear relationship holds between x and y. For simplicity, we consider that both x and y
have zero mean, and wish to consider the validity of the linear relation

x = αy (8.11.72)

A measure of the discrepancy of this linear assumption is given by

E(α) ≡
N∑
n=1

(xn − αyn)2 (8.11.73)
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1. Show that the α that minimises E(α) is given by

α∗ =
c

σ2
y

(8.11.74)

where

c =
1

N

∑
n

xnyn, σ2
y =

1

N

∑
n

(yn)2 (8.11.75)

2. A measure of the ‘linearity’ between x and y is then

E(α∗)

E(0)
(8.11.76)

which is 1 when there is no linear relation (α = 0) and 0 when there is a perfect linear relation (since
then E(α∗) = 0). Show that the correlation coefficient, definition(8.7), is given by

ρ =

√
1− E(α∗)

E(0)
(8.11.77)

3. Defining the vectors x = (x1, . . . , xN )T, y = (y1, . . . , yN )T, show that the correlation coefficient is the
cosine of the angle between x and y,

ρ =
xTy

|x| |y| (8.11.78)

and hence show that −1 ≤ ρ ≤ 1.

4. Show that for the more general relation

x = αy + γ (8.11.79)

for constant offset γ, setting γ to minimise

E(α, γ) ≡
N∑
n=1

(xn − αyn − γ)2 (8.11.80)

has the effect of simply replacing xn by xn − x̄ and yn by yn − ȳ, where x̄ and ȳ are the mean of the x
and y data respectively.

Exercise 8.41. For variables x, y, and z = x + y, show that the correlation coefficients are related by
ρx,z ≥ ρx,y. With reference to the correlation coefficient as the angle between two vectors, explain why
ρx,z ≥ ρx,y is geometrically obvious.

Exercise 8.42. Consider a ‘Boltzman machine’ distribution on binary variables xi ∈ {0, 1}, i = 1, . . . , D

p(x|W) =
1

Zp(W)
exp

(
xTWx

)
(8.11.81)

and that we wish to fit another distribution q of the same form to p

q(x|U) =
1

Zq(U)
exp

(
xTUx

)
(8.11.82)

1. Show that

argmin
U

KL(p|q) = argmax
U

trace (UC)− logZq(U), Cij ≡ 〈xixj〉p (8.11.83)

2. Hence show that knowing the ‘cross moment’ matrix C of p is sufficient to fully specify p.

3. Generalise the above result to all models in the exponential family.
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CHAPTER 9

Learning as Inference

In previous chapters we largely assumed that all distributions are fully specified for the inference tasks.
In machine learning and related fields, however, the distributions need to be learned on the basis of data.
Learning is then the problem of integrating data with domain knowledge of the model environment. In this
chapter we discuss how learning can be phrased as an inference problem.

9.1 Learning as Inference

9.1.1 Learning the bias of a coin

Consider data expressing the results of tossing a coin. We write vn = 1 if on toss n the coin comes up heads,
and vn = 0 if it is tails. Our aim is to estimate the probability θ that the coin will be a head, p(vn = 1|θ) = θ
– called the ‘bias’ of the coin. For a fair coin, θ = 0.5. The variables in this environment are v1, . . . , vN and
θ and we require a model of the probabilistic interaction of the variables, p(v1, . . . , vN , θ). Assuming there
is no dependence between the observed tosses, except through θ, we have the belief network

p(v1, . . . , vN , θ) = p(θ)

N∏
n=1

p(vn|θ) (9.1.1)

which is depicted in fig(9.1). The assumption that each observation is independent and identically dis-
tributed is called the i.i.d. assumption.

Learning refers to using the observations v1, . . . , vN to infer θ. In this context, our interest is

p(θ|v1, . . . , vN ) =
p(v1, . . . , vN , θ)

p(v1, . . . , vN )
=
p(v1, . . . , vN |θ)p(θ)
p(v1, . . . , vN )

(9.1.2)

We still need to fully specify the prior p(θ). To avoid complexities resulting from continuous variables, we’ll
consider a discrete θ with only three possible states, θ ∈ {0.1, 0.5, 0.8}. Specifically, we assume

p(θ = 0.1) = 0.15, p(θ = 0.5) = 0.8, p(θ = 0.8) = 0.05 (9.1.3)

as shown in fig(9.2a). This prior expresses that we have 80% belief that the coin is ‘fair’, 5% belief the coin
is biased to land heads (with θ = 0.8), and 15% belief the coin is biased to land tails (with θ = 0.1). The
distribution of θ given the data and our beliefs is

p(θ|v1, . . . , vN ) ∝ p(θ)
N∏
n=1

p(vn|θ) = p(θ)

N∏
n=1

θI[v
n=1] (1− θ)I[vn=0] (9.1.4)

∝ p(θ)θ
∑N
n=1 I[vn=1] (1− θ)

∑N
n=1 I[vn=0] (9.1.5)
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θ

v1 v2 v3 · · · vN

(a)

θ

vn

N

(b)

Figure 9.1: (a): Belief network for coin
tossing model. (b): Plate notation equiv-
alent of (a). A plate replicates the quanti-
ties inside the plate a number of times as
specified in the plate.

In the above
∑N

n=1 I [vn = 1] is the number of occurrences of heads, which we more conveniently denote as

NH . Likewise,
∑N

n=1 I [vn = 0] is the number of tails, NT . Hence

p(θ|v1, . . . , vN ) ∝ p(θ)θNH (1− θ)NT (9.1.6)

For an experiment with NH = 2, NT = 8, the posterior distribution is

p(θ = 0.1|V) = k × 0.15× 0.12 × 0.98 = k × 6.46× 10−4 (9.1.7)

p(θ = 0.5|V) = k × 0.8× 0.52 × 0.58 = k × 7.81× 10−4 (9.1.8)

p(θ = 0.8|V) = k × 0.05× 0.82 × 0.28 = k × 8.19× 10−8 (9.1.9)

where V is shorthand for v1, . . . , vN . From the normalisation requirement we have 1/k = 6.46 × 10−4 +
7.81× 10−4 + 8.19× 10−8 = 0.0014, so that

p(θ = 0.1|V) = 0.4525, p(θ = 0.5|V) = 0.5475, p(θ = 0.8|V) = 0.0001 (9.1.10)

as shown in fig(9.2b). These are the ‘posterior’ parameter beliefs. In this case, if we were asked to choose a
single a posteriori most likely value for θ, it would be θ = 0.5, although our confidence in this is low since
the posterior belief that θ = 0.1 is also appreciable. This result is intuitive since, even though we observed
more Tails than Heads, our prior belief was that it was more likely the coin is fair.

Repeating the above with NH = 20, NT = 80, the posterior changes to

p(θ = 0.1|V)≈1− 1.93× 10−6, p(θ = 0.5|V)≈1.93× 10−6, p(θ = 0.8|V)≈2.13× 10−35 (9.1.11)

fig(9.1c), so that the posterior belief in θ = 0.1 dominates. This is reasonable since in this situation, there
are so many more tails than heads that this is unlikely to occur from a fair coin. Even though we a priori
thought that the coin was fair, a posteriori we have enough evidence to change our minds.

9.1.2 Making decisions

In itself, the Bayesian posterior merely represents our beliefs and says nothing about how best to summarise
these beliefs. In situations in which decisions need to be taken under uncertainty we need to additionally
specify what the utility of any decision is, as in chapter(7).

θ

0.1 0.5 0.8

(a)

θ

0.1 0.5 0.8

(b)

θ

0.1 0.5 0.8

(c)

Figure 9.2: (a): Prior encoding our be-
liefs about the amount the coin is biased to
heads. (b): Posterior having seen NH = 2
heads and NT = 8 tails. (c): Posterior
having seen NH = 20 heads and NH = 80
tails. Assuming any value of 0 ≤ θ ≤ 1 is
possible the ML setting is θ = 0.2 in both
NH = 2, NT = 8 and NH = 20, NT = 80.
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In the coin tossing scenario where θ is assumed to be either 0.1, 0.5 or 0.8, we setup a decision problem as
follows: If we correctly state the bias of the coin we gain 10 points; being incorrect, however, loses 20 points.
We can write this using

U(θ, θ0) = 10I
[
θ = θ0

]
− 20I

[
θ 6= θ0

]
(9.1.12)

where θ0 is the true value for the bias. The expected utility of the decision that the coin is θ = 0.1 is

U(θ = 0.1) = U(θ = 0.1, θ0 = 0.1)p(θ0 = 0.1|V)

+ U(θ = 0.1, θ0 = 0.5)p(θ0 = 0.5|V) + U(θ = 0.1, θ0 = 0.8)p(θ0 = 0.8|V) (9.1.13)

Plugging in the numbers from equation (9.1.10), we obtain

U(θ = 0.1) = 10× 0.4525− 20× 0.5475− 20× 0.0001 = −6.4270 (9.1.14)

Similarly

U(θ = 0.5) = 10× 0.5475− 20× 0.4525− 20× 0.0001 = −3.5770 (9.1.15)

and

U(θ = 0.8) = 10× 0.0001− 20× 0.4525− 20× 0.5475 = −19.999 (9.1.16)

The best (that with the highest utility) is to say that the coin is unbiased, θ = 0.5.

Repeating the above calculations for NH = 20, NT = 80, we arrive at

U(θ = 0.1) = 10× (1− 1.93× 10−6)− 20
(
1.93× 10−6 + 2.13× 10−35

)
= 9.9999 (9.1.17)

U(θ = 0.5) = 10× 1.93× 10−6 − 20
(
1− 1.93× 10−6 + 2.13× 10−35

)
≈ −20.0 (9.1.18)

U(θ = 0.8) = 10× 2.13× 10−35 − 20
(
1− 1.93× 10−6 + 1.93× 10−6

)
≈ −20.0 (9.1.19)

so that the best decision in this case is to choose θ = 0.1.

As more information about the distribution p(v, θ) becomes available the posterior p(θ|V) becomes increas-
ingly peaked, aiding our decision making process.

9.1.3 A continuum of parameters

In section(9.1.1) we considered only three possible values for θ. Here we discuss a continuum of parameters.

Using a flat prior

We first examine the case of a ‘flat’ or uniform prior p(θ) = k for some constant k. For continuous variables,
normalisation requires∫

p(θ)dθ = 1 (9.1.20)

Since θ represents a probability we must have 0 ≤ θ ≤ 1,∫ 1

0
p(θ)dθ = k = 1 (9.1.21)

Repeating the previous calculations with this flat continuous prior, we have

p(θ|V) =
1

c
θNH (1− θ)NT (9.1.22)

where c is a constant to be determined by normalisation,

c =

∫ 1

0
θNH (1− θ)NT dθ ≡ B(NH + 1, NT + 1) (9.1.23)

where B(α, β) is the Beta function. See fig(9.3) for an example.
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0 0.2 0.4 0.6 0.8 1
0
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θ

Figure 9.3: Posterior p(θ|V) assuming a flat prior on θ. (blue)
NH = 2, NT = 8 and (red) NH = 20, NT = 80. In both cases,
the most probable state of the posterior (maximum a posteriori)
is 0.2, which makes intuitive sense, since the fraction of Heads to
Tails in both cases is 0.2. Where there is more data, the posterior
is more certain and sharpens around the most probable value.

Using a conjugate prior

Determining the normalisation constant of a continuous distribution requires that the integral of the unnor-
malised posterior can be carried out. For the coin tossing case, it is clear that if the prior is of the form of
a Beta distribution, then the posterior will be of the same parametric form. For prior

p(θ) =
1

B(α, β)
θα−1 (1− θ)β−1 (9.1.24)

the posterior is

p(θ|V) ∝ θα−1 (1− θ)β−1 θNH (1− θ)NT (9.1.25)

so that

p(θ|V) = B(θ|α+NH , β +NT ) (9.1.26)

The prior and posterior are of the same form (both Beta distributions) but simply with different parameters.
Hence the Beta distribution is ‘conjugate’ to the Binomial distribution.

9.1.4 Decisions based on continuous intervals

To illustrate the use of continuous variables in decision making, we consider a simple decision problem.
The result of a coin tossing experiment is NH = 2 heads and NT = 8 tails. You now need to make a
decision: you win 10 dollars if you correctly guess which way the coin is biased – towards heads or tails.
If your guess is incorrect, you lose a million dollars. What is your decision? (Assume an uninformative prior).

We need two quantities, θ for our guess and θ0 for the truth. Then the utility of saying Heads is

U(θ > 0.5, θ0 > 0.5)p(θ0 > 0.5|V) + U(θ > 0.5, θ0 < 0.5)p(θ0 < 0.5|V) (9.1.27)

In the above,

p(θ0 < 0.5|V) =

∫ 0.5

0
p(θ0|V)dθ0 (9.1.28)

=
1

B(α+NH , β +NT )

∫ 0.5

0
θα+NH−1 (1− θ)β+NT−1 dθ (9.1.29)

≡ I0.5(α+NH , β +NT ) (9.1.30)

where Ix(a, b) is the regularised incomplete Beta function. For the case of NH = 2, NT = 8, under a flat
prior,

p(θ0 < 0.5|V) = I0.5(NH + 1, NT + 1) = 0.9673 (9.1.31)

Since the events are exclusive, p(θ0 ≥ 0.5|V) = 1 − 0.9673 = 0.0327. Hence the expected utility of saying
heads is more likely is

10× 0.0327− 1000000× 0.9673 = −9.673× 105. (9.1.32)

Similarly, the utility of saying tails is more likely can be computed to be

10× 0.9673− 1000000× 0.0327 = −3.269× 104. (9.1.33)
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Figure 9.4: (a): A model for the relationship between
lung Cancer, Asbestos exposure and Smoking. (b):
Plate notation replicating the observed n datapoints
with the CPTs tied across all datapoints.

θ
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θ′
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Figure 9.5: (a): Standard ML learning. The best parameter θ is found
by maximising the probability that the model generates the observed data
θopt = arg maxθ p(v|θ). (b): ML-II learning. In cases where we have a
prior preference for the parameters θ, but with unspecified hyperparameter
θ′, we can find θ′ by θ′opt = arg maxθ′ p(v|θ′) = arg maxθ′ 〈p(v|θ)〉p(θ|θ′).

Since the expected utility of deciding ‘tails’ is highest, we are better off taking the decision that the coin is
more likely to come up tails.

If we modify the above so that we lose 100 million dollars if we guess tails when in fact it is heads, the
expected utility of saying tails would be −3.27× 106. In this case, even though we are more confident that
the coin is likely to come up tails, we would pay such a penalty of making a mistake in saying tails, that it
is fact better to say heads.

9.2 Bayesian methods and ML-II

Consider a parameterised distribution p(v|θ), for which we wish to the learn the optimal parameters θ given
some data. The model p(v|θ) is depicted in fig(9.5a), where a dot indicates that no distribution is present
on that variable. For a single observed datapoint v, setting θ by maximum likelihood corresponds to finding
the parameter θ that maximises p(v|θ).

In some cases we may have an idea about which parameters θ are more appropriate and can express this prior
preference using a distribution p(θ). If the prior were fully specified, then there is nothing to ‘learn’ since
p(θ|v) is now fully known. However, in many cases in practice, we are unsure of the exact parameter settings
of the prior, and hence specify a parametersised prior using a distribution p(θ|θ′) with hyperparameter θ′.
This is depicted in fig(9.5b). Learning then corresponds to finding the optimal θ′ that maximises the
likelihood p(v|θ′) =

∫
θ p(v|θ)p(θ|θ′). This is known as an ML-II procedure since it corresponds to maximum

likelihood, but at the higher, hyperparameter level[33, 197]. By treating the parameters θ as variables, one
can view this then as learning under hidden variables, for which the methods of chapter(11) are applicable.
We will encounter examples of this ML-II procedure later, for example in section(18.1.2).
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Figure 9.6: A database containing information about the Asbestos exposure
(1 signifies exposure), being a Smoker (1 signifies the individual is a smoker),
and lung Cancer (1 signifies the individual has lung Cancer). Each row
contains the information for each of the seven individuals in the database.

9.3 Maximum Likelihood Training of Belief Networks

Consider the following model of the relationship between exposure to asbestos (a), being a smoker (s) and
the incidence of lung cancer (c)

p(a, s, c) = p(c|a, s)p(a)p(s) (9.3.1)

which is depicted in fig(9.4a). Each variable is binary, dom(a) = {0, 1}, dom(s) = {0, 1}, dom(c) = {0, 1}.
We assume that there is no direct relationship between Smoking and exposure to Asbestos. This is the
kind of assumption that we may be able to elicit from medical experts. Furthermore, we assume that we
have a list of patient records, fig(9.6), where each row represents a patient’s data. To learn the table entries
p(c|a, s) we can do so by counting the number of times variable c is in state 1 for each of the 4 parental
states of a and s:

p(c = 1|a = 0, s = 0) = 0, p(c = 1|a = 0, s = 1) = 0.5
p(c = 1|a = 1, s = 0) = 0.5 p(c = 1|a = 1, s = 1) = 1

(9.3.2)

Similarly, based on counting, p(a = 1) = 4/7, and p(s = 1) = 4/7. These three CPTs then complete the full
distribution specification.

Setting the CPT entries in this way by counting the relative number of occurrences corresponds mathemat-
ically to maximum likelihood learning under the i.i.d. assumption, as we show below.

Maximum likelihood corresponds to counting

For a BN there is a constraint on the form of p(x), namely

p(x) =

K∏
i=1

p(xi|pa (xi)) (9.3.3)

To compute the maximum likelihood setting of each term p(xi|pa (xi)), as shown in section(8.7.3), we can
equivalently minimise the Kullback-Leibler divergence between the empirical distribution q(x) and p(x). For
the BN p(x), and empirical distribution q(x) we have

KL(q|p) = −
〈

K∑
i=1

log p (xi|pa (xi))

〉
q(x)

+ const. = −
K∑
i=1

〈log p (xi|pa (xi))〉q(xi,pa(xi))
+ const. (9.3.4)

This follows using the general result

〈f(Xi)〉q(X ) = 〈f(Xi)〉q(Xi) (9.3.5)

which says that if the function f only depends on a subset of the variables, we only need to know the
marginal distribution of this subset of variables in order to carry out the average.

Since q(x) is fixed, we can add on entropic terms in q and equivalently mimimize

KL(q|p) =

K∑
i=1

[
〈log q(xi|pa (xi))〉q(xi,pa(xi))

− 〈log p (xi|pa (xi))〉q(xi,pa(xi))

]
(9.3.6)

=
K∑
i=1

〈KL(q(xi|pa (xi))|p(xi|pa (xi)))〉q(pa(xi))
(9.3.7)
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The final line is a positive weighted sum of individual Kullback-Leibler divergences. The minimal Kullback-
Leibler setting, and that which corresponds to maximum likelihood, is therefore

p(xi|pa (xi)) = q(xi|pa (xi)) (9.3.8)

In terms of the original data, this is

p(xi = s|pa (xi) = t) ∝
N∑
n=1

I [xni = s,pa (xni ) = t] (9.3.9)

This expression corresponds to the intuition that the table entry p(xi|pa (xi)) can be set by counting the
number of times the state {xi = s, pa (xi) = t} occurs in the dataset (where t is a vector of parental states).
The table is then given by the relative number of counts of being in state s compared to the other states s′,
for fixed joint parental state t.

An alternative method to derive this intuitive result is to use Lagrange multipliers, see exercise(9.4). For
reader less comfortable with the above Kullback-Leibler derivation, a more direct example is given below
which makes use of the notation

] (x1 = s1, x2 = s2, x3 = s3, . . .) (9.3.10)

to denote the number of times that states x1 = s1, x2 = s2, x3 = s3, . . . occur together in the training data.
See also section(10.1) for further examples.

Example 9.1. We wish to learn the table entries of the distribution p(x1, x2, x3) = p(x1|x2, x3)p(x2)p(x3).
We address here how to find the CPT entry p(x1 = 1|x2 = 1, x3 = 0) using maximum likelihood. For i.i.d.
data, the contribution from p(x1|x2, x3) to the log likelihood is∑

n

log p(xn1 |xn2 , xn3 )

The number of times p(x1 = 1|x2 = 1, x3 = 0) occurs in the log likelihood is ] (x1 = 1, x2 = 1, x3 = 0),
the number of such occurrences in the training set. Since (by the normalisation constraint) p(x1 = 0|x2 =
1, x3 = 0) = 1 − p(x1 = 1|x2 = 1, x3 = 0), the total contribution of p(x1 = 1|x2 = 1, x3 = 0) to the log
likelihood is

] (x1 = 1, x2 = 1, x3 = 0) log p(x1 = 1|x2 = 1, x3 = 0)

+ ] (x1 = 0, x2 = 1, x3 = 0) log (1− p(x1 = 1|x2 = 1, x3 = 0)) (9.3.11)

Using θ ≡ p(x1 = 1|x2 = 1, x3 = 0) we have

] (x1 = 1, x2 = 1, x3 = 0) log θ + ] (x1 = 0, x2 = 1, x3 = 0) log (1− θ) (9.3.12)

Differentiating the above expression w.r.t. θ and equating to zero gives

] (x1 = 1, x2 = 1, x3 = 0)

θ
− ] (x1 = 0, x2 = 1, x3 = 0)

1− θ = 0 (9.3.13)

The solution for optimal θ is then

p(x1 = 1|x2 = 1, x3 = 0) =
] (x1 = 1, x2 = 1, x3 = 0)

] (x1 = 1, x2 = 1, x3 = 0) + ] (x1 = 0, x2 = 1, x3 = 0)
, (9.3.14)

corresponding to the intuitive counting procedure.
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x1 x2 · · · xn−1 xn

y

Figure 9.7: A variable y with a large number of parents
x1, . . . , xn requires the specification of an exponen-
tially large number of entries in the conditional prob-
ability p(y|x1, . . . , xn). One solution to this difficulty
is to parameterise the conditional, p(y|x1, . . . , xn, θ).

Conditional probability functions

Consider a binary variable y with n binary parental variables, x = (x1, . . . , xn), see fig(9.7). There are 2n

entries in the CPT of p(y|x) so that it is infeasible to explicitly store these entries for even moderate values
of n. To reduce the complexity of this CPT we may constrain the form of the table. For example, one could
use a function

p(y = 1|x,w) =
1

1 + e−wTx
(9.3.15)

where we only need to specify the n-dimensional parameter vector w.

In this case, rather than using maximum likelihood to learn the entries of the CPTs directly, we instead
learn the value of the parameter w. Since the number of parameters in w is small (n, compared with 2n

in the unconstrained case), we also have some hope that with a small number of training examples we can
learn a reliable value for w.

Example 9.2. Consider the following 3 variable model p(x1, x2, x3) = p(x1|x2, x3)p(x2)p(x3), where xi ∈
{0, 1} , i = 1, 2, 3. We assume that the CPT is parameterised using θ = (θ1, θ2) with

p(x1 = 1|x2, x3, θ) ≡ e−θ
2
1−θ22(x2−x3)2 (9.3.16)

One may verify that the above probability is always positive and lies between 0 and 1. Due to normalisation,
we must have

p(x1 = 0|x2, x3) = 1− p(x1 = 1|x2, x3) (9.3.17)

For unrestricted p(x2) and p(x3), the maximum likelihood setting is p(x2 = 1) ∝ ] (x2 = 1), and p(x3 =
1) ∝ ] (x3 = 1). The contribution to the log likelihood from the term p(x1|x2, x3, θ), assuming i.i.d. data, is

L(θ1, θ2) =
N∑
n=1

I [xn1 = 1]
(
−θ2

1 − θ2
2(xn2 − xn3 )2

)
+ I [xn1 = 0] log

(
1− e−θ21−θ22(xn2−xn3 )2

)
(9.3.18)

This objective function needs to be optimised numerically to find the best θ1 and θ2. The gradient is

dL

dθ1
=

N∑
n=1

−2I [xn1 = 1] θ1 + 2I [xn1 = 0]
θ1e
−θ21−θ22(xn2−xn3 )2

1− e−θ21−θ22(xn2−xn3 )2
(9.3.19)

dL

dθ2
=

N∑
n=1

−2I [xn1 = 1] θ2 (xn2 − xn3 )2 + 2θ2I [xn1 = 0]
(xn2 − xn3 )2e−θ

2
1−θ22(xn2−xn3 )2

1− e−θ21−θ22(xn2−xn3 )2
(9.3.20)

The gradient can be used as part of a standard optimisation procedure (such as conjugate gradients, see
section(29.5)) to find the maximum likelihood parameters θ1, θ2.
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9.4 Bayesian Belief Network Training

An alternative to maximum likelihood training of a BN is to use a Bayesian approach in which we maintain
a distribution over parameters. We continue with the Asbestos, Smoking, Cancer scenario,

p(a, c, s) = p(c|a, s)p(a)p(s) (9.4.1)

as represented in fig(9.4a). So far we’ve only specified the independence structure, but not the entries of the
tables p(c|a, s), p(a), p(s). Given a set of visible observations, V = {(an, sn, cn) , n = 1, . . . , N}, we would
like to learn appropriate distributions for the table entries.

To begin we need a notation for the table entries. With all variables binary we have parameters such as

p(a = 1|θa) = θa, p(c = 1|a = 0, s = 1, θc) = θ0,1
c (9.4.2)

and similarly for the remaining parameters θ1,1
c , θ0,0

c , θ1,0
c . For our example, the parameters are

θa, θs, θ
0,0
c , θ0,1

c , θ1,0
c , θ1,1

c︸ ︷︷ ︸
θc

(9.4.3)

In the following section, section(9.4.1), we describe first useful independence assumptions on the general
form of the prior variables, before making a specific numerical prior specification in section(9.4.2).

9.4.1 Global and local parameter independence

In Bayesian learning of BNs, we need to specify a prior on the joint table entries. Since in general dealing
with multi-dimensional continuous distributions is computationally problematic, it is useful to specify only
uni-variate distributions in the prior. As we show below, this has a pleasing consequence that for i.i.d. data
the posterior also factorises into uni-variate distributions.

Global parameter independence

A convenient assumption is that the prior factorises over parameters. For our Asbestos, Smoking, Cancer
example, we assume

p(θa, θs, θc) = p(θa)p(θs)p(θc) (9.4.4)

Assuming the data is i.i.d., we then have the joint model

p(θa, θs, θc,V) = p(θa)p(θs)p(θc)
∏
n

p(an|θa)p(sn|θs)p(cn|sn, an, θc) (9.4.5)

the belief network for which is given in fig(9.8.) A convenience of the factorised prior for a BN is that the
posterior also factorises, since

p(θa, θs, θc|V) ∝ p(θa, θs, θc,V)

=

{
p(θa)

∏
n

p(an|θa)
}{

p(θs)
∏
n

p(sn|θs)
}{

p(θc)
∏
n

p(cn|sn, an, θc)
}

∝ p(θa|Va)p(θs|Vs)p(θc|Vc) (9.4.6)

so that one can consider each parameter posterior separately. In this case, ‘learning’ involves computing the
posterior distributions p(θi|Vi) where Vi is the set of training data restricted to the family of variable i.

The global independence assumption conveniently results in a posterior distribution that factorises over the
conditional tables. However, the parameter θc is itself 4 dimensional. To simplify this we need to make a
further assumption as to the structure of each local table.
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cn

an sn

θa,sc

θa θs

n = 1 : N

(a, s) ∈ P

Figure 9.8: A Bayesian parameter model for the relationship between
lung Cancer, Asbestos exposure and Smoking with factorised parameter
priors. The global parameter independence assumption means that the
prior over tables factorises into priors over each conditional probability ta-
ble. The local independence assumption, which in this case comes into
effect only for p(c|a, s), means that p(θc) factorises in

∏
a,s∈P p(θ

a,s
c ), where

P = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Local parameter independence

If we further assume that the prior for the table factorises over all states a, c:

p(θc) = p(θ0,0
c )p(θ1,0

c )p(θ0,1
c )p(θ1,1

c ) (9.4.7)

then the posterior is given by

p(θc|Vc) ∝ p(Vc|θc)p(θ0,0
c )p(θ1,0

c )p(θ0,1
c )p(θ1,1

c )

=
[
θ0,0
c

]](a=0,s=0,c=1) [
1− θ0,0

c

]](a=0,s=0,c=0)
p(θ0,0

c )︸ ︷︷ ︸
∝p(θ0,0c |Vc)

[
θ0,1
c

]](a=0,s=1,c=1) [
1− θ0,1

c

]](a=0,s=1,c=0)
p(θ0,1

c )︸ ︷︷ ︸
∝p(θ0,1c |Vc)

×
[
θ1,0
c

]](a=1,s=0,c=1) [
1− θ1,0

c

]](a=1,s=0,c=0)
p(θ1,0

c )︸ ︷︷ ︸
∝p(θ1,0c |Vc)

[
θ1,1
c

]](a=1,s=1,c=1) [
1− θ1,1

c

]](a=1,s=1,c=0)
p(θ1,1

c )︸ ︷︷ ︸
∝p(θ1,1c |Vc)

(9.4.8)

so that the posterior also factorises over the parental states of the local conditional table.

Posterior marginal table

A marginal probability table is given by, for example,

p(c = 1|a = 1, s = 0,V) =

∫
θc

p(c = 1|a = 1, s = 0, θ1,0
c )p(θc|Vc) (9.4.9)

The integral over all the other tables in equation (9.4.9) is unity, and we are left with

p(c = 1|a = 1, s = 0,V) =

∫
θ1,0c

p(c = 1|a = 1, s = 0, θ1,0
c )p(θ1,0

c |Vc) =

∫
θ1,0c

θ1,0
c p(θ1,0

c |Vc) (9.4.10)

9.4.2 Learning binary variable tables using a Beta prior

We continue the example of section(9.4.1) where all variables are binary, but using a continuous valued table
prior. The simplest case is to start with p(a|θa) since this requires only a univariate prior distribution p(θa).
The likelihood depends on the table variable via

p(a = 1|θa) = θa (9.4.11)

so that the total likelihood term is

θ](a=1)
a (1− θa)](a=0) (9.4.12)
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The posterior is therefore

p(θa|Va) ∝ p(θa)θ](a=1)
a (1− θa)](a=0) (9.4.13)

This means that if the prior is also of the form θαa (1− θa)β then conjugacy will hold, and the mathematics
of integration will be straightforward. This suggests that the most convenient choice is a Beta distribution,

p(θa) = B (θa|αa, βa) =
1

B(αa, βa)
θαa−1
a (1− θa)βa−1 (9.4.14)

for which the posterior is also a Beta distribution:

p(θa|Va) = B (θa|αa + ] (a = 1) , βa + ] (a = 0)) (9.4.15)

The marginal table is given by (following similar reasoning as for equation (9.4.10))

p(a = 1|Va) =

∫
θa

p(θa|Va)θa =
αa + ] (a = 1)

αa + ] (a = 1) + βa + ] (a = 0)
(9.4.16)

using the result for the mean of a Beta distribution, definition(8.23).

The situation for the table p(c|a, s) is slightly more complex since we need to specify a prior for each of
the parental tables. As above, this is most convenient if we specify a Beta prior, one for each of the (four)
parental states. Let’s look at a specific table

p(c = 1|a = 1, s = 0) (9.4.17)

Assuming the local independence property, we have p(θ1,0
c |Vc) given by

B
(
θ1,0
c |αc(a = 1, s = 0) + ] (c = 1, a = 1, s = 0) , βc(a = 1, s = 0) + ] (c = 0, a = 1, s = 0)

)
(9.4.18)

As before, the marginal probability table is then given by

p(c = 1|a = 1, s = 0,Vc) =
αc(a = 1, s = 0) + ] (c = 1, a = 1, s = 0)

αc(a = 1, s = 0) + βc(a = 1, s = 0) + ] (a = 1, s = 0)
(9.4.19)

since ] (a = 1, s = 0) = ] (c = 0, a = 1, s = 0) + ] (c = 1, a = 1, s = 0).

The prior parameters αc(a, s) are called hyperparameters. A complete ignorance prior would correspond
to setting α = β = 1, see fig(8.4).

It is instructive to examine this Bayesian solution under various conditions:

No data limit N → 0 In the limit of no data, the marginal probability table corresponds to the prior,
which is given in this case by

p(c = 1|a = 1, s = 0) =
αc(a = 1, s = 0)

αc(a = 1, s = 0) + βc(a = 1, s = 0)
(9.4.20)

For a flat prior α = β = 1 for all states a, c, this would give a prior probability of p(c = 1|a = 1, s =
0) = 0.5.

Infinite data limit N →∞ In this limit the marginal probability tables are dominated by the data counts,
since these will typically grow in proportion to the size of the dataset. This means that in the infinite
(or very large) data limit,

p(c = 1|a = 1, s = 0,V)→ ] (c = 1, a = 1, s = 0)

] (c = 1, a = 1, s = 0) + ] (c = 0, a = 1, s = 0)
(9.4.21)

which corresponds to the maximum likelihood solution.

This effect that the large data limit of a Bayesian procedure corresponds to the maximum likelihood
solution is general unless the prior has a pathologically strong effect.
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Zero hyperparameter limit When αc = βc = 0, the marginal table equation (9.4.19) corresponds to the
maximum likelihood table setting for any amount of data. When αc = βc = 0, the Beta distribution
places mass 0.5 at 0 and mass 0.5 at 1. Note that this equivalence of the maximum likelihood solution
with the marginal table under zero hyperparameter values contrasts with the equivalence of the MAP
table under uniform hyperparameter values.

Example 9.3 (Asbestos-Smoking-Cancer).

Consider the binary variable network

p(c, a, s) = p(c|a, s)p(a)p(s) (9.4.22)

The data V is given in fig(9.6). Using a flat Beta prior α = β = 1 for all conditional probability tables, the
marginal posterior tables are given by

p(a = 1|V) =
1 + ] (a = 1)

2 +N
=

1 + 4

2 + 7
=

5

9
≈ 0.556 (9.4.23)

By comparison, the maximum likelihood setting is 4/7 = 0.571. The Bayesian result is a little more
cautious, which squares with our prior belief that any setting of the probability is equally likely, pulling the
posterior towards 0.5.

Similarly,

p(s = 1|V) =
1 + ] (s = 1)

2 +N
=

1 + 4

2 + 7
=

5

9
≈ 0.556 (9.4.24)

and

p(c = 1|a = 1, s = 1,V) =
1 + ] (c = 1, a = 1, s = 1)

2 + ] (c = 1, a = 1, s = 1) + ] (c = 0, a = 1, s = 1)
=

1 + 2

2 + 2
=

3

4
(9.4.25)

p(c = 1|a = 1, s = 0,V) =
1 + ] (c = 1, a = 1, s = 0)

2 + ] (c = 1, a = 1, s = 0) + ] (c = 0, a = 1, s = 0)
=

1 + 1

2 + 1
=

2

3
(9.4.26)

p(c = 1|a = 0, s = 1,V) =
1 + ] (c = 1, a = 0, s = 1)

2 + ] (c = 1, a = 0, s = 1) + ] (c = 0, a = 0, s = 1)
=

1 + 1

2 + 2
=

1

2
(9.4.27)

p(c = 1|a = 0, s = 0,V) =
1 + ] (c = 1, a = 0, s = 0)

2 + ] (c = 1, a = 0, s = 0) + ] (c = 0, a = 0, s = 0)
=

1 + 0

2 + 1
=

1

3
(9.4.28)

9.4.3 Learning multivariate discrete tables using a Dirichlet prior

The natural generalisation to our discussion of Bayesian learning of BNs is to consider variables that can
take more than two states. In this case the natural conjugate prior is given by the Dirichlet distribution,
which generalises the Beta distribution to more than two states. Again we assume throughout i.i.d. data
and the local and global parameter prior independencies. Since under the global parameter independence
assumption the posterior factorises over variables (as in equation (9.4.6)), we can concentrate on the posterior
of a single variable.
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No parents

Let’s consider a variable v with dom(v) = {1, . . . , I}. If we denote the probability of v being in state i by
θi, i.e. p(v = i|θ) = θi, the contribution to the posterior from a datapoint vn is

p(vn|θ) =

I∏
i=1

θ
I[vn=i]
i ,

I∑
i=1

θi = 1 (9.4.29)

so that the posterior for θ given a dataset V =
{
v1, . . . , vN

}
p(θ|V) ∝p(θ)

N∏
n=1

I∏
i=1

θ
I[vn=i]
i = p(θ)

I∏
i=1

θ
∑N
n=1 I[vn=i]

i (9.4.30)

It is convenient to use a Dirichlet prior distribution with hyperparameters u

p(θ)= Dirichlet (θ|u) ∝
I∏
i=1

θui−1
i (9.4.31)

Using this prior the posterior becomes

p(θ|V) ∝
I∏
i=1

θui−1
i

I∏
i=1

θ
∑N
n=1 I[vn=i]

i =

I∏
i=1

θ
ui−1+

∑N
n=1 I[vn=i]

i (9.4.32)

which means that the posterior is given by

p(θ|V) = Dirichlet (θ|u + c) (9.4.33)

where c is a count vector with components

ci =
N∑
n=1

I [vn = i] (9.4.34)

being the number of times state i was observed in the training data.

The marginal table is given by integrating

p(v = i|V) =

∫
θ
p(v = i|θ)p(θ|V) =

∫
θi

θip(θi|V) (9.4.35)

The single-variable marginal distribution of a Dirichlet is a Beta distribution,

p(θi|V) = B

θi|ui + ci,
∑
j 6=i

uj + cj

 . (9.4.36)

The marginal table is then given by the mean of the Beta distribution

p(v = i|V) =
ui + ci∑
j uj + cj

(9.4.37)

which generalises the binary state formula equation (9.4.16).

Parents

To deal with the general case of a variable v with parents pa (v) we denote the probability of v being in
state i, conditioned on the parents being in state j as

p(v = i|pa (v) = j,θ) = θi(v; j) (9.4.38)
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a s c
1 1 2
1 0 0
0 1 1
0 1 0
1 1 2
0 0 0
1 0 1

Figure 9.9: A database of patient records about Asbestos exposure (1 signifies ex-
posure), being a Smoker (1 signifies the individual is a smoker), and lung Cancer (0
signifies no cancer, 1 signifies early stage cancer, 2 signifies late state cancer). Each
row contains the information for each of the seven individuals in the database.

where
∑

i θi(v; j) = 1. This forms the components of a vector θ(v; j). Note that if v has K parents then
the number of parental states S will be exponential in K.

Writing θ(v) = [θ(v; 1), . . . ,θ(v;S)], local (parental state) independence means

p(θ(v)) =
∏
j

p(θ(v; j)) (9.4.39)

and global independence means

p(θ) =
∏
v

p(θ(v)) (9.4.40)

where θ = (θ(v), v = 1, . . . , V ) represents the combined table of all the variables.

Parameter posterior

Thanks to the global parameter independence assumption the posterior factorises, with one posterior table
per variable. Each posterior table for a variable v depends only on the data D(v) of the family of the
variable. Assuming a Dirichlet distribution prior

p(θ(v; j)) = Dirichlet (θ(v; j)|u(v; j)) (9.4.41)

the posterior is also Dirichlet

p(θ(v)|D(v)) =
∏
j

Dirichlet
(
θ(v; j)|u′(v; j)

)
(9.4.42)

where the hyperparameter prior term is updated by the observed counts,

u′i(v; j) ≡ ui(v; j) + ] (v = i,pa (v) = j) . (9.4.43)

By analogy with the no-parents case, the marginal table is given by

p(v = i|pa (v) = j,D(v)) ∝ u′i(v; j). (9.4.44)

Example 9.4. Consider the p(c|a, s)p(s)p(a) asbestos example with dom(a) = dom(s) = {0, 1}, except
now with the variable c taking three states, dom(c) = {0, 1, 2}, accounting for different kinds of cancer, see
fig(9.9). The marginal table under a Dirichlet prior is then given by, for example

p(c = 0|a = 1, s = 1,V) =
u0(a = 1, s = 1) + ] (c = 0, a = 1, s = 1)∑

i∈{0,1,2} ui(a = 1, s = 1) + ] (c = i, a = 1, s = 1)
(9.4.45)

Assuming a flat Dirichlet prior, which corresponds to setting all components of u to 1, this gives

p(c = 0|a = 1, s = 1,V) =
1 + 0

3 + 2
=

1

5
(9.4.46)

p(c = 1|a = 1, s = 1,V) =
1 + 0

3 + 2
=

1

5
(9.4.47)

p(c = 2|a = 1, s = 1,V) =
1 + 2

3 + 2
=

3

5
(9.4.48)

and similarly for the other three tables p(c|a = 1, s = 0), p(c|a = 0, s = 1), p(c|a = 1, s = 1).
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Algorithm 9.1 PC algorithm for skeleton learning.

1: Start with a complete undirected graph G on the set V of all vertices.
2: i = 0
3: repeat
4: for x ∈ V do
5: for y ∈ Adj {x} do
6:

Determine if there is a subset S of size i of the neighbours of x (not including y) for which
x⊥⊥y|S. If this set exists remove the x− y link from the graph G and set Sxy = S.

7: end for
8: end for
9: i = i+ 1.

10: until all nodes have ≤ i neighbours.

Model likelihood

For a variable v, and i.i.d. data D(v) = {(vn|pa (vn)), n = 1, . . . , N} for the family of this variable,∏
n

p(vn|pa (vn)) =

∫
θ(v)

p(θ(v))
∏
n

p(vn|pa (vn) ,θ(v)) (9.4.49)

=

∫
θ(v)

∏
j

1

Z(u(v; j))

∏
i

θi(v; j)ui(v;j)−1

∏
n

∏
j

∏
i

θi(v; j)I[v
n=i,pa(vn)=j] (9.4.50)

=
∏
j

1

Z(u(v; j))

∫
θ(v;j)

∏
i

θi(v; j)ui(v;j)−1+](v=i,pa(v)=j) (9.4.51)

=
∏
j

Z(u′(v; j))

Z(u(v; j))
(9.4.52)

where Z(u) is the normalisation constant of a Dirichlet distribution with hyperparameters u; u′ is as given
in equation (9.4.43).

For a belief network on variables v = (v1, . . . , vD) the joint probability of all variables factorises into the
local probabilities of each variable conditioned on its parents. The likelihood of a complete set of i.i.d. data
D =

{
v1, . . . ,vN

}
is then given by:

p(D) =
∏
k

∏
n

p(vnk |pa (vnk )) =
∏
k

∏
j

Z(u′(vk; j))

Z(u(vk; j))
(9.4.53)

where u′ is given by equation (9.4.43). Expression (9.4.53) can be written explicitly in terms of Gamma
functions, see exercise(9.9). In the above expression in general the number of parental states differs for each
variable vk, so that implicit in the above formula is that the state product over j goes from 1 to the number
of parental states of variable vk. Due to the local and global parameter independence assumptions, the
logarithm of the model likelihood is a product of terms, one for each variable vk and parental configuration
j. This is called the likelihood decomposable property.

9.5 Structure learning

Up to this point we have assumed that we are given both the structure of the distribution and a dataset
D. A more complex task is when we need to learn the structure of the network as well. We’ll consider the
case in which the data is complete (i.e. there are no missing observations). Since for D variables, there is
an exponentially large number (in D) of BN structures, it’s clear that we cannot search over all possible
structures. For this reason structure learning is a computationally challenging problem and we must rely on
constraints and heuristics to help guide the search. Whilst in general structure learning is intractable, a cele-
brated tractable special case is when the network is constrained to have at most one parent, see section(9.5.4).
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For all but the sparsest networks, estimating the dependencies to any accuracy requires a large amount of
data, making testing of dependencies difficult. Consider the following simple situation of two independent
variables, p(x, y) = p(x)p(y). Based on a finite sample from this joint distributionD = {(xn, yn), n = 1, . . . , N},
we want to try to understand if x is independent of y. One way to do this is to compute the empirical mutual
information I(x, y); if this is zero then, empirically, x and y are independent. However, for a finite amount
of data, two variables will typically have non-zero mutual information, so that a threshold needs to be set
to decide if the measured dependence is significant under the finite sample, see section(9.5.2).

Other complexities arise from the concern that a Belief or Markov Network on the visible variables alone
may not be a parsimonious way to represent the observed data if, for example, there may be latent variables
which are driving the observed dependencies. We will not enter into such issues in our discussion here
and limit the presentation to two central approaches, one which attempts to make a network structure
consistent with local empirical dependencies (the PC algorithm), and one which builds a structure that is
most probable for the global data (network scoring).

9.5.1 PC algorithm

The PC algorithm[274] first learns the skeleton of a graph, after which edges may be oriented to form a
(partially oriented) DAG. The procedure to learn the skeleton is based on using the empirical data to test if
two variables are independent. A variety of approaches can be used to ascertain independence, as described
in section(9.5.2).

The PC algorithm begins at the first round with a complete skeleton G and attempts to remove as many
links as possible. At the first step we test all pairs x⊥⊥ y| ∅. If an x and y pair are deemed independent
then the link x− y is removed from the complete graph. One repeats this for all the pairwise links. In the
second round, for the remaining graph, one examines each x− y link and conditions on a single neighbour
z of x. If x⊥⊥ y| z then remove the link x − y. One repeats in this way through all the variables. At each
round the number of neighbours in the conditioning set is increased by one. See algorithm(9.1), fig(9.10)1

and demoPCoracle.m. A refinement of this algorithm, known as NPC for necessary path PC[276] limits the
number of independence checks to remove inconsistencies resulting from the empirical estimates of condi-
tional mutual information.

Given a learned skeleton, a partial DAG can be constructed using algorithm(9.2). Note that this is necessary
since the undirected graph G is a skeleton – not a belief network of the independence assumptions discovered.
For example, we may have a graph G with x − z − y in which the x − y link was removed on the basis
x⊥⊥ y| ∅ → Sxy = ∅. As a MN the graph x − z − y (graphically) implies x>>y, although this is inconsistent
with the discovery in the first round x⊥⊥y. This is the reason for the orientation part: for consistency, we
must have x→ z ← y, for which x⊥⊥y and x>>y|z, see example(9.5). See also fig(9.11).

Example 9.5 (Skeleton orienting).

z

x y
x⊥⊥y|∅ ⇒

z

x y

If x is (unconditionally) independent of y, it must
be that z is a collider since otherwise marginalis-
ing over z would introduce a dependence between
x and y.

z

x y
x⊥⊥y|z ⇒

z

x y

If x is independent of y conditioned on z, z must
not be a collider. Any other orientation is ap-
propriate.

1This example appears in [161] and [223] – thanks also to Seraf́ın Moral for his online notes.
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Figure 9.10: PC algorithm. (a): The BN from which data is assumed generated and against which
conditional independence tests will be performed. (b): The initial skeleton is fully connected. (c-l):
In the first round (i = 0) all the pairwise mutual informations x⊥⊥ y| ∅ are checked, and the link between
x and y removed if deemed independent (green line). (m-o): i = 1. We now look at connected subsets
on three variables x, y, z of the remaining graph, removing the link x − y if x⊥⊥ y| z is true. Not all steps
are shown. (p,q): i = 2. We now examine all x⊥⊥ y| {a, b}. The algorithm terminates after this round
(when i gets incremented to 3) since there are no nodes with 3 or more neighbours. (r): Final skeleton.
During this process the sets Sx,y = ∅, Sx,w = ∅, Sz,w = y, Sx,t = {z, w} , Sy,t = {z, w} were found. See also
demoPCoracle.m

Algorithm 9.2 Skeleton orientation algorithm (returns a DAG).

1: Unmarried Collider: Examine all undirected links x− z − y. If z 6∈ Sxy set x→ z ← y.
2: repeat
3: x→ z − y ⇒ x→ z → y
4: For x− y, if there is a directed path from x to y orient x→ y
5: If for x− z − y there is a w such that x→ w, y → w, z − w then orient z → w
6: until No more edges can be oriented.
7: The remaining edges can be arbitrarily oriented provided that the graph remains a DAG and no additional

colliders are introduced.

Example 9.6. In fig(9.10) we describe the processes of the PC algorithm in learning the structure for a
belief network on the variables x, y, z, w, t. In this case, rather than using data to assess independence, we
assume that we have access to an ‘oracle’ that can correctly answer any independence question put to it.
In practice, of course, we will not be so fortunate! Once the skeleton has been found, we then orient the
skeleton, as in fig(9.11).

9.5.2 Empirical independence

Mutual information test

Given data we can obtain an estimate of the conditional mutual information by using the empirical distri-
bution p(x, y, z) estimated by simply counting occurrences in the data. In practice, however, we only have
a finite amount of data to estimate the empirical distribution. This means that for data sampled from a
distribution for which the variables truly are independent, the empirical mutual information will neverthe-
less typically be greater than zero. An issue therefore is what threshold to use for the empirical conditional
mutual information to decide if this is sufficiently far from zero to be caused by dependence. A frequen-
tist approach is to compute the distribution of the conditional mutual information and then see where the
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sample value is compared to the distribution. According to [178], under the null hypothesis that the vari-
ables are independent, 2NMI(x; y|z) is Chi-square distributed with (X−1)(Y −1)Z degrees of freedom with
dim (x) = X, dim (y) = Y , dim (z) = Z. This can then be used to form a hypothesis test; if the sample value
of the empirical mutual information is ‘significantly’ in the tails of the chi-square distribution, we deem that
the variables are conditionally dependent. This classical approach can work well for large amounts of data,
but is less effective in the case of small amounts of data. An alternative pragmatic approach is to estimate
the threshold based on empirical samples of the MI under controlled independent/dependent conditions –
see demoCondindepEmp.m for a comparison of these approaches.

t

z w

x y

(a)

t

z w

x y

(b)

t

z w

x y

(c)

t

z w

x y

(d)

Figure 9.11: Skeleton orientation algorithm. (a):
The skeleton along with Sx,y = ∅, Sx,w = ∅, Sz,w =
y, Sx,t = {z, w} , Sy,t = {z, w}. (b): z 6∈ Sx,y, so form
collider. (c): t 6∈ Sz,w, so form collider. (d): Final
partially oriented DAG. The remaining edge may be
oriented as desired, without violating the DAG condi-
tion. See also demoPCoracle.m.

Bayesian conditional independence test

A Bayesian approach to testing for independence can be made by comparing the likelihood of the data under
the independence hypothesis, versus the likelihood under the dependent hypothesis. For the independence
hypothesis, fig(9.12a), we have a joint distribution over variables and parameters:

p(x, y, z, θ|Hindep) = p(x|z, θx|z)p(y|z, θy|z)p(z|θz)p(θx|z)p(θy|z)p(θz) (9.5.1)

For categorical distributions, it is convenient to use a prior Dirichlet (θ|u) on the parameters θ, assuming also
local as well as global parameter independence. For a set of assumed i.i.d. data (X ,Y,Z) = (xn, yn, zn) , n =
1, . . . , N , the likelihood is then given by integrating over the parameters θ:

p(X ,Y,Z|Hindep) =

∫
θ

∏
n

p(xn, yn, zn, θ|Hindep)

Thanks to conjugacy, this is straightforward and gives the expression

p(X ,Y,Z|Hindep) =
Z(uz + ] (z))

Z(uz)

∏
z

Z(ux|z + ] (x, z))

Z(ux|z)

Z(uy|z + ] (y, z))

Z(uy|z)
(9.5.2)

where ux|z is a hyperparameter matrix of pseudo counts for each state of x given each state of z. Z(v) is
the normalisation constant of a Dirichlet distribution with vector parameter v.

For the dependent hypothesis, fig(9.12b), we have

p(x, y, z, θ|Hdep) = p(x, y, z|θx,y,z)p(θx,y,z) (9.5.3)

The likelihood is then

p(X ,Y,Z|Hdep) =
Z(ux,y,z + ] (x, y, z))

Z(ux,y,z)
(9.5.4)

Assuming each hypothesis is equally likely, for a Bayes’ Factor

p(X ,Y,Z|Hindep)
p(X ,Y,Z|Hdep)

(9.5.5)

greater than 1, we assume that conditional independence holds; otherwise we assume the variables are con-
ditionally dependent. demoCondindepEmp.m suggests that the Bayesian hypothesis test tends to outperform
the conditional mutual information approach, particularly in the small sample size case, see fig(9.13).
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θx|z θy|z
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(a)

xn, yn, zn

θx,y,z

N

(b)

Figure 9.12: Bayesian conditional independence test
using Dirichlet priors on the tables. (a): A model
Hindep for conditional independence x⊥⊥ y | z. (b):
A model Hdep for conditional dependence x>>y | z.
By computing the likelihood of the data under each
model, a numerical score for the validity of the con-
ditional independence assumption can be formed. See
demoCondindepEmp.m.

z1

x y

z2

Figure 9.13: Conditional independence test of x ⊥⊥ y | z1, z2 with x, y, z1, z2 having
3, 2, 4, 2 states respectively. From the oracle belief network shown, in each experiment
the tables are drawn at random and 20 examples are sampled to form a dataset. For
each dataset a test is carried out to determine if x and y are independent conditioned
on z1, z2 (the correct answer being that they are independent). Over 500 experiments,
the Bayesian conditional independence test correctly states that the variables are con-
ditionally independent 74% of the time, compared with only 50% accuracy using the
chi-square mutual information test. See demoCondindepEmp.m.

9.5.3 Network scoring

An alternative to local methods such as the PC algorithm is to evaluate the whole network structure on
the set of variables v. That is we wish to ascertain how well a belief network with a particular structure
p(v) =

∏
k p(vk|pa (vk)) fits the data. In a probabilistic context, given a model structure M , we wish to

compute p(M |D) ∝ p(D|M)p(M). Some care is needed here since we have to first ‘fit’ each model with
parameters θ, p(v|θ,M) to the data D. If we do this using maximum likelihood alone, with no constraints on
θ, we will always end up favouring that model M with the most complex structure (assuming p(M) = const.).
This can be remedied by using the Bayesian technique

p(D|M) =

∫
θ
p(D|θ,M)p(θ|M) (9.5.6)

In the case of directed networks, as we saw in section(9.4), the assumptions of local and global parameter
independence make the integrals tractable. For a discrete state network and Dirichlet priors, we have p(D|M)
given explicitly by the Bayesian Dirichlet score equation (9.4.53). First we specify the hyperparameters
u(v; j), and then search over structures M , to find the one with the best score p(D|M). The simplest
setting for the hyperparameters is set them all to unity[69]. Another setting is the ‘uninformative prior’[55]

ui(v; j) =
α

dim (v) dim (pa (v))
(9.5.7)

where dim (x) is the number of states of the variable(s) x, giving rise to the BDeu score, for an ‘equivalent
sample size’ parameter α. A discussion of these settings is given in [141] under the concept of likelihood
equivalence, namely that two networks which are Markov equivalent should have the same score. How dense
the resulting network is can be sensitive to α[278, 266, 277]. Including an explicit prior p(M) on the networks
to favour those with sparse connections is also a sensible idea, for which one considers the modified score
p(D|M)p(M).

Searching over structures is a computationally demanding task. However, since the log-score decomposes
into additive terms involving only the family of each variable v, we can compare two networks differing in a
single edge efficiently since when we make an adjustment within a family, no other terms outside the family
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Figure 9.14: Learning the structure of a Bayesian network. (a): The correct structure in which all
variables are binary. The ancestral order is x2, x1, x5, x4, x3, x8, x7, x6. The dataset is formed from 1000
samples from this network. (b): The learned structure based on the PC algorithm using the Bayesian
empirical conditional independence test. Undirected edges may be oriented arbitrarily (provided the graph
remains acyclic). (c): The learned structure based on the Bayes Dirichlet network scoring method. See
demoPCdata.m and demoBDscore.m.

are affected. This means that, given a candidate family, we can find which parents in this family should
connect to the child; this computation can be carried out for all families independently. To help find the
best families, search heuristics based on local addition/removal/reversal of edges [69, 141] that increase the
score are popular[141]. In learnBayesNet.m we simplify the problem for demonstration purposes in which
we assume we know the ancestral order of the variables, and also the maximal number of parents of each
variable. In practice, it is unlikely that a large number of parents will influence a variable; even if this were
the case, we would in general require an amount of data exponential in the number of parents to ascertain
this. One could in principle approach this by assuming parametric forms for such large tables, although this
is not common in practice.

Example 9.7 (PC algorithm versus network scoring). In fig(9.14) we compare the PC algorithm with
network scoring based (with Dirichlet hyperparameters set to unity) on 1000 samples from a known belief
network. The PC algorithm conditional independence test is based on the Bayesian factor (9.5.5) in which
Dirichlet priors with u = 0.1 were used throughout.

In the network scoring approach, in general there is no need to assume an ancestral ordering. However,
here we assume that we know the correct ancestral ordering, and also limit the number of parents of each
variable to be at most two. In this case, we can then easily search over all possible graph structures,
choosing that with the highest posterior score. This proceeds by for example looking at the contribution of
variable x7 and its family. Since, according to the given ancestral ordering, x1, x2, x3, x4, x5, x8 are possible
parents of x7, in principle we need to search over all the 26 parental configurations for this family. However,
since we assume that there are only maximally two parents, this reduces to 1 +

(
6
1

)
+
(

6
2

)
= 22 parental

configurations. We can perform this optimisation for the parental structure of variable x7 independently of
the parental structure of the other variables, thanks to the likelihood decomposable property of the network
score. Similarly, we carry out this optimisation for the other variables separately, based on their possible
parents according to the ancestral order.

In fig(9.14) the network scoring technique outperforms the PC algorithm. This is partly explained by the
network scoring technique being provided with the correct ancestral order and the constraint that each
variable has maximally two parents.
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Algorithm 9.3 Chow-Liu Trees

1: for i = 1 to D do
2: for j = 1 to D do
3: Compute the mutual information for the pair of variables xi, xj : wij = MI(xi;xj).
4: end for
5: end for
6: For the undirected graph G with edge weights w, find a maximum weight undirected spanning tree T .
7: Choose an arbitrary variable as the root node of the tree T .
8: Form a directed tree by orienting all edges away from the root node.

9.5.4 Chow-Liu Trees

Consider a multivariate distribution p(x) that we wish to approximate with a distribution q(x). Furthermore,
we constrain the approximation q(x) to be a Belief Network in which each node has at most one parent,
see fig(9.15). First we assume that we have chosen a particular labelling of the D variables so that children
have higher parent indices than their parents. The DAG single parent constraint then means

q(x) =
D∏
i=1

q(xi|xpa(i)), pa(i) < i, or pa(i) = ∅ (9.5.8)

where pa(i) is the single parent index of node i. To find the best approximating distribution q in this
constrained class, we may minimise the Kullback-Leibler divergence

KL(p|q) = 〈log p(x)〉p(x) −
D∑
i=1

〈
log q(xi|xpa(i))

〉
p(xi,xpa(i))

(9.5.9)

Since p(x) is fixed, the first term is constant. By adding a term
〈
log p(xi|xpa(i))

〉
p(xi,xpa(i))

that depends on

p(x) alone, we can write

KL(p|q) = const.−
D∑
i=1

〈〈
log q(xi|xpa(i))

〉
p(xi|xpa(i))

−
〈
log p(xi|xpa(i))

〉
p(xi|xpa(i))

〉
p(xpa(i))

(9.5.10)

This enables us to recognise that, up to a negligible constant, the overall Kullback-Leibler divergence is a
positive sum of individual Kullback-Leibler divergences so that the optimal setting is therefore

q(xi|xpa(i)) = p(xi|xpa(i)) (9.5.11)

Plugging this solution into equation (9.5.9) and using log p(xi|xpa(i)) = log p(xi, xpa(i)) − log p(xpa(i)) we
obtain

KL(p|q) = const.−
D∑
i=1

〈
log p(xi, xpa(i))

〉
p(xi,xpa(i))

+
D∑
i=1

〈
log p(xpa(i))

〉
p(xpa(i))

(9.5.12)

We still need to find the optimal parental structure pa(i) that minimises the above expression. If we add
and subtract an entropy term we can write

KL(p|q) = −
D∑
i=1

〈
log p(xi, xpa(i))

〉
p(xi,xpa(i))

+

D∑
i=1

〈
log p(xpa(i))

〉
p(xpa(i))

+

D∑
i=1

〈log p(xi)〉p(xi)

−
D∑
i=1

〈log p(xi)〉p(xi) + const. (9.5.13)

x1 x2 x3 x4

Figure 9.15: A Chow-Liu Tree in which each variable xi has at most one
parent. The variables may be indexed such that 1 ≤ i ≤ D.
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For two variables xi and xj and distribution p(xi, xj), the mutual information definition(8.13) can be written
as

MI(xi;xj) =

〈
log

p(xi, xj)

p(xi)p(xj)

〉
p(xi,xj)

(9.5.14)

which can be seen as the Kullback-Leibler divergence KL(p(xi, xj)|p(xi)p(xj)) and is therefore non-negative.
Using this, equation (9.5.13) is

KL(p|q) = −
D∑
i=1

MI
(
xi;xpa(i)

)
−

D∑
i=1

〈log p(xi)〉p(xi) + const. (9.5.15)

Since our task is to find the optimal parental indices pa(i), and the entropic term
∑

i 〈log p(xi)〉p(xi) of
the fixed distribution p(x) is independent of this mapping, finding the optimal mapping is equivalent to
maximising the summed mutual informations

D∑
i=1

MI
(
xi;xpa(i)

)
(9.5.16)

under the constraint that pa(i) < i. Since we also need to choose the optimal initial labelling of the variables
as well, the problem is equivalent to computing all the pairwise mutual informations

wij = MI(xi;xj) (9.5.17)

and then finding a maximal spanning tree for the graph with edge weights w (see spantree.m)[64]. Once
found, we need to identify a directed tree with at most one parent. This is achieved by choosing any node
and then orienting edges consistently away from this node.

Maximum likelihood Chow-Liu trees

If p(x) is the empirical distribution

p(x) =
1

N

N∑
n=1

δ (x, xn) (9.5.18)

then

KL(p|q) = const.− 1

N

∑
n

log q(xn) (9.5.19)

Hence the distribution q that minimises KL(p|q) is equivalent to that which maximises the likelihood of the
data. This means that if we use the mutual information found from the empirical distribution, with

p(xi = a, xj = b) ∝ ] (xi = a, xj = b) (9.5.20)

then the Chow-Liu tree produced corresponds to the maximum likelihood solution amongst all single-parent
trees. An outline of the procedure is given in algorithm(9.3). An efficient algorithm for sparse data is also
available[205].

Remark 9.1 (Learning Tree structured Belief Networks). The Chow-Liu algorithm pertains to the discus-
sion in section(9.5) on learning the structure of Belief networks from data. Under the special constraint that
each variable has at most one parent, the Chow-Liu algorithm returns the maximum likelihood structure to
fit the data.
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9.6 Maximum Likelihood for Undirected models

Consider a Markov network p(X ) defined on (not necessarily maximal) cliques Xc ⊆ X , c = 1, . . . , C with
clique parameters θ = (θ1, . . . , θC)

p(X|θ) =
1

Z(θ)

∏
c

φc(Xc|θc) (9.6.1)

The term

Z(θ) =
∑
X

∏
c

φc(Xc|θc) (9.6.2)

ensures normalisation, with the notation
∑
X indicating a summation over all states of the set of variables

X . Given a set of data, {X n, n = 1, . . . , N}, and assuming i.i.d. data, the log likelihood is

L(θ)=
∑
n

log p(X n|θ) =
∑
n

∑
c

log φc(X nc |θc)−N logZ(θ) (9.6.3)

Our interest is to find the parameters that maximise the log likelihood L(θ). In general learning the optimal
parameters θc, c = 1, . . . , C is awkward since they are coupled via Z(θ). Unlike the BN, the objective
function does not split into a set of isolated parameter terms and in general we need to resort to numerical
methods. In special cases, however, exact results still apply, in particular when the MN is decomposable
and no constraints are placed on the form of the clique potentials, as we discuss in section(9.6.3). More
generally, however, gradient based techniques may be used and also give insight into properties of the
maximum likelihood solution.

9.6.1 The likelihood gradient

The gradient of the log likelihood with respect to a clique parameter θc is given by

∂

∂θc
L(θ) =

∑
n

∂

∂θc
log φc(X nc |θc)−N

〈
∂

∂θc
log φc(Xc|θc)

〉
p(Xc|θ)

. (9.6.4)

This is obtained by using the result

∂

∂θc
logZ(θ) =

1

Z(θ)

∑
X

∂

∂θc
φc(Xc|θc)

∏
c′ 6=c

φc′(Xc′ |θc′) =

〈
∂

∂θc
log φc(Xc|θc)

〉
p(Xc|θ)

. (9.6.5)

The gradient can then be used as part of a standard numerical optimisation package.

Exponential form potentials

A common form of parameterisation is to use an exponential form

φc(Xc) = exp
(
θT
c ψc(Xc)

)
(9.6.6)

where θc are the vector parameters and ψc(Xc) is a fixed ‘feature function’ defined on the variables of clique
c. From equation (9.6.4) to find the gradient, we need

∂

∂θc
log φc(Xc|θc) =

∂

∂θc
θT
c ψc(Xc) = ψc(Xc). (9.6.7)

Using this in equation (9.6.4), we find that the L(θ) has a zero derivative when

1

N

∑
n

ψc(X nc ) = 〈ψc(Xc)〉p(Xc) . (9.6.8)
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Hence the maximum likelihood solution satisfies that the empirical average of a feature function matches
the average of the feature function with respect to the model. By defining the empirical distribution on the
clique variables Xc as

ε(Xc) ≡
1

N

N∑
n=1

I [Xc = X nc ] (9.6.9)

we can write equation (9.6.8) more compactly as

〈ψc(Xc)〉ε(Xc) = 〈ψc(Xc)〉p(Xc) . (9.6.10)

An example of learning such an exponential form is given in example(9.8). We return to learning the
parameters of these models in section(9.6.4).

Example 9.8 (Boltzmann Machine learning). We define the BM as

p(v|W) =
1

Z(W)
e

1
2
vTWv, Z(W) =

∑
v

e
1
2
vTWv (9.6.11)

for symmetric W and binary variables dom(vi) = {0, 1}. Given a set of training data, D =
{
v1, . . . ,vN

}
,

the log likelihood is

L(W) =
1

2

N∑
n=1

(vn)T Wvn −N logZ(W) (9.6.12)

Differentiating w.r.t. wij , i 6= j and wii we have the gradients

∂L

∂wij
=

N∑
n=1

(
vni v

n
j − 〈vivj〉p(v|W)

)
,

∂L

∂wii
=

1

2

N∑
n=1

(
vni − 〈vi〉p(v|W)

)
. (9.6.13)

A simple algorithm to optimise the weight matrix W is to use gradient ascent,

wnewij = woldij + η1
∂L

∂wij
, wnewii = woldii + η2

∂L

∂wii
(9.6.14)

for learning rates η1, η2 > 0. The intuitive interpretation is that learning will stop (the gradient is zero) when
the second order statistics of the model 〈vivj〉p(v|W) match those of the empirical distribution,

∑
n v

n
i v

n
j /N .

BM learning however is difficult since 〈vivj〉p(v|W) is typically computationally intractable for an arbitrary
interaction matrix W and therefore needs to be approximated. Indeed, one cannot compute the likelihood
L(W) exactly for a general matrix W so that monitoring performance is also difficult.

9.6.2 General tabular clique potentials

For unconstrained clique potentials we have a separate table for each of the states defined on the clique. In
writing the log likelihood, it is convenient to use the identity

φc(X nc ) =
∏
Yc

φc(Yc)I[Yc=X
n
c ] (9.6.15)

where the product is over all states of potential c. This expression follows since the indicator is zero for all
but the single observed state X nc . The log likelihood is then

L(θ) =
∑
c

∑
Yc

∑
n

I [Yc = X nc ] log φc(Yc)−N logZ(φ) (9.6.16)
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where

Z(φ) =
∑
Yc

∏
c

φc(Yc) (9.6.17)

Differentiating the log likelihood with respect to a specific table entry φc(Yc) we obtain

∂

∂φc(Yc)
L(θ) =

∑
n

I [Yc = X nc ]
1

φc(Yc)
−N p(Yc)

φc(Yc)
(9.6.18)

Equating to zero, and rewriting in terms of the variables X , the maximum likelihood solution is obtained
when

p(Xc) = ε(Xc) (9.6.19)

where the empirical distribution is defined in equation (9.6.9). That is, the unconstrained optimal maximum
likelihood solution is given by setting the clique potentials such that the marginal distribution on each clique
p(Xc) matches the empirical distribution on each clique ε(Xc). Note that this only describes the form that
the optimal maximum likelihood solution should take, and doesn’t give us a closed form expression for
setting the tables. To find the optimal tables in this case would still require a numerical procedure, such as
gradient based methods based on equation (9.6.18), or the IPF method described below.

Iterative proportional fitting

According to the general result of equation (9.6.19) the maximum likelihood solution is such that the clique
marginals match the empirical marginals. Assuming that we can absorb the normalisation constant into an
arbitrarily chosen clique, we can drop explicitly representing the normalisation constant. For a clique c, the
requirement that the marginal of p matches the empirical marginal on the variables in the clique is

φ(Xc)
∑
X\c

∏
d 6=c

φ(Xd) = ε(Xc) (9.6.20)

Given an initial setting for the potentials we can then update φ(Xc) to satisfy the above marginal requirement,

φnew(Xc) =
ε(Xc)∑

X\c
∏
d 6=c φ(Xd)

(9.6.21)

which is required for each of the states of Xc. By multiplying and dividing the right hand side by φ(Xc) this
is equivalent to ascertaining if

φnew(Xc) =
φ(Xc)ε(Xc)
p(Xc)

(9.6.22)

This is a so-called Iterative Proportional Fitting (IPF) update and corresponds to a coordinate-wise optimi-
sation of the log likelihood in which the coordinate corresponds to φc(Xc), with all other parameters fixed.
In this case this conditional optimum is analytically given by the above setting. One proceeds by selecting
another potential to update, and continues updating until some convergence criterion is met. Note that in
general, with each update, the marginal p(Xc) needs to be recomputed; computing these marginals may be
expensive unless the width of the junction tree formed from the graph is suitably limited.

9.6.3 Decomposable Markov networks

Whilst for general Markov networks we require numerical methods to find the maximum likelihood solution,
there is an important special case for which we can find the optimal tables very easily. If the MN corre-
sponding is decomposable, then we know (from the junction tree representation) that we can express the
distribution in the form of a product of local marginals divided by the separator distributions

p(X ) =

∏
c p(Xc)∏
s p(Xs)

(9.6.23)
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x1 x2

x3

x4

x5 x6

(a)

φ (x1, x2) φ (x2) φ (x2, x3, x5) φ (x5) φ (x5, x6)

φ (x2, x4, x5)

φ (x2, x5)

(b)

x1 x2, x3, x5

x4

x6

(c)

Figure 9.16: (a): A decomposable Markov network. (b): A junction tree for (a). (c): Set chain for
(a) formed by choosing clique x2, x3, x5 as root and orienting edges consistently away from the root. Each
separator is absorbed into its child clique to form the set chain.

Algorithm 9.4 Learning of an unconstrained decomposable Markov network using maximum likelihood.
We have a triangulated (decomposable) Markov network on cliques φc(Xc), c = 1, . . . , C and the empirical
marginal distributions on all cliques and separators, ε(Xc), ε(Xs)

1: Form a junction tree from the cliques.
2: Initialise each clique φc(Xc) to ε(Xc) and each separator φs(Xs) to ε(Xs).
3: Choose a root clique on the junction tree and orient edges consistently away from this root.
4: For this oriented junction tree, divide each clique by its parent separator.
5: Return the new potentials on each clique as the maximum likelihood solution.

By reabsorbing the separators into the numerator terms, we can form a set chain distribution, section(6.8)

p(X ) =
∏
c

p(Xc|X\c) (9.6.24)

Since this is directed, and provided no constraint is placed on the tables, the maximum likelihood solution
to learning the tables is given by assigning each set chain factor p(Xc|X\c) based on counting the instances
in the dataset[182], see learnMarkovDecom.m. The procedure is perhaps best explained by an example, as
given below. See algorithm(9.4) for a general description.

Example 9.9. Given a dataset {X n, n = 1, . . . , N}, with corresponding empirical distribution ε(X ), we
wish to fit by maximum likelihood a MN of the form

p(x1, . . . , x6) =
1

Z
φ(x1, x2)φ(x2, x3, x5)φ(x2, x4, x5)φ(x5, x6) (9.6.25)

where the potentials are unconstrained tables, see fig(9.16a). Since the graph is decomposable, we know it
admits a factorisation of clique potentials divided by the separators:

p(x1, . . . , x6) =
p(x1, x2)p(x2, x3, x5)p(x2, x4, x5)p(x5, x6)

p(x2)p(x2, x5)p(x5)
(9.6.26)

We can convert this to a set chain by reabsorbing the denominators into numerator terms, see section(6.8).
For example, by choosing the clique x2, x3, x5 as root, we can write

p(x1, . . . , x6) = p(x1|x2)︸ ︷︷ ︸
φ(x1,x2)

p(x2, x3, x5)︸ ︷︷ ︸
φ(x2,x3,x5)

p(x4|x2, x5)︸ ︷︷ ︸
φ(x2,x4,x5)

p(x6|x5)︸ ︷︷ ︸
φ(x5,x6)

(9.6.27)

where we identified the factors with clique potentials, and the normalisation constant Z is unity, see
fig(9.16b). The advantage is that in this representation, the clique potentials are independent since the
distribution is a BN on cluster variables. The log likelihood for an i.i.d. dataset is

L =
∑
n

log p(xn1 |xn2 ) + log p(xn2 , x
n
3 , x

n
5 ) + log p(xn4 |xn2 , xn5 ) + log p(xn6 |xn5 ) (9.6.28)
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x1

x2

x3

x4x5

(a)

φ4,5φ1,5 x1,4 φ1,2φ1,4 x2,4 φ2,3φ2,4φ3,4

(b)

Figure 9.17: (a): Interpreted as a Markov network, the graph represents the dis-
tribution φ(x1, x4, x5)φ(x1, x2, x4)φ(x2, x4, x3). As a pairwise MN, the graph represents
φ(x4, x5)φ(x1, x4)φ(x4, x5)φ(x1, x2)φ(x2, x4)φ(x2, x3)φ(x3, x4). (b): A junction tree for the pairwise
MN in (a). We have a choice where to place the pairwise cliques, and this is one valid choice, using the
shorthand φa,b = φa,b(xa, xb) and xa,b = {xa, xb}.

where each of the terms is an independent parameter of the model. The maximum likelihood solution then
corresponds (as for the BN case) to simply setting each factor to the empirical distribution

φ(x1, x2) = ε(x1|x2), φ(x2, x3, x5) = ε(x2, x3, x5), φ(x2, x4, x5) = ε(x4|x2, x5), φ(x5, x6) = ε(x6|x5)

(9.6.29)

Constrained decomposable Markov networks

If there are no constraints on the forms of the maximal clique potentials of the Markov network, as we’ve
seen, learning is straightforward. Here our interest is when the functional form of the maximal clique is
constrained to be a product of potentials on smaller cliques2:

φc(Xc) =
∏
i

φic(X ic ) (9.6.30)

with no constraint being placed on the non-maximal clique potentials φic(X ic ). In general, in this case one
cannot write down directly the maximum likelihood solution for the non-maximal clique potentials φic(X ic ).

Consider the graph in fig(9.17) which we consider a pairwise MN. In this case, the clique potentials are con-
strained, so that we cannot simply write down the solution, as we did in the unconstrained decomposable
case. Since the graph is decomposable, there are however, computational savings that can be made in this
case[10]. For an empirical distribution ε, maximum likelihood requires that all the pairwise marginals of the
MN match the corresponding marginals obtained from ε. As explained in fig(9.17) we have a choice as to
which junction tree clique each potential is assigned to, with one valid choice being given in fig(9.17b).

Let’s consider updating the potentials within the 1, 2, 4 clique. Keeping the potentials of the other cliques
φ4,5φ1,5 and φ2,3φ2,4φ3,4 fixed we can update the potentials φ1,2, φ1,4. Using a bar to denote fixed potentials,
the marginal requirement that the MN marginal p(x1, x2, x4) matches the empirical marginal ε(x1, x2, x4)
can be written in shorthand as

p1,2,4 = ε1,2,4 (9.6.31)

We can express this requirement in terms of the pairs of variables x1, x2 and x1, x4 within the φ1,2φ1,4 clique
as

p1,2 = ε1,2, p1,4 = ε1,4 (9.6.32)

2A Boltzmann machine is of this form since any unconstrained binary pairwise potentials can be converted into a BM. For
other cases in which the φic are constrained, then Iterative scaling may be used in place of IPF.
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Algorithm 9.5 Efficient Iterative Proportional Fitting. Given a set of φi, i = 1, . . . , I and a corresponding
set of reference (empirical) marginal distributions on the variables of each potential, εi, we aim to set all φ
such that all marginals of the Markov network match the given empirical marginals.

1: Given a Markov network on potentials φi, i = 1, . . . , I, triangulate the graph and form the cliques C1, . . . , CC .
2: Assign potentials to cliques. Thus each clique has a set of associated potentials Fc
3: Initialise all potentials (for example to unity).
4: repeat
5: Choose a clique c as root.
6: Propagate messages towards the root and compute the separators on the boundary of the root.
7: repeat
8: Choose a potential φi in clique c, i ∈ Fc.
9: Perform an IPF update for φi, given fixed boundary separators and other potentials in c.

10: until Potentials in clique c converge.
11: until All Markov network marginals converge to the reference marginals.

Taking the first marginal requirement, this means

p1,2 =
∑

x3,x4,x5

φ̄1,5φ̄4,5φ1,4φ1,2φ̄2,4φ̄2,3φ̄3,4 = ε1,2 (9.6.33)

which can be expressed as

∑
x4

(∑
x5

φ̄1,5φ̄4,5

)
︸ ︷︷ ︸

γ1,4

φ1,4φ1,2

(∑
x3

φ̄2,4φ̄2,3φ̄3,4

)
︸ ︷︷ ︸

γ2,4

= ε1,2 (9.6.34)

The ‘messages’ γ1,4 and γ1,2 are the boundary separator tables when we choose the central clique as root
and carry out absorption towards the root. Given these fixed messages we can then perform IPF updates
of the root clique using

φnew1,2 =
ε1,2∑

x4
γ1,4φ1,4γ2,4

(9.6.35)

After making this update, we can subsequently update φ1,4 similarly using the constraint

∑
x2

(∑
x5

φ̄1,5φ̄4,5

)
︸ ︷︷ ︸

γ1,4

φ1,4φ1,2

(∑
x3

φ̄2,4φ̄2,3φ̄3,4

)
︸ ︷︷ ︸

γ2,4

= ε1,4 (9.6.36)

so that

φnew1,4 =
ε1,4∑

x2
γ1,4φ1,2γ2,4

(9.6.37)

We then iterate these updates until convergence within this 1, 2, 4 clique. Given converged updates for this
clique, we can choose another clique as root, propagate towards the root and compute the separator cliques
on the boundary of the root. Given these fixed boundary clique potentials we again perform IPF within the
clique.

This ‘efficient’ IPF procedure is described more generally in algorithm(9.5) for an empirical distribution ε.
More generally, IPF minimises the Kullback-Leibler divergence between a given reference distribution ε and
the Markov network. See demoIPFeff.m and IPF.m.
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Figure 9.18: Learning digits (from Simon Lucas’ algoval system) using a Markov network. Top row: the
36 training examples. Each example is a binary image on 18 × 14 pixels. Second row: the training data
with 50% missing pixels (grey represents a missing pixel). Third row: Reconstructions from the missing
data using a thin-junction-tree MN with maximum clique size 15. Bottom row: Reconstructions using a
thin-junction-tree Boltzmann machine with maximum clique size 15, trained using efficient IPF.
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Figure 9.19: (a): Based on the pair-
wise empirical entropies H(xi, xj) edges are
ordered, high entropy edges first. Shown
is the adjacency matrix of the resulting
Markov network whose junction tree has
cliques ≤ 15 in size (white represents an
edge). (b): Indicated are the number of
cliques that each pixel is a member of, in-
dicating a degree of importance. Note that
the lowest clique membership value is 1, so
that each pixel is a member of at least one
clique.

Example 9.10 (Learning with a structured Markov network). In this example we aim to fit a Markov
network to data, constrained so that inference in the Markov network is computationally cheap by ensuring
that the junction tree of the Markov network has limited clique sizes.

In fig(9.18) 36 examples of 18 × 14 = 252 binary pixel handwritten twos are presented, forming
the training set from which we wish to fit a Markov network. First all pairwise empirical entropies
H(xi, xj), i, j = 1, . . . , 252 were computed and used to rank edges, with highest entropy edges ranked first.
Edges were included in a graph G, highest ranked first, provided the triangulated G had all cliques less than
size 15. This resulted in 238 unique cliques and an adjacency matrix for the triangulated G as presented in
fig(9.19a). In fig(9.19b) the number of times that a pixel appears in the 238 cliques is shown, and indicates
the degree of importance of each pixel in distinguishing between the 36 examples. Two models were then
trained and used to compute the most likely reconstruction based on missing data p(xmissing|xvisible).

The first model was a Markov network on the maximal cliques of the graph, for which essentially no training
is required, and the settings for each clique potential can be obtained as explained in algorithm(9.4).
The model makes 3.8% errors in reconstruction of the missing pixels. Note that the unfortunate effect of
reconstructing a white pixel surrounded by black pixels is an effect of the limited training data. With larger
amounts of data the model would recognise that such effects do not occur.

In the second model, the same maximal cliques were used, but the maximal clique potentials restricted to be
the product of all pairwise two-cliques within the maximal clique. This is equivalent to using a structured
Boltzmann machine, and was trained using the efficient IPF approach of algorithm(9.5). The corresponding
reconstruction error is 20%. This performance is worse than the first model since the Boltzmann machine is a
more constrained Markov network and struggles to represent the data well. See demoLearnThinMNDigit.m.
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9.6.4 Exponential form potentials

For exponential form potentials

φc(Xc) = exp
(
θT
c ψc(Xc)

)
(9.6.38)

we saw in section(9.6.1) how to compute the derivatives for use in standard numerical optimisation proce-
dures. In the following section we outline another popular numerical technique.

Iterative scaling

We consider Markov networks of the exponential form

p(X|θ) =
1

Z(θ)

∏
c

eθcfc(Xc) (9.6.39)

where the ‘feature functions’ fc(Xc) ≥ 0 and c ranges of the non-maximal cliques Xc ⊂ X (Note that
equation (9.6.38) can be written in this form by having multiple potentials within the same clique.). The
normalisation requirement is

Z(θ) =
∑
X

∏
c

exp (θcfc(Xc)) (9.6.40)

A maximum likelihood training algorithm for a Markov network, somewhat analogous to the EM approach
of section(11.2) can be derived as follows[32]. Consider the bound, for positive x:

log x ≤ x− 1⇒ − log x ≥ 1− x (9.6.41)

Hence

− log
Z(θ)

Z(θold)
≥ 1− Z(θ)

Z(θold)
⇒ − logZ(θ) ≥ − logZ(θold) + 1− Z(θ)

Z(θold)
(9.6.42)

Then we can write a bound on the log likelihood

1

N
L(θ) ≥ 1

N

∑
c,n

θcfc(X nc )− logZ(θold) + 1− Z(θ)

Z(θold)
(9.6.43)

As it stands, the bound (9.6.43) is in general not straightforward to optimise since the parameters of each
potential are coupled through the Z(θ) term. For convenience it is useful to first reparmameterise and write

θc = θc − θoldc︸ ︷︷ ︸
αc

+θoldc (9.6.44)

Then

Z(θ) =
∑
X

exp

(∑
c

fc(Xc)θc
)

=
∑
X

exp

(∑
c

fc(Xc)θoldc

)
exp

(∑
c

fc(Xc)αc
)

(9.6.45)

One can decouple this using an additional bound derived by first considering:

exp

(∑
c

αcfc(Xc)
)

= exp

(∑
c

pc

[
αc
∑
d

fd(Xd)
])

(9.6.46)

where

pc ≡
fc(Xc)∑
d fd(Xd)

(9.6.47)
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Since pc ≥ 0 and
∑

c pc = 1 we may apply Jensen’s inequality to give

exp

(∑
c

αcfc(Xc)
)
≤
∑
c

pc exp

(∑
d

fd(Xd)αc
)

(9.6.48)

Hence

Z(θ) ≤
∑
X

exp

(∑
c

fc(Xc)θoldc

)∑
c

pcexp

αc∑
f

fd(Xc)

 (9.6.49)

Plugging this bound into (9.6.43) we have

1

N
L(θ) ≥

∑
c

 1

N

∑
n

fc(X nc )θc −
〈
pcexp

(
αc
∑
d

fd(Xc)
)〉

p(X|θold)

︸ ︷︷ ︸
LB(θc)

+1− logZ(θold) (9.6.50)

The term in curly brackets contains the potential parameters θc in an uncoupled fashion. Differentiating
with respect to θc the gradient of each lower bound is given by

∂LB(θc)

∂θc
=

1

N

∑
n

fc(X nc )−
〈
fc(Xc)exp

((
θc − θoldc

)∑
d

fd(Xd)
)〉

p(X|θold)

(9.6.51)

This can be used as part of a gradient based optimisation procedure to learn the parameters θc. Intuitively,
the parameters converge when the empirical average of the functions f match the average of the functions
with respect to samples drawn from the distribution, in line with our general condition for maximum likeli-
hood optimal solution.

In general, there would appear to be little advantage in using the above procedure over the general gradient
approach in section(9.6.1) [211]. However, in the special case that the functions sum to 1,

∑
c fc(Xc) = 1,

the zero of the gradient (9.6.51) can be found analytically, giving the iterative scaling (IS) update

θc = θoldc + log
1

N

∑
n

fc(X nc )− log 〈fc(Xc)〉p(Xc|θold) (9.6.52)

The constraint that the features fc need to be non-negative can be relaxed at the expense of additional
variational parameters, see exercise(9.12).

If the junction tree formed from this exponential form Markov network has limited tree width, computational
savings can be made by performing IPF over the cliques of the junction tree and updating the parameters
θ within each clique using IS[10]. This is a modified version of the constrained decomposable case. See also
[290] for a unified treatment of propagation and scaling on junction trees.

9.6.5 Conditional random fields

For an input x and output y, a CRF is defined by a conditional distribution [282, 180]

p(y|x) =
1

Z(x)

∏
k

φk(y, x) (9.6.53)

for (positive) potentials φk(y, x). To make learning more straightforward, the potentials are usually defined
as exp (λkfk(y, x)) for fixed functions f(y, x) and parameters λk. In this case the distribution of the output
conditioned on the input is

p(y|x, λ) =
1

Z(x, λ)

∏
k

exp (λkfk(y, x)) (9.6.54)
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CRFs can also be viewed simply as Markov networks with exponential form potentials, as in section(9.6.4).
Equation(9.6.54) is equivalent to equation (9.6.39) where the parameters θ are here denoted by λ and the
variables x are here denoted by y. In the CRF case the inputs x simply have the effect of determining the
feature fk(y, x).

For an i.i.d. dataset of input-outputs, D = {(xn, yn), n = 1, . . . , N}, training based on conditional maximum
likelihood requires the maximisation of

L(λ) ≡
N∑
n=1

log p(yn|xn, λ) =
N∑
n=1

∑
k

λkfk(y
n, xn)− logZ(xn, λ) (9.6.55)

In general no closed form solution for the optimal λ exists and this needs to be determined numerically.
The methods we’ve discussed, such as iterative scaling may be readily adapted to this optimisation problem,
although in practice gradient based techniques are to be preferred[211]. For completeness we describe
gradient based training. The gradient has components

∂

∂λi
L =

∑
n

(
fi(y

n, xn)− 〈fi(y, xn)〉p(y|xn,λ)

)
(9.6.56)

The terms 〈fi(y, xn)〉p(y|xn,λ) can be problematic and their tractability depends on the structure of the poten-
tials. For a multivariate y, provided the structure of the cliques defined on subsets of y is singly-connected,
then computing the average is generally tractable. More generally, provided the cliques of the resulting
junction tree have limited width, then exact marginals are available. An example of this is given for a
linear-chain CRF in section(23.4.3) – see also example(9.11) below.

Another quantity often useful for numerical optimisation is the Hessian which has components

∂2

∂λi∂λj
L =

∑
n

(〈fi(y, xn)〉 〈fj(y, xn)〉 − 〈fi(y, xn)fj(y, x
n)〉) (9.6.57)

where the averages above are with respect to p(y|xn, λ). This expression is a (negated) sum of covariance
elements, and is therefore negative (semi) definite. Hence the function L(λ) is concave and has only a
single global optimum. In practice CRFs often have many thousands if not millions of parameters λ so that
computing the Newton update associated with the inverse of the Hessian may be prohibitively expensive.
In this case alternative optimisation methods such as conjugate gradients are preferable.

In practice regularisation terms are often added to prevent overfitting (see section(13.2.2) for a discussion
of regularisation) . Using a term

−
∑
k

c2
kλ

2
k (9.6.58)

for positive regularisation constants c2
k discourages the weights λ from being too large. This term is also

negative definite and hence the overall objective function remains concave.

Once trained a CRF can be used for predicting the output distribution for a novel input x∗. The most likely
output y∗ is equivalently given by

y∗ = argmax
y

log p(y|x∗) = argmax
y

∑
k

λkfk(y, x
∗)− logZ(x∗, λ) (9.6.59)

Since the normalisation term is independent of y, finding the most likely output is equivalent to

y∗ = argmax
y

∑
k

λkfk(y, x
∗) (9.6.60)
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Figure 9.20: (a): Training results for a linear chain CRF. There are 5 training sequences, one per subpanel.
In each subpanel the top row corresponds to the input sequence x1:20, xt ∈ {1, . . . , 5} (each state represented
by a different colour). The middle row is the correct output sequence y1:20, yt ∈ {1, 2, 3} (each state
represented by a different colour). Together the input and output sequences make the training data D. The
bottom row contains the most likely output sequence given the trained CRF, arg maxy1:20 p(y1:20|x1:20,D).
(b): Five additional test input sequences (top), correct output sequence (middle) and predicted output
sequence (bottom).

Natural language processing

In a natural language processing application, xt might represent a word and yt a corresponding linguistic
tag (‘noun’,‘verb’, etc. ). A more suitable form in this case is to constrain the CRF to be of the form

exp

(∑
k

µkgk(yt, yt−1) +
∑
l

ρlhl(yt, xt)

)
(9.6.61)

for binary functions gk and hl and parameters µk and ρl. The grammatical structure of tag-tag transitions
is encoded in gk(yt, yt−1) and linguistic tag information in hk(yt, xt), with the importance of these being
determined by the corresponding parameters[180]. In this case inference of the marginals 〈ytyt−1|x1:T 〉 is
straightforward since the factor graph corresponding to the inference problem is a linear chain.

Variants of the linear chain CRF are used heavily in natural language processing, including part-of-speech
tagging and machine translation (in which the input sequence x represents a sentence say in English and
the output sequence y the corresponding translation into French). See, for example, [229].

Example 9.11 (Linear chain CRF). We consider a CRF with X = 5 input states and Y = 3 output states
of the form

p(y1:T |x1:T ) =

T∏
t=2

e
∑
k µkgk(yt,yt−1)+

∑
l ρlhl(yt,xt) (9.6.62)

Here the binary functions gk(yt, yt−1) = I [yt = ak] I [yt−1 = bk], k = 1, . . . , 9 , ak ∈ {1, 2, 3}, bk ∈
{1, 2, 3}, simply index the transitions between two consecutive outputs. The binary functions hl(yt, xt) =
I [yt = al] I [xt = cl], l = 1, . . . , 15, al ∈ {1, 2, 3}, cl ∈ {1, 2, 3, 4, 5}, index the translation of the input to the
output. There are therefore 9 + 15 = 24 parameters in total. In fig(9.20) we plot the training and test
results based on a small set of data. As we see, the model learns to predict the output well, both for the
training and test data. The training of the CRF is obtained using 50 iterations of gradient ascent with a
learning rate of 0.1. See demoLinearCRF.m.
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9.6.6 Pseudo likelihood

Consider a MN on variables x with dim (x) = D of the form

p(x|θ) =
1

Z

∏
c

φc(Xc|θc) (9.6.63)

For all but specially constrained φc, the partition function Z will be intractable and the likelihood of a set
of i.i.d. data intractable as well. A surrogate is to use the pseudo likelihood of each variable conditioned on
all other variables (which is equivalent to conditioning on only the variable’s neighbours for a MN)

L′(θ) =
N∑
n=1

D∑
i=1

log p(xni |xn\i|θ) (9.6.64)

The terms p(xni |xn\i|θ) are usually straightforward to work out since they require finding the normalisation
of a univariate distribution only. In this case the gradient can be computed exactly, and learning of the
parameters θ carried out. In general, the solution found does not correspond to the maximum likelihood
solution. However, at least for some special cases, such as the Boltzmann machine, this forms a consistent
estimator[152].

9.6.7 Learning the structure

Learning the structure of a Markov network can also be based on independence tests, as for belief networks
in section(9.5). A criterion for finding a MN on a set of nodes X is to use the fact that no edge exits between
x and y if, conditioned on all other nodes, x and y are deemed independent. This is the pairwise Markov
property described in section(4.2.1). By checking x⊥⊥ y| X\ {x, y} for every pair of variables x and y, this
edge deletion approach in principle reveals the structure of the network[236]. For learning the structure
from an oracle, this method is sound. However, a practical difficulty in the case where the independencies
are determined from data is that checking if x ⊥⊥ y | X\ {x, y} requires in principle enormous amounts of
data. The reason for this is that the conditioning selects only those parts of the dataset consistent with
the conditioning. In practice this will result in very small numbers of remaining datapoints, and estimating
independencies on this basis is unreliable.

The Markov boundary criterion[236] uses the local Markov property, section(4.2.1), namely that conditioned
on its neighbours, a variable is independent of all other variables in the graph. By starting with a variable x
and an empty neighbourhood set, one can progressively include neighbours, testing if their inclusion renders
the remaining non-neighbours independent of x. A difficultly with this is that, if one doesn’t have the correct
Markov boundary, then including a variable in the neighbourhood set may be deemed necessary. To see
this, consider a network which corresponds to a linear chain and that x is at the edge of the chain. In this
case, only the nearest neighbour of x is in the Markov boundary of x. However, if this nearest neighbour
were not currently in the set, then any other non-nearest neighbour would be included, even though this is
not strictly required. To counter this, the neighbourhood variables included in the neighbourhood of x may
be later removed if they are deemed superfluous to the boundary[112].

In cases where specific constraints are imposed, such as learning structures whose resulting triangulation
has a bounded tree-width, whilst still formally difficult, approximate procedures are available[275].

In terms of network scoring methods for undirected networks, computing a score is hampered by the fact
that the parameters of each clique become coupled in the normalisation constant of the distribution. This
issue can be addressed using hyper Markov priors[79].

9.7 Summary

• For discrete belief networks, it is particularly convenient to use a Dirichlet parameter prior since this is
conjugate to the categorical distribution.
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• Provided we assume local and global parameter independence, the posterior over belief network tables
factorises.

• Learning the structure of a belief network is more complex. The PC algorithm uses local independence
tests to decide if two variables should be linked. A global alternative is based on using a network scoring
method such as the model likelihood of a network structure under a Dirichlet prior.

• Learning the maximum likelihood parameters of a decomposable Markov network is straightforward and
can be achieved by counting.

• For non-decomposable Markov networks, no closed form solution exists. The maximum likelihood criterion
is equivalent to ensuring that clique marginals match empirical marginals. The iterative proportional fitting
algorithm is a technique to set the tables to ensure these marginals match.

• For Markov networks parameterised using feature functions, iterative scaling is a maximum likelihood
technique that enables individual parameter updates to be made. Gradient based approaches are also
straightforward and popular in conditional random fields.

9.8 Code

condindepEmp.m: Bayes test and Mutual Information for empirical conditional independence
condMI.m: Conditional Mutual Information
condMIemp.m: Conditional Mutual Information of Empirical distribution
MIemp.m: Mutual Information of Empirical distribution

9.8.1 PC algorithm using an oracle

This demo uses an oracle to determine x⊥⊥ y| z, rather than using data to determine the empirical depen-
dence. The oracle is itself a belief network. For the partial orientation only the first ‘unmarried collider’
rule is implemented.
demoPCoracle.m: Demo of PC algorithm with an oracle
PCskeletonOracle.m: PC algorithm using an oracle
PCorient.m: Orient a skeleton

9.8.2 Demo of empirical conditional independence

For half of the experiments, the data is drawn from a distribution for which x⊥⊥y|z is true. For the other
half of the experiments, the data is drawn from a random distribution for which x⊥⊥y|z is false. We then
measure the fraction of experiments for which the Bayes test correctly decides x⊥⊥y|z. We also measure the
fraction of experiments for which the Mutual Information test correctly decides x⊥⊥ y| z, based on setting
the threshold equal to the median of all the empirical conditional mutual information values. A similar
empirical threshold can also be obtained for the Bayes’ factor (although this is not strictly kosher in the
pure Bayesian spirit since one should in principle set the threshold to zero). The test based on the assumed
chi-squared distributed MI is included for comparison, although it seems to be impractical in these small
data cases.
demoCondIndepEmp.m: Demo of empirical conditional independence based on data

9.8.3 Bayes Dirichlet structure learning

It is interesting to compare the result of demoPCdata.m with demoBDscore.m.
PCskeletonData.m: PC algorithm using empirical conditional independence
demoPCdata.m: Demo of PC algorithm with data
BDscore.m: Bayes Dirichlet (BD) score for a node given parents
learnBayesNet.m: Given an ancestral order and maximal parents, learn the network
demoBDscore.m: Demo of structure learning
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Fuse Drum Toner Paper Roller

Burning Quality Wrinkled Mult. Pages Paper Jam

Figure 9.21: Printer Nightmare belief network. All variables are binary. The upper variables without parents
are possible problems (diagnoses), and the lower variables consequences of problems (faults).

9.9 Exercises

Exercise 9.1 (Printer Nightmare). Cheapco is, quite honestly, a pain in the neck. Not only did they buy
a dodgy old laser printer from StopPress and use it mercilessly, but try to get away with using substandard
components and materials. Unfortunately for StopPress, they have a contract to maintain Cheapco’s old
warhorse, and end up frequently sending the mechanic out to repair the printer. They decide to make a
statistical model of Cheapco’s printer, so that they will have a reasonable idea of the fault based only on the
information that Cheapco’s secretary tells them on the phone. In that way, StopPress hopes to be able to
send out to Cheapco only a junior repair mechanic, having most likely diagnosed the fault over the phone.

Based on the manufacturer’s information, StopPress has a good idea of the dependencies in the printer, and
what is likely to directly affect other printer components. The belief network in fig(9.21) represents these
assumptions. However, the specific way that Cheapco abuse their printer is a mystery, so that the exact
probabilistic relationships between the faults and problems is idiosyncratic to Cheapco. StopPress has the
following table of faults in which each column represents a visit.

fuse assembly malfunction 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
drum unit 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0
toner out 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0

poor paper quality 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0
worn roller 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

burning smell 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
poor print quality 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0

wrinkled pages 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1
multiple pages fed 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1

paper jam 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0

1. The above table is contained in printer.mat. Learn all table entries on the basis of maximum likeli-
hood.

2. Program the belief network using the tables maximum likelihood tables and BRMLtoolbox. Compute
the probability that there is a fuse assembly malfunction given that the secretary complains there is a
burning smell and that the paper is jammed, and that there are no other problems.

3. Repeat the above calculation using a Bayesian method in which a flat Beta prior is used on all tables.

4. Given the above information from the secretary, what is the most likely joint diagnosis over the diag-
nostic variables – that is the joint most likely p(Fuse,Drum, Toner, Paper,Roller|evidence)? Use the
max-absorption method on the associated junction tree.

5. Compute the joint most likely state of the distribution

p(Fuse,Drum, Toner, Paper,Roller|burning smell, paper jammed)

Explain how to compute this efficiently using the max-absorption method.

Exercise 9.2. Consider data xn, n = 1, . . . , N . Show that for a Gaussian distribution, the maximum
likelihood estimator of the mean is m̂ = 1

N

∑N
n=1 x

n and variance is σ̂2 = 1
N

∑N
n=1(xn − m̂)2.
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Exercise 9.3. A training set consists of one dimensional examples from two classes. The training examples
from class 1 are

0.5, 0.1, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.35, 0.25 (9.9.1)

and from class 2 are

0.9, 0.8, 0.75, 1.0 (9.9.2)

Fit a (one dimensional) Gaussian using Maximum Likelihood to each of these two classes. Also estimate the
class probabilities p1 and p2 using maximum likelihood. What is the probability that the test point x = 0.6
belongs to class 1?

Exercise 9.4. For a set of N observations (training data), X =
{
x1, . . . ,xN

}
, and independently gathered

observations, the log likelihood for a belief network to generate X is

log p(X ) =
N∑
n=1

K∑
i=1

log p (xni |pa (xni )) (9.9.3)

We define the notation

θis(t) = p(xi = s|pa (xi) = t) (9.9.4)

representing the probability that variable xi is in state s given the parents of variable xi are in the vector of
states t. Using a Lagrangian

L ≡
N∑
n=1

K∑
i=1

log p (xni |pa (xni )) +
K∑
i=1

∑
ti

λiti

(
1−

∑
s

θis
(
ti
))

(9.9.5)

Show that the maximum likelihood setting of θis(t) is

θjs(t
j) =

∑N
n=1 I

[
xnj = s

]
I
[
pa
(
xnj

)
= tj

]
∑N

n=1

∑
s I
[
xnj = s

]
I
[
pa
(
xnj

)
= tj

] (9.9.6)

Exercise 9.5 (Conditional Likelihood training). Consider a situation in which we partition observable
variables into disjoint sets x and y and that we want to find the parameters that maximize the conditional
likelihood,

CL(θ) =
1

N

N∑
n=1

log p(yn|xn, θ), (9.9.7)

for a set of training data {(xn, yn) , n = 1, . . . , N}. All data is assumed generated from the same distribu-
tion p(x, y|θ0) = p(y|x, θ0)p(x|θ0) for some unknown parameter θ0. In the limit of a large amount of i.i.d.
training data, does CL(θ) have an optimum at θ0?

Exercise 9.6 (Moment Matching). One way to set parameters of a distribution is to match the moments
of the distribution to the empirical moments. This sometimes corresponds to maximum likelihood (for the
Gaussian distribution for example), though generally this is not consistent with maximum likelihood.
For data with mean m and variance s, show that to fit a Beta distribution B (x|α, β) by moment matching,
we use

α =
m(m−m2 − s)

s
, β = α

1−m
m

(9.9.8)

Does this correspond to maximum likelihood?
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Exercise 9.7. For i.i.d. data 0 ≤ xn ≤ 1, n = 1, . . . , N , generated from a Beta distribution B (x|a, b), show
that the log likelihood is given by

L(a, b) ≡ (a− 1)
N∑
n=1

log xn + (b− 1)
N∑
n=1

log(1− xn)−N logB(a, b) (9.9.9)

where B(a, b) is the Beta function. Show that the derivatives are

∂

∂a
L =

N∑
n=1

log xn −Nψ(a)−Nψ(a+ b),
∂

∂b
L =

N∑
n=1

log(1− xn)−Nψ(b)−Nψ(a+ b) (9.9.10)

where ψ(x) ≡ d log Γ(x)/dx is the digamma function, and suggest a method to learn the parameters a, b.

Exercise 9.8. Consider the Boltzmann machine as defined in example(9.8). Write down the pseudo likeli-
hood for a set of i.i.d. data v1, . . . ,vN and derive the gradient of this with respect to wij, i 6= j.

Exercise 9.9. Show that the model likelihood equation (9.4.53) can be written explicitly as

p(D|M) =
∏
k

∏
j

Γ (
∑

i ui(vk; j))

Γ (
∑

i u
′
i(vk; j))

∏
i

[
Γ (u′i(vk; j))

Γ (ui(vk; j))

]
(9.9.11)

Exercise 9.10. Define the set N as consisting of 8 node belief networks in which each node has at most 2
parents. For a given ancestral order a, the restricted set is written Na

1. How many belief networks are in Na?

2. What is the computational time to find the optimal member of Na using the Bayesian Dirichlet score,
assuming that computing the BD score of any member of Na takes 1 second and bearing in mind the
decomposability of the BD score.

3. What is the time to find the optimal member of N?

Exercise 9.11. For the Markov network

p(x, y, z) =
1

Z
φ1(x, y)φ2(y, z) (9.9.12)

derive an iterative scaling algorithm to learn the unconstrained tables φ1(x, y) and φ2(x, y) based on a set of
i.i.d. data X ,Y,Z.

Exercise 9.12. In section(9.6.4) we considered maximum likelihood learning of a Markov network p(X ) ∝∏
c φc(Xc) with parameters θc and potentials of the form

φc(Xc) = exp (θcfc(Xc)) (9.9.13)

with the constraint fc(Xc) ≥ 0. Our interest here is to drop this positive constraint on fc(Xc). By considering

∑
c

θcfc(Xc) =
∑
c

pc
θcfc(Xc)

pc
(9.9.14)

for auxiliary variables pc > 0 such that
∑

c pc = 1, explain how to derive a form of iterative scaling training
algorithm for general fc in which each parameter θc can be updated separately.

Exercise 9.13. Write a MATLAB routine A = ChowLiu(X) where X is a D ×N data matrix containing
a multivariate datapoint on each column that returns a Chow-Liu maximum likelihood tree for X. The tree
structure is to be returned in the sparse matrix A. You may find the routine spantree.m useful. The file
ChowLiuData.mat contains a data matrix for 10 variables. Use your routine to find the maximum likelihood
Chow Liu tree, and draw a picture of the resulting DAG with edges oriented away from variable 1.
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CHAPTER 10

Naive Bayes

So far we’ve discussed methods in some generality without touching much on how we might use the methods
in a practical setting. Here we discuss one of the simplest methods that is widely used in practice to classify
data. This is a useful junction since it enables us to discuss the issues of parameter learning from data and
also (constrained) structure learning.

10.1 Naive Bayes and Conditional Independence

We shall discuss machine learning concepts in some detail in chapter(13). Here, we require only the intuitive
concept of classification, which means giving a discrete label to an input. For example, one might wish to
classify an input image into one of two classes - male or female. Naive Bayes (NB) is a popular classification
method and aids our discussion of conditional independence, overfitting and Bayesian methods. In NB, we
form a joint model of a D-dimensional attribute (input) vector x and the corresponding class label c

p(x, c) = p(c)
D∏
i=1

p(xi|c) (10.1.1)

whose belief network is depicted in fig(10.1a). Coupled with a suitable choice for each conditional distribution
p(xi|c), we can then use Bayes’ rule to form a classifier for a novel input vector x∗:

p(c|x∗) =
p(x∗|c)p(c)
p(x∗)

=
p(x∗|c)p(c)∑
c p(x

∗|c)p(c) (10.1.2)

In practice it is common to consider only two classes dom(c) = {0, 1}. The theory we describe below is
valid for any number of classes c, though our examples are restricted to the binary class case. Also, the
attributes xi are often taken to be binary, as we shall do initially below as well. The extension to more than
two attribute states, or continuous attributes is straightforward.

Example 10.1. EZsurvey.org partitions radio station listeners into two groups – the ‘young’ and ‘old’. They
assume that, given the knowledge that a customer is either ‘young’ or ‘old’, this is sufficient to determine
whether or not a customer will like a particular radio station, independent of their likes or dislikes for any
other stations:

p(r1, r2, r3, r4|age) = p(r1|age)p(r2|age)p(r3|age)p(r4|age) (10.1.3)

where each of the variables r1, r2, r3, r4 can take the states like or dislike, and the ‘age’ variable can take
the value young or old. Thus the information about the age of the customer determines the individual

227



Estimation using Maximum Likelihood

radio station preferences without needing to know anything else. To complete the specification, given that
a customer is young, she has a 95% chance to like Radio1, a 5% chance to like Radio2, a 2% chance to like
Radio3 and a 20% chance to like Radio4. Similarly, an old listener has a 3% chance to like Radio1, an 82%
chance to like Radio2, a 34% chance to like Radio3 and a 92% chance to like Radio4. They know that 90%
of the listeners are old.

Given this model, and the fact that a new customer likes Radio1, and Radio3, but dislikes Radio2 and
Radio4, what is the probability that the new customer is young? This is given by

p(young|r1 = like, r2 =dislike, r3 = like, r4 =dislike)

=
p(r1 = like, r2 =dislike, r3 = like, r4 =dislike|young)p(young)∑
age p(r1 = like, r2 =dislike, r3 = like, r4 =dislike|age)p(age)

(10.1.4)

Using the naive Bayes structure, the numerator above is given by

p(r1 = like|young)p(r2 =dislike|young)p(r3 = like|young)p(r4 =dislike|young)p(young) (10.1.5)

Plugging in the values we obtain

0.95× 0.95× 0.02× 0.8× 0.1 = 0.0014

The denominator is given by this value plus the corresponding term evaluated assuming the customer is old,

0.03× 0.18× 0.34× 0.08× 0.9 = 1.3219× 10−4

Which gives

p(young|r1 = like, r2 =dislike, r3 = like, r4 =dislike) =
0.0014

0.0014 + 1.3219× 10−4
= 0.9161 (10.1.6)

10.2 Estimation using Maximum Likelihood

Learning the table entries for NB is a straightforward application of the more general BN learning discussed
in section(9.3). For a fully observed dataset, maximum likelihood learning of the table entries corresponds
to counting the number of occurrences in the training data, as we show below. This is a useful exercise to
reinforce and make more concrete the general theory of section(9.3).

10.2.1 Binary attributes

Consider a dataset {(xn, cn), n = 1, . . . , N} of binary attributes, xni ∈ {0, 1}, i = 1, . . . , D and associated
class label cn. The number of datapoints from class c = 0 is denoted n0 and the number from class c = 1
is denoted n1. For each attribute of the two classes, we need to estimate the values p(xi = 1|c) ≡ θci . The

c

x1 x2 x3

(a)

cn

xni

n = 1 : N

θc

θi,c

i = 1 : D

(b)

Figure 10.1: Naive Bayes classifier. (a): The central
assumption is that given the class c, the attributes xi
are independent. (b): Assuming the data is i.i.d.,
maximum likelihood learns the optimal parameters θc
of the distribution p(c) and the parameters θi,c of the
class-dependent attribute distributions p(xi|c).
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other probability, p(xi = 0|c) is given by the normalisation requirement, p(xi = 0|c) = 1−p(xi = 1|c) = 1−θci .

Based on the NB conditional independence assumption the probability of observing a vector x can be
compactly written1

p(x|c) =
D∏
i=1

p(xi|c) =
D∏
i=1

(θci )
xi(1− θci )1−xi (10.2.1)

In the above expression, xi is either 0 or 1 and hence each i term contributes a factor θci if xi = 1 or 1− θci
if xi = 0. Together with the assumption that the training data is i.i.d. generated, the log likelihood of the
attributes and class labels is

L =
∑
n

log p(xn, cn) =
∑
n

log p(cn)
∏
i

p(xni |cn) (10.2.2)

=

∑
i,n

xni log θc
n

i + (1− xni ) log(1− θcni )

+ n0 log p(c = 0) + n1 log p(c = 1) (10.2.3)

This can be written more explicitly in terms of the parameters as

L =
∑
i,n

{
I [xni = 1, cn = 0] log θ0

i + I [xni = 0, cn = 0] log(1− θ0
i ) + I [xni = 1, cn = 1] log θ1

i

+ I [xni = 0, cn = 1] log(1− θ1
i )
}

+ n0 log p(c = 0) + n1 log p(c = 1) (10.2.4)

We can find the maximum likelihood optimal θci by differentiating w.r.t. θci and equating to zero, giving

θci = p(xi = 1|c) =

∑
n I [xni = 1, cn = c]∑

n I [xni = 0, cn = c] + I [xni = 1, cn = c]
(10.2.5)

=
number of times xi = 1 for class c

number of datapoints in class c
(10.2.6)

Similarly, optimising equation (10.2.3) with respect to p(c) gives

p(c) =
number of times class c occurs

total number of data points
(10.2.7)

These results are consistent with our general theory in section(9.3) that maximum likelihood corresponds
to setting tables by counting.

Classification boundary

We classify a novel input x∗ as class 1 if

p(c = 1|x∗) > p(c = 0|x∗) (10.2.8)

Using Bayes’ rule and writing the log of the above expression, this is equivalent to

log p(x∗|c = 1) + log p(c = 1)− log p(x∗) > log p(x∗|c = 0) + log p(c = 0)− log p(x∗) (10.2.9)

From the definition of the classifier, this is equivalent to (the normalisation constant − log p(x∗) can be
dropped from both sides)∑

i

log p(x∗i |c = 1) + log p(c = 1) >
∑
i

log p(x∗i |c = 0) + log p(c = 0) (10.2.10)

1This makes use of the general notation that any quantity raised to the power 0 is 1, i.e. x0 ≡ 1. Unfortunately, there is a
potential general mathematical notational confusion with xy meaning possibly x raised to the power y, or alternatively that y
is simply indexing a set of x variables. This potential conflict will not hopefully arise too often, and can most often be resolved
by reference to the meaning of the symbols involved.
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Using the binary encoding xi ∈ {0, 1}, we therefore classify x∗ as class 1 if∑
i

{
x∗i log θ1

i + (1− x∗i ) log(1− θ1
i )
}

+log p(c = 1) >
∑
i

{
x∗i log θ0

i + (1− x∗i ) log(1− θ0
i )
}

+log p(c = 0)

(10.2.11)

This decision rule can be expressed in the form: classify x∗ as class 1 if
∑

iwix
∗
i + a > 0 for some suitable

choice of weights wi and constant a, see exercise(10.4). The interpretation is that w specifies a hyperplane
in the attribute space and x∗ is classified as 1 if it lies on the positive side of the hyperplane.

Example 10.2 (Are they Scottish?). Consider the following vector of binary attributes:

(shortbread, lager, whiskey, porridge, football) (10.2.12)

A vector x = (1, 0, 1, 1, 0)T would describe that a person likes shortbread, does not like lager, drinks
whiskey, eats porridge, and has not watched England play football. Together with each vector x, there is a
label nat describing the nationality of the person, dom(nat) = {scottish, english}, see fig(10.2).

We wish to classify the vector x = (1, 0, 1, 1, 0)T as either scottish or english. Using Bayes’ rule:

p(scottish|x) =
p(x|scottish)p(scottish)

p(x)
=

p(x|scottish)p(scottish)

p(x|scottish)p(scottish) + p(x|english)p(english)
(10.2.13)

By maximum likelihood the ‘prior’ class probability p(scottish) is given by the fraction of people in the
database that are Scottish, and similarly p(english) is given as the fraction of people in the database that
are English. This gives p(scottish) = 7/13 and p(english) = 6/13.

For p(x|nat) under the Naive Bayes assumption:

p(x|nat) = p(x1|nat)p(x2|nat)p(x3|nat)p(x4|nat)p(x5|nat) (10.2.14)

so that knowing whether not someone is Scottish, we don’t need to know anything else to calculate the
probability of their likes and dislikes. Based on the table in fig(10.2) and using maximum likelihood we
have:

p(x1 = 1|english) = 1/2 p(x1 = 1|scottish) = 1
p(x2 = 1|english) = 1/2 p(x2 = 1|scottish) = 4/7
p(x3 = 1|english) = 1/3 p(x3 = 1|scottish) = 3/7
p(x4 = 1|english) = 1/2 p(x4 = 1|scottish) = 5/7
p(x5 = 1|english) = 1/2 p(x5 = 1|scottish) = 3/7

(10.2.15)

For x = (1, 0, 1, 1, 0)T, we get

p(scottish|x) =
1× 3

7 × 3
7 × 5

7 × 4
7 × 7

13

1× 3
7 × 3

7 × 5
7 × 4

7 × 7
13 + 1

2 × 1
2 × 1

3 × 1
2 × 1

2 × 6
13

= 0.8076 (10.2.16)

Since this is greater than 0.5, we would classify this person as being Scottish.

Small data counts

In example(10.2), consider trying to classify the vector x = (0, 1, 1, 1, 1)T. In the training data, all Scottish
people say they like shortbread. This means that for this particular x, p(x, scottish) = 0, and therefore
that we make the extremely confident classification p(scottish|x) = 0. This demonstrates a difficulty using
maximum likelihood with sparse data. One way to ameliorate this is to smooth the probabilities, for
example by adding a small number to the frequency counts of each attribute. This ensures that there are
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0 1 1 1 0 0
0 0 1 1 1 0
1 1 0 0 0 0
1 1 0 0 0 1
1 0 1 0 1 0

(a)

1 1 1 1 1 1 1
0 1 1 1 1 0 0
0 0 1 0 0 1 1
1 0 1 1 1 1 0
1 1 0 0 1 0 0

(b)

Figure 10.2: (a): English
tastes for 6 people over attributes
(shortbread, lager, whiskey, porridge, football).
Each column represents the tastes of an
individual. (b): Scottish tastes for 7 people.

no zero probabilities in the model. An alternative is to use a Bayesian approach that discourages extreme
probabilities, as discussed in section(10.3).

Potential pitfalls with encoding

In many off-the-shelf packages implementing Naive Bayes, binary attributes are assumed. In practice,
however, the case of non-binary attributes often occurs. Consider the following attribute : age. In a survey,
a person’s age is marked down using the variable a ∈ 1, 2, 3. a = 1 means the person is between 0 and 10
years old, a = 2 means the person is between 10 and 20 years old, a = 3 means the person is older than
20. One way to transform the variable a into a binary representation would be to use three binary variables
(a1, a2, a3) with (1, 0, 0), (0, 1, 0), (0, 0, 1) representing a = 1, a = 2, a = 3 respectively. This is called
1− of −M coding since only 1 of the binary variables is active in encoding the M states. By construction,
this means that the variables a1, a2, a3 are dependent – for example, if we know that a1 = 1, we know that
a2 = 0 and a3 = 0. Regardless of any class conditioning, these variables will always be dependent, contrary
to the assumption of Naive Bayes. A correct approach is to use variables with more than two states, as
explained in section(10.2.2).

10.2.2 Multi-state variables

The extension of the above method to class variables c with more than two states is straightforward. We
concentrate here therefore on extending the attribute variables to having more than two states. For a
variable xi with states, dom(xi) = {1, . . . , S}, the likelihood of observing a state xi = s is denoted

p(xi = s|c) = θis(c) (10.2.17)

with
∑

s p(xi = s|c) = 1. The class conditional likelihood of generating the i.i.d. data D = (xn, cn), n =
1, . . . , N is

N∏
n=1

p(xn|cn) =

N∏
n=1

D∏
i=1

S∏
s=1

C∏
c=1

θis(c)
I[xni =s]I[cn=c]. (10.2.18)

The effect of the indicators is that only those terms θis(c) survive for which there are attributes i in state s
for class c. This then gives the class conditional log-likelihood

L(θ) =
N∑
n=1

D∑
i=1

S∑
s=1

C∑
c=1

I [xni = s] I [cn = c] log θis(c) (10.2.19)

We can optimize with respect to the parameters θ using a Lagrange multiplier (one for each of the attributes
i and classes c) to ensure normalisation. This gives the Lagrangian

L(θ, λ) =

N∑
n=1

D∑
i=1

S∑
s=1

C∑
c=1

I [xni = s] I [cn = c] log θis(c) +

C∑
c=1

D∑
i=1

λci

(
1−

S∑
s=1

θis(c)

)
(10.2.20)

To find the optimum of this function we may differentiate with respect to θis(c) and equate to zero. Solving
the resulting equation we obtain

N∑
n=1

I [xni = s] I [cn = c]

θis(c)
= λci (10.2.21)
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cn

xni

θi,c

n = 1 : N

θc

c = 1 : C

i = 1 : D

Figure 10.3: Bayesian Naive Bayes with a factorised prior on the class con-
ditional attribute probabilities p(xi = s|c). For simplicity we assume that
the class probability θc ≡ p(c) is learned with maximum likelihood, so that
no distribution is placed over this parameter.

Hence, by normalisation,

θis(c) = p(xi = s|c) =

∑
n I [xni = s] I [cn = c]∑

s′,n′ I
[
xn
′
i = s′

]
I [cn′ = c]

(10.2.22)

The maximum likelihood setting for the parameter p(xi = s|c) equals the relative number of times that
attribute i is in state s for class c.

10.2.3 Text classification

Consider a set of documents about politics, and another set about sport. Our interest is to make a method
that can automatically classify a new document as pertaining to either sport or politics. We search through
both sets of documents to find say the 100 most commonly occurring words (not including so-called ‘stop
words’ such as ‘a’ or ‘the’). Each document is then represented by a 100 dimensional vector representing the
number of times that each of the words occurs in that document – the so called bag of words representation
(this is a crude representation of the document since it discards word order). A Naive Bayes model specifies
a distribution of these number of occurrences p(xi|c), where xi is the count of the number of times word i
appears in documents of type c. One can achieve this using either a multistate representation (as discussed
in section(10.2.2)) or using a continuous xi to represent the relative frequency of word i in the document.
In the latter case p(xi|c) could be conveniently modelled using for example a Beta distribution.

Despite the simplicity of naive Bayes, it can classify novel documents surprisingly well[137] (although nat-
urally the real practical methods work with many more attributes and choose them wisely). Intuitively a
potential justification for the conditional independence assumption is that if we know that a document is
about politics, this is a good indication of the kinds of other words we will find in the document. Because
Naive Bayes is a reasonable classifier in this sense, and has minimal storage and fast training, it has been
applied to time and storage critical applications, such as automatically classifying webpages into types[309],
and spam filtering[8]. It also forms one of the simplest yet most commonly used basic machine learning
classification routines.

10.3 Bayesian Naive Bayes

As we saw in the previous section, naive Bayes can be a powerful method for classification, yet can be overly
zealous in the case of small counts. If a single attribute i has no counts for class c then, irrespective of
the other attributes, the classifier will say that x cannot be from class c. This happens because the prod-
uct of 0 with anything else remains 0. To counter overconfidence effect, we can use a simple Bayesian method.

Given a dataset D = {(xn, cn), n = 1, . . . , N}, we predict the class c of an input x using

p(c|x,D) ∝ p(x,D, c)p(c|D) ∝ p(x|D, c)p(c|D) (10.3.1)
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For convenience we will simply set p(c|D) using maximum likelihood

p(c|D) =
1

N

∑
n

I [cn = c] (10.3.2)

However, as we’ve seen, setting the parameters of p(x|D, c) using maximum likelihood training can yield
over-confident predictions in the case of sparse data. A Bayesian approach that addresses this difficulty
uses priors on the probabilities p(xi = s|c) ≡ θis(c) to discourage extreme values. The model is depicted in
fig(10.3).

The prior

Writing θi(c) =
(
θi1(c), . . . , θiS(c)

)
as the vector of probabilities and θ =

{
θi(c), i = 1, . . . , D, c = 1, . . . , C

}
,

we make the global factorisation assumption (see section(9.4)) and use a prior

p(θ) =
∏
i,c

p(θi(c)) (10.3.3)

We consider discrete xi each of which take states from 1, . . . , S. In this case p(xi = s|c) corresponds to a
categorical distribution, for which the conjugate prior is a Dirichlet distribution. Under the factorised prior
assumption (10.3.3) we define a prior for each attribute i and class c,

p(θi(c)) = Dirichlet
(
θi(c)|ui(c)

)
(10.3.4)

where ui(c) is the hyperparameter vector of the Dirichlet distribution for table p(xi|c).

The posterior

Consistent with our general Bayesian BN training result in section(9.4), the parameter posterior factorises

p(θ(c∗)|D) =
∏
i

p(θi(c∗)|D) (10.3.5)

where

p(θi(c∗)|D) ∝ p(θi(c∗))
∏

n:cn=c∗

p(xni |θi(c∗)) (10.3.6)

By conjugacy, the posterior for class c∗ is a Dirichlet distribution,

p(θi(c∗)|D) = Dirichlet
(
θi(c∗)|ûi(c∗)

)
(10.3.7)

where the vector ûi(c∗) has components[
ûi(c∗)

]
s

= uis(c
∗) +

∑
n:cn=c∗

I [xni = s] (10.3.8)

For Dirichlet hyperparameters ui(c∗) the above equation updates the hyperparameter by the number of
times variable i is in state s for class c∗ data. A common default setting is to take all components of u to
be 1.

Classification

The posterior class distribution for a novel input x∗ is given by

p(c∗|x∗,D) ∝ p(c∗,x∗,D) ∝ p(c∗|D)p(x∗|D, c∗) = p(c∗|D)
∏
i

p(x∗i |D, c∗) (10.3.9)

To compute p(x∗i |D, c∗) we use

p(x∗i = s|D, c∗) =

∫
θi(c∗)

p(x∗i = s,θi(c∗)|D, c∗) =

∫
θi(c∗)

p(x∗i = s|θi(c∗))p(θi(c∗)|D) (10.3.10)

=

∫
θi(c∗)

θis(c
∗)p(θi(c∗)|D) (10.3.11)
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c

x1 x2 x3 x4

Figure 10.4: Tree Augmented Naive (TAN) Bayes. Each variable xi has
at most one parent. The maximum likelihood optimal TAN structure is
computed using a modified Chow-Liu algorithm in which the conditional
mutual information MI(xi;xj |c) is computed for all i, j. A maximum weight
spanning tree is then found and turned into a directed graph by orienting
the edges outwards from a chosen root node. The table entries can then be
read off using the usual maximum likelihood counting argument.

Using the general identity∫
θsDirichlet (θ|u) dθ =

1

Z(u)

∫ ∏
s′

θs′
us′−1+I[s′=s]dθ =

Z(u′)

Z(u)
(10.3.12)

where Z(u) is the normalisation constant of the distribution Dirichlet (·|u) and

u′s =

{
us s 6= s′

us + 1 s = s′
(10.3.13)

we obtain

p(c∗|x∗,D) ∝ p(c∗|D)
∏
i

Z(u∗i(c∗))

Z(ûi(c∗))
(10.3.14)

where

u∗is (c∗) = ûis(c
∗) + I [x∗i = s] (10.3.15)

Example 10.3 (Bayesian Naive Bayes). Repeating the previous analysis for the ‘Are they Scottish?’ data
from example(10.2), the probability under a uniform Dirichlet prior for all the tables, gives a value of 0.764
for the probability that (1, 0, 1, 1, 0) is Scottish, compared with a value of 0.9076 under the standard Naive
Bayes assumption. See demoNaiveBayes.m.

10.4 Tree Augmented Naive Bayes

A natural extension of Naive Bayes is to relax the assumption that the attributes are independent given the
class:

p(x|c) 6=
D∏
i=1

p(xi|c) (10.4.1)

The question then arises – which structure should we choose for p(x|c)? As we saw in section(9.5), learning
a structure is computationally infeasible for all but very small numbers of attributes. A practical algorithm
therefore requires a specific form of constraint on the structure. In section(9.5.4) we saw that we can learn
single-parent tree-structured networks efficiently. Below we extend this to learning class dependent tree
networks for classification.

10.4.1 Learning tree augmented Naive Bayes networks

For a distribution p(x1, . . . , xD|c) of the form of a tree structure with a single-parent constraint, see fig(10.4),
we can readily find the class conditional maximum likelihood solution by computing the Chow-Liu tree for
each class. One then adds links from the class node c to each variable and learns the class conditional
probabilities from c to x, which can be read off for maximum likelihood using the usual counting argument.
Note that this would generally result in a different Chow-Liu tree for each class.
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Practitioners typically constrain the network to have the same structure for all classes. The maximum
likelihood objective under the TAN constraint then corresponds to maximising the conditional mutual in-
formation[104]

MI(xi;xj |c) = 〈KL(p(xi, xj |c)|p(xi|c)p(xj |c))〉p(c) (10.4.2)

see exercise(10.7). Once the structure is learned one subsequently sets parameters by maximum likelihood
counting. Techniques to prevent overfitting are discussed in [104] and can be addressed using Dirichlet
priors, as for the simpler Naive Bayes structure.

One can readily consider less restrictive structures than single-parent Belief Networks. However, the com-
plexity of finding optimal BN structures is generally computationally infeasible and heuristics are required
to limit the search space.

10.5 Summary

• Naive Bayes is a simple class-conditional generative model of data that can be used to form a simple
classifier.

• Bayesian training of the parameters is straightforward.

• An extension of the standard naive Bayes’ model is to consider attributes with at most a single parent
attribute (in addition to the class label). Finding the maximum likelihood optimal tree augmented structure
is straightforward and corresponds to a maximum spanning tree problem with weights given by the class
conditional mutual information.

10.6 Code

NaiveBayesTrain.m: Naive Bayes trained with Maximum Likelihood
NaiveBayesTest.m: Naive Bayes test
NaiveBayesDirichletTrain.m: Naive Bayes trained with Bayesian Dirichlet
NaiveBayesDirichletTest.m: Naive Bayes testing with Bayesian Dirichlet
demoNaiveBayes.m: Demo of Naive Bayes

10.7 Exercises

Exercise 10.1. A local supermarket specializing in breakfast cereals decides to analyze the buying patterns
of its customers. They make a small survey asking 6 randomly chosen people their age (older or younger
than 60 years) and which of the breakfast cereals (Cornflakes, Frosties, Sugar Puffs, Branflakes) they like.
Each respondent provides a vector with entries 1 or 0 corresponding to whether they like or dislike the cereal.
Thus a respondent with (1101) would like Cornflakes, Frosties and Branflakes, but not Sugar Puffs. The
older than 60 years respondents provide the following data (1000), (1001), (1111), (0001). The younger than
60 years old respondents responded (0110), (1110). A novel customer comes into the supermarket and says
she only likes Frosties and Sugar Puffs. Using naive Bayes trained with maximum likelihood, what is the
probability that she is younger than 60?

Exercise 10.2. A psychologist does a small survey on ‘happiness’. Each respondent provides a vector with
entries 1 or 0 corresponding to whether they answer ‘yes’ to a question or ‘no’, respectively. The question
vector has attributes

x = (rich,married, healthy) (10.7.1)
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Thus, a response (1, 0, 1) would indicate that the respondent was ‘rich’, ‘unmarried’, ‘healthy’. In addition,
each respondent gives a value c = 1 if they are content with their lifestyle, and c = 0 if they are not. The fol-
lowing responses were obtained from people who claimed also to be ‘content’ : (1, 1, 1), (0, 0, 1), (1, 1, 0), (1, 0, 1)
and for ‘not content’: (0, 0, 0), (1, 0, 0), (0, 0, 1), (0, 1, 0), (0, 0, 0).

1. Using Naive Bayes, what is the probability that a person who is ‘not rich’, ‘married’ and ‘healthy’ is
‘content’?

2. What is the probability that a person who is ‘not rich’ and ‘married’ is ‘content’? (That is, we do not
know whether or not they are ‘healthy’).

3. Consider the following vector of attributes :

x1 = 1 if customer is younger than 20 ;x1 = 0 otherwise (10.7.2)

x2 = 1 if customer is between 20 and 30 years old ;x2 = 0 otherwise (10.7.3)

x3 = 1 if customer is older than 30 ;x3 = 0 otherwise (10.7.4)

x4 = 1 if customer walks to work ;x4 = 0 otherwise (10.7.5)

Each vector of attributes has an associated class label ‘rich’ or ‘poor’. Point out any potential difficulties
with using your previously described approach to training using naive Bayes. Hence describe how to
extend your previous naive Bayes method to deal with this dataset.

Exercise 10.3. Whizzco decide to make a text classifier. To begin with they attempt to classify documents
as either sport or politics. They decide to represent each document as a (row) vector of attributes describing
the presence or absence of words.

x = (goal, football, golf,defence, offence,wicket, office, strategy) (10.7.6)

Training data from sport documents and from politics documents is represented below in MATLAB using
a matrix in which each row represents the 8 attributes.

xP=[1 0 1 1 1 0 1 1; % Politics

0 0 0 1 0 0 1 1;

1 0 0 1 1 0 1 0;

0 1 0 0 1 1 0 1;

0 0 0 1 1 0 1 1;

0 0 0 1 1 0 0 1]

xS=[1 1 0 0 0 0 0 0; % Sport

0 0 1 0 0 0 0 0;

1 1 0 1 0 0 0 0;

1 1 0 1 0 0 0 1;

1 1 0 1 1 0 0 0;

0 0 0 1 0 1 0 0;

1 1 1 1 1 0 1 0]

Using a maximum likelihood naive Bayes classifier, what is the probability that the document x = (1, 0, 0, 1, 1, 1, 1, 0)
is about politics?

Exercise 10.4. A Naive Bayes Classifier for binary attributes xi ∈ {0, 1} is parameterised by θ1
i = p(xi =

1|class = 1), θ0
i = p(xi = 1|class = 0), and p1 = p(class = 1) and p0 = p(class = 0). Show that the decision

to classify a datapoint x as class 1 holds if wTx + b > 0 for some w and b, and state explicitly w and b as
a function of θ1,θ0, p1, p0.

Exercise 10.5. This question concerns spam filtering. Each email is represented by a vector

x = (x1, . . . , xD) (10.7.7)

where xi ∈ {0, 1}. Each entry of the vector indicates if a particular symbol or word appears in the email.
The symbols/words are

money, cash, !!!, viagra, . . . , etc. (10.7.8)
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so that for example x2 = 1 if the word ‘cash’ appears in the email. The training dataset consists of a set of
vectors along with the class label c, where c = 1 indicates the email is spam, and c = 0 not spam. Hence,
the training set consists of a set of pairs (xn, cn), n = 1, . . . , N . The naive Bayes model is given by

p(c, x) = p(c)
D∏
i=1

p(xi|c) (10.7.9)

1. Derive expressions for the parameters of this model in terms of the training data using maximum
likelihood. Assume that the data is independent and identically distributed

p(c1, . . . , cN , x1, . . . , xN ) =

N∏
n=1

p(cn, xn) (10.7.10)

Explicitly, the parameters are

p(c = 1), p(xi = 1|c = 1), p(xi = 1|c = 0), i = 1, . . . , D (10.7.11)

2. Given a trained model p(x, c), explain how to form a classifier p(c|x).

3. If ‘viagra’ never appears in the spam training data, discuss what effect this will have on the classification
for a new email that contains the word ‘viagra’. Explain how you might counter this effect. Explain
how a spammer might try to fool a naive Bayes spam filter.

Exercise 10.6. For a distribution p(x, c) and an approximation q(x, c), show that when p(x, c) corresponds
to the empirical distribution, finding q(x, c) that minimises the Kullback-Leibler divergence

KL(p(x, c)|q(x, c)) (10.7.12)

corresponds to maximum likelihood training of q(x, c) assuming i.i.d. data.

Exercise 10.7. Consider a distribution p(x, c) and a Tree Augmented approximation

q(x, c) = q(c)
∏
i

q(xi|xpa(i), c), pa(i) < i or pa(i) = ∅ (10.7.13)

Show that for the optimal q(x, c) constrained as above, the solution q(x, c) that minimises KL(p(x, c)|q(x, c))
when plugged back into the Kullback-Leibler expression gives, as a function of the parental structure,

KL(p(x, c)|q(x, c)) = −
∑
i

〈
log

p(xi, xpa(i)|c)
p(xpa(i)|c)p(xi|c)

〉
p(xi,xpa(i),c)

+ const. (10.7.14)

This shows that under the single-parent constraint and that each tree q(x|c) has the same structure, minimis-
ing the Kullback-Leibler divergence is equivalent to maximising the sum of conditional mutual information
terms. From exercise(10.6), we know therefore that this also corresponds to the maximum likelihood setting
for the parental structure. This can then be achieved by finding a maximal weight spanning tree, as in the
case of the Chow-Liu tree.
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CHAPTER 11

Learning with Hidden Variables

In many models some variables are not directly observed, but are latent or ‘hidden’. This can also occur when
some data are not observed. In this chapter we discuss methods for learning in the presence of such missing
information, and in particular develop the Expectation-Maximisation algorithm and related variants.

11.1 Hidden Variables and Missing Data

In practice data entries are often missing resulting in incomplete information to specify a likelihood. Obser-
vational variables may be split into visible (those for which we actually know the state) and missing (those
whose states would nominally be known but are missing for a particular datapoint).

Another scenario in which not all variables in the model are observed are the so-called hidden or latent
variable models. In this case there are variables which are essential for the model description but never
observed. For example, the underlying physics of a model may contain latent processes which are essential
to describe the model, but cannot be directly measured.

11.1.1 Why hidden/missing variables can complicate proceedings

In learning the parameters of models as previously described in chapter(9), we assumed we have complete
information to define all variables of the joint model of the data p(x|θ). Consider the Asbestos-Smoking-
Cancer network of section(9.3). Using the multivariate variable x = (a, s, c), if patient n has a complete
record, the likelihood of this record is

p(xn|θ) = p(an, sn, cn|θ) = p(cn|an, sn, θc)p(an|θa)p(sn|θs) (11.1.1)

which is factorised in terms of the table entry parameters. We exploited this property to show that table
entries θ can be learned by considering only local information, both in the maximum likelihood and Bayesian
frameworks.

Now consider the case that for some of the patients, only partial information is available. For example,
for patient n with incomplete record xn = (c = 1, s = 1) it is known that the patient has cancer and is a
smoker, but whether or not they had exposure to asbestos is unknown. Since we can only use the ‘visible’
available information it would seem reasonable (see section(11.1.2)) to assess parameters using the marginal
likelihood

p(xn|θ) =
∑
a

p(a, sn, cn|θ) =
∑
a

p(cn|a, sn, θc)p(a|θa)p(sn|θs) (11.1.2)
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xvis xinv

θ

minv

(a)

xvis xinv

θ

minv

(b)

Figure 11.1: (a): Missing at random assumption. The
mechanism that generates the missing data does not depend
on either the parameter θ of the model, or on the value of
the missing data. (b): Missing completely at random
assumption. The mechanism generating the missing data
is completely independent of the model. Note that in both
cases the direction of the arrow between xvis and xinv is
irrelevant.

Using the marginal likelihood, however, may result in computational difficulties since the likelihood equation
(11.1.2) cannot now be factorised into a product of the separate table parameters of the form fs(θs)fa(θa)fc(θc).
In this case the maximisation of the likelihood is more complex since the parameters of different tables are
coupled.

A similar complication holds for Bayesian learning. As we saw in section(9.4.1), under a prior factorised
over each CPT θ, the posterior is also factorised. However, the missing variable introduces dependencies in
the posterior parameter distribution, making the posterior more complex. In both the maximum likelihood
and Bayesian cases, one has a well defined likelihood function of the table parameters/posterior.

Note that missing data does not always make the parameter posterior non-factorised. For example, if
the cancer state is unobserved above, because cancer is a collider with no descendants, the conditional
distribution simply sums to 1, and one is left with a factor dependent on a and another on s.

11.1.2 The missing at random assumption

Under what circumstances is it valid to use the marginal likelihood to assess parameters? We partition
the variables x into those that are ‘visible’, xvis and ‘invisible’, xinv, so that the set of all variables can be
written x = [xvis, xinv]. For the visible variables we have an observed state xvis = v, whereas the state of
the invisible variables is unknown. To complete the picture we also need to model the process that informs
when data will be missing. We use an indicator minv = 1 to denote that the state of the invisible variables
is unknown and require then a model p(minv|xvis, xinv, θ). Then for a datapoint which contains both visible
and invisible information,

p(xvis = v,minv = 1|θ) =
∑
xinv

p(xvis = v, xinv,minv = 1|θ) (11.1.3)

=
∑
xinv

p(minv = 1|xvis = v, xinv, θ)p(xvis = v, xinv|θ) (11.1.4)

If we assume that the mechanism which generates invisible data is independent of the parameter and the
missing value xinv

p(minv = 1|xvis = v, xinv, θ) = p(minv = 1|xvis = v) (11.1.5)

then

p(xvis = v,minv = 1|θ) = p(minv = 1|xvis = v)
∑
xinv

p(xvis = v, xinv|θ) (11.1.6)

= p(minv = 1|xvis = v)p(xvis = v|θ) (11.1.7)

Only the term p(xvis = v|θ) conveys information about the parameter θ of the model. Therefore, provided
the mechanism by which the data is missing depends only on the visible states, we may simply use the
marginal likelihood to assess parameters. This is called the missing at random (MAR) assumption, see
fig(11.1).
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Example 11.1 (Not missing at random). EZsurvey.org stop men on the street and ask them their favourite
colour. All men whose favourite colour is pink decline to respond to the question – for any other colour,
all men respond to the question. Based on the data, EZsurvey.org produce a histogram of men’s favourite
colour, based on the likelihood of the visible data alone, confidently stating that none of them likes pink.
For simplicity, we assume there are only three colours, blue, green and pink. EZsurvey.org attempts to find
the histogram with probabilities θb, θg, θp with θb+θg +θp = 1. Each respondent produces a visible response
x with dom(x) = {blue, green, pink}, otherwise m = 1 if there is no response. Three men are asked their
favourite colour, giving data{

x1, x2, x3
}

= {blue,missing, green} (11.1.8)

Based on the likelihood of the visible data alone we have the log likelihood for i.i.d. data

L(θb, θg, θp) = log θb + log θg + λ (1− θb − θg − θp) (11.1.9)

where the last Lagrange term ensures normalisation. Maximising the expression we arrive at

θb =
1

2
, θg =

1

2
, θp = 0 (11.1.10)

Hence EZsurvey.org arrive at the erroneous conclusion that no men like pink, even though the reality is that
some men like pink – they just don’t want to say so. The unreasonable result that EZsurvey.org produce
is due to not accounting correctly for the mechanism which produces the data. In this case the data is not
MAR since whether or not the data is missing depends on the state of the missing variable.

The correct mechanism that generates the data (including the missing data is)

p(x1 = blue|θ)p(m2 = 1|θ)p(x3 = green|θ) = θbθpθg = θb (1− θb − θg) θg (11.1.11)

where we used p(m2 = 1|θ) = θp since the probability that a datapoint is missing is the same as the
probability that the favourite colour is pink. Maximising the likelihood, we arrive at

θb =
1

3
, θg =

1

3
, θp =

1

3
(11.1.12)

as we would expect. On the other hand if there is another visible variable, t, denoting the time of day,
and the probability that men respond to the question depends only on the time t alone (for example the
probability of having missing data is high during rush hour), then we may indeed treat the missing data as
missing at random.

A stronger assumption than MAR is that the missing data mechanism is completely independent of all other
model processes

p(minv = 1|xvis = v, xinv, θ) = p(minv = 1) (11.1.13)

which is called missing completely at random. This applies for example to latent variable models in which
the variable state is always missing, independent of anything else.

11.1.3 Maximum likelihood

Throughout the remaining discussion we will assume any missing data is MAR or missing completely at
random. We partition the variables into ‘visible variables v for which we know the states and ‘hidden’
variables h whose states will not be observed. For maximum likelihood we may then learn model parameters
θ by optimising the on the visible variables alone

p(v|θ) =
∑
h

p(v, h|θ) (11.1.14)

with respect to θ.
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11.1.4 Identifiability issues

The marginal likelihood objective function depends on the parameters only through p(v|θ), so that equivalent
parameter solutions may exist. For example, consider a latent variable model with distribution

p(x1, x2|θ) = θx1,x2 (11.1.15)

in which variable x2 is never observed. This means that the marginal likelihood only depends on the entry
p(x1|θ) =

∑
x2
θx1,x2 . Given a maximum likelihood solution θ∗, we can then always find an equivalent

maximum likelihood solution θ′ provided (see exercise(11.9))∑
x2

θ′x1,x2 =
∑
x2

θ∗x1,x2 (11.1.16)

In other cases there is an inherent symmetry in the parameter space of the marginal likelihood. For example,
consider the network over binary variables

p(c, a, s) = p(c|a, s)p(a)p(s) (11.1.17)

We assume we know the table for p(s) and that our aim is to learn the asbestos table p̂(a = 1) and cancer
tables

p̂(c = 1|a = 1, s = 1), p̂(c = 1|a = 1, s = 0), p̂(c = 1|a = 0, s = 1), p̂(c = 1|a = 0, s = 0) (11.1.18)

where we used a ‘ˆ’ to denote that these are parameter estimates.

We assume that we have missing data such that the states of variable a are never observed. In this case
an equivalent solution (in the sense that it has the same marginal likelihood) is given by interchanging the
states of a:

p̂′(a = 0) = p̂(a = 1) (11.1.19)

and the four tables

p̂′(c = 1|a = 0, s = 1) = p̂(c = 1|a = 1, s = 1), p̂′(c = 1|a = 0, s = 0) = p̂(c = 1|a = 1, s = 0)

p̂′(c = 1|a = 1, s = 1) = p̂(c = 1|a = 0, s = 1), p̂′(c = 1|a = 1, s = 0) = p̂(c = 1|a = 0, s = 0)
(11.1.20)

A similar situation occurs in a more general setting in which the state of a variable is consistently unobserved
(mixture models are a case in point) yielding an inherent symmetry in the solution space. A well known
characteristic of maximum likelihood algorithms is that ‘jostling’ occurs in the initial stages of training in
which these symmetric solutions compete.

11.2 Expectation Maximisation

The EM algorithm is a convenient and general purpose iterative approach to maximising the likelihood
under missing data/hidden variables[84, 202]. It is generally straightforward to implement and can achieve
large jumps in parameter space, particularly in the initial iterations.

11.2.1 Variational EM

The key feature of the EM algorithm is to form an alternative objective function for which the parameter
coupling effect discussed in section(11.1.1) is removed, meaning that individual parameter updates can be
achieved, akin to the case of fully observed data. The way this works is to replace the marginal likelihood
with a lower bound – it is this lower bound that has the useful decoupled form.

We first consider a single variable pair (v, h), where v stands for ‘visible’ and h for ‘hidden’. The model of the
data is then p(v, h|θ) and our interest is to set θ by maximising the marginal likelihood p(v|θ). To derive the
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Algorithm 11.1 Expectation Maximisation. Compute Maximum Likelihood value for data with hidden
variables. Input: a distribution p(x|θ) and dataset V. Returns ML candidate θ.

1: t = 0 . Iteration counter
2: Choose an initial setting for the parameters θ0. . Initialisation
3: while θ not converged (or likelihood not converged) do
4: t← t+ 1
5: for n = 1 to N do . Run over all datapoints
6: qnt (hn|vn) = p(hn|vn, θt−1) . E step
7: end for
8: θt = arg maxθ

∑N
n=1 〈log p(hn, vn|θ)〉qnt (hn|vn) . M step

9: end while
10: return θt . The max likelihood parameter estimate.

bound on the marginal likelihood, consider the Kullback-Leibler divergence (which is always non-negative)
between a ‘variational’ distribution q(h|v) and the parametric model p(h|v, θ):

KL(q(h|v)|p(h|v, θ)) ≡ 〈log q(h|v)− log p(h|v, θ)〉q(h|v) ≥ 0 (11.2.1)

The term ‘variational’ refers to the fact that this distribution will be a parameter of an optimisation problem.
Using p(h|v, θ) = p(h, v|θ)/p(v|θ) and the fact that p(v|θ) does not depend on h,

KL(q(h|v)|p(h|v, θ)) = 〈log q(h|v)〉q(h|v) − 〈log p(h, v|θ)〉q(h|v) + log p(v|θ) ≥ 0 (11.2.2)

Rearranging, we obtain a bound on the marginal likelihood1

log p(v|θ) ≥ −〈log q(h|v)〉q(h|v)︸ ︷︷ ︸
Entropy

+ 〈log p(h, v|θ)〉q(h|v)︸ ︷︷ ︸
Energy

(11.2.3)

The energy term is also called the ‘expected complete data log likelihood’. The bound is potentially useful
since the θ dependent energy term is similar in form to the fully observed case, except that terms with
missing data have their log likelihood weighted by a prefactor. Equation(11.2.3) is a marginal likelihood
bound for a single training example. Under the i.i.d. assumption, the log likelihood of all training data
V =

{
v1, . . . , vN

}
is the sum of the individual log likelihoods:

log p(V|θ) =

N∑
n=1

log p(vn|θ) (11.2.4)

Summing over the training data, we obtain a bound on the log (marginal) likelihood

log p(V|θ) ≥ L̃({q} , θ) ≡ −
N∑
n=1

〈log q(hn|vn)〉q(hn|vn)︸ ︷︷ ︸
entropy

+

N∑
n=1

〈log p(hn, vn|θ)〉q(hn|vn)︸ ︷︷ ︸
energy

(11.2.5)

Note that the bound L̃({q} , θ) is exact (that is, the right hand side is equal to the log likelihood) when we
set q(hn|vn) = p(hn|vn, θ), n = 1, . . . , N .

The bound depends both on θ and the set of variational distributions {q}. Our aim is then to try to optimise
this bound w.r.t. θ and {q}; in doing so we will push up the lower bound, and hopefully increase thereby
the likelihood itself. A simple iterative procedure to optimise the bound is to first fix θ and then optimise
w.r.t. {q}, and then fix {q} and optimise the bound w.r.t. θ. These are known as the ‘E’ and ‘M’ steps and
are repeated until convergence:

E-step For fixed θ, find the distributions q(hn|vn), n = 1, . . . , N that maximise equation (11.2.5).

M-step For fixed q(hn|vn), n = 1, . . . , N , find the parameters θ that maximise equation (11.2.5).

1This is analogous to a standard partition function bound in statistical physics, from where the terminology ‘energy’ and
‘entropy’ hails.
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11.2.2 Classical EM

In the variational E-step above, the fully optimal setting is

q(hn|vn) = p(hn|vn, θ) (11.2.6)

Since q is fixed during the M-step, performing the M-step optimisation is equivalent to maximising the energy
term alone, see algorithm(11.1). From here onwards we shall use the term ‘EM’ to refer to the classical
EM algorithm, unless otherwise stated. It is important to note that the EM algorithm cannot generally
guarantee to find the fully optimal maximum likelihood solution and can get trapped in local optima, as
discussed in example(11.2).

Example 11.2 (EM for a one-parameter model). We consider a model small enough that we can plot fully
the evolution of the EM algorithm. The model is on a single visible variable v with dom(v) = R and single
two-state hidden variable h with dom(h) = {1, 2}. We define a model p(v, h|θ) = p(v|h, θ)p(h) with

p(v|h, θ) =
1√
π
e−(v−θh)2 (11.2.7)

and p(h = 1) = p(h = 2) = 0.5. For an observation v = 2.75 our interest is to find the parameter θ that
optimises the likelihood

p(v = 2.75|θ) =
∑
h=1,2

p(v = 2.75|h, θ)p(h) =
1

2
√
π

(
e−(2.75−θ)2 + e−(2.75−2θ)2

)
(11.2.8)

The log likelihood is plotted in fig(11.2a) with optimum at θ = 1.325. If the state of h were given, the log
likelihood would be a single bump, rather than the more complex double bump in the case of missing data.
To use the EM approach to find the optimum θ, we need to work out the energy

〈log p(v, h|θ)〉q(h|v) = 〈log p(v|h, θ)〉q(h|v) + 〈log p(h)〉q(h|v) (11.2.9)

= −
〈

(v − θh)2
〉
q(h|v)

+ const. (11.2.10)

There are two h states of the q and distribution and normalisation requires q(1) + q(2) = 1. Due to the
normalisation, we can fully parameterise q using q(2) alone. The EM procedure then iteratively optimises
the lower bound

log p(v = 2.75|θ) ≥ L̃(q(2), θ)

≡ −q(1) log q(1)− q(2) log q(2)−
∑
h=1,2

q(h) (2.75− θh)2 + const. (11.2.11)

From an initial starting θ, the EM algorithm finds the q distribution that optimises L̃(q(2), θ) (E-step) and
then updates θ (M-step). Depending on the initial θ, the solution found is either a global or local optimum
of the likelihood, see fig(11.2).

The M-step is easy to work out analytically in this case with θnew = v 〈h〉q(h) /
〈
h2
〉
q(h)

. Similarly, the E-step

sets qnew(h) = p(h|v, θ) so that

qnew(h = 2) =
p(v = 2.75|h = 2, θ)p(h = 2)

p(v = 2.75)
=

e−(2.75−2θ)2

e−(2.75−2θ)2 + e−(2.75−θ)2 (11.2.12)

where we used

p(v = 2.75) = p(v = 2.75|h = 1, θ)p(h = 1) + p(v = 2.75|h = 2, θ)p(h = 2) (11.2.13)
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Figure 11.2: (a): The log likelihood for the model described in example(11.2). (b): Contours of the
lower bound L̃(q(h = 2), θ). For an initial choice θ = 1.9, successive updates of the E (vertical) and M
(horizontal) steps are plotted, with the algorithm converging to the global optimum maximum likelihood
setting for θ. (c): Starting at θ = 1.95, the EM algorithm converges to a local optimum.

Example 11.3. Consider a simple model

p(x1, x2|θ) (11.2.14)

where dom(x1) = dom(x2) = {1, 2}. Assuming an unconstrained distribution

p(x1, x2|θ) = θx1,x2 , θ1,1 + θ1,2 + θ2,1 + θ2,2 = 1 (11.2.15)

our aim is to learn θ from the data x1 = (1, 1) ,x2 = (1, ?) ,x3 = (?, 2). The energy term for the classical
EM is

log p(x1 = 1, x2 = 1|θ) + 〈log p(x1 = 1, x2|θ)〉p(x2|x1=1,θold) + 〈log p(x1, x2 = 2|θ)〉p(x1|x2=2,θold)

(11.2.16)

Writing out fully each of the above terms on a separate line gives the energy

log θ1,1 (11.2.17)

+p(x2 = 1|x1 = 1, θold) log θ1,1 + p(x2 = 2|x1 = 1, θold) log θ1,2 (11.2.18)

+p(x1 = 1|x2 = 2, θold) log θ1,2 + p(x1 = 2|x2 = 2, θold) log θ2,2 (11.2.19)

This expression resembles the standard log likelihood of fully observed data except that terms with missing
data have their weighted log parameters. The parameters are conveniently decoupled in this bound (apart
from the trivial normalisation constraint) so that finding the optimal parameters is straightforward. This is
achieved by the M-step update which gives

θ1,1 ∝ 1 + p(x2 = 1|x1 = 1, θold) θ1,2 ∝ p(x2 = 2|x1 = 1, θold) + p(x1 = 1|x2 = 2, θold)
θ2,1 = 0 θ2,2 ∝ p(x1 = 2|x2 = 2, θold)

(11.2.20)

where p(x2|x1, θ
old) ∝ θoldx1,x2 (E-step) etc. The E and M-steps are iterated till convergence.

The EM algorithm increases the likelihood

Whilst, by construction, the EM algorithm cannot decrease the lower bound on the likelihood, an important
question is whether or not the log likelihood itself is necessarily increased by this procedure.
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Figure 11.3: A database containing information about being a Smoker (1 signifies the
individual is a smoker), and lung Cancer (1 signifies the individual has lung Cancer).
Each row contains the information for an individual, so that there are 7 individuals in
the database.

We use θ′ for the new parameters, and θ for the previous parameters in two consecutive iterations. Using
q(hn|vn) = p(hn|vn, θ) we see that as a function of the parameters, the lower bound for a single variable
pair (v, h) depends on θ and θ′:

LB(θ′|θ) ≡ −〈log p(h|v, θ)〉p(h|v,θ) +
〈
log p(h, v|θ′)

〉
p(h|v,θ) . (11.2.21)

From the definition of the lower bound, equation (11.2.3), we have

log p(v|θ′) = LB(θ′|θ) +KL(p(h|v, θ)|p(h|v, θ′)). (11.2.22)

That is, the Kullback-Leibler divergence is the difference between the lower bound and the true likelihood.
We may then also write

log p(v|θ) = LB(θ|θ) +KL(p(h|v, θ)|p(h|v, θ))︸ ︷︷ ︸
0

(11.2.23)

Hence

log p(v|θ′)− log p(v|θ) = LB(θ′|θ)− LB(θ|θ)︸ ︷︷ ︸
≥0

+KL(p(h|v, θ)|p(h|v, θ′))︸ ︷︷ ︸
≥0

(11.2.24)

The first assertion is true since, by definition of the M-step, we search for a θ′ which has a higher value
for the bound than our starting value θ. The second assertion is true by the non-negative property of the
Kullback-Leibler divergence.

For more than a single datapoint, we simply sum each individual bound for log p(vn|θ). Hence we reach the
important conclusion that the EM algorithm increases, not only the lower bound on the marginal likelihood,
but the marginal likelihood itself (more correctly, EM cannot decrease these quantities).

Shared parameters and tables

It is often the case in models that parameters are shared between components of the model. The application
of EM to this shared parameter case is essentially straightforward. According to the energy term, we need
to identify all those terms in which the shared parameter occurs. The objective for the shared parameter is
then the sum over all energy terms containing the shared parameter.

11.2.3 Application to Belief networks

Conceptually, the application of EM to training Belief Networks with missing data is straightforward. The
battle is more notational than conceptual. We begin the development with an example, from which intuition
about the general case can be gleaned.

Example 11.4. Consider the network.

p(a, c, s) = p(c|a, s)p(a)p(s) (11.2.25)

for which we have a set of data, but that the states of variable a are never observed, see fig(11.3). Our goal
is to learn the CPTs p(c|a, s) and p(a) and p(s). To apply EM, algorithm(11.1) to this case, we first assume
initial parameters θ0

a, θ
0
s , θ

0
c .
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The first E-step, for iteration t = 1 then defines a set of distributions on the hidden variables (here the
hidden variable is a). For notational convenience, we write qnt (a) in place of qnt (a|vn). Then

qn=1
t=1 (a) = p(a|c = 1, s = 1, θ0), qn=2

t=1 (a) = p(a|c = 0, s = 0, θ0) (11.2.26)

and so on for the 7 training examples, n = 2, . . . , 7.

We now move to the first M-step. The energy term for any iteration t is:

E(θ) =
7∑

n=1

〈log p(cn|an, sn) + log p(an) + log p(sn)〉qnt (a) (11.2.27)

=
7∑

n=1

{
〈log p(cn|an, sn)〉qnt (a) + 〈log p(an)〉qnt (a) + log p(sn)

}
(11.2.28)

The final term is the log likelihood of the variable s, and p(s) appears explicitly only in this term. Hence,
the usual maximum likelihood rule applies, and p(s = 1) is simply given by the relative number of times
that s = 1 occurs in the database, giving p(s = 1) = 4/7, p(s = 0) = 3/7.

The contribution of parameter p(a = 1) to the energy occurs in the terms∑
n

{qnt (a = 0) log p(a = 0) + qnt (a = 1) log p(a = 1)} (11.2.29)

which, using the normalisation constraint is

log p(a = 0)
∑
n

qnt (a = 0) + log(1− p(a = 0))
∑
n

qnt (a = 1) (11.2.30)

Differentiating with respect to p(a = 0) and solving for the zero derivative we get the M-step update for
p(a = 0)

p(a = 0) =

∑
n q

n
t (a = 0)∑

n q
n
t (a = 0) +

∑
n q

n
t (a = 1)

=
1

N

∑
n

qnt (a = 0) (11.2.31)

That is, whereas in the standard maximum likelihood estimate, we would have the real counts of the data
in the above formula, here they have been replaced with our guessed values qnt (a = 0) and qnt (a = 1).

A similar story holds for p(c = 1|a = 0, s = 1). Again we need to consider that normalisation means that
p(c = 0|a = 0, s = 1) also contributes. The contribution of this term to the energy is from those data indices
n for which s = 1∑

n:cn=1,sn=1

qnt (a = 0) log p(c = 1|a = 0, s = 1) +
∑

n:cn=0,sn=1

qnt (a = 0) log (1− p(c = 1|a = 0, s = 1))

Optimising with respect to p(c = 1|a = 0, s = 1) gives

p(c = 1|a = 0, s = 1) =

∑
n I [cn = 1] I [sn = 1] qnt (a = 0)∑

n I [cn = 1] I [sn = 1] qnt (a = 0) +
∑

n I [cn = 0] I [sn = 1] qnt (a = 0)
(11.2.32)

For comparison, the setting in the complete data case is

p(c = 1|a = 0, s = 1) =

∑
n I [cn = 1] I [sn = 1] I [an = 0]∑

n I [cn = 1] I [sn = 1] I [an = 0] +
∑

n I [cn = 0] I [sn = 1] I [an = 0]
(11.2.33)

There is an intuitive relationship between these updates: in the missing data case we replace the indicators
by the assumed distributions q. Iterating the E and M steps, these parameters will converge to a local
likelihood optimum.
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11.2.4 General case

A belief network on a multivariate variable x takes the general form

p(x) =
∏
i

p(xi|pa (xi)). (11.2.34)

Some of the variables will be observed, and others hidden. We therefore partition the variable x into visible
and hidden multivariate parts x = (v, h). Given an i.i.d. dataset V =

{
v1, . . . , vN

}
our interest is to learn

the tables of p(x) to maximise the likelihood on the visible data V. For each datapoint index n, each mul-
tivariate variable xn = (vn, hn) decomposes into its visible and hidden parts; an upper variable index will
typically the datapoint, and a lower index the variable number.

From equation (11.2.5), the form of the energy term for belief networks is∑
n

〈log p(xn)〉qt(hn|vn) =
∑
n

∑
i

〈log p(xni |pa (xni ))〉qt(hn|vn) (11.2.35)

Here t indexes the iteration count for the EM algorithm. It is useful to define the following notation:

qnt (x) = qt(h
n|vn)δ(v, vn) (11.2.36)

This means that qnt (x) sets the visible variables in the observed state, and defines a conditional distribution
on the unobserved variables. We then define the mixture distribution

qt(x) =
1

N

N∑
n=1

qnt (x) (11.2.37)

The energy term in the left hand side of equation (11.2.35) can be written more compactly using this notation
as ∑

n

〈log p(xn)〉qt(hn|vn) = N 〈log p(x)〉qt(x) (11.2.38)

To see this consider the right hand side of the above

N 〈log p(x)〉qt(x) = N
∑
x

[log p(x)]
1

N

∑
n

qt(h
n|vn)δ(v, vn) =

∑
n

〈log p(xn)〉qt(hn|vn) (11.2.39)

Using this compact notation for the energy, and the structure of the belief network, we can decompose the
energy as

〈log p(x)〉qt(x) =
∑
i

〈log p(xi|pa (xi))〉qt(x) =
∑
i

〈
〈log p(xi|pa (xi))〉qt(xi|pa(xi))

〉
qt(pa(xi))

(11.2.40)

This means that maximising the energy is equivalent to minimising∑
i

〈
〈log qt(xi|pa (xi))〉qt(xi|pa(xi))

− 〈log p(xi|pa (xi))〉qt(xi|pa(xi))

〉
qt(pa(xi))

(11.2.41)

where we added the constant first term to make this into the form of a Kullback-Leibler divergence. Since
this is a sum of independent Kullback-Leibler divergences, optimally the M-step is given by setting

pnew(xi|pa (xi)) = qt(xi|pa (xi)) (11.2.42)

In practice, storing the qt(x) over the states of all variables x is prohibitively expensive. Fortunately, since
the M-step only requires the distribution on the family of each variable xi, one only requires the local
distributions qnt (xi, pa (xi)). We may therefore dispense with the global qt(x) and equivalently use

pnew(xi|pa (xi)) =

∑
n q

n
t (xi,pa (xi))∑

n′ q
n′
t (pa (xi))

(11.2.43)
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Algorithm 11.2 EM for Belief Networks. Input: a BN DAG and dataset on the visible variables V. Returns
the maximum likelihood estimate of the tables p(xi|pa (xi)), i = 1, . . . ,K.

1: t = 1 . Iteration counter
2: Set pt (xi|pa (xi)) to initial values. . Initialisation
3: while p (xi|pa (xi)) not converged (or likelihood not converged) do
4: t← t+ 1
5: for n = 1 to N do . Run over all datapoints
6: qnt (x) = pt (hn|vn) δ(v, vn) . E step
7: end for
8: for i = 1 to K do . Run over all variables
9: pt+1(xi|pa (xi)) = 1

N

∑N
n=1 q

n
t (xi|pa (xi)) . M step

10: end for
11: end while
12: return pt(xi|pa (xi)) . The max likelihood parameter estimate.

Using the EM algorithm, the optimal setting for the E-step is to use qt(h
n|vn) = pold(hn|vn). With this

notation, the EM algorithm can be compactly stated as in algorithm(11.2). See also EMbeliefnet.m. An
illustration of the evolution of the log likelihood under EM iterations is given in fig(11.4). For readers less
comfortable with the above KL-based derivation, we describe a more classical approach based on Lagrange
multipliers for a specific case in example(11.5).

Example 11.5 (Another belief network example). Consider a five variable distribution with discrete vari-
ables,

p(x1, x2, x3, x4, x5) = p(x1|x2)p(x2|x3)p(x3|x4)p(x4|x5)p(x5) (11.2.44)

in which the variables x2 and x4 are consistently hidden in the training data, and training data for x1, x3, x5

are always present. The distribution can be represented as a belief network

x1 x2 x3 x4 x5

The M-step is given by maximising the energy. According to the general form for the energy, equation
(11.2.35), we need to consider a variational distribution q(h|v) on the hidden variables h = (x2, x4) condi-
tioned on the visible variables v = (x1, x3, x5). Using n as the datapoint index and t as the EM iteration
counter, we require variational distributions for each datapoint

qt(x
n
2 , x

n
4 |xn1 , xn3 , xn5 ) (11.2.45)

To keep the notation more compact, we drop here the iteration counter index and write the above as simply
qn(x2, x4). In this case, the contributions to the energy have the form∑

n

〈log p(xn1 |x2)p(x2|xn3 )p(xn3 |x4)p(x4|xn5 )p(xn5 )〉qn(x2,x4) (11.2.46)

which may be written as∑
n

〈log p(xn1 |x2)〉qn(x2,x4) +
∑
n

〈log p(x2|xn3 )〉qn(x2,x4)

+
∑
n

〈log p(xn3 |x4)〉qn(x2,x4) +
∑
n

〈log p(x4|xn5 )〉qn(x2,x4) +
∑
n

log p(xn5 ) (11.2.47)
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A useful property can now be exploited, namely that each term depends on only those hidden variables in
the family that that term represents. Thus we may write∑

n

〈log p(xn1 |x2)〉qn(x2) +
∑
n

〈log p(x2|xn3 )〉qn(x2)

+
∑
n

〈log p(xn3 |x4)〉qn(x4) +
∑
n

〈log p(x4|xn5 )〉qn(x4) +
∑
n

log p(xn5 ) (11.2.48)

The final term can be set using maximum likelihood. Let us consider therefore a more difficult table,
p(x1|x2). When will the table entry p(x1 = i|x2 = j) occur in the energy? This happens whenever xn1 is in
state i. Since there is a summation over all the states of variables x2 (due to the average), there is also a term
with variable x2 in state j. Hence the contribution to the energy from terms of the form p(x1 = i|x2 = j) is∑

n

I [xn1 = i] qn(x2 = j) log p(x1 = i|x2 = j) (11.2.49)

where the indicator function I [xn1 = i] equals 1 if xn1 is in state i and is zero otherwise. To ensure normali-
sation of the table, we add a Lagrange term:

∑
n

I [xn1 = i] qn(x2 = j) log p(x1 = i|x2 = j) + λ

{
1−

∑
k

p(x1 = k|x2 = j)

}
(11.2.50)

Differentiating with respect to p(x1 = i|x2 = j) and equating to zero we get∑
n

I [xn1 = i]
qn(x2 = j)

p(x1 = i|x2 = j)
= λ (11.2.51)

or

p(x1 = i|x2 = j) ∝
∑
n

I [xn1 = i] qn(x2 = j). (11.2.52)

Hence

p(x1 = i|x2 = j) =

∑
n I [xn1 = i] qn(x2 = j)∑
n,k I [xn1 = k] qn(x2 = j)

(11.2.53)

From the E-step we have

qn(x2 = j) = pold(x2 = j|xn1 , xn3 , xn5 ) (11.2.54)

This optimal distribution is easy to compute since this is the marginal on the family, given some evidential
variables. Hence, the M-step update for the table is

pnew(x1 = i|x2 = j) =

∑
n I [xn1 = i] pold(x2 = j|xn1 , xn3 , xn5 )∑
n,k I [xn1 = k] pold(x2 = j|xn1 , xn3 , xn5 )

(11.2.55)

If there were no hidden data, equation (11.2.55) would read

pnew(x1 = i|x2 = j) ∝
∑
n

I [xn1 = i] I [xn2 = j] (11.2.56)

All that we do, therefore, in the general EM case, is to replace those deterministic functions such as I [xn2 = i]
by their missing variable equivalents pold(x2 = i|xn1 , xn3 , xn5 ).
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d Figure 11.4: Evolution of the log-likelihood versus iterations un-
der the EM training procedure (from solving the Printer Night-
mare with missing data, exercise(11.1)). Note how rapid progress
is made at the beginning, but convergence can be slow.

11.2.5 Convergence

Convergence of EM can be slow, particularly when the number of missing observations is greater than the
number of visible observations. In practice, one often combines the EM with gradient based procedures to
improve convergence, see section(11.6). Note also that the log likelihood is typically a non-convex function
of the parameters. This means that there may be multiple local optima and the solution found often depends
on the initialisation.

11.2.6 Application to Markov networks

Whilst our examples have been for belief networks, we may also apply the EM application to learning the
parameters of Markov networks that have missing data. For a MN defined over visible and hidden variables
with separate parameters θc for each clique c

p(v, h|θ) =
1

Z(θ)

∏
c

φc(h, v|θc) (11.2.57)

the EM variational bound is

log p(v|θ) ≥ H(q) +
∑
c

〈log φc(h, v|θc)〉q(h) − logZ(θ) (11.2.58)

where H(p) is the entropy function of a distribution, H(p) ≡ −〈log p(x)〉p(x). Whilst the bound decouples
the clique parameters in the second term, the parameters are nevertheless coupled in the normalisation

Z(θ) =
∑
v,h

C∏
c=1

φc(h, v|θc), θ = (θ1, . . . , θC) (11.2.59)

Because of this we cannot directly optimise the above bound on a parameter by parameter basis. One
approach is to use an additional bound logZ(θ) from above, as for iterative scaling, section(9.6.4) to decouple
the clique parameters in Z; we leave the details as an exercise for the interested reader.

11.3 Extensions of EM

11.3.1 Partial M step

It is not necessary to find the full optimum of the energy term at each iteration. As long as one finds a
parameter θ′ which has a higher energy than that of the current parameter θ, then the conditions required
in section(11.2.2) still hold, and the likelihood cannot decrease at each iteration.

11.3.2 Partial E-step

The E-step requires us to find the optimum of

log p(V|θ) ≥ −
N∑
n=1

〈log q(hn|vn)〉q(hn|vn) +

N∑
n=1

〈log p(hn, vn|θ)〉q(hn|vn) (11.3.1)

with respect to q(hn|vn). The fully optimal setting is

q(hn|vn) = p(hn|vn) (11.3.2)
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For a guaranteed increase in likelihood at each iteration, from section(11.2.2) we required that this fully
optimal setting of q is used. Unfortunately, therefore, one cannot in general guarantee that a partial E-step
(in which one would only partially optimsise the lower bound with respect to q for fixed θ) would always
increase the likelihood. Of course, it is guaranteed to increase the lower bound on the likelihood, though
not the likelihood itself. We discuss some partial E-step scenarios below.

Intractable energy

The EM algorithm assumes that we can calculate

〈log p(h, v|θ)〉q(h|v) (11.3.3)

However, there may be cases in which we cannot computationally carry out the averages with respect to the
fully optimal form of q. In this case one may consider a restricted class Q of q-distributions for which the
averages can be carried out. For example, one class for which the averages may become computationally
tractable is the factorised distributions q(h|v) =

∏
j q(hj |v); another popular class are Gaussian q distri-

butions. We can then find the best distribution in the class Q by using a numerical optimisation routine:

qopt = argmin
q∈Q

KL(q(h)|p(h|v, θ)) (11.3.4)

Alternatively, one can assume a certain structured form for the q distribution, and learn the optimal factors
of the distribution by free form functional calculus. This approach is taken for example in section(28.4.2).

Viterbi training

An extreme case of a partial E-step is to restrict q(hn|vn) to a delta-function. In this case, the entropic
term 〈log q(hn|vn)〉q(hn|vn) is constant (zero for discrete h), so that the optimal delta function q is to set

q(hn|vn) = δ (hn, hn∗ ) (11.3.5)

where

hn∗ = argmax
h

p(h, vn|θ) (11.3.6)

When used in the energy, the average with respect to q is trivial and the energy becomes simply

N∑
n=1

log p(hn∗ , v
n|θ) (11.3.7)

The corresponding bound on the log-likelihood is then

log p(V|θ) ≥ H +

N∑
n=1

log p(hn∗ , v
n|θ) (11.3.8)

where H is the entropy of the delta function (zero for discrete h).

As a partial justification for this technique, provided there is sufficient data, one might hope that the likeli-
hood as a function of the parameter θ will be sharply peaked around the optimum value. This means that
at convergence the approximation of the posterior p(h|v, θopt) by a delta function will be reasonable, and an
update of EM using Viterbi training will produce a new θ approximately the same as θopt. For any highly
suboptimal θ, however, p(h|v, θ) may be far from a delta function, and therefore a Viterbi update is less
reliable in terms of leading to an increase in the likelihood itself. This suggests that the initialisation of θ
for Viterbi training is more critical than for the standard EM. Note that since Viterbi training corresponds
to a partial E-step, EM training with this restricted class of q distribution is therefore only guaranteed to
increase the lower bound on the log likelihood, not the likelihood itself.

This technique is popular in the speech recognition community for training HMMs, section(23.2), from where
the terminology Viterbi training arises.
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Stochastic EM

Another approximate q(hn|vn) distribution that is popular is to use an empirical distribution formed by
samples from the fully optimal distribution p(hn|vn, θ). That is one draws samples (see chapter(27) for a
discussion on sampling) hn1 , . . . , h

n
L from p(hn|vn, θ) and forms a q distribution

q(hn|vn) =
1

L

L∑
l=1

δ (hn, hnl ) (11.3.9)

The energy then becomes proportional to

N∑
n=1

L∑
l=1

log p(hnl , v
n|θ) (11.3.10)

so that, as in Viterbi training, the energy is always computationally tractable for this restricted q class.
Provided that the samples from p(hn|vn) are reliable, stochastic training will produce an energy function
with (on average) the same characteristics as the true energy under the classical EM algorithm. This means
that the solution obtained from stochastic EM should tend to that from classical EM as the number of
samples increases.

11.4 A failure case for EM

Whilst the EM algorithm is very useful, there are some cases in which it does not work. Consider a likelihood
of the form

p(v|θ) =

∫
h
p (v|h, θ) p(h), with p (v|h, θ) = δ (v, f(h|θ)) p(h) (11.4.1)

If we attempt an EM approach for this, this will fail (see also exercise(7.8)). To see why this happens, the
M-step sets

θnew = argmax
θ

〈log p(v, h|θ)〉p(h|θold) = argmax
θ

〈log p(v|h, θ)〉p(h|θold) (11.4.2)

where we used the fact that for this model p(h) is independent of θ. In the case that p (v|h, θ) = δ (v, f(h|θ))
then

p(h|θold) ∝ δ (v, f(h|θold)) p(h) (11.4.3)

so that optimising the energy gives the update

θnew = argmax
θ

〈log δ (v, f(h|θ))〉p(h|θold) (11.4.4)

Since p(h|θold) is zero everywhere expect that h∗ for which v = f(h∗|θold), then the energy term becomes
log δ (f(h∗|θold), f(h∗|θ)). This is effectively negative infinity if θ 6= θold and zero when θ = θold. Hence
θ = θold is optimal and the EM algorithm fails to produce a meaningful parameter update.2 This situation
occurs in practice, and has been noted in particular in the context of Independent Component Analysis[239].
Whilst using a delta-function for the output is clearly extreme, a similar slowing down of parameter updates
can occur when the term p(v|h, θ) becomes close to deterministic.

One can attempt to heal this behaviour by deriving an EM algorithm based on the distribution

pε(v|h, θ) = (1− ε)δ (v, f(h|θ)) + εn(h), 0 ≤ ε ≤ 1 (11.4.5)

2For discrete variables and the Kronecker delta, the energy attains the maximal value of zero when θ = θold. In the case
of continuous variables, however, the log of the Dirac delta function is not well defined. Considering the delta function as the
limit of a narrow width Gaussian, for any small but finite width, the energy is largest when θ = θold.
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where n(h) is an arbitrary distribution on the hidden variable h. The original deterministic model corre-
sponds to p0(v|h, θ). Defining

pε(v|θ) =

∫
h
pε(v|h, θ)p(h), pε(v|θ) = (1− ε)p0(v|θ) + ε 〈n(h)〉p(h) (11.4.6)

an EM algorithm for pε(v|θ), 0 < ε < 1 satisfies

pε(v|θnew)− pε(v|θold) = (1− ε) (p0(v|θnew)− p0(v|θold)) > 0 (11.4.7)

which implies

p0(v|θnew)− p0(v|θold) > 0 (11.4.8)

This means that the EM algorithm for the non-deterministic case 0 < ε < 1 is guaranteed to increase the
likelihood under the deterministic model p0(v|θ) at each iteration (unless we are at convergence). See [107]
for an application of this ‘antifreeze’ technique to learning Markov Decision Processes with EM.

11.5 Variational Bayes

Variational Bayes is analogous to EM in that it helps us to deal with hidden variables; however it is a
Bayesian method that returns a posterior distribution on parameters, rather than a single best θ as given
by maximum likelihood. To keep the notation simple, we’ll initially assume only a single datapoint with
observation v. Our interest is then the parameter posterior

p(θ|v) ∝ p(v|θ)p(θ) ∝
∑
h

p(v, h|θ)p(θ) (11.5.1)

The VB approach assumes a factorised approximation of the joint hidden and parameter posterior, see
fig(11.5):

p(h, θ|v) ≈ q(h)q(θ) (11.5.2)

The optimal settings for the factors q(h) and q(θ) can be found by minimising the Kullback-Leibler divergence
between p(h, θ|v) and q(h)q(θ) as discussed below.

A bound on the marginal likelihood

By minimising the KL divergence,

KL(q(h)q(θ)|p(h, θ|v)) = 〈log q(h)〉q(h) + 〈log q(θ)〉q(θ) − 〈log p(h, θ|v)〉q(h)q(θ) ≥ 0 (11.5.3)

we arrive at the bound

log p(v) ≥ −〈log q(h)〉q(h) − 〈log q(θ)〉q(θ) + 〈log p(v, h, θ)〉q(h)q(θ) (11.5.4)

Minimizing the Kullback-Leibler divergence with respect to q(θ) and q(h) is equivalent to obtaining the
tightest lower bound on log p(v). A simple coordinate-wise procedure in which we first fix the q(θ) and solve
for q(h) and then vice versa is analogous to the E and M step of the EM algorithm:

E-step

qnew(h) = argmin
q(h)

KL
(
q(h)qold(θ)|p(h, θ|v)

)
(11.5.5)

M-step

qnew(θ) = argmin
q(θ)

KL(qnew(h)q(θ)|p(h, θ|v)) (11.5.6)

For a set of observations V and hidden variables H, the procedure is described in algorithm(11.3). For
distributions q(H) and q(θ) which are parameterised or otherwise constrained, the best distributions in the
minimal KL sense are returned. In general, each iteration of VB is guaranteed to increase the bound on
the marginal likelihood, but not the marginal likelihood itself. Like the EM algorithm, VB can (and often
does) suffer from local maxima issues. This means that the converged solution can be dependent on the
initialisation.
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Algorithm 11.3 Variational Bayes.

1: t = 0 . Iteration counter
2: Choose an initial distribution q0(θ). . Initialisation
3: while θ not converged (or likelihood bound not converged) do
4: t← t+ 1
5: qt(H) = arg minq(H) KL(q(H)qt−1(θ)|p(H, θ|V)) . E step
6: qt(θ) = arg minq(θ) KL(qt(H)q(θ)|p(H, θ|V)) . M step
7: end while
8: return qt(θ) . The posterior parameter approximation.

vn

hn

θ

N

(a)

hn

θ

N

(b)

Figure 11.5: (a): Generic form of a
model with hidden variables. (b): A
factorised posterior approximation used in
Variational Bayes.

Unconstrained approximations

For fixed q(θ) the contribution to the KL divergence equation (11.5.3) from q(h) is

〈log q(h)〉q(h) − 〈log p(v, h, θ)〉q(h)q(θ) = KL(q(h)|p̃(h)) + const. (11.5.7)

where

p̃(h) ≡ 1

Z̃
exp

(
〈log p(v, h, θ)〉q(θ)

)
(11.5.8)

and Z̃ is a normalising constant. Hence, for fixed q(θ), the E-step sets q(h) to p̃,

q(h) ∝ exp 〈log p(v, h, θ)〉q(θ) ∝ exp 〈log p(v, h|θ)〉q(θ) (11.5.9)

Similarly, for fixed q(h), the M-step sets

q(θ) ∝ exp 〈log p(v, h, θ)〉q(h) = p(θ) exp 〈log p(v, h|θ)〉q(h) (11.5.10)

These E and M-step updates are iterated to convergence.

i.i.d. Data

Under the i.i.d. assumption, we obtain a bound on the marginal likelihood for the whole dataset V ={
v1, . . . , vN

}
:

log p(V|θ) ≥
∑
n

{
−〈log q(hn)〉q(hn) − 〈log q(θ)〉q(θ) + 〈log p(vn, hn, θ)〉q(hn)q(θ)

}
(11.5.11)

The bound holds for any q(hn) and q(θ) but is tightest for the converged estimates from the VB procedure.
For an i.i.d. dataset, it is straightforward to show that without loss of generality we may assume

q(h1, . . . , hN ) =
∏
n

q(hn) (11.5.12)

Under this we arrive at algorithm(11.4).
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Algorithm 11.4 Variational Bayes (i.i.d. data).

1: t = 0 . Iteration counter
2: Choose an initial distribution q0(θ). . Initialisation
3: while θ not converged (or likelihood bound not converged) do
4: t← t+ 1
5: for n = 1 to N do . Run over all datapoints

6: qnt (hn) ∝ exp
(
〈log p(vn, hn|θ)〉qt−1(θ)

)
. E step

7: end for
8: qt(θ) ∝ p(θ) exp

(∑
n 〈log p(vn, hn|θ)〉qnt (hn)

)
. M step

9: end while
10: return qnt (θ) . The posterior parameter approximation.

11.5.1 EM is a special case of variational Bayes

If we wish to find a summary of the parameter posterior corresponding to only the most likely point θ∗,
then we may use a restricted q(θ) of the form

q(θ) = δ (θ, θ∗) (11.5.13)

where θ∗ is the single optimal value of the parameter. If we plug this assumption into equation (11.5.4) we
obtain the bound

log p(v|θ∗) ≥ −〈log q(h)〉q(h) + 〈log p(v, h, θ∗)〉q(h) + const. (11.5.14)

The M-step is then given by

θ∗ = argmax
θ

(
〈log p(v, h|θ)〉q(h) + log p(θ)

)
(11.5.15)

For a flat prior p(θ) = const., this is therefore equivalent to energy maximisation in the EM algorithm.
Using this single optimal value in the VB E-step update for q(hn) we have

qnt (h) ∝ p(v, h|θ∗) ∝ p(h|v, θ∗) (11.5.16)

which is the standard E-step of EM. Hence EM is a special case of VB under a flat prior p(θ) = const. and
delta function approximation of the parameter posterior.

11.5.2 An example: VB for the Asbestos-Smoking-Cancer network

In section(9.4) we showed how to apply Bayesian methods to train a belief network, giving rise to a posterior
distribution over parameter. In our previous discussion, the data was fully observed. Here, however, we wish
to revisit this case, now assuming however that some of the observations can be missing. This complicates
the Bayesian analysis and motivates approximate methods such as VB.
Let’s reconsider Bayesian learning in the binary variable asbestos-smoking-cancer network, as described in
section(9.4)

p(a, c, s) = p(c|a, s)p(a)p(s) (11.5.17)

in which we use a factorised parameter prior

p(θc)p(θa)p(θs) (11.5.18)

When all the data V is i.i.d. and observed, the parameter posterior factorises. However, as we discussed in
section(11.1.1) if the state of a (asbestos) is not observed, the parameter posterior no longer factorises:

p(θa, θs, θc|V) ∝ p(θa)p(θs)p(θc)p(V|θa, θs, θc) (11.5.19)

∝ p(θa)p(θs)p(θc)
∏
n

p(vn|θa, θs, θc) (11.5.20)

∝ p(θa)p(θs)p(θc)
∏
n

p(sn|θs)
∑
an

p(cn|sn, an, θc)p(an|θa) (11.5.21)
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Figure 11.6: (a): A model for the relation-
ship between lung Cancer, Asbestos expo-
sure and Smoking with factorised parame-
ter priors. Variables c and s are observed,
but variable a is consistently missing. (b):
A factorised parameter posterior approxi-
mation.

where the summation over a prevents the factorisation into a product of the individual table parameters.
This means that it becomes more awkward to represent the posterior since we cannot exactly do this by
using posterior distributions on each parameter table alone. This is a situation in which VB can be useful
since it enables us to impose factorisations on the posterior. In VB we consider an approximation to the
posterior over the parameters and latent variables q(h)q(θ). In this case θ = (θa, θs, θc) and the latent
variables are asbestos, an (one for each datapoint). For this example the visible variables are smoking and
cancer: V = {sn, cn} , n = 1, . . . , N . The exact joint distribution over all these variables is then

p(θa, θs, θc, a
1, . . . , aN |V) ∝ p(θa)p(θs)p(θc)︸ ︷︷ ︸

prior

∏
n

p(cn|sn, an, θc)p(sn|θs)p(an|θa)︸ ︷︷ ︸
posterior

(11.5.22)

In VB we make a factorised assumption, splitting the parameters and latent variables:

p(θ, a1:N |V) ≈ q(θ)q(a1:N ) (11.5.23)

From the general results in equation (11.5.9), we have (ignoring terms that are independent of a in the
exponent)

q(a1:N ) ∝ exp

(∑
n

〈log p(cn|sn, an, θc)〉q(θc)

)
(11.5.24)

From this we see immediately that our approximation automatically factorises

q(a1:N ) =
∏
n

q(an) (11.5.25)

Similarly, from equation (11.5.10) we have

q(θ) ∝ p(θ) exp

(∑
n

〈log p(cn|sn, an, θc)p(sn|θs)p(an|θa)〉q(an)

)
(11.5.26)

= p(θ) exp

(∑
n

〈log p(cn|sn, an, θc)〉q(an)

){∏
n

p(sn|θs)
}

exp

(∑
n

〈log p(an|θa)〉q(an)

)
(11.5.27)

Since the parameter prior is factorised, we can collect terms in θa, θs and θc and see that the VB assumption
automatically results in a factorised parameter posterior approximation. Hence, our VB approximation is
of the form, see fig(11.6),

p(θa, θs, θc, a
1, . . . , aN |V) ≈ q(θa)q(θc)q(θs)

∏
n

q(an) (11.5.28)

All that remains is to form E-step (q(an) updates) and M-step (q(θ) updates), as described below.
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M-step: q(θ) updates

From above we have

q(θa) ∝ p(θa)
∏
n

exp 〈log p(an|θa)〉q(an) (11.5.29)

where

〈log p(an|θa)〉q(an) = q(an = 1) log θa + q(an = 0) log (1− θa) (11.5.30)

Hence

exp 〈log p(an|θa)〉q(an) = θq(a
n=1)

a (1− θa)q(a
n=0) (11.5.31)

It is convenient to use a Beta distribution prior,

p(θa) = B (θa|α, β) ∝ θα−1
a (1− θa)β−1 (11.5.32)

since the posterior approximation is then also a Beta distribution:

q(θa) = B

(
θa|α+

∑
n

q(an = 1), β +
∑
n

q(an = 0)

)
(11.5.33)

A similar calculation gives

q(θs) = B

(
θs|α+

∑
n

I [sn = 1] , β +
∑
n

I [sn = 0]

)
(11.5.34)

Finally, we have a table for each of the parental states of c. For example

q(θc(a = 0, s = 1)) = B

(
θc|α+

∑
n

I [sn = 1] q(an = 0), β +
∑
n

I [sn = 0] q(an = 1)

)
(11.5.35)

These are reminiscent of the standard Bayesian equations, equation (9.4.15), except that the missing data
counts have been replaced by q’s.

E-step: q(an) updates

From equation (11.5.24), we have

q(an) ∝ exp
(
〈log p(cn|sn, an, θc)〉q(θc) + 〈log p(an|θa)〉q(θa)

)
(11.5.36)

For example, if assume that for datapoint n, s is in state 1 and c in state 0, then

q(an = 1) ∝ exp 〈log (1− θc(s = 1, a = 1))〉q(θc(s=1,a=1)) + 〈log θa〉q(θa) (11.5.37)

and

q(an = 0) ∝ exp
(
〈log (1− θc(s = 1, a = 0))〉q(θc(s=1,a=1)) + 〈log (1− θa)〉q(θa)

)
(11.5.38)

These updates require the Beta distribution averages 〈log θ〉B(θ|α,β) and 〈log (1− θ)〉B(θ|α,β); these are
straightforward to compute, see exercise(8.17).

The complete VB procedure is then given by iterating equations (11.5.33,11.5.34,11.5.35) and (11.5.37,11.5.38)
until convergence.
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Given a converged factorised approximation, computing a marginal table such as p(a = 1|V) is then straight-
forward under the approximation

p(a = 1|V) ≈
∫
θa

q(a = 1|θa)q(θa) =
α+

∑
n q(a

n = 1)

α+
∑

n q(a
n = 0) + β +

∑
n q(a

n = 1)
(11.5.39)

The application of VB to learning the tables in arbitrarily structured BNs is a straightforward extension
of the technique outlined here. Under the factorised approximation, q(h, θ) = q(h)q(θ), one will always
obtain a simple updating equation analogous to the full data case, but with the missing data replaced by
variational approximations. Nevertheless, if a variable has many missing parents, the number of states in
the average with respect to the q distribution can become intractable, and further constraints on the form
of the approximation, or additional bounds are required.

One may readily extend the above to the case of Dirichlet distributions on multinomial variables, see
exercise(11.5). Indeed, the extension to the exponential family is straightforward.

11.6 Optimising the Likelihood by Gradient Methods

The EM algorithm typically works well when the amount of missing information is small compared to the
complete information. In this case EM exhibits approximately the same convergence as Newton based
gradient method[255]. However, if the fraction of missing information approaches unity, EM can converge
very slowly. In the case of continuous parameters θ, an alternative is to compute the gradient of the
likelihood directly and use this as part of a standard continuous variable optimisation routine. The gradient
is straightforward to compute using the following identity. Consider the log likelihood

L(θ) = log p(v|θ) (11.6.1)

The derivative can be written

∂θL(θ) =
1

p(v|θ)∂θp(v|θ) =
1

p(v|θ)∂θ
∫
h
p(v, h|θ) (11.6.2)

At this point, we take the derivative inside the integral

∂θL(θ) =
1

p(v|θ)

∫
h
∂θp(v, h|θ) =

∫
h
p(h|v, θ)∂θ log p(v, h|θ) = 〈∂θ log p(v, h|θ)〉p(h|v,θ) (11.6.3)

where we used ∂ log f(x) = (1/f(x))∂f(x). The right hand side is the average of the derivative of the
log complete likelihood. This is closely related to the derivative of the energy term in the EM algorithm,
though note that the average here is performed with respect the current distribution parameters θ and not
θold as in the EM case. Used in this way, computing the derivatives of latent variable models is relatively
straightforward. These derivatives may then be used as part of a standard optimisation routine such as
conjugate gradients[255].

11.6.1 Undirected models

Whilst equation (11.6.3) represents the general case, it is not always possible to easily compute the required
averages. Consider an undirected model which contains both hidden and visible variables

p(v, h|θ) =
1

Z(θ)
exp (φ(v, h|θ)) (11.6.4)

For i.i.d. data, the log likelihood on the visible variables is (assuming discrete v and h)

L(θ) =
∑
n

log
∑
h

expφ(vn, h|θ)− log
∑
h,v

expφ(v, h|θ)

 (11.6.5)
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which has gradient

∂

∂θ
L =

∑
n


〈
∂

∂θ
φ(vn, h|θ)

〉
p(h|vn,θ)︸ ︷︷ ︸

clamped average

−
〈
∂

∂θ
φ(v, h|θ)

〉
p(h,v|θ)︸ ︷︷ ︸

free average

 (11.6.6)

For a Markov Network p that is intractable (the partition function Z cannot be computed efficiently and
averages w.r.t. p cannot be computed exactly), the gradient is particularly difficult to estimate since it is
the difference of two averages, each of which needs to be estimated. Even getting the sign of the gradient
correct can therefore be computationally difficult. For this reason learning in general unstructured Markov
networks is particularly difficult (the unstructured Boltzmann machine with hidden units being a particular
case in point).

11.7 Summary

• Provided the data is missing at random, we can safely learn parameters by maximising the likelihood of the
observed data.

• Variational Expectation Maximisation is a general-purpose algorithm for maximum likelihood learning under
missing information.

• The classical EM algorithm is a special case of V-EM and guarantees an improvement (non-decrease) in
the likelihood at each iteration.

• Bayesian learning in the case of missing information is potentially problematic since the posterior is typically
not factored according to the prior assumptions. In this case approximations are useful, such as variational
Bayes, which assumes a factorisation between the parameters and the latent/missing variables.

• The gradient can be easily computed for latent variable models and may be used as part of an optimisation
routine. This provides an alternative training approach in cases when EM is slow to converge.

11.8 Code

demoEMchestclinic.m: Demo of EM in learning the Chest Clinic Tables

In the demo code we take the original Chest Clinic network [184] and draw data samples from this network.
Our interest is then to see if we can use the EM algorithm to estimate the tables based on the data (with
some parts of the data missing at random). We assume that we know the correct BN structure, only that
the CPTs are unknown. We assume the logic gate table is known, so we do not need to learn this.

EMbeliefnet.m: EM training of a Belief Network

The code implements maximum likelihood learning of BN tables based on data with possibly missing
values.

11.9 Exercises

Exercise 11.1 (Printer Nightmare continued). Continuing with the BN given in fig(9.21), the following
table represents data gathered on the printer, where ? indicates that the entry is missing. Each column
represents a datapoint. Use the EM algorithm to learn all CPTs of the network.
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fuse assembly malfunction ? ? ? 1 0 0 ? 0 ? 0 0 ? 1 ? 1
drum unit ? 0 ? 0 1 0 0 1 ? ? 1 1 ? 0 0
toner out 1 1 0 ? ? 1 0 1 0 ? 0 1 ? 0 ?

poor paper quality 1 0 1 0 1 ? 1 0 1 1 ? 1 1 ? 0
worn roller 0 0 ? ? ? 0 1 ? 0 0 ? 0 ? 1 1

burning smell 0 ? ? 1 0 0 0 0 0 ? 0 ? 1 0 ?
poor print quality 1 1 1 0 1 1 0 1 0 0 1 1 ? ? 0

wrinkled pages 0 0 1 0 0 0 ? 0 1 ? 0 0 1 1 1
multiple pages fed 0 ? 1 0 ? 0 1 0 1 ? 0 0 ? 0 1

paper jam ? 0 1 1 ? 0 1 1 1 1 0 ? 0 1 ?

The table is contained in EMprinter.mat, using states 1, 2, nan in place of 0, 1, ? (since BRMLtoolbox

requires states to be numbered 1,2,....). Given no wrinkled pages, no burning smell and poor print quality,
what is the probability there is a drum unit problem?

Exercise 11.2. Consider the following distribution over discrete variables,

p(x1, x2, x3, x4, x5) = p(x1|x2, x4)p(x2|x3)p(x3|x4)p(x4|x5)p(x5), (11.9.1)

in which the variables x2 and x4 are consistently hidden in the training data, and training data for x1, x3, x5

are always present. Derive the EM update for the table p(x1|x2).

Exercise 11.3. Consider a simple two variable BN

p(y, x) = p(y|x)p(x) (11.9.2)

where both y and x are binary variables, dom(x) = {1, 2}, dom(y) = {1, 2}. You have a set of training
data {(yn, xn) , n = 1, . . . , N}, in which for some cases xn may be missing. We are specifically interested
in learning the table p(x) from this data. A colleague suggests that one can set p(x) by simply looking at
datapoints where x is observed, and then setting p(x = 1) to be the fraction of observed x that is in state 1.
Explain how this suggested procedure relates to maximum likelihood and EM.

Exercise 11.4. Assume that a sequence v1, . . . , vT , vt ∈ {1, . . . , V } is generated by a Markov chain. For a
single chain of length T , we have

p(v1, . . . , vT ) = p(v1)

T−1∏
t=1

p(vt+1|vt) (11.9.3)

For simplicity, we denote the sequence of visible variables as

v = (v1, . . . , vT ) (11.9.4)

For a single Markov chain labelled by h,

p(v|h) = p(v1|h)
T−1∏
t=1

p(vt+1|vt, h) (11.9.5)

In total there are a set of H such Markov chains (h = 1, . . . ,H). The distribution on the visible variables is
therefore

p(v) =
H∑
h=1

p(v|h)p(h) (11.9.6)

1. There are a set of training sequences, vn, n = 1, . . . , N . Assuming that each sequence vn is inde-
pendently and identically drawn from a Markov chain mixture model with H components, derive the
Expectation Maximisation algorithm for training this model.

2. The file sequences.mat contains a set of fictitious bio-sequence in a cell array sequences{\acup{n}}(t).
Thus sequences{3}(:) is the third sequence, GTCTCCTGCCCTCTCTGAAC which consists of 20 timesteps.
There are 20 such sequences in total. Your task is to cluster these sequences into two clusters, assum-
ing that each cluster is modelled by a Markov chain. State which of the sequences belong together by
assigning a sequence vn to that state for which p(h|vn) is highest. You may wish to use mixMarkov.m.
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Exercise 11.5. Write a general purpose routine VBbeliefnet(pot,x,pars) along the lines of EMbeliefnet.m
that performs Variational Bayes under a Dirichlet prior, using a factorised parameter approximation. As-
sume both global and local parameter independence for the prior and the approximation q, section(9.4.1).

Exercise 11.6. Consider a 3 ‘layered’ Boltzmann Machine which has the form

p(v,h1,h2,h3|θ) =
1

Z
φ(v,h1|θ1)φ(h1,h2|θ2)φ(h2,h3|θ3) (11.9.7)

where dim v = dim h1 = dim h2 = dim h3 = V

φ(x,y|θ) = exp

 V∑
i,j=1

Wijxiyj +Aijxixj +Bijyiyj

 (11.9.8)

All variables are binary with states 0, 1 and the parameters for each layer l are θl =
{
Wl,Al,Bl

}
.

1. In terms of fitting the model to visible data v1, . . . ,vN , is the 3 layered model above any more powerful
than fitting a two-layered model (the factor φ(h2,h3|θ3) is not present in the two-layer case)?

2. If we use a restricted potential

φ(x,y|θ) = exp

∑
i,j

Wijxiyj

 (11.9.9)

is the three layered model more powerful in being able to fit the visible data than the two-layered model?

Exercise 11.7. The sigmoid Belief Network is defined by the layered network

p(xL)
L∏
l=1

p(xl−1|xl) (11.9.10)

where vector variables have binary components xl ∈ {0, 1}wl and the width of layer l is given by wl. In
addition

p(xl−1|xl) =

wl∏
i=1

p(xl−1
i |xl) (11.9.11)

and

p(xl−1
i = 1|xl) = σ

(
wT
i,lx

l
)
, σ(x) = 1/(1 + e−x) (11.9.12)

for a weight vector wi,l describing the interaction from the parental layer. The top layer, p(xL) describes a
factorised distribution p(xL1 ), . . . , p(xLwL).

1. Draw the Belief Network structure of this distribution.

2. For the layer x0, what is the computational complexity of computing the likelihood p(x0), assuming
that all layers have equal width w?

3. Assuming a fully factorised approximation for an equal width network,

p(x1, . . . ,xL|x0) ≈
L∏
l=1

w∏
i=1

q(xli) (11.9.13)

write down the energy term of the Variational EM procedure for a single data observation x0, and
discuss the tractability of computing the energy.

Exercise 11.8. Show how to find the components 0 ≤ (θb, θg, θp) ≤ 1 that maximise equation (11.1.9).
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Exercise 11.9. A 2× 2 probability table, p(x1 = i, x2 = j) = θi,j, with 0 ≤ θi,j ≤ 1,
∑2

i=1

∑2
j=1 θi,j = 1 is

learned using maximal marginal likelihood in which x2 is never observed. Show that if

θ =

(
0.3 0.3
0.2 0.2

)
(11.9.14)

is given as a maximal marginal likelihood solution, then

θ =

(
0.2 0.4
0.4 0

)
(11.9.15)

has the same marginal likelihood score.
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CHAPTER 12

Bayesian Model Selection

So far we’ve mostly used Bayes’ rule for inference at the parameter level. Applied at the model level, Bayes’
rule gives a method for evaluating competing models. This provides an alternative to classical statistical
hypothesis testing techniques.

12.1 Comparing Models the Bayesian Way

Given two models M1 and M2 with parameters θ1, θ2 and associated parameter priors,

p(x, θ1|M1) = p(x|θ1,M1)p(θ1|M1), p(x, θ2|M2) = p(x|θ2,M2)p(θ2|M2) (12.1.1)

how can we compare the performance of the models in fitting a set of data D = {x1, . . . , xN}? The
application of Bayes’ rule to models gives a framework for answering questions like this – a form of Bayesian
hypothesis testing, applied at the model level. More generally, given an indexed set of models M1, . . . ,Mm,
and associated prior beliefs in the appropriateness of each model p(Mi), our interest is the model posterior
probability

p(Mi|D) =
p(D|Mi)p(Mi)

p(D)
(12.1.2)

where

p(D) =
m∑
i=1

p(D|Mi)p(Mi) (12.1.3)

Model Mi is parameterised by θi, and the model likelihood is given by

p(D|Mi) =

∫
p(D|θi,Mi)p(θi|Mi)dθi (12.1.4)

In discrete parameter spaces, the integral is replaced with summation. Note that the number of parameters
dim (θi) need not be the same for each model.

A point of caution here is that p(Mi|D) only refers to the probability relative to the set of models specified
M1, . . . ,Mm. This is not the absolute probability that model M fits ‘well’. To compute such a quantity
would require one to specify all possible models. Whilst interpreting the posterior p(Mi|D) requires some
care, comparing two competing model hypotheses Mi and Mj is straightforward and only requires the Bayes’
factor

p(Mi|D)

p(Mj |D)︸ ︷︷ ︸
Posterior Odds

=
p(D|Mi)

p(D|Mj)︸ ︷︷ ︸
Bayes’ Factor

p(Mi)

p(Mj)︸ ︷︷ ︸
Prior Odds

(12.1.5)
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Figure 12.1: (a): Discrete prior p(θ|Mfair) model of a ‘fair’ coin. A perfectly unbiased coin has θ = 0.5,
which would corresponds to a prior δ(θ, 0.5) – however, we assume a more general form here to illustrate
how richer prior assumptions can be used. (b): Prior p(θ|Mbiased) for a biased ‘unfair’ coin. In both cases
we are making explicit choices here about what we consider to be ‘fair’ and ‘unfair’.

which does not require integration/summation over all possible models. We also call the posterior odds the
posterior Bayes’ factor.

12.2 Illustrations : coin tossing

We’ll consider two illustrations for testing whether a coin is biased or not. The first uses a discrete parameter
space to keep the mathematics simple. In the second we use a continuous parameter space. In both cases
we have a dataset D that consists of a sequence x1, . . . , xN of outcomes dom(xn) = {heads, tails}.

12.2.1 A discrete parameter space

We consider two competing models, one corresponding to a fair coin, and the other a biased coin. The
bias of the coin, namely the probability that the coin will land heads, is specified by θ, so that a truly
fair coin has θ = 0.5. For simplicity we assume dom(θ) = {0.1, 0.2, . . . , 0.9}. For the fair coin we use the
distribution p(θ|Mfair) in fig(12.1a) and for the biased coin the distribution p(θ|Mbiased) in fig(12.1b). Note
that these priors essentially encode our subjective beliefs about what we mean for a coin to be biased, or
not. We are free to choose any prior distributions we wish. A strength of the Bayesian framework is that in
doing so, we spell out what we mean by (in this case) ‘biased’ or ‘unbiased’. This is the ‘subjective’ beauty
of the framework; if others disagree with the subjective choice of the prior, they are free to declare their
own competing assumptions and carry through the corresponding analysis, adding to the possible models
available.

For each model M , the likelihood for the model to generate the data D, which contains NH heads and NT

tails, is given by

p(D|M) =
∑
θ

p(D|θ,M)p(θ|M) =
∑
θ

θNH (1− θ)NT p(θ|M) (12.2.1)

= 0.1NH (1− 0.1)NT p(θ = 0.1|M) + . . .+ 0.9NH (1− 0.9)NT p(θ = 0.9|M) (12.2.2)

Assuming that p(Mfair) = p(Mbiased) the posterior odds is given by the ratio of the two model likelihoods.

Example 12.1 (Discrete parameter space).

5 Heads and 2 Tails Using NH = 5, NT = 2 in equation (12.2.2) we obtain p(D|Mfair) = 0.00786 and
p(D|Mbiased) = 0.0072. The posterior odds is

p(Mfair|D)

p(Mbiased|D)
= 1.09 (12.2.3)

indicating that there is little to choose between the two models.
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0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

(b)

Figure 12.2: Probability density priors on the probability of a Head p(θ). (a): For a fair coin we choose
p(θ|Mfair) = B (θ|50, 50). (b): For an biased coin we choose p(θ|Mbiased) = 0.5 (B (θ|3, 10) +B (θ|10, 3)).
Note the different vertical scales in the two cases.

50 Heads and 20 Tails For this case, repeating the above calculation, we obtain p(D|Mfair) = 1.5×10−20

and p(D|Mbiased) = 1.4× 10−19. The posterior odds is

p(Mfair|D)

p(Mbiased|D)
= 0.109 (12.2.4)

indicating that we have around 10 times the belief in the biased model as opposed to the fair model.

12.2.2 A continuous parameter space

Here we repeat the above calculation but for continuous parameter spaces. As for the discrete case, we are
free to choose any prior we wish; below we consider some simple priors for which the integrations required
are straightforward.

Fair coin

For the fair coin, a uni-modal prior is appropriate. We use Beta distribution

p(θ) = B (θ|a, b) , B (θ|a, b) ≡ 1

B(a, b)
θa−1 (1− θ)b−1 (12.2.5)

for convenience since this is conjugate to the binomial distribution and the required integrations are trivial.
For the fair coin prior we chose a = 50, b = 50, as shown in fig(12.2a). The likelihood is then given by

p(D|Mfair) =

∫
θ
p(θ)θNH (1− θ)NT =

1

B(a, b)

∫
θ
θa−1 (1− θ)b−1 θNH (1− θ)NT (12.2.6)

=
1

B(a, b)

∫
θ
θNH+a−1 (1− θ)NT+b−1 =

B(NH + a,NT + b)

B(a, b)
(12.2.7)

Biased coin

For the biased coin, we use a bimodal distribution formed, for convenience, as a mixture of two Beta
distributions:

p(θ|Mbiased) =
1

2
[B (θ|a1, b1) +B (θ|a2, b2)] (12.2.8)

as shown in fig(12.2b). The model likelihood p(D|Mbiased) is given by

p(D|Mfair) =

∫
θ
p(θ|Mbiased)θ

NH (1− θ)NT =
1

2

{
B(NH + a1, NT + b1)

B(a1, b1)
+
B(NH + a2, NT + b2)

B(a2, b2)

}
(12.2.9)

Assuming no prior preference for either a fair or biased coin p(M) = const., and repeating the above scenario
in the discrete parameter case:
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Figure 12.3: The likelihood of the total dice score, p(t|n) for n = 1 (top) to n = 5 (bottom) dice. Plotted
along the horizontal axis is the total score t. The vertical line marks the comparison for p(t = 9|n) for the
different number of die. The more complex models, which can reach more states, have lower likelihood, due
to normalisation over t.

Example 12.2 (Continuous parameter space).

5 Heads and 2 Tails Here p(D|Mfair) = 0.0079 and p(D|Mbiased) = 0.00622. The posterior odds is

p(Mfair|D)

p(Mbiased|D)
= 1.27 (12.2.10)

indicating that there is little to choose between the two models.

50 Heads and 20 Tails Here p(D|Mfair) = 9.4 × 10−21 and p(D|Mbiased) = 1.09 × 10−19. The posterior
odds is

p(Mfair|D)

p(Mbiased|D)
= 0.087 (12.2.11)

indicating that we have around 11 times the belief in the biased model as opposed to the fair model.

12.3 Occam’s Razor and Bayesian Complexity Penalisation

We return to the dice scenario of section(1.3.1). There we assumed there are two dice whose scores s1 and
s2 are not known. Only the sum of the two scores t = s1 + s2 is known. We then computed the posterior
joint score distribution p(s1, s2|t = 9) for the two die. We repeat the calculation here but now for multiple
dice and with the twist that we don’t know how many dice there are1, only that the sum of the scores is 9.
That is, we know

∑n
i=1 si = 9 but are not told the number of dice involved n. Assuming a priori that any

number n is equally likely, what is the posterior distribution over n?

From Bayes’ rule, we need to compute the posterior distribution over models

p(n|t) =
p(t|n)p(n)

p(t)
(12.3.1)

1This description of Occam’s razor is due to Taylan Cemgil.
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Figure 12.4: The posterior distribution p(n|t = 9) of
the number of die given the observed summed score of
9.

In the above the likelihood term is given by

p(t|n) =
∑

s1,...,sn

p(t, s1, . . . , sn|n) =
∑

s1,...,sn

p(t|s1, . . . , sn)
∏
i

p(si) =
∑

s1,...,sn

I

[
t =

n∑
i=1

si

]∏
i

p(si)

(12.3.2)

where p(si) = 1/6 for all scores si. By enumerating all 6n states, we can explicitly compute p(t|n), as
displayed in fig(12.3). The important observation is that as the models explaining the data become more
‘complex’ (n increases), more states become accessible. Assuming p(n) = const., the posterior p(n|t = 9)
is plotted in fig(12.4). A posteriori, there are only 3 plausible models, namely n = 2, 3, 4 since the rest are
either too complex, or impossible. This demonstrates the Occam’s razor effect of Bayesian model inference
which penalises models which are over complex.

12.4 A continuous example : curve fitting

Consider an additive set of periodic functions

y0(x) ≡ w0 + w1 cos(x) + w2 cos(2x) + . . .+ wK cos(Kx) (12.4.1)

This can be conveniently written in vector form

y0(x) ≡ wTφ(x) (12.4.2)

where φ(x) is a K + 1 dimensional vector with elements

φ(x) ≡ (1, cos(x), cos(2x), . . . , cos(Kx))T (12.4.3)

and the vector w contains the weights of the additive function. We are given a set of dataD = {(xn, yn), n = 1, . . . , N}
drawn from this distribution, where yn is the clean y0(xn) corrupted with additive zero mean Gaussian noise
with variance σ2,

yn = y0(xn) + εn, εn ∼ N
(
εn 0, σ2

)
(12.4.4)

see fig(12.5) and fig(12.6). Assuming i.i.d. data, we are interested in the posterior probability of the number
of coefficients, given the observed data:

p(K|D) =
p(D|K)p(K)

p(D)
=
p(K)

∏
n p(x

n)

p(D)
p(y1, . . . , yN |x1, . . . , xN ,K) (12.4.5)

w

K xn

yn0

yn

N

Figure 12.5: Belief Network representation of a Hierarchical Bayesian
Model for regression under the i.i.d. data assumption. Note that
the intermediate nodes on yn0 are included to highlight the role of the
‘clean’ underlying model. Since p(y|w,x) =

∫
y0
p(y|y0)p(y0|w,x) =∫

y0
N
(
y y0, σ

2
)
δ
(
y0 −wTx

)
= N

(
y wTx, σ2

)
, we can if desired do away

with the intermediate node y0 and place directly arrows from w and xn to
yn.

DRAFT November 21, 2011 269



Approximating the Model Likelihood

−10 −5 0 5 10
−3

−2

−1

0

1

2

3

(a)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

(b)

−10 −5 0 5 10
−3

−2

−1

0

1

2

3

(c)

Figure 12.6: (a) The data generated with additive Gaussian noise σ = 0.5 from a K = 5 component model.
(b) The posterior p(K|D). (c) The reconstruction of the data using 〈w〉Tφ(x) where 〈w〉 is the mean
posterior vector of the optimal dimensional model p(w|D,K = 5). Plotted in the continuous line is the
reconstruction. Plotted in dots is the true underlying clean data.

We will assume that a priori we have no preference for the number of frequency components in the model,
p(K) = const. The likelihood term above is given by the integral

p(y1, . . . , yN |x1, . . . , xN ,K) =

∫
w
p(w|K)

N∏
n=1

p(yn|xn,w,K) (12.4.6)

For p(w|K) = N (w 0, IK/α), the integrand is a Gaussian in w for which it is straightforward to evaluate
the integral, (see section(8.4) and exercise(12.3))

2 log p(y1, . . . , yN |x1, . . . , xN ,K) = N log
(
2πσ2

)
−

N∑
n=1

(yn)2

σ2
+bTA−1b−log det (2πA)+K log (2πα) (12.4.7)

where

A ≡ αI +
1

σ2

N∑
n=1

φ(xn)φT(xn), b ≡ 1

σ2

N∑
n=1

ynφ(xn) (12.4.8)

Assuming α = 1 and σ = 0.5, we sampled some data from a model with K = 5 components, fig(12.6a).
Given then this data, and assuming that we know the correct noise level σ and prior precision α = 1, the
task is to infer the number of components K that were used to generate this data. The posterior p(K|D)
plotted in fig(12.6b) is sharply peaked at K = 5, which is the value used to generate the data. The clean
posterior mean reconstructions 〈yn0 |D〉 for K = 5 are plotted in fig(12.6c).

12.5 Approximating the Model Likelihood

For a model with continuous parameter vector θ, dim (θ) = K and data D, the model likelihood is

p(D|M) =

∫
p(D|θ,M)p(θ|M)dθ (12.5.1)

For a generic expression

p(D|θ,M)p(θ|M) = exp (−f (θ)) (12.5.2)

unless f is of a particularly simple form (quadratic in θ for example), for large K, the integral in (12.5.1)
is high dimensional and cannot be exactly evaluated. In order to implement Bayesian model comparison
methods in practice, therefore, typically we need to use some form of approximation for the model likelihood.
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12.5.1 Laplace’s method

A simple approximation of (12.5.1) is given by Laplace’s method, section(28.2), which finds the optimum
θ∗ of the posterior and then fits a Gaussian at this point based on the local curvature, giving

log p(D|M) ≈ log p(D|θ∗,M) + log p(θ∗|M) +
1

2
log det

(
2πH−1

)
(12.5.3)

where θ∗ is the MAP solution

θ∗ = argmax
θ

p(D|θ,M)p(θ|M) (12.5.4)

and H is the Hessian of f(θ) ≡ − log p(D|θ,M)p(θ|M) evaluated at θ∗.

For data D =
{
x1, . . . , xN

}
that is i.i.d. generated the above specialises to

p(D|M) =

∫
p(θ|M)

N∏
n=1

p(xn|θ,M)dθ (12.5.5)

In this case Laplace’s method computes the optimum of the function

−f(θ) = log p(θ|M) +
N∑
n=1

log p(xn|θ,M) (12.5.6)

A partial justification for Laplace’s approximation is that as the number of datapoints N increases, the
posterior typically becomes increasingly peaked around a single most likely explanation for the data. This
means that a narrow width Gaussian will tend to be a good approximation in the large data limit. Quantify-
ing how well an approximation works though is typically rather difficult. The Laplace method’s popularity
stems from it simplicity although clearly there weil be cases where the posterior is known to be strongly
non-Gaussian, in which case Laplace’s method should be used with some caution.

12.5.2 Bayes information criterion (BIC)

The Bayes information criterion is a simpler version of Laplace’s method that replaces the exact Hessian
with a crude approximation. For i.i.d. data the Hessian scales with the number of training examples, N ,
and a somewhat severe approximation is to set H ≈ NIK where K = dim (θ). Continuing with the notation
from Laplace’s method, this gives the approximation

log p(D|M) ≈ log p(D|θ∗,M) + log p(θ∗|M) +
K

2
log 2π − K

2
logN (12.5.7)

For a simple prior that penalises the length of the parameter vector, p(θ|M) = N (θ 0, I), the above reduces
to

log p(D|M) ≈ log p(D|θ∗,M)− 1

2
(θ∗)T θ∗ − K

2
logN (12.5.8)

The Bayes Information Criterion[261] approximates (12.5.8) by ignoring the penalty term, giving

BIC = log p(D|θ∗,M)− K

2
logN (12.5.9)

Typically the BIC criterion is used when no specific prior is specified on θ, in which case θ∗ is given by the
maximum likelihood setting. The BIC criterion may be used as an approximate way to compare models,
where the term −K

2 logN penalises model complexity. In general, the Laplace approximation, equation
(12.5.3), is to be preferred to the BIC criterion since it more correctly accounts for the uncertainty in the
posterior parameter estimate. Other techniques that aim to improve on the Laplace method are discussed
in section(28.3) and section(28.8).
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12.6 Bayesian Hypothesis Testing for Outcome Analysis

In outcome analysis we wish to analyse the results of some experimental data. We assume however, that we
make no detailed model of the data generating mechanism, asking rather generic questions such as whether
the results support some basic hypothesis such as whether two classifiers are performing differently. The
techniques we discuss are quite general, but we phrase them in terms of classifier analysis for concreteness.
The central question we consider here therefore is how to assess whether two classifiers are performing dif-
ferently. For techniques which are based on Bayesian classifiers there will always be, in principle, a direct
way to estimate the suitability of the model M by computing p(M |D) ∝ p(M)

∫
θ p(D|θ,M)p(θ|D,M). We

consider here the less fortunate situation where the only information presumed available is the test perfor-
mance of the two classifiers.

To outline the basic issue, we consider two classifiers A and B which predict the class of 55 test examples.
Classifier A makes 20 errors, and 35 correct classifications, whereas classifier B makes 23 errors and 32 correct
classifications. Is classifier A better than classifier B? Our lack of confidence in pronouncing that A is better
than B results from the small number of test examples. On the other hand if classifier A makes 200 errors
and 350 correct classifications, whilst classifier B makes 230 errors and 320 correct classifications, intuitively,
we would be more confident that classifier A is better than classifier B. Perhaps the most practically relevant
question from a machine learning perspective is the probability that classifier A outperforms classifier B,
given the available test information. Whilst this question can be addressed using a Bayesian procedure,
section(12.6.5), we first focus on a simpler question, namely whether classifier A and B are the same[15].

12.6.1 Outcome analysis

Consider a situation where two classifiers A and B have been tested on some data, so that we have, for each
example in the test set, an outcome pair

(oa(n), ob(n)) , n = 1, . . . , N (12.6.1)

where N is the number of test data points, and oa ∈ {1, . . . , Q} (and similarly for ob). That is, there are Q
possible types of outcomes that can occur. For example, for binary classification we will typically have the
four cases

dom(o) = {TruePositive,FalsePositive,TrueNegative,FalseNegative} (12.6.2)

If the classifier predicts class c ∈ {true, false} and the truth is class t ∈ {true, false} these are defined as

TruePositive c = true t = true
FalsePositive c = true t = false
TrueNegative c = false t = false
FalseNegative c = false t = true

(12.6.3)

We call oa = {oa(n), n = 1, . . . , N}, the outcomes for classifier A, and similarly ob = {ob(n), n = 1, . . . , N}
for classifier B. To be specific we have two hypotheses we wish to test:

1. Hindep : oa and ob are from different categorical distributions.

2. Hsame : oa and ob are from the same categorical distribution.

In both cases we will use categorical models p(oc = q|γ, H) = γcq , with unknown parameters γc. Hypothesis

2 will correspond to using the same parameters γa = γb for both classifiers, and hypothesis 1 to using
different parameters, as we will discuss below. In the Bayesian framework we want to find how likely it is
that a model/hypothesis is responsible for generating the data. For any hypothesis H this is given by

p(H|oa,ob) =
p(oa,ob|H)p(H)

p(oa,ob)
(12.6.4)

where p(H) is the prior belief that H is the correct hypothesis. Note that the normalising constant p(oa,ob)
does not depend on the hypothesis. For all hypotheses we make the independence of trials assumption

p(oa,ob|H) =
N∏
n=1

p(oa(n), ob(n)|H). (12.6.5)

To make further progress we need to clarify the meaning of the hypotheses.
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Figure 12.7: (a): Hindep : Corresponds to the out-
comes for the two classifiers being independently gen-
erated. (b): Hsame: both outcomes are generated
from the same distribution. (c): Hdep : the out-
comes are dependent.

12.6.2 Hindep : model likelihood

From Bayes’ rule we may write the posterior hypothesis probability as

p(Hindep|oa,ob) =
p(oa,ob, Hindep)

p(oa,ob)
=
p(oa,ob|Hindep)p(Hindep)

p(oa,ob)
(12.6.6)

The outcome model for classifier A is specified using continuous parameters, α, giving p(oa|α, Hindep), and
similarly we use β for classifier B. The finite amount of data means that we are uncertain as to these
parameter values and therefore the joint term in the numerator above is

p(oa,ob, Hindep) =

∫
p(oa,ob|α,β, Hindep)p(α,β|Hindep)p(Hindep)dαdβ (12.6.7)

= p(Hindep)

∫
p(oa|α, Hindep)p(α|Hindep)dα

∫
p(ob|β, Hindep)p(β|Hindep)dβ (12.6.8)

where we assumed

p(α,β|Hindep) = p(α|Hindep)p(β|Hindep) and p(oa,ob|α,β, Hindep) = p(oa|α, Hindep)p(ob|β, Hindep)

(12.6.9)

See fig(12.7a) for a depiction of these independence assumptions. Note that one might expect there to be
a specific constraint that the two models A and B are different. However since the models are assumed
independent and each has parameters sampled from an effectively infinite set (α and β are continuous), the
a priori probability that values of randomly sampled α and β are the same is zero, and we may consider
Hindep as equivalent to Hdifferent.

Since we are dealing with categorical distributions, it is convenient to use the Dirichlet prior, which is
conjugate to the categorical distribution:

p(α|Hindep) =
1

Z(u)

∏
q

α
uq−1
q , Z(u) =

∏Q
q=1 Γ(uq)

Γ
(∑Q

q=1 uq

) (12.6.10)

The prior hyperparameter u controls how strongly the mass of the distribution is pushed to the corners of
the simplex, see fig(8.6). Setting uq = 1 for all q corresponds to a uniform prior. The likelihood of observing
oa is given by∫

p(oa|α, Hindep)p(α|Hindep)dα =

∫ ∏
q

α
]aq
q

1

Z(u)

∏
q

α
uq−1
q dα =

Z(u + ]a)

Z(u)
(12.6.11)

where ]a is a vector with components ]aq being the number of times that variable a is in state q in the data.
Hence

p(oa,ob, Hindep) = p(Hindep)
Z(u + ]a)

Z(u)

Z(u + ]b)

Z(u)
(12.6.12)

where Z(u) is given by equation (12.6.10).
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12.6.3 Hsame : model likelihood

In Hsame, the hypothesis is that the outcomes for the two classifiers are generated from the same categorical
distribution, see fig(12.7b). Hence

p(oa,ob, Hsame) = p(Hsame)

∫
p(oa|α, Hsame)p(ob|α, Hsame)p(α|Hsame)dα (12.6.13)

= p(Hsame)
Z(u + ]a + ]b)

Z(u)
(12.6.14)

Bayes’ factor

If we assume no prior preference for either hypothesis, p(Hindep) = p(Hsame), then

p(Hindep|oa,ob)
p(Hsame|oa,ob)

=
Z(u + ]a)Z(u + ]b)

Z(u)Z(u + ]a + ]b)
(12.6.15)

The higher this ratio is, the more we believe that the data were generated by two different categorical
distributions.

Example 12.3. Two people classify the expression of each image into happy, sad or normal, using states
1, 2, 3 respectively. Each column of the data below represents an image classified by the two people (person
1 is the top row and person 2 the second row). Are the two people essentially in agreement?

1 3 1 3 1 1 3 2 2 3 1 1 1 1 1 1 1 1 1 2
1 3 1 2 2 3 3 3 2 3 3 2 2 2 2 1 2 1 3 2

To help answer this question, we perform a Hindep versus Hsame test. From this data, the count vector for
person 1 is [13, 3, 4] and for person 2, [4, 9, 7]. Based on a flat prior for the categorical distribution and
assuming no prior preference for either hypothesis, we have the posterior Bayes’ factor

p(persons 1 and 2 classify differently)

p(persons 1 and 2 classify the same)
=

Z([14, 4, 5])Z([5, 10, 8])

Z([1, 1, 1])Z([18, 13, 12])
= 12.87 (12.6.16)

where the Z function is given in equation (12.6.10). This is strong evidence the two people are classifying
the images differently.

Below we discuss some further examples for the Hindep versus Hsame test. As above, the only quantities we
need for this test are the vector counts from the data. We assume that there are three kinds of outcomes,
Q = 3, for example dom(o) = {good, bad, ugly}, and we want to test if two classifiers are essentially producing
the same outcome distributions, or different. Throughout we assume a flat prior on the table entries, u = 1.

Example 12.4 (Hindep versus Hsame).

• We have the two outcome counts ]a = [39, 26, 35] and ]b = [63, 12, 25]. The posterior Bayes’ factor
equation (12.6.15) is 20.7 – strong evidence in favour of the two classifiers being different.

• Alternatively, consider the two outcome counts ]a = [52, 20, 28] and ]b = [44, 14, 42]. Then, the
posterior Bayes’ factor equation (12.6.15) is 0.38 – weak evidence against the two classifiers being
different.

• As a final example, consider counts ]a = [459, 191, 350] and ]b = [465, 206, 329]. This gives a posterior
Bayes’ factor equation (12.6.15) of 0.008 – strong evidence that the two classifiers are statistically the
same.

In all cases the results are consistent with the actual model in fact used to generate the count data.
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12.6.4 Dependent outcome analysis

Here we consider the case that outcomes are dependent. For example, it may be the case that when classifier
A works well, classifier B will also work well. Our interest is to evaluate the hypothesis:

Hdep : the outcomes that the two classifiers make are dependent (12.6.17)

To do so we assume a categorical distribution over the joint states, see fig(12.7c):

p(oa(n), ob(n)|P, Hdep) (12.6.18)

Here P is a Q×Q matrix of probabilities:

[P ]ij = p(oa = i, ob = j) (12.6.19)

so [P ]ij is the probability that A makes outcome i and B makes outcome j. Then,

p(o|Hdep) =

∫
p(o,P|Hdep)dP =

∫
p(o|P, Hdep)p(P|Hdep)dP

where, for convenience, we write o = (oa,ob). Assuming a Dirichlet prior on P, with hyperparameters U,
we have

p(o, Hdep) = p(Hdep)
Z(vec (U + ]))

Z(vec(U))
(12.6.20)

where vec(D) is a vector formed from concatenating the rows of the matrix D. Here ] is the count matrix,
with []]ij equal to the number of times that joint outcome (oa = i, ob = j) occurred in the N datapoints.
We assume the uniform prior, [U ]ij = 1,∀i, j.

Testing for dependencies in the outcomes: Hdep versus Hindep

To test whether or not the outcomes of the classifiers are dependent Hdep against the hypothesis that they
are independent Hindep we may use, assuming p(Hindep) = p(Hdep),

p(Hindep|o)

p(Hdep|o)
=
Z(u + ]a)

Z(u)

Z(u + ]b)

Z(u)

Z(vec(U))

Z(vec (U + ]))
(12.6.21)

Example 12.5 (Hdep versus Hindep).

• Consider the outcome count matrix ] 98 7 93
168 13 163
245 12 201

 (12.6.22)

so that ]a = [511, 32, 457], and ]b = [198, 344, 458]. Then

p(Hindep|o)

p(Hdep|o)
= 3020 (12.6.23)

- strong evidence that the classifiers perform independently.

• Consider the outcome count matrix ] 82 120 83
107 162 4
170 203 70

 (12.6.24)

so that ]a = [359, 485, 156], and ]b = [284, 273, 443]. Then

p(Hindep|o)

p(Hdep|o)
= 2× 10−18 (12.6.25)

- strong evidence that the classifiers perform dependently.

These results are in fact consistent with the way the data was generated in each case.
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12.6.5 Is classifier A better than B?

We return to the question with which we began this outcome analysis. Given the common scenario of observ-
ing a number of (binary) errors for classifier A on a test set and a number for B, can we say which classifier
is better? This corresponds to the special case of binary classes Q = 2 with dom(e) = {correct, incorrect}.
Then for θa being the probability that classifier A generates a correct label, and similarly for θb, one way to
judge this is to compare the hypotheses:

1. Ha>b : oa and ob are from different binomial distributions with corresponding probabilities θa, θb and
θa > θb.

2. Hsame : oa and ob are from the same binomial distribution.

Writing D = {oA,oB}, and assuming independent parameter priors, we have

p(D|Ha>b) =

∫
θa>θb

p(oA|θa)p(oB|θb)p(θa)p(θb) (12.6.26)

Using

p(oA|θa) = θ
]acorrect
a (1− θa)]

a
incorrect , p(oB|θb) = θ

]bcorrect
b (1− θb)]

b
incorrect (12.6.27)

and Beta distribution priors

p(θa) = B (θa|u1, u2) , p(θb) = B (θb|u1, u2) (12.6.28)

then one may readily show, using the Beta function B(x, y):

p(D|Ha>b) =
B(u1 + ]acorrect, u2 + ]aincorrect)B(u1 + ]bcorrect, u2 + ]bincorrect)

(B(u1, u2))2

∫
θa>θb

p(θa > θb|D, Ha>b) (12.6.29)

where

p(θa > θb|D, Ha>b) =

∫
θa>θb

B (θa|u1 + ]acorrect, u2 + ]aincorrect)B
(
θb|u1 + ]bcorrect, u2 + ]bincorrect

)
(12.6.30)

The integral above needs to be computed numerically – see betaXbiggerY.m. For the Hsame hypothesis,
using θ = θa = θb:

p(D|Hsame) =
1

B(u1, u2)

∫
θ
θu1+]acorrect+]

b
correct(1− θ)u2+]aincorrect+]

b
incorrect (12.6.31)

=
B(u1 + ]acorrect + ]bcorrect, u2 + ]aincorrect + ]bincorrect)

B(u1, u2)
(12.6.32)

The question of whether A is better than B can then be addressed by computing

p(D|Ha>b)

p(D|Hsame)
=
B(u1 + ]acorrect, u2 + ]aincorrect)B(u1 + ]bcorrect, u2 + ]bincorrect)

B(u1, u2)B(u1 + ]acorrect + ]bcorrect, u2 + ]aincorrect + ]bincorrect)
p(θa > θb|D, Ha>b) (12.6.33)

Examining the quotient term, we see that this is related to the Hindep hypothesis via

p(D|Ha>b)

p(D|Hsame)
=
p(D|Hindep)

p(D|Hsame)
p(θa > θb|D, Ha>b) (12.6.34)

where the second term decreases the Hindep versus Hsame Bayes’ factor. This is intuitive since Ha>b places
more constraints on the parameter space than Hindep.
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Figure 12.8: Two classifiers A and B and their posterior distributions of the probability that they classify cor-
rectly (using a uniform Beta prior). (a): For A with 35 correct and 20 incorrect labels, B (x|1 + 35, 1 + 20)
(solid curve); B with 28 correct 27 incorrect B (y|1 + 28, 1 + 27) (dashed curve). Also plotted is the pos-
terior assuming that both classifiers are the same, B (x|1 + 35 + 28, 1 + 20 + 27), (dotted curve). Whilst
the posterior overlap of the two classifiers A and B is small, they both overlap with the posterior for the
assumption that the classifiers are the same. For this reason, there is no significant evidence that A is
better than B. (b): For A with 350 correct and 200 incorrect labels (solid curve), B (x|1 + 350, 1 + 200);
B with 280 correct 270 incorrect B (y|1 + 280, 1 + 270) (dashed curve). As the amount of data increases
the overlap between the distributions decreases and the certainty that one classifier is better than the other
correspondingly increases.

Example 12.6. Classifier A makes 20 errors, and 35 correct classifications, whereas classifier B makes 27
errors and 28 correct classifications. Using a flat prior u1 = u2 = 1 this gives

p(θa > θb|oA,oB, Hindep) = betaXbiggerY(1+35,1+20,1+28,1+27)= 0.909 (12.6.35)

The Bayes’ factor is then

p(D|Ha>b)

p(D|Hsame)
=
B(1 + 35, 1 + 20)B(1 + 28, 1 + 27)

B(1, 1)B(1 + 35 + 28, 1 + 20 + 27)
0.909 = 0.516 (12.6.36)

On the other hand if classifier A makes 200 errors and 350 correct classifications, whilst classifier B makes
270 errors and 280 correct classifications, we have

p(θa > θb|oA,oB, Hsame) =betaXbiggerY(1+350,1+200,1+280,1+270)= 1.0 (12.6.37)

and

p(D|Ha>b)

p(D|Hsame)
=
B(1 + 350, 1 + 200)B(1 + 280, 1 + 270)

B(1, 1)B(1 + 350 + 280, 1 + 200 + 270)
1.0 = 676 (12.6.38)

This demonstrates the intuitive effect that even though the proportion of correct/incorrect classifications
doesn’t change for the two scenarios, our confidence in determining which is the better classifier increases
with the amount of data. See also fig(12.8).

12.7 Summary

• Bayes’ rule enables us to evaluate models based on how well they fit the data via the model likelihood.

• There is no need to explicitly penalise ‘complex’ models in the Bayesian approach since it automatically
incorporates an Occam’s razor effect due to the integral over the posterior parameter distribution.
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• Computing the model likelihood can be a complex task. In continuous parameter models, Laplace’s method
provides a simple approximation, the BIC being a cruder version of Laplace’s approximation.

• Assessing performance on the basis of a limited amount of data can be achieved using simple Bayesian
hypothesis testing.

12.8 Code

demoBayesErrorAnalysis.m: Demo for Bayesian error analysis
betaXbiggerY.m: p(x > y) for x ∼ B (x|a, b), y ∼ B (y|c, d)

12.9 Exercises

Exercise 12.1. Write a program to implement the fair/biased coin tossing model selection example of
section(12.2.1) using a discrete domain for θ. Explain how to overcome potential numerical issues in dealing
with large NH and NT (of the order of 1000).

Exercise 12.2. You work at Dodder’s hedge fund and the manager wants to model next day ‘returns’ yt+1

based on current day information xt. The vector of ‘factors’ each day, xt captures essential aspects of the
market. He argues that a simple linear model

yt+1 =
K∑
k=1

wkxkt (12.9.1)

should be reasonable and asks you to find the weight vector w, based on historical information
D = {(xt, yt+1), t = 1, . . . , T − 1}. In addition he also gives you a measure of the ‘volatility’ σ2

t for each day.

1. Under the assumption that the returns are i.i.d. Gaussian distributed

p(y1:T |x1:T ,w) =
T∏
t=2

p(yt|xt−1,w) =
T∏
t=2

N
(
yt wTxt−1, σ

2
t

)
(12.9.2)

explain how to set the weight vector w by maximum likelihood.

2. Your hedge fund manager is however convinced that some of the factors are useless for prediction and
wishes to remove as many as possible. To do this you decide to use a Bayesian model selection method
in which you use a prior

p(w|M) = N (w 0, I) (12.9.3)

where M = 1, . . . , 2K − 1 indexes the model. Each model uses only a subset of the factors. By
translating the integer M into a binary vector representation, the model describes which factors are to
be used. For example if K = 3, there would be 7 models

{0, 0, 1} , {0, 1, 0} , {1, 0, 0} , {0, 1, 1} , {1, 0, 1} , {1, 1, 0} , {1, 1, 1} (12.9.4)

where the first model is yt = w3x3 with weight prior p(w3) = N (w3 0, 1). Similarly model 7 would be
yt = w1x1 + w2x2 + w3x3 with p(w1, w2, w3) = N ((w1, w2, w3) (0, 0, 0), I3). You decide to use a flat
prior p(M) = const. Draw the hierarchical Bayesian network for this model and explain how to find
the best model for the data using Bayesian model selection by suitably adapting equation (12.4.7).

3. Using the data dodder.mat, perform Bayesian model selection as above for K = 6 and find which of
the factors x1, . . . , x6 are most likely to explain the data.
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Exercise 12.3. Here we will derive the expression (12.4.7) and also an alternative form.

1. Starting from

p(w)
N∏
n=1

p(yn|w, xn,K) = N (w 0, I/α)
∏
n

N
(
yn wTφ(xn), σ2

)
(12.9.5)

=
1√

2πα−1
e−

α
2

wTw 1

(2πσ2)N/2
e−

1
2σ2

∑
n(yn−wTφ(xn))

2

(12.9.6)

Show that this can be expressed as

1√
2πα−1

1

(2πσ2)N/2
e−

1
2σ2

∑
n(yn)2e−

1
2
wTAw+bTw (12.9.7)

where

A = αI +
1

σ2

∑
n

φ(xn)φT(xn) b =
1

σ2

∑
n

ynφ(xn) (12.9.8)

2. By completing the square (see section(8.4.1)), derive (12.4.7).

3. Since each yn, n = 1, . . . , N is linearly related through w and w is Gaussian distributed, the joint vector
y1, . . . , yN is Gaussian distributed. Using Gaussian propagation, result(8.3), derive an alternative
expression for log p(y1, . . . , yN |x1, . . . , xN ).

Exercise 12.4. Similar to example(12.3), three people classify images into 1 of three categories. Each col-
umn in the table below represents the classifications of each image, with the top row being the class from per-
son 1, the middle from person 2 and the bottom from person 3. You wish to estimate p(class of image|person =
i), assuming that for person i each image class is drawn independently from this distribution.

1 3 1 3 1 1 3 2 2 3 1 1 1 1 1 1 1 1 1 2
1 3 1 2 2 3 3 3 2 3 3 2 2 2 2 1 2 1 3 2
1 2 1 1 1 3 2 2 2 3 1 2 1 2 1 1 2 3 3 2

Assuming no prior preference amongst hypotheses and a uniform prior on counts, compute

p(persons 1, 2 and 3 classify differently)

p(persons 1, 2 and 3 classify the same)
(12.9.9)

Exercise 12.5. Consider a classifier that makes R correct classifications and W wrong classifications. Is
the classifier better than random guessing? Let D represent the fact that there are R right and W wrong
answers. Assume also that the classifications are i.i.d.

1. Show that under the hypothesis that the data is generated purely at random, the likelihood is

p(D|Hrandom) = 0.5R+W (12.9.10)

2. Define θ to be the probability that the classifier makes an error. Then

p(D|θ) = θR (1− θ)W (12.9.11)

Now consider

p(D|Hnon random) =

∫
θ
p(D|θ)p(θ) (12.9.12)

Show that for a Beta prior, p(θ) = B (θ|a, b)

p(D|Hnon random) =
B(R+ a,W + b)

B(a, b)
(12.9.13)

where B(a, b) is the Beta-function.
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3. Considering the random and non-random hypotheses as a priori equally likely, show that

p(Hrandom|D) =
0.5R+W

0.5R+W + B(R+a,W+b)
B(a,b)

(12.9.14)

4. For a flat prior a = b = 1 compute the probability that for 10 correct and 12 incorrect classifications,
the data is from a purely random distribution (according to equation (12.9.14)). Repeat this for 100
correct and 120 incorrect classifications.

5. Show that the standard deviation in the number of errors of a random classifier is 0.5
√
R+W and

relate this to the above computation.

Exercise 12.6. Our interest here is to discuss a method to learn the direction of an edge in a belief network.
Consider a distribution

p(x, y|θ,My→x) = p(x|y, θx|y)p(y|θy) (12.9.15)

where θ are the parameters of the conditional probability tables. For a prior p(θ) = p(θx|y)p(θy) and i.i.d.
data D = {xn, yn, n = 1, . . . , N}, the likelihood of the data is

p(D|My→x) =

∫
θ
p(θx|y)p(θy)

∏
n

p(xn|yn, θx|y)p(yn|θy) (12.9.16)

For binary variables, x ∈ {0, 1}, y ∈ {0, 1},

p(y = 1|θy) = θy, p(x = 1|y, θx|y) = θ1|y (12.9.17)

and Beta distribution priors

p(θy) = B (θy|α, β) , p(θ1|y) = B
(
θ1|y|α1|y, β1|y

)
, p(θ1|1, θ1|0) = p(θ1|1)p(θ1|0) (12.9.18)

show that p(D|My→x) is given by

B(] (x = 1, y = 0) + α1|0, ] (x = 0, y = 0) + β1|0)

B(α1|0, β1|0)

B(] (x = 1, y = 1) + α1|1, ] (x = 0, y = 1) + β1|1)

B(α1|1, β1|1)

(12.9.19)

Now derive a similar expression for the model with the edge direction reversed, p(D|Mx→y), assuming the
same values for all hyperparameters. Using this, derive a simple expression for the Bayes’ factor

p(D|My→x)

p(D|Mx→y)
(12.9.20)

and relate this expression to the complexity of the tables.
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Introduction to Part III

Machine Learning is fundamentally about extracting value from large datasets. Often
the motivation is ultimately to produce an algorithm that can either mimic or enhance
human/biological performance.

In part III we begin by discussing some of the basic concepts in Machine Learning,
namely supervised and unsupervised learning. We then move on to discuss some
standard models in Machine Learning and related areas.
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Machine learning is a large field and the diagram denotes loose associations between subjects. In part
III we discuss some of the standard machine learning concepts including probabilistic variants of classical
algorithms.
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CHAPTER 13

Machine Learning Concepts

Machine learning is the body of research related to automated large-scale data analysis. Historically, the
field was centred around biologically inspired models and the long term goals of much of the community
are oriented to producing models and algorithms that can process information as well as biological systems.
The field also encompasses many of the traditional areas of statistics with, however, a strong focus on
mathematical models and also prediction. Machine learning is now central to many areas of interest in
computer science and related large-scale information processing domains.

13.1 Styles of Learning

Broadly speaking the main two subfields of machine learning are supervised learning and unsupervised
learning . In supervised learning the focus is on accurate prediction, whereas in unsupervised learning the
aim is to find compact descriptions of the data. In both cases, one is interested in methods that generalise
well to previously unseen data. In this sense, one distinguishes between data that is used to train a model
and data that is used to test the performance of the trained model, see fig(13.1). We discuss first the basic
characteristics of some learning frameworks before discussing supervised learning in more detail.

13.1.1 Supervised learning

Consider a database of face images, each represented by a vector1 x. Along with each image x is an output
class y ∈ {male, female} that states if the image is of a male or female. A database of 10000 such image-class
pairs is available, D = {(xn, yn) , n = 1, . . . , 10000}. The task is to make an accurate predictor y(x∗) of the
sex of a novel image x∗. This is an example application that would be hard to program in a traditional
manner since formally specifying a rule that differentiates male from female faces is difficult. An alternative
is to give example faces and their gender labels and let a machine automatically ‘learn’ such a rule.

Definition 13.1 (Supervised Learning). Given a set of data D = {(xn, yn) , n = 1, . . . , N} the task is
to learn the relationship between the input x and output y such that, when given a novel input x∗ the
predicted output y∗ is accurate. The pair (x∗, y∗) is not in D but assumed to be generated by the same
unknown process that generated D. To specify explicitly what accuracy means one defines a loss function
L(ypred, ytrue) or, conversely, a utility function U = −L.

In supervised learning our interest is describing y conditioned on knowing x. From a probabilistic modelling
perspective, we are therefore concerned primarily with the conditional distribution p(y|x,D). The term
‘supervised’ indicates that there is a notional ‘supervisor’ specifying the output y for each input x in the
available data D. The output is also called a ‘label’, particularly when discussing classification.

1For an m× n face image with elements Fmn we can form a vector by stacking the entries of the matrix.

285



Styles of Learning

Train

Test

Figure 13.1: In training and evaluating a model, conceptually
there are two sources of data. The parameters of the model are
set on the basis of the train data only. If the test data is generated
from the same underlying process that generated the train data,
an unbiased estimate of the generalisation performance can be
obtained by measuring the test data performance of the trained
model. Importantly, the test performance should not be used to
adjust the model parameters since we would then no longer have
an independent measure of the performance of the model.

Predicting tomorrow’s stock price y(T +1) based on past observations y(1), . . . , y(T ) is a form of supervised
learning. We have a collection of times and prices D = {(t, y(t)) , t = 1, . . . , T} where time t is the input
and the price y(t) is the output.

Example 13.1. A father decides to teach his young son what a sports car is. Finding it difficult to explain
in words, he decides to give some examples. They stand on a motorway bridge and, as each car passes
underneath, the father cries out ‘that’s a sports car!’ when a sports car passes by. After ten minutes, the
father asks his son if he’s understood what a sports car is. The son says, ‘sure, it’s easy’. An old red VW
Beetle passes by, and the son shouts – ‘that’s a sports car!’. Dejected, the father asks – ‘why do you say
that?’. ‘Because all sports cars are red!’, replies the son.

This is an example scenario for supervised learning. Here the father plays the role of the supervisor, and his
son is the ‘student’ (or ‘learner’). It’s indicative of the kinds of problems encountered in machine learning
in that it is not easy to formally specify what a sports car is – if we knew that, then we wouldn’t need
to go through the process of learning. This example also highlights the issue that there is a difference
between performing well on training data and performing well on novel test data. The main interest in
supervised learning is to discover an underlying rule that will generalise well, leading to accurate prediction
on new inputs. If there is insufficient train data then, as in this scenario, generalisation performance may
be disappointing.

If the output is one of a discrete number of possible ‘classes’, this is called a classification problem. In
classification problems we will generally use c for the output. If the output is continuous, this is
called a regression problem. For example, based on historical information of demand for sun-cream in your
supermarket, you are asked to predict the demand for the next month. In some cases it is possible to
discretise a continuous output and then consider a corresponding classification problem. However, in other
cases it is impractical or unnatural to do this, for example if the output y is a high dimensional continuous
valued vector.

13.1.2 Unsupervised learning

Definition 13.2 (Unsupervised learning). Given a set of data D = {xn, n = 1, . . . , N} in unsupervised
learning we aim to find a plausible compact description of the data. An objective is used to quantify the
accuracy of the description. In unsupervised learning there is no special prediction variable so that, from a
probabilistic perspective, we are interested in modelling the distribution p(x). The likelihood of the model
to generate the data is a popular measure of the accuracy of the description.

Example 13.2. A supermarket chain wishes to discover how many different basic consumer buying
behaviours there are based on a large database of supermarket checkout data. Items brought by a customer
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on a visit to a checkout are represented by a (very sparse) 10000 dimensional vector x which contains a 1
in the ith element if the customer bought product i and 0 otherwise. Based on 10 million such checkout
vectors from stores across the country, D =

{
xn, n = 1, . . . , 107

}
the supermarket chain wishes to discover

patterns of buying behaviour.

In the table each column represents the products bought by a
customer (7 customer records with the first 6 of the 10,000 prod-
ucts are shown). A 1 indicates that the customer bought that
item. We wish to find common patterns in the data, such as if
someone buys diapers they are also likely to buy aspirin.

coffee 1 0 0 1 0 0 0 · ·
tea 0 0 1 0 0 0 0 · ·

milk 1 0 1 1 0 1 1 · ·
beer 0 0 0 1 1 0 1 · ·

diapers 0 0 1 0 1 0 1 · ·
aspirin 0 1 1 0 1 0 1 · ·

Example 13.3 (Clustering).

The table represents a collection of unlabelled two-dimensional points.
By simply eye-balling the data, we can see that there are two apparent
clusters, one centred around (0,5) and the other around (35,45). A
reasonable compact description of the data is that is has two clusters,
one centred at (0,0) and one at (35,45), each with a standard deviation
of 10.

x1 -2 -6 -1 11 -1 46 33 42 32 45
x2 7 22 1 1 -8 52 40 33 54 39
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13.1.3 Anomaly detection

A baby processes a mass of initially confusing sensory data. After a while the baby begins to understand
her environment so that sensory data from the same environment is familiar or expected. When a strange
face presents itself, the baby recognises that this is not familiar and becomes upset. The baby has learned a
representation of the environment and can distinguish the expected from the unexpected; this is an example
of unsupervised learning. Detecting anomalous events in industrial processes (plant monitoring), engine
monitoring and unexpected buying behaviour patterns in customers all fall under the area of anomaly
detection. This is also known as ‘novelty’ detection.

13.1.4 Online (sequential) learning

In the above situations we assumed that the data D was given beforehand. In online learning data arrives
sequentially and we continually update our model as new data becomes available. Online learning may occur
in either a supervised or unsupervised context.

13.1.5 Interacting with the environment

In certain situations, an agent may be able to interact in some manner with its environment. This interaction
can complicate but also enrich the potential for learning.

Query (Active) Learning Here the agent has the ability to request data from the environment. For
example, a predictor might recognise that it is less confidently able to predict in certain regions of
the space x and therefore requests more training data in this region. Active learning can also be
considered in an unsupervised context in which the agent might request information in regions where
p(x) is currently uninformative.

Reinforcement Learning In reinforcement learning an agent inhabits an environment in which it may
take actions. Some actions may eventually be beneficial (lead to food for example), whilst others may
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be disastrous (lead to being eaten for example). Based on accumulated experience, the agent needs
to learn which action to take in a given situation in order to maximise the probability of obtaining
a desired long term goal (long term survival, for example). Actions that lead to long term rewards
need to be reinforced. Reinforcement learning has connections with control theory, Markov decision
processes and game theory. Whilst we discussed MDPs and briefly mentioned how an environment
can be learned based on delayed rewards in section(7.9.2), we will not discuss this topic further and
refer the reader to specialised texts, for example [283].

13.1.6 Semi-supervised learning

In machine learning, a common scenario is to have a small amount of labelled and a large amount of
unlabelled data. For example, it may be that we have access to many images of faces; however, only a small
number of them may have been labelled as instances of known faces. In semi-supervised learning, one tries
to use the unlabelled data to make a better classifier than that based on the labelled data alone. This is
a common issue in many examples since often gathering unlabelled data is cheap (taking photographs, for
example). However, typically the labels are assigned by humans, which is expensive.

13.2 Supervised Learning

Supervised and unsupervised learning are mature fields with a wide range of practical tools and associated
theoretical analyses. Our aim here is to give a brief introduction to the issues and ‘philosophies’ behind the
approaches. We focus here on supervised learning and classification in particular.

13.2.1 Utility and Loss

Given a new input x∗, the optimal prediction depends on how costly making an error is. This can be
quantified using a loss function (or conversely a utility). In forming a decision function c(x∗) that will
produce a class label for the new input x∗, we don’t know the true class, only our surrogate for this, the
predictive distribution p(c|x∗). If U(ctrue, cpred) represents the utility of making a making a decision cpred

when the truth is ctrue, the expected utility for the decision function is

U(c(x∗)) =
∑
ctrue

U(ctrue, c(x∗))p(ctrue|x∗) (13.2.1)

and the optimal decision function c(x∗) is that which maximises the expected utility,

c(x∗) = argmax
c(x∗)

U(c(x∗)) (13.2.2)

One may also consider equivalently a loss L(ctrue, c(x)), for which the expected loss with respect to p(c, x)
is then termed the risk . The optimal decision function is then that which minimises the risk with respect
to θ.

Zero-one loss/utility

A ‘count the correct predictions’ measure of prediction performance is based on the zero-one utility (or
conversely the zero-one loss):

U(ctrue, c∗) =

{
1 if c∗ = ctrue

0 if c∗ 6= ctrue
(13.2.3)

For the two class case, we then have the expected utility equation (13.2.1) given by

U(c(x∗)) =

{
p(ctrue = 1|x∗) for c(x∗) = 1
p(ctrue = 2|x∗) for c(x∗) = 2

(13.2.4)

Hence, in order to have the highest expected utility, the decision function c(x∗) should correspond to selecting
the highest class probability p(c|x∗):

c(x∗) =

{
1 if p(c = 1|x∗) > 0.5
2 if p(c = 2|x∗) > 0.5

(13.2.5)

In the case of a tie, either class is selected at random with equal probability.
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General loss/utility functions

In general, for a two-class problem, we have

U(c(x∗)) =

{
U(ctrue = 1, c∗ = 1)p(ctrue = 1|x∗) + U(ctrue = 2, c∗ = 1)p(ctrue = 2|x∗) for c(x∗) = 1
U(ctrue = 1, c∗ = 2)p(ctrue = 1|x∗) + U(ctrue = 2, c∗ = 2)p(ctrue = 2|x∗) for c(x∗) = 2

(13.2.6)

and the optimal decision function c(x∗) chooses that class with highest expected utility. One can readily
generalise this to multiple-class situations using a utility matrix with elements

Uij = U(ctrue = i, cpred = j) (13.2.7)

where the i, j element of the matrix contains the utility of predicting class j when the true class is i. Con-
versely one could think of a loss-matrix with entries Lij = −Uij . In some applications the utility matrix
is highly non-symmetric. Consider a medical scenario in which we are asked to predict whether or not the
patient has cancer dom(c) = {cancer, benign}. If the true class is cancer yet we predict benign, this could
have terrible consequences for the patient. On the other hand, if the class is benign yet we predict cancer,
this may be less disastrous for the patient. Such asymmetric utilities can favour conservative decisions –
in the cancer case, we would be more inclined to decide the sample is cancerous than benign, even if the
predictive probability of the two classes is equal.

In solving for the optimal decision function c(x∗) in equation (13.2.5) we are assuming that the model p(c, x)
is correct. However, in practice we typically don’t know the correct model underlying the data – all we have
is a dataset of examples D = {(xn, cn) , n = 1, . . . , N} and our domain knowledge. We therefore need to
form a distribution p(c, x|D) which should ideally be close to the true but unknown joint data distribution
ptrue(c, x). Only then can our decisions be expected to generalise well to examples outside of the train
data. Communities of researchers in machine learning form around different strategies to address the lack
of knowledge about ptrue(c, x).

Squared loss/utilty

In regression problems, for a real-valued prediction ypred and truth ytrue, a common loss function is the
squared loss

L(ytrue, ypred) =
(
ytrue − ypred

)2
(13.2.8)

The above decision framework then follows through, replacing summation with integration for the continuous
variables.

13.2.2 Using the empirical distribution

A direct approach to not knowing the correct model ptrue(c, x) is to replace it with the empirical distribution

p(c, x|D) =
1

N

N∑
n=1

δ (c, cn) δ (x, xn) (13.2.9)

That is, we assume that the underlying distribution is approximated by placing equal mass on each of the
points (xn, cn) in the dataset. Using this gives the empirical expected utility

〈U(c, c(x))〉p(c,x|D) =
1

N

∑
n

U(cn, c(xn)) (13.2.10)

or conversely the empirical risk

R =
1

N

∑
n

L(cn, c(xn)) (13.2.11)
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X , C

p(x, c)

〈L(c, c(x|θ))〉p(x,c) + λP (θ)

θ c∗ = c(x∗|θ)

x∗

Figure 13.2: Empirical risk approach. Given the
dataset X , C, a model of the data p(x, c) is made,
usually using the empirical distribution. For a
classifier c(x|θ), the parameter θ is learned by
minimising the penalised empirical risk with re-
spect to θ. The penalty parameter λ is set by
validation. A novel input x∗ is then assigned to
class c(x∗|θ), given this optimal θ.

Assuming the loss is minimal when the correct class is predicted, the optimal decision c(x) for any input in
the train set is given by c(xn) = cn. However, for any new x∗ not contained in D then c(x∗) is undefined.
In order to define the class of a novel input, one may use a parametric function c(x|θ). For example for a
two class problem dom(c) = {1, 2}, a linear decision function is given by

c(x|θ) =

{
1 if θTx + θ0 ≥ 0

2 if θTx + θ0 < 0
(13.2.12)

If the vector input x is on the positive side of a hyperplane defined by the vector θ and bias θ0, we assign
it to class 1, otherwise to class 2. (We return to the geometric interpretation of this in chapter(17)). The
empirical risk then becomes a function of the parameters θ = {θ, θ0},

R(θ|D) =
1

N

∑
n

L(cn, c(xn|θ)) (13.2.13)

The optimal parameters θ are given by minimising the empirical risk with respect to θ,

θopt = argmin
θ

R(θ|D) (13.2.14)

The decision for a new datapoint x∗ is then given by c(x∗|θopt).

In this empirical risk minimisation approach, as we make the decision function c(x|θ) more flexible, the
empirical risk goes down. However, if we make c(x|θ) too flexible we will have little confidence that c(x|θ)
will perform well on a novel input x∗. The reason for this is that a flexible decision function c(x|θ) is one
for which the class label can change for only a small change in x. Such flexibility seems good since it means
that we will be able to find a parameter setting θ so that the train data is fitted well. However, since we are
only constraining the decision function on the known training points, a flexible c(x|θ) may change rapidly
as we move away from the train data, leading to poor generalisation. To constrain the complexity of c(x|θ)
we may minimise the penalised empirical risk

R′(θ|D) = R(θ|D) + λP (θ) (13.2.15)

where P (θ) is a function that penalises complex functions c(x|θ). The regularisation constant , λ, determines
the strength of this penalty and is typically set by validation – see below. The empirical risk approach is
summarised in fig(13.2).

For the linear decision function above, it is reasonable to penalise wildly changing classifications in the
sense that if we change the input x by only a small amount we expect (on average) minimal change in the

class label. The squared difference in θTx + θ0 for two inputs x1 and x2 is
(
θT∆x

)2
where ∆x ≡ x2 − x1.

By constraining the length of θ to be small we limit the ability of the classifier to change class for only a
small change in the input space. Assuming the distance between two datapoints is distributed according
to an isotropic multivariate Gaussian with zero mean and covariance σ2I, the average squared change is〈(
θT∆x

)2〉
= σ2θTθ, motivating the choice of the Euclidean squared length of the parameter θ as the

penalty term, P (θ) = θTθ.
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Train Validate

Test

Figure 13.3: Models can be trained using the train data based on
different regularisation parameters. The optimal regularisation
parameter is determined by the empirical performance on the
validation data. An independent measure of the generalisation
performance is obtained by using a separate test set.

Algorithm 13.1 Setting regularisation parameters using cross-validation.

1: Choose a set of regularisation parameters λ1, . . . , λA
2: Choose a set of training and validation set splits

{
Ditrain,Divalidate

}
, i = 1, . . . ,K

3: for a = 1 to A do
4: for i = 1 to K do
5: θia = argmin

θ

[
R(θ|Ditrain) + λaP (θ)

]
6: end for
7: L(λa) = 1

K

∑K
i=1R(θia|Divalidate)

8: end for
9: λopt = argmin

λa

L(λa)

Validation

In penalised empirical risk minimisation we need to set the regularisation constant λ. This can be achieved
by evaluating the performance of the learned classifier c(x|θ) on validation data Dvalidate for several different
λ values, and choosing the λ which gave rise to the classifier with the best performance. It’s important that
the validation data is not the data on which the model was trained since we know that the optimal setting
for λ in that case is zero, and again we will have little confidence in the generalisation ability.

Given a dataset D we split this into disjoint parts, Dtrain,Dvalidate, where the size of the validation set is
usually chosen to be smaller than the train set, see fig(13.3). For each parameter λa one then finds the
minimal empirical risk parameter θa. The optimal λ is chosen as that which gives rise to the model with
the minimal validation risk. Using the optimal regularisation parameter λ, many practitioners retrain θ on
the basis of the whole dataset D.

In cross-validation the dataset is partitioned into training and validation sets multiple times with validation
results obtained for each partition. Each partition produces a different trainingDitrain and validationDivalidate
set, along with an optimal penalised empirical risk parameter θia and associated (unregularised) validation
performance R(θia|Divalidate). The performance of regularisation parameter λa is taken as the average of the
validation performances over i. The best regularisation parameter is then given as that with the minimal
average validation error, see algorithm(13.1). More specifically, in K-fold cross-validation the data D is split
into K equal sized disjoint parts D1, . . . ,DK . Then Divalidate = Di and Ditrain = D\Divalidate. This gives a
total of K different training-validation sets over which performance is averaged, see fig(13.4). In practice

Train Validate

Train TrainValidate

TrainValidate

Test

Figure 13.4: In cross-validation the dataset is split into several
train-validation sets. Depicted is 3-fold cross-validation. For
a range of regularisation parameters, the optimal regularisation
parameter is found based on the empirical validation performance
averaged across the different splits.
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Figure 13.5: The true function which generated the noisy data is the dashed line; the function learned from
the data is given by the solid line. (a): The unregularised fit (λ = 0) to training given by ×. Whilst
the training data is well fitted, the error on the validation examples, denoted by +, is high. (b): The
regularised fit (λ = 0.5). Whilst the train error is high, the validation error is low.

10-fold cross-validation is popular, as is leave-one-out cross-validation in which the validation sets consist of
only a single example.

Example 13.4 (Finding a good regularisation parameter). In fig(13.5), we fit the function a sin(wx) to
the plotted data, learning the parameters a, w based on minimising the squared loss. The unregularised
solution fig(13.5a) badly overfits the data, and has a high validation error. To encourage a smoother solution,
a regularisation term w2 is used. The validation error based on several different values of the regularisation
parameter λ was computed, and λ = 0.5 gives the lowest validation error. The resulting fit to the data,
found by retraining a and w using the validation-optimal λ, is reasonable, see fig(13.5b).

Benefits of the empirical risk approach

• In the limit of a large amount of training data the empirical distribution tends to the correct distri-
bution.

• The discriminant function is chosen on the basis of minimal risk, which is the quantity we are ultimately
interested in.

• The procedure is conceptually straightforward.

Drawbacks of the empirical risk approach

• It seems extreme to assume that the data follows the empirical distribution, particularly for small
amounts of training data. More reasonable assumptions for p(x) would take into account likely x that
could arise, not just those in the train data.

• If the loss function changes, the discriminant function needs to be retrained.

• Some problems require an estimate of the confidence of the prediction. Whilst there may be heuristic
ways to evaluating confidence in the prediction, this is not inherent in the framework.

• When there are many penalty parameters, performing cross-validation in a discretised grid of the
parameters becomes infeasible.

• During validation, many models are trained, and all but one subsequently discarded.

13.2.3 Bayesian decision approach

An alternative to using the empirical distribution is to first fit a model p(c, x|θ) to the train data D. Given
this model, the decision function c(x) is automatically determined from the maximal expected utility (or
minimal risk) with respect to this model, as in equation (13.2.6), in which the unknown p(ctrue|x) is replaced
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X , C

p(x, c|θ)

〈L(c, c∗)〉p(c|x∗,θ)

θ

c∗

p(c|x∗, θ)

x∗

Figure 13.6: Bayesian decision approach. A
model p(x, c|θ) is fitted to the data. After learn-
ing the optimal model parameters θ, we compute
p(c|x, θ). For a novel x∗, the distribution of the
assumed ‘truth’ is p(c|x∗, θ). The prediction (de-
cision) is then given by that c∗ which minimises
the expected risk 〈L(c, c∗)〉p(c|x∗,θ).

with p(c|x, θ). See fig(13.6) for a schematic depiction of the Bayesian decision approach.

There are two main approaches to fitting p(c, x|θ) to data D, see fig(13.7). We could parameterise the joint
distribution using

p(c, x|θ) = p(c|x, θc|x)p(x|θx) discriminative approach (13.2.16)

or

p(c, x|θ) = p(x|c, θx|c)p(c|θc) generative approach (13.2.17)

We’ll consider these two approaches below in the context of trying to make a system that can distinguish
between a male and female face. The setup is that we have a database of face images in which each image
is represented as a real-valued vector xn, n = 1, . . . , N), along with a label cn ∈ {0, 1} stating if the image
is male or female.

Generative approach p(x, c|θ) = p(x|c, θx|c)p(c|θc)
For simplicity we use maximum likelihood training for the parameters θ. Assuming the data D is i.i.d., we
have a log likelihood

log p(D|θ) =
∑
n

log p(xn|cn, θx|c) +
∑
n

log p(cn|θc) (13.2.18)

As we see the dependence on θx|c occurs only in the first term, and θc only occurs in the second. This
means that learning the optimal parameters is equivalent to isolating the data for the male-class and fit-
ting a model p(x|c = male, θx|male). We may similarly isolate the female data and fit a separate model
p(x|c = female, θx|female). The class distribution p(c|θc) is set according to the ratio of males/females in the
set of training data.

To make a classification of a new image x∗ as either male or female, we use Bayes’ rule:

p(c = male|x∗) =
p(x∗, c = male|θx|male)

p(x∗, c = male|θx|male) + p(x∗, c = female|θx|female)
(13.2.19)

cn xn

θc θx|c

N

(a)

cn xn

θc|x θx

N

(b)

Figure 13.7: Two generic strategies for probabilistic
classification. (a): Class dependent generative model
of x. After learning parameters, classification is ob-
tained by making x evidential and inferring p(c|x).
(b): A discriminative classification method p(c|x).
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Based on zero-one loss, if this probability is greater than 0.5 we classify x∗ as male, otherwise female. For a
general loss function, we use this probability as part of a decision process, as in equation (13.2.6).

Advantages Prior information about the structure of the data is often most naturally specified through
a generative model p(x|c). For example, for male faces, we would expect to see heavier eyebrows, a
squarer jaw, etc.

Disadvantages The generative approach does not directly target the classification model p(c|x) since the
goal of generative training is rather to model p(x|c). If the data x is complex, finding a suitable
generative data model p(x|c) is a difficult task. Furthermore, since each generative model is separately
trained for each class, there is no competition amongst the models to explain the x data. On the
other hand it might be that making a model of p(c|x) is simpler, particularly if the decision boundary
between the classes has a simple form, even if the data distribution of each class is complex, see
fig(13.8).

Discriminative approach p(x, c|θ) = p(c|x, θc|x)p(x|θx)

Assuming i.i.d. data, the log likelihood is

log p(D|θ) =
∑
n

log p(cn|xn, θc|x) +
∑
n

log p(xn|θx) (13.2.20)

The parameters are isolated in the two terms so that maximum likelihood training is equivalent to finding
the parameters of θc|x that will best predict the class c for a given training input x. The parameters θx
for modelling the data occur only in the second term above, and setting them can therefore be treated
as a separate unsupervised learning problem. This approach consequently isolates modelling the decision
boundary from modelling the input distribution, see fig(13.8).

Classification of a new point x∗ is based on

p(c|x, θoptc|x ) (13.2.21)

As for the generative case, this approach still learns a joint distribution p(c, x) = p(c|x)p(x) which can be
used as part of a decision process if required, equation (13.2.6).

Advantages The discriminative approach directly addresses finding an accurate classifier p(c|x) based on
modelling the decision boundary, as opposed to the class conditional data distribution in the generative
approach. Whilst the data from each class may be distributed in a complex way, it could be that the
decision boundary between them is relatively easy to model.

Disadvantages Discriminative approaches are usually trained as ‘black-box’ classifiers, with little prior
knowledge built used to describe how data for a given class is distributed. Domain knowledge is often
more easily expressed using the generative framework.

Hybrid generative-discriminative approaches

One could use a generative description, p(x|c), building in prior information, and use this to form a joint
distribution p(x, c), from which a discriminative model p(c|x) may be formed, using Bayes’ rule. Specifically,
we can use

p(c|x, θ) =
p(x|c, θx|c)p(c|θc)∑
c p(x|c, θx|c)p(c|θc)

(13.2.22)

Subsequently the parameters θ =
(
θx|c, θc

)
, for this hybrid model can be found by maximising the probability

of being in the correct class. A separate model is learned for p(x|θx). This approach would appear to leverage
the advantages of both the discriminative and generative frameworks since we can more readily incorporate
domain knowledge in the generative model p(x|c, θx|c) yet train this in a discriminative way. This approach
is rarely taken in practice since the resulting functional form of the likelihood depends in a complex manner
on the parameters. In this case no parameter separation between θc and θx|c occurs (as was previously the
case for the generative and discriminative approaches).
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Figure 13.8: Each point represents a high dimensional vector with an
associated class label, either male or female. The point x∗ is a new
point for which we would like to predict whether this should be male or
female. In the generative approach, a male model p(x|male) generates
data similar to the ‘m’ points. Similarly, the female model p(x|female)
generates points that are similar to the ‘f’ points above. We then use
Bayes’ rule to calculate the probability p(male|x∗) using the two fitted
models, as given in the text. In the discriminative approach, we directly
make a model of p(male|x∗), which cares less about how the points ‘m’
or ‘f’ are distributed, but more about describing the boundary which
can separate the two classes, as given by the line. In this case, modelling
the distribution of the data is not required since our decisions are only
related to which side of the decision boundary a point lies.

Features and preprocessing

It is often the case that in discriminative training, transforming the raw input x into a form that more
directly captures the relevant label information can greatly improve performance. For example, in the male-
female classification case, it might be that building a classifier directly in terms of the elements of the face
vector x is difficult. However, using ‘features’ which contain geometric information such as the distance
between eyes, width of mouth, etc. may make finding a classifier easier. In practice data is also often
preprocessed to remove noise, centre an image etc.

Learning lower-dimensional representations in semi-supervised learning

One way to exploit a large amount of unlabelled training data to improve classification is to first find a
lower dimensional representation h of the data x. Based on this, the mapping from h to c may be rather
simpler to learn than a mapping from x to c directly. We use cn = ∅ to indicate that the class for datapoint
n is missing. We can then form the likelihood on the visible data using, see fig(13.9),

p(C,X ,H|θ) =
∏
n

{
p(cn|hn, θc|h)

}I[cn 6=∅]
p(xn|hn, θx|h)p(h|θh) (13.2.23)

and set any parameters for example by using maximum likelihood

θopt = argmax
θ

∑
H
p(C,X ,H|θ) (13.2.24)

Benefits of the Bayesian decision approach

• This is a conceptually ‘clean’ approach, in which one tries ones best to model the environment (using
either a generative or discriminative approach), independent of the subsequent decision process. In
this case learning the environment is separated from the effect this will have on the expected utility.

• The decision c∗ for a novel input x∗ can be a highly complex function of x∗ due to the maximisation
operation.

• If p(x, c|θ) is the ‘true’ model of the data, this approach is optimal.

Drawbacks of the Bayesian decision approach

• If the environment model p(c, x|θ) is poor, the prediction c∗ could be highly inaccurate since modelling
the environment is divorced from prediction.

• To avoid fully divorcing the learning of the model p(c, x|θ) from its effect on decisions, in practice
one often includes regularisation terms in the environment model p(c, x|θ) which are set by validation
based on an empirical loss.
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θc|h θh θx|h
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Figure 13.9: A strategy for semi-supervised learning. When cn is miss-
ing, the term p(cn|hn) is absent. The large amount of training data
helps the model learn a good lower dimension/compressed representa-
tion h of the data x. Fitting then a classification model p(c|h) using
this lower dimensional representation may be much easier than fitting
a model directly from the complex data to the class, p(c|x).

13.3 Bayes versus Empirical Decisions

The empirical risk and Bayesian approaches are at the extremes of the philosophical spectrum. In the
empirical risk approach one makes a seemingly over-simplistic data generating assumption. However decision
function parameters are set based on the task of making decisions. On the other hand, the Bayesian approach
attempts to learn meaningful p(c, x) without regard to its ultimate use as part of a larger decision process.
What ‘objective’ criterion can we use to learn p(c, x), particularly if we are only interested in classification
with a low test-risk? The following example is intended to recapitulate the two generic Bayes and empirical
risk approaches we’ve been considering. Note that we’ve previously written utilities suggesting that they
are both for example class labels; however the theory applies more generally, for example to utilities u(c, d)
where d is some decision (which is not necessarily of the form of the class label c).

Example 13.5 (The two generic decision strategies). Consider a situation in which, based on patient
information x, we need to take a decision d as whether or not to operate. The utility of operating u(c, d)
depends on whether or not the patient has cancer, c. For example

u(cancer, operate) = 100 u(benign, operate) = 30
u(cancer, don’t operate) = 0 u(benign, don’t operate) = 70

(13.3.1)

We have independent true assessments of whether or not a patient had cancer, giving rise to a set of
historical records D = {(xn, cn), n = 1, . . . , N}. Faced with a new patient with information ,x, we need to
make a decision whether or not to operate.

In the Bayesian decision approach one would first make a model p(c|x,D) (for example using a discriminative
model such as logistic regression, section(17.4.1)). Using this model the decision is given by that which
maximises the expected utility

d = argmax
d

[p(cancer|x,D)u(cancer, d) + p(benign|x,D)u(benign, d)] (13.3.2)

In this approach learning the model p(c|x,D) is divorced from the ultimate use of the model in the decision
making process. An advantage of this approach is that, from the viewpoint of expected utility, it is optimal
– provided the model p(c|x,D) is ‘correct’. Unfortunately, this is rarely the case. Given the limited model
resources, it might make sense to focus on ensuring the prediction of cancer is correct since this has a more
significant effect on the utility. However, formally, this would require a corruption of this framework.

The alternative empirical utility approach recognises that the task can be stated as to translate patient
information x into an operation decision d. To do so one could parameterise this as d(x) = f(x|θ) and then
learn θ under maximising the empirical utility

u(θ) =
∑
n

u(f(xn|θ), cn) (13.3.3)

For example, if x is a vector representing the patient information and θ the parameter, we might use a
linear decision function such as

f(x|θ) =

{
θTx ≥ 0 d = operate

θTx < 0 d = don’t operate
(13.3.4)
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The advantage of this approach is that the parameters of the decision are directly related to the utility of
making the decision. However, it may be that we have a good model of p(c|x) and would wish to make
use of this. A disadvantage is that we cannot easily incorporate such domain knowledge into the decision
function.

Both approaches are heavily used in practice and which is to be preferred depends very much on the problem.
Whilst the Bayesian approach appears formally optimal, it is prone to model mis-specification. A pragmatic
alternative Bayesian approach is to fit a parameterised distribution p(c, x|λ) to the data D, where λ penalises
complexity of the fitted distribution, setting λ using validation on the risk. This has the potential advantage
of allowing one to incorporate sensible prior information about p(c, x) whilst assessing competing models
in the light of their actual predictive risk. Similarly, for the empirical risk approach, one can modify the
extreme empirical distribution assumption by using a more plausible model p(c, x) of the data.

13.4 Summary

• Supervised and unsupervised learning are the two main branches of machine learning considered in this
book.

• The two classical approaches in supervised learning are empirical risk minimisation and Bayesian decision
theory.

• In the empirical risk minimisation, there is typically no explicit model of the data, and the focus is on the
end use of the predictor.

• In the Bayesian decision approach, an explicit model of the data is made, with the end decision/classification
being computed independently of the fitting of the model to the data.

A general introduction to machine learning is given in [215]. An excellent reference for Bayesian decision
theory is [33]. Approaches based on empirical risk are discussed in [302].

13.5 Exercises

Exercise 13.1. Given the distributions p(x|class 1) = N
(
x µ1, σ

2
1

)
and p(x|class 2) = N

(
x µ2, σ

2
2

)
, with

corresponding prior occurrence of classes p1 and p2 (p1+p2 = 1), calculate the decision boundary p(class1|x) =
0.5 explicitly as a function of µ1, µ2, σ

2
1, σ

2
2, p1, p2. How many solutions are there to the decision boundary

and are they all reasonable?

Exercise 13.2. Under zero-one loss, the Bayes’ decision rule chooses class k if p(class k|x) > p(class j|x)
for all j 6= k. Imagine instead we use a randomized decision rule, choosing class j with probability
q(class j|x). Calculate the error for this decision rule, and show that the error is minimized by using Bayes’
decision rule.

Exercise 13.3. For a novel input x, a predictive model of the class c is given by p(c = 1|x) = 0.7,
p(c = 2|x) = 0.2, p(c = 3|x) = 0.1. The corresponding utility matrix U(ctrue, cpred) has elements 5 3 1

0 4 −2
−3 0 10

 (13.5.1)

In terms of maximal expected utility, which is the best decision to take?

Exercise 13.4. Consider datapoints generated from two different classes. Class 1 has the distribution
p(x|c = 1) ∼ N

(
x m1, σ

2
)

and class 2 has the distribution p(x|c = 2) ∼ N
(
x m2, σ

2
)
. The prior probabil-

ities of each class are p(c = 1) = p(c = 2) = 1/2. Show that the posterior probability p(c = 1|x) is of the
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form

p(c = 1|x) =
1

1 + exp−(ax+ b)
(13.5.2)

and determine a and b in terms of m1,m2 and σ2.

Exercise 13.5. WowCo.com is a new startup prediction company. After years of failures, they eventually
find a neural network with a trillion hidden units that achieves zero test error on every learning problem
posted on the internet up to last week. Each learning problem included a train and test set. Proud of their
achievement, they market their product aggressively with the claim that it ‘predicts perfectly on all known
problems’. Discuss whether or not these claims would justify buying this product.

Exercise 13.6. For a prediction model p̃(y|x) and true data generating distribution p(x, y), one may define
a measure of the accuracy as

A =

∫
x,y
p(x, y)p̃(y|x) (13.5.3)

which is the average overlap between the true and predicting distributions.

1. By defining

p̂(x, y) ≡ p(x, y)p̃(y|x)

A
(13.5.4)

and considering

KL(q(x, y)|p̂(x, y)) ≥ 0 (13.5.5)

show that for any distribution q(x, y),

logA ≥ 〈log p̃(y|x)〉q(x,y) −KL(q(x, y)|p(x, y)) (13.5.6)

2. Consider a set of train data D = {(xn, yn), n = 1, . . . , N} and define the empirical distribution

q(x, y) =
1

N

N∑
n=1

δ (x, xn) δ (y, yn) (13.5.7)

Show that

logA ≥ 1

N

N∑
n=1

log p̃(yn|xn)−KL(q(x, y)|p(x, y)) (13.5.8)

This shows that the log prediction accuracy is lower bounded by the training accuracy and the ‘gap’
between the empirical distribution and the unknown true data generating mechanism. According to
this naive bound (which doesn’t account for possible overfitting), the best thing to do to increase the
prediction accuracy is to increase the training accuracy (since the Kullback-Leibler term is indepen-
dent of the predictor). As N increases, the empirical distribution tends to the true distribution and
the Kullback-Leibler term becomes small, justifying minimising the train error.

Assuming that the train outputs are drawn from a distribution p(y|x) = δ (y, f(x)) which is determin-
istic, show that

logA ≥ 1

N

N∑
n=1

log p̃(yn|xn)−KL(q(x)|p(x)) (13.5.9)

and hence that, provided the train data is correctly predicted with full certainty, the accuracy can be
related to the empirical and true input distribution by

A ≥ exp (−KL(q(x)|p(x))) (13.5.10)

Exercise 13.7. You wish to make a classifier for a variable c based on two kinds of inputs, x and y. You
have a generative model p(y|c) and a discriminative model p(c|x). Explain how to combine these to make a
model p(c|x, y).
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CHAPTER 14

Nearest Neighbour Classification

Often when faced with a classification problem it is useful to first employ a simple method to produce a
baseline against which more complex methods can be compared. In this chapter we discuss the simple nearest
neighbour method. The nearest neighbour methods are extremely popular and can perform surprisingly well.
We also discuss how these methods are related to probabilistic mixture models.

14.1 Do As Your Neighbour Does

Successful prediction typically relies on smoothness in the data – if the class label can change as we move
a small amount in the input space, the problem is essentially random and no algorithm will generalise well.
In machine learning one constructs appropriate measures of smoothness for the problem at hand and hopes
to exploit this to obtain good generalisation. Nearest neighbour methods are a useful starting point since
they readily encode basic smoothness intuitions and are easy to program.

In a classification problem each input vector x has a corresponding class label, cn ∈ {1, . . . , C}. Given a
dataset of N train examples, D = {xn, cn} , n = 1, . . . , N , and a novel x, we aim to return the correct class
c(x). A simple, but often effective, strategy for this supervised learning problem can be stated as: for novel
x, find the nearest input in the train set and use the class of this nearest input, algorithm(14.1). For vectors
x and x′ representing two different datapoints, we measure ‘nearness’ using a dissimilarity function d(x,x′).
A common dissimilarity is the squared Euclidean distance

d(x,x′) = (x− x′)T(x− x′) (14.1.1)

which can be more conveniently written (x − x′)2. Based on the squared Euclidean distance, the decision
boundary is determined by the perpendicular bisectors of the closest training points with different training
labels, see fig(14.1). This partitions the input space into regions classified equally and is called a Voronoi
tessellation.

The nearest neighbour algorithm is simple and intuitive. There are, however, some issues:

• How should we measure the distance between points? Whilst the Euclidean square distance is popular,
this may not always be appropriate. A fundamental limitation of the Euclidean distance is that it does
not take into account how the data is distributed. For example if the length scales of the components of
the vector x vary greatly, the largest length scale will dominate the squared distance, with potentially
useful class-specific information in other components of x lost. The Mahalanobis distance

d(x,x′) =
(
x− x′

)T
Σ−1

(
x− x′

)
(14.1.2)

where Σ is the covariance matrix of the inputs (from all classes) can overcome some of these problems
since it effectively rescales the input vector components.
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Figure 14.1: In nearest neighbour classification a new
vector is assigned the label of the nearest vector in the
training set. Here there are three classes, with training
points given by the circles, along with their class. The
dots indicate the class of the nearest training vector.
The decision boundary is piecewise linear with each
segment corresponding to the perpendicular bisector
between two datapoints belonging to different classes,
giving rise to a Voronoi tessellation of the input space.

Algorithm 14.1 Nearest neighbour algorithm to classify a vector x, given train data D =
{(xn, cn), n = 1, . . . , N}:

1: Calculate the dissimilarity of the test point x to each of the train points, dn = d (x,xn), n = 1, . . . , N .
2: Find the train point xn

∗
which is nearest to x :

n∗ = argmin
n

d (x,xn)

3: Assign the class label c(x) = cn
∗
.

4: In the case that there are two or more nearest neighbours with different class labels, the most numerous class
is chosen. If there is no one single most numerous class, we use the K-nearest-neighbours.

• The whole dataset needs to be stored to make a classification since the novel point must be compared
to all of the train points. This can be partially addressed by a method called data editing in which
datapoints which have little or no effect on the decision boundary are removed from the training
dataset. Depending on the geometry of the training points, finding the nearest neighbour can also be
accelerated by examining the values of each of the components xi of x in turn. Such an axis-aligned
space-split is called a KD-tree[218] and can reduce the possible set of candidate nearest neighbours in
the training set to the novel x∗, particularly in low dimensions.

• Each distance calculation can be expensive if the datapoints are high dimensional. Principal Com-
ponents Analysis, see chapter(15), is one way to address this and replaces x with a low dimensional

projection p. The Euclidean distance of two datapoints
(
xa − xb

)2
is then approximately given by(

pa − pb
)2

, see section(15.2.4). This is both faster to compute and can also improve classification
accuracy since only the large scale characteristics of the data are retained in the PCA projections.

• It is not clear how to deal with missing data or incorporate prior beliefs and domain knowledge.

14.2 K-Nearest Neighbours

If your neighbour is simply mistaken (has an incorrect training class label), or is not a particularly repre-
sentative example of his class, then these situations will typically result in an incorrect classification. By
including more than the single nearest neighbour, we hope to make a more robust classifier with a smoother
decision boundary (less swayed by single neighbour opinions). If we assume the Euclidean distance as the
dissimilarity measure, the K-Nearest Neighbour algorithm considers a hypersphere centred on the test point
x. The radius of the hypersphere is increased until it contains exactly K train inputs. The class label c(x)
is then given by the most numerous class within the hypersphere, see fig(14.2).
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Figure 14.2: In K-nearest neighbours, we centre a hypersphere around the
point we wish to classify (here the central dot). The inner circle corre-
sponds to the nearest neighbour, a square. However, using the 3 near-
est neighbours, we find that there are two round-class neighbours and one
square-class neighbour– and we would therefore classify the central point as
round-class. In the case of a tie, one may increase K until the tie is broken.

Choosing K

Whilst there is some sense in making K > 1, there is certainly little sense in making K = N (N being the
number of training points). For K very large, all classifications will become the same – simply assign each
novel x to the most numerous class in the train data. This suggests that there is an optimal intermediate
setting of K which gives the best generalisation performance. This can be determined using cross-validation,
as described in section(13.2.2).

(a) (b) (c)

Figure 14.3: Some of the train examples of the digit zero (a), one (b) and seven (c). There are 300 train
examples of each of these three digit classes.

Example 14.1 (Handwritten Digit Example). Consider two classes of handwritten digits, zeros and ones.
Each digit contains 28 × 28 = 784 pixels. The train data consists of 300 zeros, and 300 ones, a subset
of which are plotted in fig(14.3a,b). To test the performance of the nearest neighbour method (based on
Euclidean distance) we use an independent test set containing a further 600 digits. The nearest neighbour
method, applied to this data, correctly predicts the class label of all 600 test points. The reason for the high
success rate is that examples of zeros and ones are sufficiently different that they can be easily distinguished.

A more difficult task is to distinguish between ones and sevens. We repeat the above experiment, now
using 300 training examples of ones, and 300 training examples of sevens, fig(14.3b,c). Again, 600 new test
examples (containing 300 ones and 300 sevens) were used to assess the performance. This time, 18 errors
are found using nearest neighbour classification – a 3% error rate for this two class problem. The 18 test
points on which the nearest neighbour method makes errors are plotted in fig(14.4). If we use K = 3 nearest
neighbours, the classification error reduces to 14 – a slight improvement. As an aside, the best machine
learning methods classify real world digits (over all 10 classes) to an error of less than 1 per cent – better
than the performance of an ‘average’ human.
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Figure 14.4: ‘1’ versus ‘7’ classification us-
ing the NN method. (Top) The 18 out of
600 test examples that are incorrectly clas-
sified; (Bottom) the nearest neighbours in
the training set corresponding to each test-
point above.

14.3 A Probabilistic Interpretation of Nearest Neighbours

Consider the situation where we have data from two classes – class 0 and class 1. We make the following
mixture model for data from class 0 which places a Gaussian on each datapoint:

p(x|c = 0) =
1

N0

∑
n∈ class 0

N
(
x xn, σ2I

)
=

1

N0

1

(2πσ2)D/2

∑
n∈ class 0

e−(x−xn)2/(2σ2) (14.3.1)

where D is the dimension of a datapoint x and N0 are the number of train points of class 0, and σ2 is
the variance. This is a Parzen estimator , and models the data as a uniform weighted sum of Gaussian
distributions centred on the training points, fig(14.5).

Similarly, for data from class 1:

p(x|c = 1) =
1

N1

∑
n∈ class 1

N
(
x xn, σ2I

)
=

1

N1

1

(2πσ2)D/2

∑
n∈ class 1

e−(x−xn)2/(2σ2) (14.3.2)

To classify a new datapoint x∗, we use Bayes’ rule

p(c = 0|x∗) =
p(x∗|c = 0)p(c = 0)

p(x∗|c = 0)p(c = 0) + p(x∗|c = 1)p(c = 1)
(14.3.3)

The maximum likelihood setting of p(c = 0) is N0/(N0 +N1), and p(c = 1) = N1/(N0 +N1). An analogous
expression to equation (14.3.3) holds for p(c = 1|x∗). To see which class is most likely we may use the ratio

p(c = 0|x∗)
p(c = 1|x∗) =

p(x∗|c = 0)p(c = 0)

p(x∗|c = 1)p(c = 1)
(14.3.4)

If this ratio is greater than one, we classify x∗ as 0, otherwise 1.

Equation(14.3.4) is a complicated function of x∗. However, if σ2 is very small, the numerator, which is a
sum of exponential terms, will be dominated by that term for which datapoint xn0 in class 0 is closest to
the point x∗. Similarly, the denominator will be dominated by that datapoint xn1 in class 1 which is closest
to x∗. In this case, therefore,

p(c = 0|x∗)
p(c = 1|x∗) ≈

e−(x∗−xn0 )2/(2σ2)p(c = 0)/N0

e−(x∗−xn1 )2/(2σ2)p(c = 1)/N1

=
e−(x∗−xn0 )2/(2σ2)

e−(x∗−xn1 )2/(2σ2)
(14.3.5)

Taking the limit σ2 → 0, with certainty we classify x∗ as class 0 if x∗ is closer to xn0 than to xn1 . The
nearest (single) neighbour method is therefore recovered as the limiting case of a probabilistic generative
model, see fig(14.5).

Figure 14.5: A probabilistic interpretation of nearest neighbours. For each
class we use a mixture of Gaussians to model the data from that class p(x|c),
placing at each training point an isotropic Gaussian of width σ2. The width
of each Gaussian is represented by the circle. In the limit σ2 → 0 a novel
point (small black dot) is assigned the class of its nearest neighbour. For
finite σ2 > 0 the influence of non-nearest neighbours has an effect, resulting
in a soft version of nearest neighbours.
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The motivation for K nearest neighbours is to produce a classification that is robust against unrepresen-
tative single nearest neighbours. To ensure a similar kind of robustness in the probabilistic interpretation,
we may use a finite value σ2 > 0. This smoothes the extreme probabilities of classification and means
that more points (not just the nearest) will have an effective contribution in equation (14.3.4). The exten-
sion to more than two classes is straightforward, requiring a class conditional generative model for each class.

By using a richer generative model of the data we may go beyond the Parzen estimator approach. We will
examine such cases in some detail in later chapters, in particular chapter(20).

14.3.1 When your nearest neighbour is far away

For a novel input x∗ that is far from all training points, Nearest Neighbours, and its soft probabilistic variant
will confidently classify x∗ as belonging to the class of the nearest training point. This is arguably opposite
to what we would like, namely that the classification should tend to the prior probabilities of the class based
on the number of training data per class. A way to avoid this problem is, for each class, to include a fictitious
large-variance mixture component at the mean of all the data, one for each class. For novel inputs close to
the training data, this extra fictitious component will have no appreciable effect. However, as we move away
from the high density regions of the training data, this additional fictitious component will dominate since
it has larger variance than any of the other components. As the distance from x∗ to each fictitious class
point is the same, in the limit that x∗ is far from the training data, the effect is that no class information
from the position of x∗ occurs. See section(20.3.3) for an example.

14.4 Summary

• Nearest neighbour methods are general classification methods.

• The NN method can be understood as a class conditional mixture of Gaussians in the limit of a vanishingly
small covariance for each mixture component model.

14.5 Code

nearNeigh.m: K nearest neighbour
majority.m: Find the majority entry in each column of a matrix
demoNearNeigh.m: K nearest neighbour Demo

14.6 Exercises

Exercise 14.1. The file NNdata.mat contains training and test data for the handwritten digits 5 and 9.
Using leave one out cross-validation, find the optimal K in K-nearest neighours, and use this to compute
the classification accuracy of the method on the test data.

Exercise 14.2. Write a routine SoftNearNeigh(xtrain,xtest,trainlabels,sigma) to implement soft
nearest neighbours, analogous to nearNeigh.m. Here sigma is the variance σ2 in equation (14.3.1). The
file NNdata.mat contains training and test data for the handwritten digits 5 and 9. Using leave one out
cross-validation, find the optimal σ2 and use this to compute the classification accuracy of the method on
the test data. Hint: you may have numerical difficulty with this method. To avoid this, consider using the
logarithm, and how to numerically compute log

(
ea + eb

)
for large (negative) a and b. See also logsumexp.m.

Exercise 14.3. The editor at YoMan! (a ‘mens’ magazine) has just had a great idea. Based on the success
of a recent national poll to test IQ, she decides to make a ‘Beauty Quotient’ (BQ) test. She collects as
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many images of male faces as she can, taking care to make sure that all the images are scaled to roughly
the same size and under the same lighting conditions. She then gives each male face a BQ score from 0
(‘Severely Aesthetically Challenged’) to 100 (‘Generously Aesthetically Gifted’). Thus, for each real-valued
D-dimensional image x, there is an associated value b in the range 0 to 100. In total she collects N images
and associated scores, {(xn, bn) , n = 1, . . . , N}. One morning, she bounces into your office and tells you the
good news : it is your task to make a test for the male nation to determine their Beauty Quotient. The
idea, she explains, is that a man can send online an image of their face x∗, to YoMan! and will immediately
receive an automatic BQ response b∗.

1. As a first step, you decide to use the K nearest neighbour method (KNN) to assign a BQ score b∗ to
a novel test image x∗. Describe how to determine the optimal number of neighbours K to use.

2. Your line manager is pleased with your algorithm but is disappointed that it does not provide any simple
explanation of Beauty that she can present in a future version of YoMan! magazine. To address this,
you decide to make a model based on linear regression. That is

b = wTx (14.6.1)

where w is a parameter vector chosen to minimise

E(w) =
∑
n

(
bn −wTxn

)2

After training (finding a suitable w), how can YoMan! explain to its readership in a simple way what
facial features are important for determining one’s BQ?
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CHAPTER 15

Unsupervised Linear Dimension Reduction

High-dimensional data is prevalent in machine learning and related areas. Indeed, there often arises the
situation in which there are more data dimensions than there are data examples. In such cases we seek a
lower dimensional representation of the data. In this chapter we discuss some standard methods which can
also improve the prediction performance by removing ‘noise’ from the representation.

15.1 High-Dimensional Spaces – Low Dimensional Manifolds

In machine learning problems data is often high dimensional – images, bag-of-word descriptions, gene-
expressions etc. In such cases we cannot expect the training data to densely populate the space, meaning
that there will be large parts in which little is known about the data. For the hand-written digits from
chapter(14), the data is 784 dimensional and for binary valued pixels the number of possible images is
2784 ≈ 10236. Nevertheless, we would expect that only a handful of examples of a digit should be sufficient
(for a human) to understand how to recognise a 7. Digit-like images must therefore occupy a highly
constrained volume in the 784 dimensions and we expect only a small number of degrees of freedom to
be required to describe the data to a reasonable accuracy. Whilst the data vectors may be very high
dimensional, they will therefore typically lie close to a much lower dimensional ‘manifold’ (informally, a
two-dimensional manifold corresponds to a warped sheet of paper embedded in a high dimensional space),
meaning that the distribution of the data is heavily constrained. Here we concentrate on computationally
efficient linear dimension reduction techniques in which a high dimensional datapoint x is projected down
to a lower dimensional vector y by

y = Fx + const. (15.1.1)

The non-square matrix F has dimensions dim (y) × dim (x), with dim (y) < dim (x). The methods in this
chapter are largely non-probabilistic, although many have natural probabilistic interpretations. For example,
PCA is closely related to Factor Analysis, as described in chapter(21).

15.2 Principal Components Analysis

If data lies close to a linear subspace, as in fig(15.1) we can accurately approximate each data point by using
vectors that span the linear subspace alone. In such cases we aim to discover a low dimensional co-ordinate
system in which we can approximately represent the data. We express the approximation for datapoint xn

as

xn ≈ c +

M∑
j=1

ynj bj ≡ x̃n (15.2.1)
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Figure 15.1: In linear dimension reduction a linear
subspace is fitted such that the average squared dis-
tance between datapoints (red rings) and their projec-
tions onto the plane (black dots) is minimal.

Here the vector c is a constant and defines a point in the linear subspace and the bj are ‘basis’ vectors that
span the linear subspace (also known as ‘principal component coefficients’ or ‘loadings’). Note that some
authors define PCA without the constant c. Collectively we can write B =

[
b1, . . . ,bM

]
. The yni are the

low dimensional coordinates of the data, forming a lower dimension yn for each datapoint n; collectively we
can write these lower dimensional vectors as Y =

[
y1, . . . ,yN

]
. Equation(15.2.1) expresses how to find the

reconstruction x̃n given the lower dimensional representation yn (which has components yni , i = 1, . . . ,M).
For a data space of dimension dim (x) = D, we hope to accurately describe the data using only a small
number M � D of co-ordinates y.

To determine the best lower dimensional representation it is convenient to use the squared distance error
between x and its reconstruction x̃:

E(B,Y, c) =
N∑
n=1

D∑
i=1

[xni − x̃ni ]2 (15.2.2)

It is straightforward to show that the optimal bias c is given by the mean of the data
∑

n xn/N , exercise(15.1).
We therefore assume that the data has been centred (has zero mean

∑
n xn = 0), so that we can set c to

zero, and concentrate on finding the optimal basis B below.

15.2.1 Deriving the optimal linear reconstruction

To find the best basis vectors B (defining [B]i,j = bji ) and corresponding low dimensional coordinates Y, we
wish to minimize the sum of squared differences between each vector x and its reconstruction x̃:

E(B,Y) =

N∑
n=1

D∑
i=1

xni − M∑
j=1

ynj b
j
i

2

= trace
(

(X−BY)T (X−BY)
)

(15.2.3)

where X =
[
x1, . . . ,xN

]
.

An important observation is that the optimal solution for B and Y is not unique since the reconstruction
error E(B,Y) depends only on the product BY. Indeed, without loss of generality, we may constrain B
to be an orthonormal matrix. To see this, consider an invertible transformation Q of the basis B so that
B̃ ≡ BQ is an orthonormal matrix, B̃TB̃ = I. Since Q is invertible, we may write BY = B̃Ỹ on defining
Ỹ = Q−1Y. Since Ỹ is unconstrained (because Y is unconstrained), without loss of generality, we may
consider equation (15.2.3) under the orthonormality constraint BTB = I, namely that the basis vectors are
mutually orthogonal and of unit length.

By differentiating equation (15.2.3) with respect to ynk we obtain (using the orthonormality constraint on
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B)

−1

2

∂

∂ynk
E(B,Y) =

∑
i

xni −∑
j

ynj b
j
i

 bki =
∑
i

xni b
k
i −

∑
j

ynj
∑
i

bji b
k
i︸ ︷︷ ︸

δjk

=
∑
i

xni b
k
i − ynk

The squared error E(B,Y) therefore has zero derivative when

ynk =
∑
i

bki x
n
i , which can be written as Y = BTX (15.2.4)

We now substitute this solution into equation (15.2.3) to write the squared error as a function of B alone.
Using

(X−BY)T (X−BY) = XTX−XTBBTX−XTBBTX + XTB BTB︸ ︷︷ ︸
I

BTX (15.2.5)

The last two terms above therefore cancel. Using then trace (ABC) = trace (CAB) we obtain

E(B) = trace
(
XXT

(
I−BBT

))
(15.2.6)

Hence the objective becomes

E(B) = (N − 1)
[
trace (S)− trace

(
SBBT

)]
(15.2.7)

where S is the sample covariance matrix of the data1. Since we assumed the data is zero mean, this is

S =
1

N − 1
XXT =

1

N − 1

N∑
n=1

xn(xn)T (15.2.8)

More generally, for non-zero mean data, we have

S =
1

N − 1

N∑
n=1

(xn −m)(xn −m)T, m =
1

N

N∑
n=1

xn (15.2.9)

To minimise equation (15.2.7) under the constraint BTB = I we use a set of Lagrange multipliers L, so that
the objective is to minimize

−trace
(
SBBT

)
+ trace

(
L
(
BTB− I

))
(15.2.10)

(neglecting the constant prefactor N − 1 and the trace (S) term). Since the constraint is symmetric, we can
assume that L is also symmetric. Differentiating with respect to B and equating to zero we obtain that at
the optimum

SB = BL (15.2.11)

We need to find matrices B and L that satisfy this equation. One solution is given when L is diagonal, in
which case this is a form of eigen-equation and the columns of B are the corresponding eigenvectors of S. In
this case, trace

(
SBBT

)
= trace (L), which is the sum of the eigenvalues corresponding to the eigenvectors

forming B. For this eigen solution, therefore

1

N − 1
E(B) = −trace (L) + trace (S) = −

M∑
i=1

λi + const. (15.2.12)

1Here we use the unbiased sample covariance, simply because this is standard in the literature. If we were to replace this
with the sample covariance as defined in chapter(8), the only change required is to replace N − 1 by N throughout, which has
no effect on the form of the solutions found by PCA.
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Figure 15.2: Projection of two dimensional data using
one dimensional PCA. Plotted are the original dat-
apoints x (larger rings) and their reconstructions x̃
(small dots) using 1 dimensional PCA. The lines rep-
resent the orthogonal projection of the original data-
point onto the first eigenvector. The arrows are the
two eigenvectors scaled by the square root of their cor-
responding eigenvalues. The data has been centred to
have zero mean. For each ‘high dimensional’ datapoint
x, the ‘low dimensional’ representation y is given in
this case by the distance (possibly negative) from the
origin along the first eigenvector direction to the cor-
responding orthogonal projection point.

Since we wish to minimise E(B), we therefore define the basis using the eigenvectors with largest corre-
sponding eigenvalues. If we order the eigenvalues λ1 ≥ λ2, . . ., the squared error is then given by, from
equation (15.2.7)

1

N − 1
E(B) = trace (S)− trace (L) =

D∑
i=1

λi −
M∑
i=1

λi =
D∑

i=M+1

λi (15.2.13)

Whilst the solution to this eigen-problem is unique, this only serves to define the solution subspace since
one may rotate and scale B and Y such that the value of the squared loss is exactly the same (since the
least squares objective depends only on the product BY). The justification for choosing the non-rotated
eigen solution is given by the additional requirement that the basis (columns of B) correspond to directions
of maximal variance, as explained in section(15.2.2).

15.2.2 Maximum variance criterion

To break the invariance of least squares projection with respect to rotations and rescaling, we need an
additional criterion. One such is given by first searching for the single direction b such that the variance of
the data projected onto this direction is maximal amongst all possible such projections. This makes sense
since we are looking for ‘interesting’ directions along which the data varies a lot. Using equation (15.2.4)
for a single vector b we have

yn =
∑
i

bix
n
i (15.2.14)

The projection of a datapoint onto a direction b is bTxn for a unit length vector b. Hence the sum of
squared projections is

∑
n

(
bTxn

)2
= bT

[∑
n

xn (xn)T

]
b = (N − 1)bTSb (15.2.15)

Ignoring constants, this is the negative of equation (15.2.7) for a single basis vector b. Since, optimally, b
is an eigenvector with Sb = λb, and the squared projection becomes λ(N − 1). Hence the optimal single b
which maximises the projection variance is given by the eigenvector corresponding to the largest eigenvalue
of S. Under the criterion that the next optimal direction b(2) should be orthonormal to the first, one can
readily show that b(2) is given by the second largest eigenvector, and so on. This explains why, despite the
squared loss equation (15.2.7) being invariant with respect to arbitrary rotation (and scaling) of the basis
vectors, the ones given by the eigen-decomposition have the additional property that they correspond to
directions of maximal variance. These maximal variance directions found by PCA are called the principal
directions.
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Algorithm 15.1 Principal Components Analysis to form an M -dimensional approximation of a dataset
{xn, n = 1, . . . , N}, with dim (xn) = D.

1: Find the D × 1 sample mean vector and D ×D covariance matrix

m =
1

N

N∑
n=1

xn, S =
1

N − 1

N∑
n=1

(xn −m)(xn −m)T

2: Find the eigenvectors e1, . . . , eD of the covariance matrix S, sorted so that the eigenvalue of ei is larger than
ej for i < j. Form the matrix E = [e1, . . . , eM ].

3: The lower dimensional representation of each data point xn is given by

yn = ET(xn −m) (15.2.16)

4: The approximate reconstruction of the original datapoint xn is

xn ≈m + Eyn (15.2.17)

5: The total squared error over all the training data made by the approximation is

N∑
n=1

(xn − x̃n)2 = (N − 1)

D∑
j=M+1

λj (15.2.18)

where λM+1 . . . λN are the eigenvalues discarded in the projection.

15.2.3 PCA algorithm

The routine for PCA is presented in algorithm(15.1). In the notation of y = Fx, the projection matrix
F corresponds to ET. Similarly for the reconstruction equation (15.2.1), the coordinate yn corresponds to
ETxn and bi corresponds to ei. The PCA reconstructions are orthogonal projections of the data onto the
subspace spanned by the eigenvectors corresponding to the M largest eigenvalues of the covariance matrix,
see fig(15.2).

Example 15.1 (Reducing the dimension of digits). We have 892 examples of handwritten 5’s, where each
image consists of 28 × 28 real-values pixels, see fig(15.3). Each image matrix is stacked to form a 784
dimensional vector, giving a 784× 892 dimensional data matrix X. The covariance matrix of this data has
eigenvalue spectrum as plotted in fig(15.4), where we plot only the 100 largest eigenvalues. Note how after
around 40 components, the mean squared reconstruction error is small, indicating that the data lies close
to a 40 dimensional linear subspace. The eigenvalues are computed using pca.m. The reconstructions using
different numbers of eigenvectors (100, 30 and 5) are plotted in fig(15.3). Note how using only a small
number of eigenvectors, the reconstruction more closely resembles the mean image.

Figure 15.3: Top row : a selection of the
digit 5 taken from the database of 892 ex-
amples. Plotted beneath each digit is the
reconstruction using 100, 30 and 5 eigen-
vectors (from top to bottom). Note how
the reconstructions for fewer eigenvectors
express less variability from each other, and
resemble more a mean 5 digit.
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Example 15.2 (Eigenfaces). In fig(15.5) we present example images for which we wish to find a lower
dimensional representation. Using PCA the mean and first 48 ‘eigenfaces’ are presented along with recon-
structions of the original data using these eigenfaces, see fig(15.6). The PCA respresentation was found
using the SVD techniques, as described in section(15.3.2).

15.2.4 PCA and nearest neighbours classification

In nearest neighbours classification, chapter(14), we need to compute the distance between datapoints. For
high-dimensional data computing the squared Euclidean distance between vectors can be expensive, and
also sensitive to noise. It is therefore often useful to project the data to a lower dimensional representation
first. For example, in making a classifier to distinguish between the digit 1 and the digit 7, example(14.1),
we can form a lower dimensional representation and use this as a more robust representation of the data.
To do so we first ignore the class label to make a dataset of 1200 training points. Each of the training points
xn is then projected to a lower dimensional PCA representation yn. Subsequently, any distance calculations
(xa − xb)2 are replaced by (ya − yb)2. To justify this, consider

(xa − xb)T(xa − xb) ≈ (Eya + m−Eyb −m)T(Eya + m−Eyb −m)

= (ya − yb)TETE(ya − yb)

= (ya − yb)T(ya − yb) (15.2.19)

where the last equality is due to the orthonormality of eigenvectors, ETE = I.

Using 19 principal components (see example(15.3) as to why this number was chosen) and the nearest
neighbour rule to classify 1’s and 7’s gave a test-set error of 14 in 600 examples, compared to 18 from
the standard method on the non-projected data. A plausible explanation for this improvement is that the
new PCA representation of the data is more robust since only the ‘interesting’ directions in the space are
retained, with low variance directions discarded.

Example 15.3 (Finding the best PCA dimension). There are 600 examples of the digit 1 and 600 examples
of the digit 7. We will use half the data for training and the other half for testing. The 600 training examples
were further split into a training set of 400 examples and a separate validation set of 200 examples. PCA
was used to reduce the dimensionality of the inputs, and then nearest neighbours used to classify the 200
validation examples. Different reduced dimensions were investigated and, based on the validation results,
19 was selected as the optimal number of PCA components retained, see fig(15.7). The independent test
error on 600 independent examples using 19 dimensions is 14.

15.2.5 Comments on PCA

The ‘intrinsic’ dimension of data

How many dimensions should the linear subspace have? From equation (15.2.13), the reconstruction error
is proportional to the sum of the discarded eigenvalues. If we plot the eigenvalue spectrum (the set of
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ue Figure 15.4: The digits data consists of 892 examples of the digit
5, each image being represented by a 784 dimensional vector.
Plotted are 100 largest eigenvalues (scaled so that the largest
eigenvalue is 1) of the sample covariance matrix.
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Figure 15.5: 100 training images. Each image consists of 92 ×
112 = 10304 greyscale pixels. The train data is scaled so that,
represented as an image, the components of each image sum to 1.
The average value of each pixel across all images is 9.70× 10−5.
This is a subset of the 400 images in the full Olivetti Research
Face Database.

(a) (b)

Figure 15.6: (a): SVD reconstruc-
tion of the images in fig(15.5) using
a combination of the 49 eigen-images.
(b): The eigen-images are found us-
ing SVD of the images in fig(15.5)
and taking the mean and 48 eigenvec-
tors with largest corresponding eigen-
value. The images corresponding to
the largest eigenvalues are contained
in the first row, and the next 7 in the
row below, etc. The root mean square
reconstruction error is 1.121 × 10−5,
a small improvement over PLSA (see
fig(15.16)).

eigenvalues ordered by decreasing value), we might hope to see a few large values and many small values. If
the data does lie close to an M dimensional linear subspace, we would see M large eigenvalues with the rest
being very small. This gives an indication of the number of degrees of freedom in the data, or the intrinsic
dimensionality. Directions corresponding to the small eigenvalues are then interpreted as ‘noise’.

Non-linear dimension reduction

In PCA we are presupposing that the data lies close to a linear subspace. Is this really a good description?
More generally, we would expect data to lie on low dimensional non-linear subspace. Also, data is often
clustered – examples of handwritten 4’s look similar to each other and form a cluster, separate from the 8’s
cluster. Nevertheless, since linear dimension reduction is computationally relatively straightforward, this is
one of the most common dimensionality reduction techniques.

15.3 High Dimensional Data

The computational complexity of computing the eigen-decomposition of a D × D matrix is O
(
D3
)
. You

might be wondering therefore how it is possible to perform PCA on high dimensional data. For example, if
we have 500 images each of 1000×1000 = 106 pixels, the covariance matrix will be a 106×106 square matrix.
It would appear to be a significant computational challenge to find the eigen-decomposition of this matrix
directly. In this case, however, since there are only 500 such vectors, the number of non-zero eigenvalues
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s Figure 15.7: Finding the optimal PCA dimension to use for clas-
sifying hand-written digits using nearest neighbours. 400 train-
ing examples are used, and the validation error plotted on 200
further examples. Based on the validation error, we see that a
dimension of 19 is reasonable.

cannot exceed 500. One can exploit this fact to reduce the O
(
D3
)

complexity of the naive approach, as
described below.

15.3.1 Eigen-decomposition for N < D

First note that for zero mean data, the sample covariance matrix can be expressed as

[S]ij =
1

N − 1

N∑
n=1

xni x
n
j (15.3.1)

In matrix notation this can be written

S =
1

N − 1
XXT (15.3.2)

where the D ×N matrix X contains all the data vectors:

X =
[
x1, . . . ,xN

]
(15.3.3)

Since the eigenvectors of a matrix M are equal to those of γM for scalar γ, one can consider more simply
the eigenvectors of XXT. Writing the D×N matrix of eigenvectors as E and the eigenvalues as an N ×N
diagonal matrix Λ, the eigen-decomposition of the scaled covariance S satisfies

XXTE = EΛ⇒ XTXXTE = XTEΛ⇒ XTXẼ = ẼΛ (15.3.4)

where we defined Ẽ = XTE. The final expression above represents the eigenvector equation for XTX.
This is a matrix of dimensions N ×N so that calculating the eigen-decomposition takes O

(
N3
)

operations,
compared with O

(
D3
)

operations in the original high-dimensional space. We can therefore calculate the

eigenvectors Ẽ and eigenvalues Λ of this matrix more easily. Once found, we use the fact that the eigenvalues
of S are given by the diagonal entries of Λ and the eigenvectors by

E = XẼΛ−1 (15.3.5)

15.3.2 PCA via Singular value decomposition

An alternative to using an eigen-decomposition routine to find the PCA solution is to make use of the
Singular Value Decomposition (SVD) of an D ×N dimensional matrix X. This is given by

X = UDVT (15.3.6)

where UTU = ID and VTV = IN and D is a D ×N diagonal matrix of the (positive) singular values. We
assume that the decomposition has ordered the singular values so that the upper left diagonal element of D
contains the largest singular value. The matrix XXT can then be written as

XXT = UDVTVDTUT = UD̃2UT (15.3.7)

where D̃ ≡ DDT is a D × D diagonal matrix with the N squared singular values on the first diagonal
entries, and zero elsewhere. Since UD̃UT is in the form of an eigen-decomposition, the PCA solution is
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equivalently given by performing the SVD decomposition of X, for which the eigenvectors are then given by
U, and corresponding eigenvalues by the square of the singular values.

Equation(15.3.6) shows that PCA is a form of matrix decomposition method:

X = UDVT ≈ UMDMVT
M (15.3.8)

where UM , DM , VM correspond to taking only the first M singular values of the full matrices.

15.4 Latent Semantic Analysis

In the document analysis literature PCA is also called Latent Semantic Analysis and is concerned with
analysing a set of N documents. Each document is represented by a vector

xn = (xn1 , . . . , x
n
D)T (15.4.1)

of word occurrences. For example the first element xn1 might count how many times the word ‘cat’ appears
in document n, xn2 the number of occurrences of ‘dog’, etc. This bag of words2 is formed by first choosing
a dictionary of D words. The vector element xni is the (possibly normalised) number of occurrences of the
word i in the document n. Typically D will be large, of the order 106, and x will be very sparse since any
document contains only a small fraction of the available words in the dictionary. Using ]i,n to represent the
number of times that term i occurs in document n, the term-frequency is defined as

tfni ≡
]i,n∑
i ]i,n

(15.4.2)

An issue with this representation is that frequently occurring words such as ‘the’ will dominate. To counter
this one can measure how unique a term i is by seeing how many documents contain the term, and define
the inverse-document frequency

idfi ≡ log
N

number of documents that contain term i
(15.4.3)

An alternative to the above term-frequency representation is the term frequency–inverse document frequency
(TF-IDF) representation which is given by

xni = tfni × idfi (15.4.4)

which gives high weight to terms that appear often in a document, but rarely amongst documents.

Given a set of documents D, the aim in LSA is to form a lower dimensional representation of each document.
The whole document database is represented by the so-called term-document matrix

X =
[
x1, . . . ,xN

]
(15.4.5)

which has dimension D × N , see for example fig(15.8), with entries typically defined by either the term-
frequency, or TF-IDF representation. An interpretation of PCA in this case is that the principal directions
define ‘topics’. PCA is arguably suboptimal for document analysis since we would expect the presence
of a latent topic to contribute only positive counts to the data. A related version of PCA in which the
decomposition is constrained to have positive elements is called PLSA, and discussed in section(15.6).

Example 15.4 (Latent Topic). We have a small dictionary containing the words influenza, flu, headache,
nose, temperature, bed, cat, dog, rabbit, pet. The database contains a large number of articles that discuss
ailments, and articles which seem to talk about the effects of influenza, in addition to some background
documents that are not specific to ailments; other documents also discuss pet related issues. Some of the

2More generally one can consider term-counts, in which terms can be single words, or sets of words, or even sub-words.
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Figure 15.8: (Top) Document data for a dictionary containing 10 words and 2000 documents. Black indicates
that a word was present in a document. The data consists of two distinct topics and a random background
topic. The first topic contains two sub-topics which differ only in their usage of the first two words, ‘influenza’
and ‘flu’. (Bottom) The projections of each datapoint onto the two principal components.

more formal documents exclusively use the term influenza, whereas the other more ‘tabloid’ documents use
the informal term flu. Each document is represented by a 10-dimensional vector in which element i of that
vector is set to 1 if word i occurs in the document, and 0 otherwise. The data is represented in fig(15.8).
The data is generated using the artificial mechanism described in demoLSI.m.

The result of using PCA on this data is represented in fig(15.9) where we plot the eigenvectors, scaled by
their eigenvalue. To aid interpretability, we do not use the bias term c in equation (15.2.1). The first
eigenvector groups all the ‘ailment’ words together, the second the ‘pet’ words and the third deals with
the different usage of the terms influenza and flu. Note that unlike clustering models (see section(20.3) for
example) in PCA (and related methods such as PLSA) a datapoint can in principle be constructed from
many basis vectors, so that a document could represent a mixture of different topics.

Rescaling

In LSA it is common to scale the transformation so that the projected vectors have approximately unit
covariance (assuming centred data). Using

y =
√
N − 1D−1

M UT
Mx (15.4.6)

the covariance of the projections is obtained from

1

N − 1

∑
n

yn (yn)T = D−1
M UT

M

∑
n

xn (xn)T

︸ ︷︷ ︸
XXT

UMD−1
M = D−1

M UT
MUDDTUTUMD−1

M ≈ I

Given y, the approximate reconstruction x̃ is

x̃ =
1√
N − 1

UMDMy (15.4.7)

The Euclidean distance between two points xa and xb is then approximately

d
(
x̃a, x̃b

)
=

1

N − 1

(
ya − yb

)T
DMUT

MUMDM

(
ya − yb

)
≈ 1

N − 1

(
ya − yb

)T
D2
M

(
ya − yb

)
It is common to ignore the D2

M term (and 1/ (N − 1) factor), and to consider a measure of dissimilarity in
the projected space to be the Euclidean distance between the y vectors.

15.4.1 Information retrieval

Consider a large collection of documents from the web, creating a database D. Our interest it to find
the most similar document to a specified query document. Using a bag-of-words style representation for
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Figure 15.9: Hinton diagram of the eigenvector matrix E where each eigen-
vector column is scaled by the corresponding eigenvalue. The dark shaded
squares indicates positive and light shaded squares negative values (the area
of each square corresponds to the magnitude), showing that there are only
a few large eigenvalues. Note that the overall sign of any eigenvector is
irrelevant. The first eigenvector corresponds to a topic in which the words
influenza, flu, headache, nose, temperature, bed are prevalent. The second
eigenvector denotes the ‘pet’ topic words. The third eigenvector shows that
there is negative correlation between the occurrence of influenza and flu.
The interpretation of the eigenvectors as ‘topics’ can be awkward since the
basis eigenvectors are by definition orthogonal. Contrast this basis with
that found using PSLA with two components, fig(15.14).

document n, xn, and similarly for the query document, x∗ we address this task by first defining a measure
of dissimilarity between documents, for example

d(xn,xm) = (xn − xm)T (xn − xm) (15.4.8)

One then searches for the document that minimises this dissimilarity:

nopt = argmin
n

d(xn,x∗) (15.4.9)

and returns document xnopt as the result of the search query. The squared difference between two documents
can also be written(

x− x′
)T (

x− x′
)

= xTx + x′
T
x′ − 2xTx′ (15.4.10)

If, as is commonly done, the bag-of-words representations are scaled to have unit length,

x̂ =
x√
xTx

(15.4.11)

so that x̂Tx̂ = 1, the distance is(
x̂− x̂′

)T (
x̂− x̂′

)
= 2

(
1− x̂Tx̂′

)
(15.4.12)

and one may equivalently consider the cosine similarity

s(x̂, x̂′) = x̂Tx̂′ = cos (θ) (15.4.13)

where θ is the angle between the unit vectors x̂ and x̂′, fig(15.10).

A difficulty with using a bag-of-words representation is that the representation will have mostly zeros.
Hence differences may be due to ‘noise’ rather than any real similarity between the query and database
document. LSA helps alleviate this problem somewhat by using a lower dimensional representation y of
the high-dimensional x. The y capture the main variations in the data and are less sensitive to random
uncorrelated noise. Using the dissimilarity defined in terms of the lower dimensional y is therefore more
robust and likely to result in the retrieval of more useful documents.

Example 15.5. Continuing the Influenza example, someone who uploads a query document which uses the
term ‘flu’ might also be interested in documents about ‘influenza’. However, the search query term ‘flu’ does
not contain the word ‘influenza’, so how can one retrieve such documents? Since the first component using
PCA (LSA) groups all ‘influenza’ terms together, if we use only the first component of the representation y
to compare documents, this will retrieve documents independent of whether the term ‘flu’ or ‘influenza’ is
used.
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(a) (b)

Figure 15.10: (a): Two bag-of-word vectors. The Euclidean distance
between the two is large. (b): Normalised vectors. The Euclidean distance
is now related directly to the angle between the vectors. In this case two
documents which have the same relative frequency of words will both have
the same dissimilarity, even though the number of occurrences of the words
is different.

15.5 PCA With Missing Data

When values of the data matrix X are missing, the standard PCA algorithm as described cannot be applied.
Unfortunately, there is no ‘quick fix’ PCA solution when some of the xni are missing and more complex
numerical procedures need to invoked. A simple approach in this case is to require the squared reconstruction
error to be small only for the existing elements of X. That is3

E(B,Y) =

N∑
n=1

D∑
i=1

γni

xni −∑
j

ynj b
j
i

2

(15.5.1)

where γni = 1 if the ith entry of the nth vector is available, and is zero otherwise. Differentiating, as before,
we find that the optimal weights satisfy (assuming BTB = I),

ykn =
∑
i

γni x
n
i b
k
i (15.5.2)

One then substitutes this expression into the squared error, and minimises the error with respect to B under
the orthonormality constraint. An alternative iterative optimisation procedure is as follows: First select a
random D ×M matrix B̂. Then iterate until convergence the following two steps:

Optimize Y for fixed B

E(B̂,Y) =
N∑
n=1

D∑
i=1

γni

xni −∑
j

ynj b̂
j
i

2

(15.5.3)

For fixed B̂ the above E(B̂,Y) is a quadratic function of the matrix Y, which can be optimised
directly. By differentiating and equating to zero, one obtains the fixed point condition

∑
i

γni

(
xni −

∑
l

ynl b̂
l
i

)
b̂ki = 0 (15.5.4)

Defining[
y(n)

]
l

= yln,
[
M(n)

]
kl

=
∑
i

b̂lib̂
k
i γ

n
i , [cn]k =

∑
i

γni x
n
i b̂
k
i , (15.5.5)

in matrix notation, we then have a set of linear systems:

c(n) = M(n)y(n), n = 1, . . . , N (15.5.6)

One may solve each linear system for yn using Gaussian elimination4. It can be that one or more of
the above linear systems is underdetermined– this can occur when there are less observed values in
the nth data column of X than there are components M . In this case one may use the pseudo-inverse
to provide a minimal length solution.

3For simplicity we assume that there is no mean term included.
4One can avoid explicit matrix inversion by using the \ operator in MATLAB
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Figure 15.11: Top: original data matrix X. Black is
missing, white present. The data is constructed from
a set of only 5 basis vectors. Middle : X with missing
data (80% sparsity). Bottom : reconstruction found
using svdm.m, SVD for missing data. This problem is
essentially easy since, despite there being many miss-
ing elements, the data is indeed constructed from a
model for which SVD is appropriate. Such techniques
have application in collaborative filtering and recom-
mender systems where one wishes to ‘fill in’ missing
values in a matrix.

Optimize B for fixed Y
One now freezes Ŷ and considers the function

E(B, Ŷ) =
N∑
n=1

D∑
i=1

γni

xni −∑
j

ŷnj b
j
i

2

(15.5.7)

For fixed Ŷ the above expression is quadratic in the matrix B, which can again be optimised using
linear algebra. This corresponds to solving a set of linear systems for the ith row of B:

m(i) = F(i)b(i) (15.5.8)

where[
m(i)

]
k

=
∑
n

γni x
n
i ŷ

n
k ,

[
F(i)

]
kj

=
∑
n

γni ŷ
n
j ŷ

n
k (15.5.9)

Mathematically, this is b(i) = F(i)−1
m(i).

In this manner one is guaranteed to iteratively decrease the value of the squared error loss until a minimum
is reached. This technique is implemented in svdm.m – see also fig(15.11). Efficient techniques based on
updating the solution as a new column of X arrives one at a time (‘online’ updating) are also available, see
for example [52].

15.5.1 Finding the principal directions

For the missing data case the basis B found using the above technique is based only on minimising the
squared reconstruction error and therefore does not necessarily satisfy the maximal variance (or principal
directions) criterion, namely that the columns of B point along the eigen-directions. For a given B, Y with
approximate decomposition X ≈ BY we can return a new orthonormal basis U by performing SVD on the
completed data, BY = USVT to return an orthonormal basis U.

An alternative is to explicitly transform the solution B. Forming the SVD of B,

B = UDVT (15.5.10)

the principal directions B̃ are given by

B̃ = BVD−1 (15.5.11)
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(a) (b)

Figure 15.12: (a): Under-complete representation. There are too few basis
vectors to represent the datapoints exactly. (b): Over-complete represen-
tation. There are too many basis vectors to form a unique representation
of a datapoint in terms of a linear combination of the basis vectors.

If the D×M matrix B is non-square M < D, then the matrix D will be non-square and non-invertible. To
make the above well defined, one may append D with the columns of the identity:

D′ = [D, IM+1, . . . , ID] (15.5.12)

where IK is the Kth column of the identity matrix, and we use D′ in place of D in equation (15.5.11) above.

15.5.2 Collaborative filtering using PCA with missing data

A database contains a set of vectors, each describing the film ratings for a user in the database. The entry
xni in the vector xn specifies the rating the user n gives to the ith film. The matrix X =

[
x1, . . . ,xN

]
contains the ratings for all the N users and has many missing values since any single user will only have
given a rating for a small selection of the possible D films. In a practical example one might have D = 104

films and N = 106 users. For any user n the task is to predict reasonable values for the missing entries of
their rating vector xn, thereby providing a suggestion as to which films they might like to view. Viewed
as a missing data problem, one can fit B and Y using svdm.m as above. Given B and Y we can form a
reconstruction on all the entries of X, by using

X̃ = BY (15.5.13)

giving therefore a prediction for the missing values.

15.6 Matrix Decomposition Methods

Given a data matrix X for which each column represents a datapoint, an approximate matrix decomposition
is of the form X ≈ BY into a basis matrix B and weight (or coordinate) matrix Y. Symbolically, matrix
decompositions are of the form

 X : Data


︸ ︷︷ ︸

D×N

≈

 B : Basis


︸ ︷︷ ︸

D×M

 Y : Weights/Components


︸ ︷︷ ︸

M×N

(15.6.1)

By considering the SVD of the data matrix, we see that PCA is in this class. In this section we will
consider some further common matrix decomposition methods. The form of the decomposition we have
previously considered has been under-complete, although over-complete decompositions are also of interest,
as described below.

Under-complete decompositions

When M < D, there are fewer basis vectors than dimensions, fig(15.12a). The matrix B is then called ‘tall’
or ‘thin’. In this case the matrix Y forms a lower dimensional approximate representation of the data X,
PCA being a classic example.
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Over-complete decompositions

For M > D the basis is over-complete, there being more basis vectors than dimensions, fig(15.12b). In such
cases additional constraints are placed on either the basis or components. For example, one might require
that only a small number of the large number of available basis vectors is used to form the representation
for any given x. Other popular constraints are that the basis vectors themselves should be sparse. Such
sparse-representations are common in theoretical neurobiology where issues of energy efficiency, rapidity of
processing and robustness are of interest[230, 168, 268].

Below we discuss some popular constrained matrix factorisation methods, in particular including positivity
constraints on both the basis vectors and the components.

15.6.1 Probabilistic latent semantic analysis

Consider two objects, x and y, where dom(x) = {1, . . . , I}, dom(y) = {1, . . . , J} and a dataset
{(xn, yn) , n = 1, . . . , N}. We have a count matrix with elements Cij which describes the number of times
the joint state x = i, y = j was observed in the dataset. We can transform this count matrix into a frequency
matrix p with elements

p(x = i, y = j) =
Cij∑
ij Cij

(15.6.2)

Our interest is to find a decomposition of this frequency matrix of the form in fig(15.13a)

p(x = i, y = j)︸ ︷︷ ︸
Xij

≈
∑
k

p̃(x = i|z = k)︸ ︷︷ ︸
Bik

p̃(y = j|z = k)p̃(z = k)︸ ︷︷ ︸
Ykj

≡ p̃(x = i, y = j) (15.6.3)

where all quantities p̃ are distributions. This is then a form of matrix decomposition into a positive basis B
and positive coordinates Y. This has the interpretation of discovering latent features/topics z that describe
the joint behaviour of x and y. After training, the term p̃(z) can be used to rank the basis vectors or ‘topics’
(the columns on B) in terms of importance, if desired. Note that PLSA is not a sequential solver in the
sense that the optimal two basis vectors solution is not generally equivalent to the taking the highest ranked
(according to p̃(z)) columns of the three basis vector solution – see fig(15.14).

An EM style training algorithm

In order to find the approximate decomposition we first need a measure of difference between the matrix
with elements pij and the approximation with elements p̃ij . Since all elements are bounded between 0 and 1
and sum to 1, we may interpret p as a joint probability and p̃ as an approximation to this. For probabilities,
a useful measure of discrepancy is the Kullback-Leibler divergence

KL(p|p̃) = 〈log p〉p − 〈log p̃〉p (15.6.4)

Since p is fixed, minimising the Kullback-Leibler divergence with respect to the approximation p̃ is equivalent
to maximising the ‘likelihood’ term 〈log p̃〉p. This is∑

x,y

p(x, y) log p̃(x, y) (15.6.5)

where
∑

z implies summation over all states of the variable z. It’s convenient to derive an EM style algorithm
to learn p̃(x|z), p̃(y|z) and p̃(z). To do this, consider

KL(q(z|x, y)|p̃(z|x, y)) =
∑
z

q(z|x, y) log q(z|x, y)−
∑
z

q(z|x, y) log p̃(z|x, y) ≥ 0 (15.6.6)

Using

p̃(z|x, y) =
p̃(x, y, z)

p̃(x, y)
(15.6.7)
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Figure 15.13: (a): Joint PLSA. (b): Conditional PLSA.

and rearranging, this gives the bound,

log p̃(x, y) ≥ −
∑
z

q(z|x, y) log q(z|x, y) +
∑
z

q(z|x, y) log p̃(z, x, y) (15.6.8)

Plugging this into the ‘likelihood’ term above, we have the bound∑
x,y

p(x, y) log p̃(x, y) ≥ −
∑
x,y

p(x, y)
∑
z

q(z|x, y) log q(z|x, y)

+
∑
x,y

p(x, y)
∑
z

q(z|x, y) [log p̃(x|z) + log p̃(y|z) + log p̃(z)] (15.6.9)

M-step

For fixed p̃(x|z), p̃(y|z), the contribution to the bound from p̃(z) is∑
x,y

p(x, y)
∑
z

q(z|x, y) log p̃(z) (15.6.10)

It is straightforward to see that the optimal setting of p̃(z) is

p̃(z) =
∑
x,y

q(z|x, y)p(x, y) (15.6.11)

since equation (15.6.10) is, up to a constant, KL
(∑

x,y q(z|x, y)p(x, y)|p̃(z)
)

. Similarly, for fixed p̃(y|z), p̃(z),
the contribution to the bound from p̃(x|z) is∑

x,y

p(x, y)
∑
z

q(z|x, y) log p̃(y|z) (15.6.12)

Therefore, optimally

p̃(x|z) ∝
∑
y

p(x, y)q(z|x, y) (15.6.13)

and similarly,

p̃(y|z) ∝
∑
x

p(x, y)q(z|x, y) (15.6.14)

E-step

The optimal setting for the q distribution at each iteration is

q(z|x, y) = p̃(z|x, y) (15.6.15)

which is fixed throughout the M-step.

The ‘likelihood’ equation (15.6.5) is guaranteed to increase (and the Kullback-Leibler divergence equation
(15.6.4) decrease) under iterating between the E and M-steps, since the method is analogous to an EM pro-
cedure. The procedure is given in algorithm(15.2) and a demonstration is in demoPLSA.m. Generalisations,
such as using simpler q distributions, (corresponding to generalised EM procedures) are immediate based
on modifying the above derivation.
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Algorithm 15.2 PLSA: Given a frequency matrix p(x = i, y = j), return a decomposition
∑

k p̃(x = i|z =
k)p̃(y = j|z = k)p̃(z = k). See plsa.m

1: Initialise p̃(z), p̃(x|z), p̃(y|z).
2: while Not Converged do
3: Set q(z|x, y) = p̃(z|x, y) . E-step
4: Set p̃(x|z) ∝∑y p(x, y)q(z|x, y) . M-Steps
5: Set p̃(y|z) ∝∑x p(x, y)q(z|x, y)
6: end while
7: Set p̃(z) =

∑
x,y p(x, y)q(z|x, y)

Algorithm 15.3 Conditional PLSA: Given a frequency matrix p(x = i|y = j), return a decomposition∑
k p̃(x = i|z = k)p̃(z = k|y = j). See plsaCond.m

1: Initialise p̃(x|z), p̃(z|y).
2: while Not Converged do
3: Set q(z|x, y) = p̃(z|x, y) . E-step
4: Set p̃(x|z) ∝∑y p(x|y)q(z|x, y) . M-Steps
5: Set p̃(z|y) ∝∑x p(x|y)q(z|x, y)
6: end while

Example 15.6 (PLSA for documents). We repeated the analysis of the toy document data in fig(15.8),
now using PLSA. As we see from fig(15.14), the basis found is interpretable and intuitive. Also, the
‘projections’ onto these basis vectors is also reasonable, and corresponds to what we would expect. The
limited expressibility of the two-basis model causes the two ‘influenza’ and ‘flu’ terms to be placed in the
same basis vector and each basis vector clearly represents two non-overlapping topics. Note that there is
no requirement in general for the topics to be non-overlapping; this just happens to be the case for this
example only. For the richer three-basis vector model, the model distinguishes clearly two similar topics,
differing in only a single word.

Conditional PLSA

In some cases it is more natural to consider a conditional frequency matrix

p(x = i|y = j) (15.6.16)

and seek an approximate decomposition

p(x = i|y = j)︸ ︷︷ ︸
Xij

≈
∑
k

p̃(x = i|z = k)︸ ︷︷ ︸
Bik

p̃(z = k|y = j)︸ ︷︷ ︸
Ykj

(15.6.17)

as depicted in fig(15.13b). Deriving an EM style algorithm for this is straightforward, exercise(15.9), and is
presented in algorithm(15.3).

Example 15.7 (Discovering the basis). A set of images is given in fig(15.15a). These were created by first
defining 4 base images fig(15.15b). Each base image is positive and scaled so that the sum of the pixels is
unity,

∑
i p(x = i|z = k) = 1, where k = 1, . . . , 4 and x indexes the pixels, see fig(15.15). We then summed

each of these images using a randomly chosen positive set of 4 weights (under the constraint that the weights
sum to 1) to generate a training image with elements p(x = i|y = j) and j indexes the training image. This
was repeated 144 times to form the full train set, fig(15.15a). The task is, given only the training set images,
to reconstruct the basis from which the images were formed. We assume that we know the correct number
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Figure 15.14: PLSA for the document data in fig(15.8). (a): Hinton diagram for two basis vectors. (b):
Hinton diagram for three basis vectors. (c): The projections for the three basis vectors case. The solution
is quite satisfactory since the first 1000 documents are clearly considered to be from the similar ‘ailments’
topics, the next 500 from some other non-specific ‘background’ topic, and the last 500 from a separate ‘pet’
topic.

(a) (b) (c) (d)

Figure 15.15: (a): Training data, consisting of a positive (convex) combination of the base images. (b):
The chosen base images from which the training data is derived. (c): Basis learned using conditional PLSA
on the training data. This is virtually indistinguishable from the true basis. (d): Eigenbasis (sometimes
called ‘eigenfaces’).

of base images, namely 4. The results of using conditional PLSA on this task are presented in fig(15.15c)
and using SVD in fig(15.15d). In this case PLSA finds the correct ‘natural’ basis, corresponding to the way
the images were generated. The eigenbasis is better in terms of mean squared reconstruction error of the
training images, but in this case does not correspond to the constraints under which the data was generated.

Example 15.8 (Eigenfaces verus PLSA faces). We return to example(15.2) and now rerun the experiment,
seeking a PLSA basis, rather than an eigenbases. In fig(15.16) we show the reconstruction of the original
100 images and the corresponding PLSA basis. The reconstruction error is necessarily higher for the PLSA
solution since the optimal mean squared error solution is given by PCA (PLSA has more constraints on the
form of the solution than PCA). However, the basis found by PLSA is arguably more interpretable since
the positive features are positively summed to produce an image. Because of this, the PLSA basis vectors
tend to be rather sparse.
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(a) (b)

Figure 15.16: (a): Conditional
PLSA reconstruction of the images in
fig(15.5) using a positive convex com-
bination of the 49 positive base im-
ages in (b). The root mean square
reconstruction error is 1.391 × 10−5.
The base images tend to be more ‘lo-
calised’ than the corresponding eigen-
images fig(15.6b). Here one sees local
structure such as foreheads, chins, etc.

15.6.2 Extensions and variations

A fully probabilistic interpretation of PLSA can be made via Poisson processes[58]. A related probabilistic
model is Latent Dirichlet Allocation, which is described in section(20.6.1).

Non-negative matrix factorisation

Non-negative Matrix Factorisation (NMF) considers a decomposition in which both the basis and weight
matrices have non-negative entries; this can be considered as constrained Factor Analysis[233]. Closely
related works are [185] which is a generalisation of PLSA (with no requirement that the basis or components
sum to unity). In all cases EM-style training algorithms exist, although their convergence can be slow. We
will encounter similar models in the discussion on Independent Component Analysis, section(21.6).

Gradient based training

EM style algorithms are easy to derive and implement but can exhibit poor convergence. Gradient based
methods to simultaneously optimize with respect to the basis and the components have been developed, but
require a parameterisation that ensures positivity of the solutions[233].

Array decompositions

It is straightforward to extend PLSA to the decomposition of multidimensional arrays. For example

p(s, t, u) ≈
∑
v,w

p̃(s, t, u|v, w)p̃(v, w) =
∑
v,w

p̃(s, t|u, v)p̃(u|w)p̃(v)p̃(w) (15.6.18)

Such extensions require only additional bookkeeping.

15.6.3 Applications of PLSA/NMF

Modelling citations

We have a collection of research documents which cite other documents. For example, document 1 might
cite documents 3, 2, 10, etc. Given only the list of citations for each document, can we identify key research
papers and the communities that cite them? Note that this is not the same question as finding the most
cited documents – rather we want to identify documents with communities and find their relevance for a
community.

We use the variable d ∈ {1, . . . , D} to index documents and c ∈ {1, . . . , D} to index citations (both d and c
have the same domain, namely the index of a research article). If document d = i cites article c = j then we
set the entry of the matrix Cij = 1. If there is no citation, Cij is set to zero. We can form a ‘distribution’
over documents and citations using

p(d = i, c = j) =
Cij∑
ij Cij

(15.6.19)
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factor 1 (Reinforcement Learning)
0.0108 Learning to predict by the methods of temporal differences. Sutton.
0.0066 Neuronlike adaptive elements that can solve difficult learning control problems. Barto et al.
0.0065 Practical Issues in Temporal Difference Learning. Tesauro.

factor 2 (Rule Learning)
0.0038 Explanation-based generalization: a unifying view. Mitchell et al.
0.0037 Learning internal representations by error propagation. Rumelhart et al.
0.0036 Explanation-Based Learning: An Alternative View. DeJong et al.

factor 3 (Neural Networks)
0.0120 Learning internal representations by error propagation. Rumelhart et al.
0.0061 Neural networks and the bias-variance dilemma. Geman et al.
0.0049 The Cascade-Correlation learning architecture. Fahlman et al.

factor 4 (Theory)
0.0093 Classification and Regression Trees. Breiman et al.
0.0066 Learnability and the Vapnik-Chervonenkis dimension. Blumer et al.
0.0055 Learning Quickly when Irrelevant Attributes Abound. Littlestone.

factor 5 (Probabilistic Reasoning)
0.0118 Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Pearl.
0.0094 Maximum likelihood from incomplete data via the em algorithm. Dempster et al.
0.0056 Local computations with probabilities on graphical structures. Lauritzen et al.

factor 6 (Genetic Algorithms)
0.0157 Genetic Algorithms in Search, Optimization, and Machine Learning. Goldberg.
0.0132 Adaptation in Natural and Artificial Systems. Holland.
0.0096 Genetic Programming: On the Programming of Computers by Means of Natural Selection. Koza.

factor 7 (Logic)
0.0063 Efficient induction of logic programs. Muggleton et al.
0.0054 Learning logical definitions from relations. Quinlan.
0.0033 Inductive Logic Programming Techniques and Applications. Lavrac et al.

Table 15.1: Highest ranked documents according to p(c|z). The factor topic labels are manual assignments
based on similarity to the Cora topics. Reproduced from [66].

and use PLSA to decompose this matrix into citation-topics, see the example below.

Example 15.9 (Modelling citations). The Cora corpus [201] contains an archive of around 30,000 computer
science research papers. From this archive the authors in [66] extracted the papers in the machine learning
category, consisting of 4220 documents and 38,372 citations. Using these the distribution equation (15.6.19)
was formed. The documents have additionally been categorised by hand into 7 topics: Case-based reasoning,
Genetic Algorithms, Neural Networks, Probabilistic methods, Reinforcement Learning, Rule Learning and
Theory. In [66] the joint PLSA method is fitted to the data using dim (z) = 7 topics. From the trained
model the expression p(c = j|z = k) defines how authoritative paper j is according to community z = k.
The method discovers intuitively meaningful topics, as presented in table(15.1).

Modelling the web

Consider a collection of websites, indexed by i. If website j points to website i, set Cij = 1, otherwise set
Cij = 0. This gives a directed graph of website-to-website links. Since a website will discuss usually only a
small number of ‘topics’ we might be able to explain why there is a link between two websites using a PLSA
decomposition. These algorithms have proved useful for internet search for example to determine the latent
topics of websites and identify the most authoritative websites. See [67] for a discussion.

Physical models

Non-negative decompositions can arise naturally in physical situations. For example, in acoustics, positive
amounts of energy combine linearly from different signal sources to form the observed signal. If we consider
that two kinds of signals are present in an acoustic signal, say a piano and a singer then using NMF one
can learn two separate bases, one for each ‘instrument’, and then reconstruct a given signal using only one
of the bases. This means that one could potentially remove the singer from a recording, leaving only the
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piano. This is analogous to reconstructing the images in fig(15.15a) using say only one of the learned basis
images, see example(15.7). See [305] for a related model in acoustics.

15.7 Kernel PCA

Kernel PCA is a non-linear extension of PCA designed to discover non-linear subspace. Here we only briefly
describe the approach and refer the reader to [259] for details. In kernel PCA, we replace each x by a
‘feature’ vector x̃ ≡ φ(x). Note that the use of x̃ here does not have the interpretation we used before as the
approximate reconstruction. Rather, the feature map φ takes a vector x and produces a higher dimensional
vector x̃. For example we could map a two dimensional vector x = [x1, x2]T using

φ(x) =
[
x1, x2, x

2
1, x

2
2, x1x2, x

3
1, . . .

]T
(15.7.1)

The idea is then to perform PCA on these higher dimensional feature vectors, subsequently mapping back
the eigenvectors to the original space x. The main challenge is to write this without explicitly computing
PCA in the potentially very high dimensional feature vector space. As a reminder, in standard PCA, for
zero mean data, one forms an eigen-decomposition of the sample matrix5

S =
1

N
X̃X̃T (15.7.2)

For simplicity, we concentrate here on finding the first principal component ẽ which satisfies

X̃X̃Tẽ = λ′ẽ (15.7.3)

for corresponding eigenvalue λ (writing λ′ = Nλ). The ‘dual’ representation is obtained by pre-multiplying
by X̃T, so that in terms of f̃ ≡ X̃Tẽ, the standard PCA eigen-problem reduces to solving:

X̃TX̃f̃ = λ′f̃ (15.7.4)

The feature eigenvector ẽ is then recovered using

X̃f̃ = λ′ẽ (15.7.5)

We note that matrix X̃TX̃ has elements[
X̃TX̃

]
mn

= φ(xm)Tφ(xn) (15.7.6)

and recognise this as the scalar product between vectors. This means that the matrix is positive semidefinite
and we may equivalently use a covariance function kernel, see section(19.3),[

X̃TX̃
]
mn

= k(xm,xn) = Kmn (15.7.7)

Then equation (15.7.4) can be written as

Kf̃ = λ′f̃ (15.7.8)

One then solves this eigen-equation to find the N dimensional principal dual feature vector f̃ . The projection
of the feature x̃ is given by

y = x̃Tẽ =
1

λ
x̃TX̃f̃ (15.7.9)

More generally, for a larger number of components, the ith kernel PCA projection yi can be expressed in
terms of the kernel directly as

yi =
1

Nλi

N∑
n=1

k(x,xn)f̃ in (15.7.10)

5We use the normalisation N as opposed to N − 1 just for notational convenience – in practice, there is little difference.
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where i is the eigenvalue label and f̃ in is the nth component of the ith eigenvector of K.

The above derivation implicitly assumed zero mean features x̃. Even if the original data x is zero mean,
due to the non-linear mapping, however, the features may not be zero mean. To correct for this one may
show that the only modification required is to replace the matrix K in equation (15.7.8) above with

K ′mn = k(xm,xn)− 1

N

N∑
d=1

k(xd,xn)− 1

N

N∑
d=1

k(xm,xd) +
1

N2

N∑
d=1,d′=1

k(xd
′
,xd) (15.7.11)

Finding the reconstructions

Through equation (15.7.10), the above gives a procedure for finding the KPCA projection y. However, in
many cases we would also like to have an approximate reconstruction x′ using the lower dimensional y.
This is not straightforward since the mapping from y to x is in general highly non-linear. Here we outline
a procedure for achieving this. First we find the reconstruction x̃∗ of the feature space vector x̃, using

x̃∗ =
∑
i

yiẽ
i =

∑
i

yi
1

λi

∑
n

f̃ni φ(xn) (15.7.12)

Given x̃∗ we try to find that point x′ in the original data space that maps to x̃∗. This can be found by
minimising

E(x′) =
(
φ(x′)− x̃∗

)2
(15.7.13)

Up to negligable constants this is

E(x′) = k(x′,x′)− 2
∑
i

yi
λi

∑
n

f̃ni k(xn,x′) (15.7.14)

One then finds x′ by minimising E(x′) numerically. The resulting procedure gives a way to form a non-linear
extension of PCA; however it is computationally relatively demanding and results in a complex optimisation
problem. See [259] for details and example applications.

15.8 Canonical Correlation Analysis

Consider variables x and y being ‘different views’ of the same underlying object. For example x might rep-
resent a segment of video and y the corresponding audio. Given then a collection {(xn,yn) , n = 1, . . . , N},
an interesting challenge is to identify which parts of the audio and video are strongly correlated. One might
expect, for example, that the mouth region of the video is strongly correlated with the audio.

One way to achieve this is to project each x and y to one dimension using aTx and bTy such that the
correlation between the projections is maximal. The unnormalised correlation between the projections aTx
and bTy is

∑
n

aTxnbTyn = aT

[∑
n

xnynT

]
b. (15.8.1)

Defining

Sxy ≡
1

N

∑
n

xnynT (15.8.2)

and similarly for Syx,Sxx,Syy, the normalised correlation is

aTSxyb√
aTSxxa

√
bTSyyb

(15.8.3)
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Figure 15.17: Canonical Correlation Analysis. (a): Training data. The top panel contains the X matrix
of 100, 15 dimensional points, and the bottom the corresponding 30 dimensional Y matrix. (b): The data
in (a) was produced using X = Ah,Y = Bh where A is a 15 × 1 matrix, and B is a 30 × 1 matrix. The
underlying latent h is a 1 × 100 dimensional randomly chosen vector. (c): Matrices A and B learned by
CCA. Note that they are close to the true A and B up to rescaling and sign changes. See demoCCA.m.

Since equation (15.8.3) is invariant with respect to recaling a and also b, we can consider the equivalent
objective

E(a,b) = aTSxyb (15.8.4)

subject to aTSxxa = 1 and bTSyyb = 1. To find the optimal projections a, b, under the constraints, we use
the Lagrangian,

L (a,b, λa, λb) ≡ aTSxyb +
λa
2

(
1− aTSxxa

)
+
λb
2

(
1− bTSyyb

)
(15.8.5)

from which we obtain the zero derivative criteria

Sxyb = λaSxxa, Syxa = λbSyyb (15.8.6)

Hence

aTSxyb = λaa
TSxxa = λa, bTSyxa = λbb

TSyyb = λb (15.8.7)

Since aTSxyb = bTSyxa we must have λa = λb = λ at the optimum. If we assume that Syy is invertible we
can write,

b =
1

λ
S−1
yy Syxa (15.8.8)

and use this to eliminate b in equation (15.8.6), giving

SxyS
−1
yy Syxa = λ2Sxxa (15.8.9)

which is a generalised eigen-problem. Assuming that Sxx is invertible we can equivalently write

S−1
xxSxyS

−1
yy Syxa = λ2a (15.8.10)

which is a standard eigen-problem (albeit with λ2 as the eigenvalue). Once this is solved we can find b using
equation (15.8.8).
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15.8.1 SVD formulation

It is straightforward to show that we can find a (the optimal projection of x) by first computing the SVD
of

S
− 1

2
xx SxyS

− 1
2

yy (15.8.11)

in the form UDVT and extracting the maximal singular vector u1 of U (the first column of U). Then a is

optimally S
− 1

2
xx u1, and similarly, b is optimally S

− 1
2

yy v1, where v1 is the first column of V. In this way, the
extension to finding M multiple directions A =

[
a1, . . . ,aM

]
and B =

[
b1, . . . ,bM

]
is clear – one takes the

corresponding first M singular values accordingly. Doing so maximises the criterion

trace
(
ATSxyB

)√
trace (ATSxxA)

√
trace (BTSyyB)

(15.8.12)

This approach is taken in cca.m – see fig(15.17) for a demonstration. One can also show that CCA corre-
sponds to factor analysis under a block restriction on the form of the factor loadings, see section(21.2.1).

CCA and related kernel extensions have been applied in machine learning contexts, for example to model
the correlation between images and text in order to improve image retrieval from text queries, see [138].

15.9 Summary

• PCA is a classical linear dimension reduction method and assumes that the data lies close to a linear
subspace.

• The PCA representation can be found by an eigen-decomposition of the data covariance matrix, or alter-
natively using an SVD decomposition of the data matrix.

• More generally, PCA is special case of a matrix decomposition method. Other standard methods include
PLSA and non-negative matrix factorisation, which can be considered as constrained forms of PCA (posi-
tivity constraints).

• Canonical correlation analysis attempts to find a low dimensional representation that jointly models the
two related data spaces. CCA is a special case of the probabilistic factor analysis model.

PCA appears in many different research communities and can be referred to differently. For example it is
also known as the Karhunen-Loève decomposition and proper orthogonal decomposition.

Another important use for dimension reduction is in data visualisation. Methods such as PCA can be used
in this context, though are not designed to produce visually interpretable results. See [252] and [300] for
discussions of work in this area.

15.10 Code

pca.m: Principal components analysis
demoLSI.m: Demo of latent semantic indexing/analysis
svdm.m: Singular value decomposition with missing data
demoSVDmissing.m: Demo SVD with missing data
plsa.m: Probabilistic Latent Semantic Analysis
plsaCond.m: Conditional probabilistic latent semantic analysis
demoPLSA.m: Demo of PLSA
cca.m: Canonical correlation analysis (CCA)
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demoCCA.m: Demo of canonical correlation analysis

15.11 Exercises

Exercise 15.1. As described in section(15.2), we wish to show that the optimal bias c is equal to the sample
mean of the data.

1. Explain why, when considering a bias c, and carrying out the derivation in section(15.2.1), we will
obtain, analogously to equation (15.2.1):

E(B, c) =
∑
n

(xn − c)T
(
I−BBT

)
(xn − c) (15.11.1)

2. Show that for a matrix M

∂

∂c
cTMc = Mc + MTc (15.11.2)

3. Using this derivative result, show that the optimal bias c satisfies

0 =
(
I−BBT

)∑
n

(xn − c) (15.11.3)

and hence determine that the optimal bias is given by the mean of the data, c =
∑N

n=1 xn/N .

Exercise 15.2. Consider a dataset in two dimensions where the data lies on the circumference of a circle
of unit radius. What would be the effect of using PCA on this dataset, in which we attempt to reduce the
dimensionality to 1? Suggest an alternative one dimensional representation of the data.

Exercise 15.3. Consider two vectors xa and xb and their corresponding PCA approximations c+
∑M

i=1 aie
i

and c+
∑M

i=1 bie
i, where the eigenvectors ei, i = 1, . . . ,M are mutually orthogonal and have unit length. The

eigenvector ei has corresponding eigenvalue λi. Approximate (xa − xb)2 by using the PCA representations
of the data, and show that this is equal to (a− b)2.

Exercise 15.4. Show how the solution for a to the CCA problem in equation (15.8.9) can be transformed
into the form expressed by equation (15.8.11), as claimed in the text.

Exercise 15.5. Let S be the covariance matrix of the data. The Mahalanobis distance between xa and xb

is defined as(
xa − xb

)T
S−1

(
xa − xb

)
. (15.11.4)

Explain how to approximate this distance using M -dimensional PCA.

Exercise 15.6 (PCA with external inputs). In some applications, one may suspect that certain external
variables v have a strong influence on how the data x is distributed. For example, if x represents an image,
it might be that we know the lighting condition v under which the image was made – this will have a large
effect on the image. It would make sense therefore to include the known lighting condition in forming a lower
dimensional representation of the image. Note that we don’t want to form a lower dimensional representation
of the joint (x,v), rather we want to form a lower dimensional representation of x alone, bearing in mind
that some of the variability observed may be due to v. We therefore assume an approximation

xn ≈
∑
j

ynj bj +
∑
k

vnkck (15.11.5)

where the coefficients yni , i = 1, . . . , N , n = 1, . . . , N , basis vectors bj, j = 1, . . . , J and ck, k = 1, . . . ,K
are to be determined. The external inputs v1, . . . ,vN are given. The sum squared error loss between the xn

and their linear reconstruction equation (15.11.5) is

E =
∑
n,i

xni −∑
j

ynj b
j
i −

∑
k

vnk c
k
i

2

(15.11.6)

Find the parameters
{
bj , ck

}
, j = 1, . . . , J, k = 1, . . . ,K that minimise E.
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Exercise 15.7. Consider the following 3-dimensional datapoints:

(1.3, 1.6, 2.8)(4.3,−1.4, 5.8)(−0.6, 3.7, 0.7)(−0.4, 3.2, 5.8)(3.3,−0.4, 4.3)(−0.4, 3.1, 0.9) (15.11.7)

Perform Principal Components Analysis by:

1. Calculating the mean, c, of the data.

2. Calculating the covariance matrix S = 1
6

∑6
n=1 xn(xn)T − ccT of the data.

3. Finding the eigenvalues and eigenvectors ei of the covariance matrix.

4. You should find that only two eigenvalues are large, and therefore that the data can be well represented
using two components only. Let e1 and e2 be the two eigenvectors with largest eigenvalues. Calculate
the two dimensional representation of each datapoint (eT1 (xn − c), eT2 (xn − c)), n = 1, . . . , 6.

5. Calculate the reconstruction of each datapoint c + (eT1 (xn − c))e1 + (eT2 (xn − c))e2, n = 1, . . . , 6.

Exercise 15.8. Show that for the missing data case, the transformed solution B̃ given in equation (15.5.11)
satisfies B̃TB̃ = I.

Exercise 15.9. Consider a ‘conditional frequency matrix’

p(x = i|y = j) (15.11.8)

Following section(15.6.1), show how to derive an EM style algorithm for an approximate decomposition of
this matrix in the form

p(x = i|y = j) ≈
∑
k

p̃(x = i|z = k)p̃(z = k|y = j) (15.11.9)

where k = 1, . . . , Z, i = 1, . . . , X, j = 1, . . . , Y .
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CHAPTER 16

Supervised Linear Dimension Reduction

PCA is a popular and very useful method. However, if we subsequently use the projected data in a classifica-
tion problem, by not making use of the class labels of the data, we are potentially forming lower dimensional
representations that are suboptimal in terms of how well separated they are amongst the different classes.
In this chapter we discuss some classical methods that reduce the data dimension such that the resulting
data is well separated between the classes.

16.1 Supervised Linear Projections

In chapter(15) we discussed dimension reduction using an unsupervised procedure. In cases where class
information is available, and our ultimate interest is to reduce dimensionality for improved classification, it
makes sense to use the available class information in forming the projection. We consider data from two
different classes. For class 1, we have a set of N1 datapoints,

X1 =
{

x1
1, . . . ,x

N1
1

}
(16.1.1)

and similarly for class 2, we have a set of N2 datapoints

X2 =
{

x1
2, . . . ,x

N2
2

}
(16.1.2)

Our interest is then to find a linear projection,

y = WTx (16.1.3)

where dim W = D × L, L < D, such that for two datapoints xi and xj in the same class, the distance
between their projections yi and yj should be small. Conversely, for datapoints in different classes, the
distance between their projections should be large. This may be useful for classification purposes since for
a novel point x∗, if its projection

y∗ = WTx∗ (16.1.4)

is close to class 1 projected data, we would expect x∗ to belong to class 1. In forming the supervised pro-
jection, only the class discriminative parts of the data are retained, so that the procedure can be considered
a form of supervised feature extraction.

16.2 Fisher’s Linear Discriminant

We first restrict our attention to binary class data. Also, for simplicity, we project the data down to one
dimension. The canonical variates algorithm of section(16.3) deals with the generalisations.
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Figure 16.1: The large crosses represent data from class 1, and the large circles from class 2. Their projections
onto 1 dimension are represented by their small counterparts. (a): Fisher’s Linear Discriminant Analysis.
Here there is little class overlap in the projections. (b): Unsupervised dimension reduction using Principal
Components Analysis for comparison. There is considerable class overlap in the projection. In both (a) and
(b) the one dimensional projection is the distance along the line, measured from an arbitrary chosen fixed
point on the line.

Gaussian assumption

We model the data from each class with a Gaussian. That is

p(x1) = N (x1 m1,S1) , p(x2) = N (x2 m2,S2) (16.2.1)

where m1 is the sample mean of class 1 data, and S1 the sample covariance; similarly for class 2. The
projections of the points from the two classes are then given by

yn1 = wTxn1 , yn2 = wTxn2 (16.2.2)

Because the projections are linear, the projected distributions are also Gaussian,

p(y1) = N
(
y1 µ1, σ

2
1

)
, µ1 = wTm1, σ2

1 = wTS1w (16.2.3)

p(y2) = N
(
y2 µ2, σ

2
2

)
, µ2 = wTm2, σ2

2 = wTS2w (16.2.4)

We search for a projection w such that the projected distributions have minimal overlap. This can be
achieved if the projected Gaussian means are maximally separated, that is (µ1 − µ2)2 is large. However, if
the variances σ2

1, σ
2
2 are also large, there could still be a large overlap still in the classes. A useful objective

function therefore is

(µ1 − µ2)2

π1σ2
1 + π2σ2

2

(16.2.5)

where πi represents the fraction of the dataset in class i. In terms of the projection w, the objective equation
(16.2.5) is

F (w) =
wT (m1 −m2) (m1 −m2)T w

wT (π1S1 + π2S2) w
=

wTAw

wTBw
(16.2.6)

where

A = (m1 −m2) (m1 −m2)T , B = π1S1 + π2S2 (16.2.7)

The optimal w can be found by differentiating equation (16.2.6) with respect to w. This gives

∂

∂w

wTAw

wTBw
=

2

(wTBw)
2

[(
wTBw

)
Aw −

(
wTAw

)
Bw

]
(16.2.8)
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and therefore the zero derivative requirement is(
wTBw

)
Aw =

(
wTAw

)
Bw (16.2.9)

Multiplying by the inverse of B we have

B−1 (m1 −m2) (m1 −m2)T w =
wTAw

wTBw
w (16.2.10)

Since (m1 −m2)T w is a scalar, the optimal projection is explicitly given by

w ∝ B−1 (m1 −m2) (16.2.11)

Although the proportionality factor depends on w, we may take it to be constant since the objective function
F (w) in equation (16.2.6) is invariant to rescaling of w. We may therefore take

w = kB−1 (m1 −m2) (16.2.12)

It is common to rescale w to have unit length, wTw = 1, such that

k =
1√

(m1 −m2)T B−2 (m1 −m2)
(16.2.13)

An illustration of the method is given in fig(16.1), which demonstrates how supervised dimension reduction
can produce lower dimensional representations more suitable for subsequent classification than an unsuper-
vised method such as PCA.

One can also arrive at equation (16.2.12) from a different starting objective. By treating the projection as
a regression problem y = wTx + b in which the outputs y are defined as y1 and y2 for classes 1 and class 2
respectively, one may show that, for suitably chosen y1 and y2, the solution using a least squares criterion is
given by equation (16.2.12) [88, 43]. This also suggests a way to regularise LDA, see exercise(16.3). Kernel
extensions of LDA are possible, see for example [82, 264].

When the naive method breaks down

The above derivation relied on the existence of the inverse of B. In practice, however, B may not be
invertible, and the above procedure requires modification. A case where B is not invertible is when there
are fewer datapoints N1 + N2 than dimensions D. A related problematic case is when there are elements
of the input vectors that never vary. For example, in the hand-written digits case, the pixels at the corner
edges are actually always zero. Let’s call such a pixel z. The matrix B will then have a zero entry for
[B]z,z (indeed the whole zth row and column of B will be zero) so that for any vector of the form

wT = (0, 0, . . . , wz, 0, 0, . . . , 0)⇒ wTBw = 0 (16.2.14)

This shows that the denominator of Fisher’s objective can become zero, and the objective ill defined. We
will address these issues in section(16.3.1).

16.3 Canonical Variates

Canonical Variates generalises Fisher’s method to projections of more than one dimension and more than
two classes. The projection of any point is given by

y = WTx (16.3.1)

where W is a D × L matrix. Assuming that the data x from class c is Gaussian distributed,

p(x) = N (x mc,Sc) (16.3.2)

the projections y are also Gaussian

p(y) = N
(
y WTmc,W

TScW
)

(16.3.3)

By analogy with equation (16.2.7), we define the following matrices:

DRAFT November 21, 2011 333



Canonical Variates

Between class Scatter Find the mean m of the whole dataset and mc, the mean of the each class c.
Form

A ≡
C∑
c=1

Nc (mc −m) (mc −m)T (16.3.4)

where Nc is the number of datapoints in class c, c = 1, . . . , C.

Within class Scatter Compute the covariance matrix Sc of the data for each class c. Define

B ≡
C∑
c=1

NcSc (16.3.5)

Assuming B is invertible (see section(16.3.1) otherwise), we can define the Cholesky factor B̃, with

B̃TB̃ = B (16.3.6)

A natural objective is then to maximise the Raleigh quotient

F (W) ≡
trace

(
WTB̃−TAB̃−1W

)
trace (WTW)

(16.3.7)

If we assume an orthonormality constraint on W, then we equivalently require the maximisation of

F (W) ≡ trace
(
WTCW

)
, subject to WTW = I (16.3.8)

where

C ≡ 1

D
B̃−TAB̃−1 (16.3.9)

Since C is symmetric and positive semidefinite, it has a real eigen-decomposition

C = EΛET (16.3.10)

where Λ = diag (λ1, λ2, . . . , λD) is diagonal with non-negative entries containing the eigenvalues, sorted by
decreasing order, λ1 ≥ λ2 ≥ . . . and ETE = I. Hence

F (W) = trace
(
WTEΛETW

)
(16.3.11)

By setting W = [e1, . . . , eL], where el is the lth eigenvector, the objective F (W) becomes the sum of the
first L eigenvalues. This setting maximises the objective function since forming W from any other columns
of E would give a lower sum. The procedure is outlined in algorithm(16.1). Note that since A has rank C,
there can be no more than C − 1 non-zero eigenvalues and corresponding directions.

q1

q2

Figure 16.2: Each three dimensional datapoint lies in a two-
dimensional plane, meaning that the matrix B is not full
rank, and therefore not invertible. A solution is given by
finding vectors q1,q2 that span the plane, and expressing
the Canonical Variates solution in terms of these vectors
alone.
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Algorithm 16.1 Canonical Variates

1: Compute the between and within class scatter matrices A, equation (16.3.4) and B, equation (16.3.5).
2: Compute the Cholesky factor B̃ of B.
3: Compute the L principal eigenvectors [e1, . . . , eL] of B̃−TAB̃−1.
4: Return W = [e1, . . . , eL] as the projection matrix.
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Figure 16.3: (a): Canonical Variates projection of examples of handwritten digits 3(‘+’), 5(‘o’) and
7(diamond). There are 800 examples from each digit class. Plotted are the projections down to 2 dimensions.
(b): PCA projections for comparison.

16.3.1 Dealing with the nullspace

The above derivation of Canonical Variates (and also Fisher’s LDA) requires the invertibility of the matrix
B. However, as we discussed in section(16.2), one may encounter situations where B is not invertible.
A solution is to require that W lies only in the subspace spanned by the data (that is there can be no
contribution from the nullspace). To do this we first concatenate the training data from all classes into one
large matrix X. A basis for X can be found using, for example, the thin-SVD technique which returns an
orthonormal non-square basis matrix Q. We then require the solution W to be expressed in this basis, see
fig(16.2):

W = QW′ (16.3.12)

for some matrix W′. Substituting this in the Canonical Variates objective equation (16.3.7), we obtain

F (W′) ≡
trace

(
W′TQTAQW′

)
trace

(
W′TQTBQW′

) (16.3.13)

This is of the same form as the standard quotient, equation (16.3.7), on replacing the between-scatter A
with

A′ ≡ QTAQ (16.3.14)

and the within-scatter B with

B′ ≡ QTBQ (16.3.15)

In this case B′ is guaranteed invertible since B is projected down to the basis that spans the data. One may
then carry out Canonical Variates, as in section(16.3) above, which returns the matrix W′. Transforming,
back, W is then given by equation (16.3.12). See also CanonVar.m.
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Example 16.1 (Using canonical variates on the digit data). We apply canonical variates to project the digit
data onto two dimensions, see fig(16.3). There are 800 examples of a three, 800 examples of a five and 800
examples of a seven. Thus, overall, there are 2400 examples lying in a 784 (28×28 pixels) dimensional space.
The canonical variates projected data onto two dimensions has very little class overlap, see fig(16.3a). In
comparison the projections formed from PCA, which discards the class information, displays a high degree
of class overlap. The different scales of the canonical variates and PCA projections is due to the different
constraints on the projection matrices W. In PCA W is unitary; in canonical variates WTBW = I,
meaning that W will scale with the inverse square root of the largest eigenvalues of the within class scatter
matrix. Since the canonical variates objective is independent of linear scaling, W can be rescaled with an
arbitrary scalar prefactor γW, as desired.

16.4 Summary

• Fisher’s linear discriminant seeks a scalar projection that is maximally different for data from each of two
classes.

• Canonical variates generalises Fisher’s method to multiple classes and multiple projected dimensions.

• Fisher’s method and Canonical variates are related to standard eigen-problems.

The applicability of canonical variates depends on our assumption that a Gaussian is a good description of
the data. Clearly, if the data is multimodal, using a single Gaussian to model the data in each class is a poor
assumption. This may result in projections with a large class overlap. In principle, there is no conceptual
difficulty in using more complex distributions, and a more general criteria such as maximal Kullback-Leibler
divergence between projected distributions. However, such criteria typically result in difficult optimisation
problems. Canonical variates is popular due to its simplicity and lack of local optima issues in constructing
the projection.

16.5 Code

CanonVar.m: Canonical Variates
demoCanonVarDigits.m: Demo for Canonical Variates

16.6 Exercises

Exercise 16.1. What happens to Fisher’s Linear Discriminant if there are less datapoints than dimensions?

Exercise 16.2. Modify demoCanonVarDigits.m to project and visualise the digits data in 3 dimensions.

Exercise 16.3. Consider N1 class 1 datapoints xn1 , n1 = 1, . . . , N1 and N2 class 2 datapoints xn2 , n2 =
1, . . . , N2. We define a linear predictor for the data,

y = wTx + b (16.6.1)

with the aim to predict value y1 for data from class 1 and y2 for data from class two. A measure of the fit
is given by

E(w, b|y1, y2) =

N1∑
n1=1

(
y1 −wTxn1 − b

)2
+

N2∑
n2=1

(
y2 −wTxn2 − b

)2
(16.6.2)
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Show that by setting y1 = (N1 +N2)/N1 and y2 = (N1 +N2)/N2 the w which minimises E corresponds to
Fisher’s LDA solution. Hint: first show that the two zero derivative conditions are∑

n1

(
y1 − b−wTxn1

)
+
∑
n2

(
y2 − b−wTxn2

)
= 0 (16.6.3)

and ∑
n1

(
y1 − b−wTxn1

)
xT
n1

+
∑
n2

(
y2 − b−wTxn2

)
xT
n2

= 0 (16.6.4)

which can be reduced to the single equation

N (m1 −m2) =

(
NB +

N1N2

N
(m1 −m2) (m1 −m2)T

)
w (16.6.5)

where B is as defined for LDA in the text, equation (16.2.7).

Note that this suggests a way to regularise LDA, namely by adding on a term λwTw to E(w, b|y1, y2). This
can be absorbed into redefining equation (16.3.5) as

B′ = B + λI (16.6.6)

That is, we increase the covariance B by an additive amount λI. The optimal regularising constant λ may
be set by cross-validation.

Exercise 16.4. Consider the digit data of 892 fives digit5.mat and 1028 sevens digit7.mat. Make a
training set which consists of the first 500 examples from each digit class. Use Canonical Variates to first
project the data down to 10 dimensions and compute the Nearest Neighbour performance on the remaining
digits. Alternatively, use PCA to reduce the data to 10 dimensions, and compare the resulting Nearest
Neighbour classification performance. Visualise also the 10 directions found by Canonical Variates and the
10 principal directions of PCA.

Exercise 16.5. Consider an objective function of the form

F (w) ≡ A(w)

B(w)
(16.6.7)

where A(w) and B(w) are positive functions, and our task is to maximise F (w) with respect to w. It may
be that this objective does not have a simple algebraic solution, even though A(w) and B(w) are simple
functions. We can consider an alternative objective, namely

J(w, λ) = A(w)− λB(w) (16.6.8)

where λ is a constant scalar. Choose an initial point wold at random and set

λold ≡ A(wold)/B(wold) (16.6.9)

In that case J(wold, λold) = 0. Now choose a w such that

J(w, λold) = A(w)− λoldB(w) ≥ 0 (16.6.10)

This is certainly possible since J(wold, λold) = 0. If we can find a w such that J(w, λold) > 0, then

A(w)− λoldB(w) > 0 (16.6.11)

Show that for such a w, F (w) > F (wold), and suggest an iterative optimisation procedure for objective
functions of the form F (w).
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CHAPTER 17

Linear Models

In this chapter we discuss some classical methods for prediction based on fitting simple linear models to data.
These include standard methods such as linear and logistic regression, and also their kernelised variants.
We also discuss the popular support vector machine and related methods for ensuring good generalisation
performance.

17.1 Introduction: Fitting A Straight Line

Given training data {(xn, yn) , n = 1, . . . , N}, for scalar input xn and scalar output yn, a linear regression
fit is

y(x) = a+ bx (17.1.1)

To determine the best parameters a, b, we use a measure of the discrepancy between the observed outputs
and the linear regression fit such as the sum squared training error. This is also called ordinary least squares
and minimises the average vertical projection of the points y to the fitted line, fig(17.1a):

E(a, b) =

N∑
n=1

[yn − y(xn)]2 =

N∑
n=1

(yn − a− bxn)2 (17.1.2)

Our task is to find the parameters a and b that minimise E(a, b). Differentiating with respect to a and b we
obtain

∂

∂a
E(a, b) = −2

N∑
n=1

(yn − a− bxn),
∂

∂b
E(a, b) = −2

N∑
n=1

(yn − a− bxn)xn (17.1.3)

Dividing by N and equating to zero, the optimal parameters are given from the solution to the two linear
equations

〈y〉 − a− b 〈x〉 = 0, 〈xy〉 − a 〈x〉 − b
〈
x2
〉

= 0 (17.1.4)

where we used the notation 〈f(x, y)〉 to denote 1
N

∑N
n=1 f(xn, yn). We can readily solve the equations(17.1.4)

to determine a and b:

a = 〈y〉 − b 〈x〉 (17.1.5)

b
〈
x2
〉

= 〈yx〉 − 〈x〉 (〈y〉 − b 〈x〉)⇒ b
[〈
x2
〉
− 〈x〉2

]
= 〈xy〉 − 〈x〉 〈y〉 (17.1.6)
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Figure 17.1: Data from singbats – the number of chirps per second, versus the temperature in Fahrenheit.
(a): Straight line regression fit to the singbat data. (b): PCA fit to the data. In regression we minimize
the residuals – the vertical distances from datapoints to the line. In PCA the fit minimizes the orthogonal
projections to the line. Both lines go through the mean of the data.

Hence

b =
〈xy〉 − 〈x〉 〈y〉
〈x2〉 − 〈x〉2

(17.1.7)

and a is found by substituting this value for b into equation (17.1.5).

In contrast to ordinary least squares regression, PCA from chapter(15) minimises the orthogonal projection
of y to the line and is known as orthogonal least squares – see example(17.1).

Example 17.1. In fig(17.1) we plot the number of chirps c per second for singbats, versus the temperature
t in degrees Fahrenheit. A biologist believes that there is a simple relation between the number of chirps
and the temperature of the form

c = a+ bt (17.1.8)

where she needs to determine the parameters a and b. For the singbat data, the fit is plotted in fig(17.1a).
For comparison we plot the fit from the PCA, fig(17.1b), which minimises the sum of the squared orthogonal
projections from the data to the line.

17.2 Linear Parameter Models for Regression

We can generalise the above to fitting linear functions of vector inputs x. For a dataset {(xn, yn) , n = 1, . . . , N},
a linear parameter regression model (LPM) is defined by1

y(x) = wTφ(x) (17.2.1)

where φ(x) is a vector valued function of the input vector x. For example, in the case of a straight line fit,
with scalar input and output, equation (17.1.1), we have

φ(x) = (1, x)T, w = (a, b)T, (17.2.2)

We define the train error as the sum of squared differences between the observed outputs and the predictions
under the linear model:

E(w) =
N∑
n=1

(yn −wTφn)2, where φn ≡ φ (xn) (17.2.3)

1Note that the model is linear in the parameter w – not necessarily linear in x.
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Figure 17.2: Cubic polynomial fit to the singbat data.

We now wish to determine the parameter vector w that minimises E(w). In terms of the components of w,
the squared error is

E(w) =

N∑
n=1

(yn −
∑
i

wiφ
n
i )(yn −

∑
j

wjφ
n
j ) (17.2.4)

Differentiating with respect to wk, and equating to zero gives

N∑
n=1

ynφnk =
∑
i

wi

N∑
n=1

φni φ
n
k (17.2.5)

or, in matrix notation,

N∑
n=1

ynφn =
N∑
n=1

φn(φn)Tw (17.2.6)

These are called the normal equations, for which the solution is

w =

(
N∑
n=1

φn(φn)T

)−1 N∑
n=1

ynφn (17.2.7)

Although we write the solution using matrix inversion, in practice one finds the numerical solution using
Gaussian elimination[129] since this is faster and numerically more stable.

Example 17.2 (A cubic polynomial fit).

A cubic polynomial is given by

y(x) = w1 + w2x+ w3x
2 + w4x

3 (17.2.8)

As a LPM, this can be expressed using

φ(x) =
(
1, x, x2, x3

)T
(17.2.9)

The ordinary least squares solution has the form given in equation (17.2.7). The fitted cubic polynomial is
plotted in fig(17.2). See also demoCubicPoly.m.

Example 17.3 (Predicting return). In fig(17.3) we fit an LPM with vector inputs x to a scalar output y.
The vector x represents factors that are believed to affect the stock price of a company, with the stock price
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Figure 17.3: Predicting stock return using a linear LPM. The top
five panels present the inputs x1, . . . , x5 for 20 train days (blue)
and 5 test days (red). The corresponding train output (stock re-
turn) y for each day is given in the bottom panel. The predictions
y21, . . . , y25 are the predictions based on yt =

∑
iwixit with w

trained using ordinary least squares. With a regularisation term
0.01wTw, the OLS learned w is [1.42, 0.62, 0.27,−0.26, 1.54]. De-
spite the simplicity of these models, their application in the fi-
nance industry is widespread, with significant investment made
on finding factors x that may be indicative of future return. See
demoLPMhedge.m.

return given by the scalar y. A hedge fund manager believes that the returns may be linearly related to the
factors:

yt =
5∑
i=1

wixit (17.2.10)

and wishes to fit the parameters w in order to use the model to predict future stock returns. This is
straightforward using ordinary least squares, this being simply an LPM with a linear φ function. See
fig(17.3) for an example. Such models also form the basis for more complex models in finance, see for
example [209].

17.2.1 Vector outputs

It is straightforward to generalise the above framework to vector outputs y. Using a separate weight vector
wi for each output component yi, we have

yi(x) = wT
i φ(x) (17.2.11)

The mathematics follows similarly to before, and we may define a train error per output as

E(wi) =
∑
n

(
yni −wT

i φ
n
)2
, E(w) =

∑
i

E(wi) (17.2.12)

Since the training error decomposes into individual terms, one for each output, the weights for each output
can be trained separately. In other words, the problem decomposes into a set of independent scalar output
problems. In case the parameters w are tied or shared amongst the outputs, the training is still straight-
forward since the objective function remains linear in the parameters, and this is left as an exercise for the
interested reader.

17.2.2 Regularisation

For most purposes, our interest is not just to find the function that best fits the train data but one that
that will generalise well. To control the complexity of the fitted function we may add an extra regularising
term R(w) to the train error to penalise rapid changes in the output

E′(w) = E(w) + λR(w) (17.2.13)

342 DRAFT November 21, 2011



Linear Parameter Models for Regression

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

(a)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

(b)

Figure 17.4: (a): A set of fixed-width (α = 1) radial basis functions, exp
(
−1

2

(
x−mi

)2)
, with the centres

mi evenly spaced. By taking a linear combination of these functions we can form a flexible function class.
(b): The × are the training points, and the + are the validation points. The solid line is the correct
underlying function sin(10x) which is corrupted with a small amount of additive noise to form the train
data. The dashed line is the best predictor based on the validation set.

where λ is a scalar amount that adjust the strength of the regularisation term. For example a regularising
term that can be added to equation (17.2.3) is

R(w) =

N∑
n=1

N∑
n′=1

e
−γ
(
xn−xn

′)2 [
y(xn)− y(xn

′
)
]2

(17.2.14)

The factor
[
y(xn)− y(xn

′
)
]2

penalises large differences in the outputs corresponding to two inputs. The

factor exp

(
−γ
(
xn − xn

′
)2
)

has the effect of weighting more heavily terms for which two input vectors xn

and xn
′

are close together; γ is a fixed length-scale parameter. Since y = wTφ(x), expression (17.2.14) can
be written as

wTRw (17.2.15)

where

R ≡
N∑
n=1

N∑
n′=1

e
−γ
(
xn−xn

′)2 (
φn − φn′

)(
φn − φn′

)T
(17.2.16)

The regularised train error is then

E′(w) =

N∑
n=1

(yn −wTφn)2 + λwTRw (17.2.17)

By differentiating the regularised training error and equating to zero, we find the optimal w is given by

w =

(∑
n

φn(φn)T + λR

)−1 N∑
n=1

ynφn (17.2.18)

In practice it is common to use a regulariser that penalises the sum squared length of the weights

R(w) = wTw =
∑
i

w2
i (17.2.19)

which corresponds to setting R = I. This is known as ridge regression. Regularising pararameters such as
λ, γ may be determined using a validation set, section(13.2.2).
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17.2.3 Radial basis functions

A popular LPM is given by the non-linear function φ(x) with components

φi(x) = exp

(
− 1

2α2

(
x−mi

)2)
(17.2.20)

These basis functions are bump shaped, with the centre of bump i being given by mi and the width by α.
An example is given in fig(17.4) in which several RBFs are plotted with different centres. In LPM regression
we can then use a linear combination of these bumps to fit the data. One can apply the same approach
using vector inputs. For vector x and centre m, the radial basis function depends on the distance between
x and the centre m, giving a bump in input space, fig(17.6).

Example 17.4 (Setting α). Consider fitting the data in fig(17.4b) using 16 radial basis functions uniformly
spread over the input space, with width parameter α and regularising term λwTw. The generalisation
performance on the test data depends heavily on the width and regularising parameter λ. In order to find
reasonable values for these parameters we may use a validation set. For simplicity we set the regularisation
parameter to λ = 0.0001 and use the validation set to determine a suitable α. In fig(17.5) we plot the
validation error E(w) as a function of α, choosing then the α with the lowest validation error. The predictions
for this optimal α are also given in fig(17.4b).

A curse of dimensionality

If the data has non-trivial behaviour over some input region, then we need to cover this region input space
fairly densely with bump type functions. In the above case, we used 16 basis functions for a one dimensional
input space. In 2 dimensions if we wish to cover each dimension to the same discretisation level, we would
need 162 = 256 basis functions. Similarly, for 10 dimensions we would need 1610 ≈ 1012 functions. To
fit such an LPM would require solving a linear system in more than 1012 variables. This explosion in the
number of basis functions with the input dimension is a ‘curse of dimensionality’.

A possible remedy is to make the basis functions very broad so that each covers more of the high dimensional
space. However, this will mean a lack of flexibility of the fitted function since it is constrained to be smooth.
Another approach is to place basis functions centred on the training input points and add some more basis
functions randomly placed close to the training inputs. The rationale behind this is that when we come to
do prediction, we will most likely see novel x that are close to the training points – we do not need to make
accurate predictions over all the space. A further approach is to make the positions of the basis functions
adaptive, allowing them to be moved around in the space to minimise the error. This approach is used in
neural network models[42]. An alternative is to reexpress the problem of fitting an LPM by reparameterising
the problem, as discussed below.
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Figure 17.5: The validation error as a function of the basis func-
tion width for the validation data in fig(17.4b) and RBFs in
fig(17.4a). Based on the validation error, the optimal setting
of the basis function width parameter is α = 0.25.
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Figure 17.6: (a): The output of an RBF

function exp(−1
2

(
x−m1

)2
/α2). Here m1 =

(0, 0.3)T and α = 0.25. (b): The combined
output for two RBFs with m1 as above and
m2 = (0.5,−0.5)T.

17.3 The Dual Representation and Kernels

Consider a set of training data with inputs, X = {xn, n = 1, . . . , N} and corresponding outputs yn, n =
1, . . . , N . For an LPM of the form

f(x) = wTx (17.3.1)

our interest is to find the ‘best fit’ parameters w. We assume that we have found an optimal parameter w∗.
The nullspace of X are those x⊥ which are orthogonal to all the inputs in X . That is, x⊥ is in the nullspace
if (

x⊥
)T

xn = 0, for all n = 1, . . . , N (17.3.2)

If we then consider the vector w∗ with an additional component in the nullspace,(
w∗ + x⊥

)T
xn = wT

∗ x
n (17.3.3)

This means that adding a contribution to w∗ outside of the space spanned by X , has no effect on the
predictions on the train data. If the training criterion depends only on how well the LPM predicts the train
data, there is therefore no need to consider contributions to w from outside of X . That is, without loss of
generality we may consider the representation

w =

N∑
m=1

amxm (17.3.4)

The parameters a = (a1, . . . , aN ) are called the dual parameters. We can then write the output of the LPM
directly in terms of the dual parameters,

wTxn =
N∑
m=1

am (xm)T xn (17.3.5)

More generally, for a vector function φ(x), the solution will lie in the space spanned by φ(x1), . . . ,φ(xN ),

w =

N∑
n=1

anφ (xn) (17.3.6)

and we may write

wTφ(xn) =

N∑
m=1

amφ (xm)Tφ (xn) =

N∑
m=1

amK (xm,xn) (17.3.7)

where we have defined a kernel function

K (xm,xn) ≡ φ (xm)Tφ (xn) ≡ [K]m,n (17.3.8)

In matrix form, the output of the LPM on a training input x is then

wTφ(xn) = [Ka]n = aTkn (17.3.9)

where kn is the nth column of the Gram matrix K. By construction, the Gram matrix must be positive
semidefinite, and the kernel a covariance function, see section(19.3).
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17.3.1 Regression in the dual-space

For ordinary least squares regression, using equation (17.3.9), we have a train error

E(a) =

N∑
n=1

(
yn − aTkn

)2
(17.3.10)

Equation(17.3.10) is analogous to the standard regression equation (17.2.3) on interchanging a for w and
kn for φ(xn). Similarly, the regularisation term can be expressed as

wTw =
N∑

n,m=1

anamφ (xn)φ (xm) = aTKa (17.3.11)

By direct analogy the optimal solution for a is therefore

a =

(
N∑
n=1

kn (kn)T + λK

)−1 N∑
n=1

ynkn (17.3.12)

We can express the above solution more conveniently by first writing

a =

(
N∑
n=1

K−1kn (kn)T + λI

)−1 N∑
n=1

ynK−1kn (17.3.13)

Since kn is the nth column of K then K−1kn is the nth column of the identity matrix. With a little
manipulation, we can therefore rewrite equation (17.3.13) more simply as

a = (K + λI)−1 y (17.3.14)

where y is the vector with components formed from the training inputs y1, . . . , yN . Using this, the prediction
for a new input x∗ is given by

y(x∗) = kT
∗ (K + λI)−1 y (17.3.15)

where the vector k∗ has components

[k∗]m = K (x∗,xm) (17.3.16)

This dual space solution shows that predictions can be expressed purely in terms of the kernel K (x,x′).
This means that we may dispense with defining the vector functions φ(x) and define a kernel function
directly. This approach is also used in Gaussian Processes, chapter(19) and enables us to use effectively
very large (even infinite) dimensional vectors φ without ever explicitly needing to compute them. Note that
the Gram matrix K has dimension N ×N , which means that the computational complexity of performing
the matrix inversion in equation (17.3.16) is O

(
N3
)
. For moderate to large N (greater than 5000), this

will be prohibitively expensive, and numerical approximations are required. This is in contrast to the
computational complexity of solving the normal equations in the original weight space viewpoint which

is O
(

dim (φ)3
)

. The dual parameterisation therefore helps us with the curse of dimensionality since the

complexity of learning in the dual parameterisation scales cubically with the number of training points –
not cubically with the dimension of the φ vector.

17.4 Linear Parameter Models for Classification

In a binary classification problem we are given train data, D = {(xn, cn), n = 1 . . . , N}, where the targets
c ∈ {0, 1}. Inspired by the LPM regression model, we can assign the probability that a novel input x belongs
to class 1 using

p(c = 1|x) = f(xTw) (17.4.1)
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Figure 17.7: The logistic sigmoid function σβ(x) = 1/(1 + e−βx).
The parameter β determines the steepness of the sigmoid. The
full (blue) line is for β = 1 and the dashed (red) for β = 10.
As β → ∞, the logistic sigmoid tends to a Heaviside step func-
tion. The dotted curve (magenta) is the error function (probit)
0.5 (1 + erf(λx)) for λ =

√
π/4, which closely matches the stan-

dard logistic sigmoid with β = 1.

where 0 ≤ f(x) ≤ 1. In the statistics literature, f(x) is termed a mean function – the inverse function
f−1(x) is the link function2. Two popular choices for the function f(x) are the logit and probit functions.
The logit is given by

f(x) =
ex

1 + ex
=

1

1 + e−x
(17.4.2)

which is also called the logistic sigmoid and written σ(x), fig(17.7). The scaled version is defined as

σβ(x) = σ(βx) (17.4.3)

A closely related model is probit regression which uses in place of the logistic sigmoid the cumulative
distribution of the standard normal distribution

f(x) =
1√
2π

∫ x

−∞
e−

1
2
t2dt =

1

2
(1 + erf(x)) (17.4.4)

where the standard error function, is

erf(x) ≡ 2√
π

∫ x

0
e−t

2
dt (17.4.5)

The shape of the probit and logistic functions are similar under rescaling, see fig(17.7). We focus below on
the logit function.

17.4.1 Logistic regression

Logistic regression corresponds to the model

p(c = 1|x) = σ(b+ xTw) (17.4.6)

where b is a scalar, and w is a vector.

The decision boundary

The decision boundary is defined as that set of x for which p(c = 1|x) = p(c = 0|x) = 0.5. This is given by
the hyperplane

b+ xTw = 0 (17.4.7)

On the side of the hyperplane for which b + xTw > 0, inputs x are classified as 1’s, and on the other side
they are classified as 0’s. The ‘bias’ parameter b simply shifts the decision boundary by a constant amount.
The orientation of the decision boundary is determined by w, the normal to the hyperplane, see fig(17.8).
To clarify the geometric interpretation, let x be a point on the decision boundary and consider a new point
x∗ = x + w⊥, where w⊥ is a vector perpendicular to w, so that wTw⊥ = 0. Then

b+ wTx∗ = b+ wT
(
x + w⊥

)
= b+ wTx + wTw⊥ = b+ wTx = 0 (17.4.8)

Thus if x is on the decision boundary, so is x plus any vector perpendicular to w. In D dimensions, the space
of vectors that are perpendicular to w occupy a D − 1 dimensional hyperplane. For example, if the data is
two dimensional, the decision boundary is a one dimensional hyperplane, a line, as depicted in fig(17.8).

2These models are part of the ‘generalised linear models’ class in the statistics literature which includes the regression model
and classification models as special cases.
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w
Figure 17.8: The decision boundary p(c = 1|x) = 0.5 (solid line).
For two dimensional data, the decision boundary is a line. If all
the training data for class 1 (filled circles) lie on one side of the
line, and for class 0 (open circles) on the other, the data is said
to be linearly separable. More generally, w defines the normal to
a hyperplane and data is linearly separable if data from each of
the two classes lies on opposite sides of the hyperplane.

Definition 17.1 (Linear separability). If all the train data for class 1 lies on one side of a hyperplane, and
for class 0 on the other, the data is said to be linearly separable.

For D dimensional data, provided there are no more than D training points, then these are linearly separable
if they are linearly independent. To see this, let cn = +1 if xn is in class 1, and cn = −1 if xn is in class 0.
For the data to be linearly separable we require

wTxn + b = εcn, n = 1, . . . , N (17.4.9)

where ε is an arbitrary positive constant. The above equations state that each input is just the correct side
of the decision boundary. If there are N = D datapoints, the above can be written in matrix form as

Xw + b = εc (17.4.10)

where X is a square matrix whose nth column contains xn and [b]i = b. Provided that X is invertible the
solution is

w = X−1 (εc− b) (17.4.11)

The bias b can be set arbitrarily. This shows that provided the xn are linearly independent, we can always
find a hyperplane that linearly separates the data. Provided the data are not-collinear (all occupying the
same D−1 dimensional subspace) the additional bias enables D+1 arbitrarily labelled points to be linearly
separated in D dimensions.

An example dataset that is not linearly separable is given by the following four training points and class
labels

{([0, 0], 0), ([0, 1], 1), ([1, 0], 1), ([1, 1], 0)} (17.4.12)

This data represents the XOR function, and is plotted in fig(17.9). This function is not linearly separable
since no straight line has all inputs from one class on one side and the other class on the other. Classifying
data which is not linearly separable can only be achieved using a non-linear decision boundary. It might be
that data is non-linearly separable in the original data space. An alternative is to map the data to a higher
dimension using a non-linear vector function; this creates a set of non-linearly dependent high-dimensional
vectors which can then be separated using a high-dimensional hyperplane. We discuss this in section(17.4.5).

The perceptron

We briefly describe here the perceptron, an important early model in the field of AI, see for example [42].
The perceptron deterministically assigns x to class 1 if b+ wTx ≥ 0, and to class 0 otherwise. That is

p(c = 1|x) = θ(b+ xTw) (17.4.13)

Figure 17.9: The XOR problem. This is not linearly separable.

348 DRAFT November 21, 2011



Linear Parameter Models for Classification

where the step function is defined as

θ(x) =

{
1 x > 0
0 x ≤ 0

(17.4.14)

If we consider the logistic regression model

p(c = 1|x) = σβ

(
b+ xTw

)
(17.4.15)

and take the limit β →∞, we have the perceptron like classifier

p(c = 1|x) =


1 b+ xTw > 0

0.5 b+ xTw = 0
0 b+ xTw < 0

(17.4.16)

The only difference between this ‘probabilistic perceptron’ and the standard perceptron is in the technical
definition of the value of the step function at 0. The perceptron may therefore essentially be viewed as a
limiting case of logistic regression.

Maximum likelihood training

For this class discriminative model, we do not model the input distribution p(x) so that we may equivalently
consider the likelihood of the set of output class variables C conditioned on the set of training inputs X . If
we assume that each data point has been drawn independently from the same distribution that generates
the data (the standard i.i.d. assumption), the likelihood is (writing explicitly the conditional dependence
on the parameters b,w)

p(C|b,w,X ) =
N∏
n=1

p(cn|xn, b,w)p(xn) =
N∏
n=1

p(c = 1|xn, b,w)c
n

(1− p(c = 1|xn, b,w))1−cn p(xn) (17.4.17)

where we have used the fact that cn ∈ {0, 1}. For logistic regression this gives the log likelihood as

L(w, b) =
N∑
n=1

cn log σ(b+ wTxn) + (1− cn) log
(

1− σ(b+ wTxn)
)

(17.4.18)

Gradient ascent

There is no closed form solution to the maximisation of L(w, b) which needs to be carried out numerically.
One of the simplest methods is gradient ascent for which the gradient is given by

∇wL =

N∑
n=1

(cn − σ(wTxn + b))xn (17.4.19)

Here we made use of the derivative relation for the logistic sigmoid

dσ(x)/dx = σ(x)(1− σ(x)) (17.4.20)

The derivative with respect to the bias is

dL

db
=

N∑
n=1

(cn − σ(wTxn + b)) (17.4.21)

The gradient ascent procedure then corresponds to updating the weights and bias using

wnew = w + η∇wL, bnew = b+ η
dL

db
(17.4.22)

where η, the learning rate is a scalar chosen small enough to ensure convergence3. The application of the
above rule will lead to a gradual increase in the log likelihood.

3In principle one may use a different learning rate for each parameter.
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Figure 17.10: The decision boundary p(c = 1|x) = 0.5
(solid line) and confidence boundaries p(c = 1|x) =
0.9 and p(c = 1|x) = 0.1 after 10000 iterations of
batch gradient ascent with η = 0.1. (a): Linearly
separable data. (b): Non-linearly separable data.
Note how the confidence interval remains broad, see
demoLogReg.m.

Batch training

Writing the updates (17.4.22) explicitly gives

wnew = w + η

N∑
n=1

(cn − σ(wTxn + b))xn, bnew = b+ η

N∑
n=1

(cn − σ(wTxn + b)) (17.4.23)

This is called a batch update since the parameters w and b are updated only after passing through the whole
(batch) of train data.

For linearly separable data, we can also show that the weights must become infinite at convergence. Taking
the scalar product of Equation(17.4.19) with w, we have the zero gradient requirement

N∑
n=1

(cn − σn) wTxn = 0 (17.4.24)

where σn ≡ σ
(
wTxn + b

)
. For simplicity we assume b = 0. For linearly separable data we have

wTxn
{
> 0 if cn = 1
< 0 if cn = 0

(17.4.25)

Then, using the fact that 0 ≤ σn ≤ 1, we have

(cn − σn) wTxn
{
≥ 0 if cn = 1
≥ 0 if cn = 0

(17.4.26)

Each term (cn − σn) wTxn is therefore non-negative and the zero gradient condition requires the sum of
these terms to be zero. This can only happen if all the terms are zero, implying that cn = σn, requiring the
sigmoid to saturate and the weights to be infinite.

Online training

In practice it is common to update the parameters after each training example pair (xn, cn) has been
considered:

wnew = w +
η

N
(cn − σ(wTxn + b))xn, bnew = b+

η

N
(cn − σ(wTxn + b)) (17.4.27)

An advantage of online training is that the dataset need not be stored since only the performance on the
current input is required. Provided that the data is linearly separable, the above online procedure converges
(provided η is not too large). However, if the data is not linearly separable, the online version will not
converge since the opposing class labels will continually pull the weights one way and then the other as each
conflicting example is used to form an update. For the limiting case of the perceptron (replacing σ(x) with
θ(x)) and linearly separable data, online updating converges in a finite number of steps[228, 42], but does
not converge for non-linearly separable data.
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Figure 17.11: Logistic regression for classifying handwritten digits 1 and 7.
Displayed is a Hinton diagram of the 784 learned weight vector w, plotted as
a 28×28 image for visual interpretation. Light squares are positive weights
and an input x with a (positive) value in this component will tend to increase
the probability that the input is classed as a 7. Similarly, inputs with
positive contributions in the dark regions tend to increase the probability
as being classed as a 1 digit. Note that the elements of each input x are
either positive or zero.

Geometry of the error surface

The Hessian of the log likelihood L(w) is the matrix with elements4

Hij ≡
∂2L

∂wiwj
= −

∑
n

xni x
n
j σ

n(1− σn) (17.4.28)

This is negative semidefinite since, for any z,

∑
ij

ziHijzj = −
∑
i,j,n

zix
n
i zjx

n
j σ

n(1− σn) ≤ −
∑
n

(∑
i

zix
n
i

)2

≤ 0 (17.4.29)

This means that the error surface is concave (an upside down bowl) and batch gradient ascent converges to
the optimal solution, provided the learning rate η is small enough.

Example 17.5 (Classifying Handwritten Digits). We apply logistic regression to the 600 handwritten digits
of example(14.1), in which there are 300 ones and 300 sevens in the train data. Using gradient ascent training
with a suitably chosen stopping criterion, the number of errors made on the 600 test points is 12, compared
with 14 errors using Nearest Neighbour methods. See fig(17.11) for a visualisation of the learned w.

17.4.2 Beyond first order gradient ascent

Since the surface has a single optimum, a Newton update

wnew = wold + ηH−1wold (17.4.30)

where H is the Hessian matrix as above and 0 < η < 1, will typically converge much faster than gradient
ascent. However, for large scale problems with dim (w)� 1, the inversion of the Hessian is computationally
demanding and limited memory BFGS or conjugate gradient methods are more practical alternatives, see
section(29.4).

17.4.3 Avoiding overconfident classification

Provided the data is linearly separable the weights will continue to increase and the classifications will
become extreme. This is undesirable since the resulting classifications will be over-confident. One way
to prevent this is early stopping in which only a limited number of gradient updates are performed. An
alternative method is to add a penalty term to the objective function

L′(w, b) = L(w, b)− αwTw. (17.4.31)

The scalar constant α > 0 encourages smaller values of w (remember that we wish to maximise the log
likelihood). An appropriate value for α can be determined using validation data.

4For simplicity we ignore the bias b. This can readily be dealt with by extending x to a D + 1 dimensional vector x̂ with a

1 in the D + 1 component. Then for a D + 1 dimensional ŵ =
(
wT, wD+1

)T
, we have ŵTx̂ = wTx + wD+1.
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Figure 17.12: Logistic regression p(c = 1|x) = σ(wTφ(x)) us-
ing a quadratic function φ(x) = (1, x1, x2, x

2
1, x

2
2, x1x2)T. 1000

iterations of gradient ascent training were performed with a
learning rate η = 0.1. Plotted are the datapoints for the
two classes (cross) and (circle) and the equal probability con-
tours. The decision boundary is the 0.5-probability contour. See
demoLogRegNonLinear.m.

17.4.4 Multiple classes

For more than two classes, one may use the softmax function

p(c = i|x) =
ew

T
i x+bi∑C

j=1 e
wT
j x+bj

(17.4.32)

where C is the number of classes. When C = 2 this can be reduced to the logistic sigmoid model. One can
show that the likelihood for this case is also concave, see exercise(17.3) and [318]. Gradient based training
methods then can be applied to training these models, as a straightforward extension of the two-class case.

17.4.5 The Kernel Trick for Classification

A drawback of logistic regression as described above is the simplicity of the decision surface – a hyperplane.
Analogous to the regression case, one way to achieve more complex non-linear decision boundaries is to map
the inputs x in a non-linear way to a higher dimensional φ(x) and use

p(c = 1|x) = σ
(
wTφ(x) + b

)
(17.4.33)

Mapping into a higher dimensional space makes it easier to find a separating hyperplane since any set of
points that are linearly independent can be linearly separated provided we have as many dimensions as
datapoints. For the maximum likelihood criterion, we may use exactly the same algorithm as before on
replacing x with φ(x). See fig(17.12) for a demonstration using a quadratic function. Since only the scalar
product between the φ vectors plays a role the dual representation section(17.3) may again be used in which
we assume the weight can be expressed in the form

w =
∑
n

αmφ(xn) (17.4.34)

We then subsequently find a solution in terms of the dual parameters αn. This is potentially advantageous
since there may be less training points than dimensions of φ. The classifier depends only on the scalar
product wTφ(x) =

∑
n αnφ(xn)Tφ(x) and we can write more generally, using a positive definite kernel,

K(x,x′)

p(c = 1|x) = σ

(∑
n

anK(x,xn)

)
(17.4.35)

For convenience, we can write the above as

p(c = 1|x) = σ
(
aTk(x)

)
(17.4.36)

where the N dimensional vector k(x) has elements [k(x)]m = K(x,xm). Then the above is of exactly the
same form as the original specification of logistic regression, namely as a function of a linear combination of
vectors. Hence the same training algorithm to maximise the likelihood can be employed, simply on replacing
xn with k(xn). The details are left to the interested reader and follow closely the treatment of Gaussian
Processes for classification, section(19.5).
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17.5 Support Vector Machines

Like kernel logistic regression, SVMs are a form of kernel linear classifier. However, the SVM uses an
objective which more explicitly encourages good generalisation performance. SVMs do not fit comfortably
within a probabilistic framework and as such we describe them here only briefly, referring the reader to the
wealth of excellent literature on this topic5. The description here is inspired largely by [75].

17.5.1 Maximum margin linear classifier

In the SVM literature it is common to use +1 and −1 to denote the two classes. For a hyperplane defined
by weight w and bias b, a linear discriminant is given by

wTx + b

{
≥ 0 class +1
< 0 class -1

(17.5.1)

For a point x that is close to the decision boundary at wTx + b = 0, a small change in x can lead to a
change in classification. To make the classifier more robust we therefore impose that for the train data at
least, the decision boundary should be separated from the data by some finite amount ε2 (assuming in the
first instance that the data is linearly separable):

wTx + b

{
≥ ε2 class +1
< −ε2 class -1

(17.5.2)

Since w, b and ε2 can all be rescaled arbitrary, we need to fix the scale of the above to break this invariance.
It is convenient to set ε = 1 so that a point x+ from class +1 that is closest to the decision boundary satisfies

wTx+ + b = 1 (17.5.3)

and a point x− from class -1 that is closest to the decision boundary satisfies

wTx− + b = −1 (17.5.4)

From vector algebra, fig(17.13), the distance from the origin along the direction w to a point x is given by

wTx√
wTw

(17.5.5)

The margin between the hyperplanes for the two classes is then the difference between the two distances
along the direction w which is

wT

√
wTw

(x+ − x−) =
2√

wTw
(17.5.6)

To set the distance between the two hyperplanes to be maximal, we therefore need to minimise the length
wTw. Given that for each xn we have a corresponding label yn ∈ {+1,−1}, in order to classify the training
labels correctly and maximise the margin, the optimisation problem is equivalent to:

minimise
1

2
wTw subject to yn

(
wTxn + b

)
≥ 1, n = 1, . . . , N (17.5.7)

This is a quadratic programming problem. The factor 0.5 is just for convenience.

To account for potentially mislabelled training points (or for data that is not linearly separable), we relax
the exact classification constraint and use instead

yn
(
wTxn + b

)
≥ 1− ξn (17.5.8)

where the ‘slack variables’ are ξn ≥ 0. Here each ξn measures how far xn is from the correct margin, see
fig(17.14). For 0 < ξn < 1 datapoint xn is on the correct side of the decision boundary. However for ξn > 1,
the datapoint is assigned the opposite class to its training label. Ideally we want to limit the size of these
‘violations’ ξn. Here we briefly describe two standard approaches.
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origin

w

Figure 17.13: SVM classification of data from two
classes (open circles and filled circles). The decision
boundary wTx+b = 0 (solid line). For linearly separa-
ble data the maximum margin hyperplane is equidis-
tant from the closest opposite class points. These sup-
port vectors are highlighted in blue and the margin
in red. The distance of the decision boundary from
the origin is −b/

√
wTw, and the distance of a gen-

eral point x from the origin along the direction w is
xTw/

√
wTw.

origin

w

ξn

Figure 17.14: Slack margin. The term ξn measures
how far a variable is from the correct side of the mar-
gin for its class. If ξn > 1 then the point will be
misclassified and treated as an outlier.

2-Norm soft-margin

The 2-norm soft-margin objective is

minimise
1

2
wTw +

C

2

∑
n

(ξn)2 subject to yn
(
wTxn + b

)
≥ 1− ξn, n = 1, . . . , N (17.5.9)

where C controls the number of mislabellings of the train data. The constant C needs to be determined
empirically using a validation set. The optimisation problem expressed by (17.5.9) can be formulated using
the Lagrangian

L(w, b, ξ, α) =
1

2
wTw +

C

2

∑
n

(ξn)2−
∑
n

αn
[
yn
(
wTxn + b

)
− 1 + ξn

]
, αn ≥ 0, ξn ≥ 0 (17.5.10)

which is to be minimised with respect to x, b, ξ and maximised with respect to α. For points xn on the
‘correct’ side of the decision boundary yn

(
wTxn + b

)
− 1 + ξn > 0 so that maximising L with respect to

α requires the corresponding αn to be set to zero. Only training points that are support vectors lying on
the decision boundary have non-zero αn. Differentiating the Lagrangian and equating to zero, we have the
conditions

∂

∂wi
L(w, b, ξ, α) = wi −

∑
n

αnynxni = 0 (17.5.11)

∂

∂b
L(w, b, ξ, α) = −

∑
n

αnyn = 0 (17.5.12)

∂

∂ξn
L(w, b, ξ, α) = Cξn − αn = 0 (17.5.13)

From this we see that the solution for w is given by

w =
∑
n

αnynxn (17.5.14)

5http://www.support-vector.net
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Since only the support vectors have non-zero αn, the solution for w will typically depend on only a small
number of the training data. Using these conditions and substituting back into the original problem, the
objective is equivalent to minimising

L(α) =
∑
n

αn − 1

2

∑
n,m

ynymαnαm (xn)T xm − 1

2C

∑
n

(αn)2

subject to
∑
n

ynαn = 0, αn ≥ 0 (17.5.15)

If we define

K(xn,xm) = (xn)T xm (17.5.16)

The optimisation problem is

maximize
∑
n

αn − 1

2

∑
n,m

ynymαnαm
(
K(xn,xm) +

1

C
δn,m

)
subject to

∑
n

ynαn = 0, αn ≥ 0 (17.5.17)

Optimising this objective is discussed in section(17.5.3).

1-norm soft-margin (box constraint)

In the 1-norm soft-margin version, one uses a 1-norm penalty

C
∑
n

ξn (17.5.18)

to give the optimisation problem:

minimise
1

2
wTw+C

∑
n

ξn subject to yn
(
wTxn + b

)
≥ 1−ξn, ξn ≥ 0, n = 1, . . . , N (17.5.19)

where C is an empirically determined penalty factor that controls the number of mislabellings of the train
data. To reformulate the optimisation problem we use the Lagrangian

L(w, b, ξ) =
1

2
wTw+C

∑
n

ξn−
∑
n

αn
[
yn
(
wTxn + b

)
− 1 + ξn

]
−
∑
n

rnξn, αn ≥ 0, ξn ≥ 0, rn ≥ 0

(17.5.20)

The variables rn are introduced in order to give a non-trivial solution (otherwise αn = C). Following a
similar argument as for the 2-norm case, by differentiating the Lagrangian and equating to zero, we arrive
at the optimisation problem

maximize
∑
n

αn − 1

2

∑
n,m

ynymαnαmK(xn,xm)

subject to
∑
n

ynαn = 0, 0 ≤ αn ≤ C (17.5.21)

which is closely related to the 2-norm problem except that we now have the box-constraint 0 ≤ αn ≤ C.

17.5.2 Using kernels

The final objectives (17.5.17) and (17.5.21) depend on the inputs xn only via the scalar product (xn)T xn.
If we map x to a vector function of x, then we can write

K(xn,xm) = φ(xn)Tφ(xm) (17.5.22)

This means that we can use any positive semidefinite kernel K and make a non-linear classifier. See also
section(19.3).
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Figure 17.15: SVM training. The solid red and solid blue circles represent train
data from different classes. The support vectors are highlighted in green. For
the unfilled test points, the class assigned to them by the SVM is given by the
colour. See demoSVM.m

17.5.3 Performing the optimisation

Both of the above soft-margin SVM optimisation problems (17.5.17) and (17.5.21) are quadratic programs
for which the exact computational cost scales as O

(
N3
)
. Whilst these can be solved with general purpose

routines, specifically tailored routines that exploit the structure of the problem are preferred in practice. Of
particular practical interest are ‘chunking’ techniques that optimise over a subset of the α. In the limit of
updating only two components of α, this can be achieved analytically, resulting in the Sequential Minimal
Optimisation algorithm[241], whose practical performance is typically O

(
N2
)

or better. A variant of this
algorithm [99] is provided in SVMtrain.m. See fig(17.15) for a demonstration.

Once the optimal solution α1
∗, . . . , α

N
∗ is found the decision function for a new point x is∑

n

αn∗y
nK(xn,x) + b∗

{
> 0 assign to class 1
< 0 assign to class -1

(17.5.23)

The optimal b∗ is determined using the maximum margin condition, equations(17.5.3,17.5.4):

b∗ =
1

2

[
min
yn=1

∑
m

αm∗ y
mK(xm,xn)− max

yn=−1

∑
m

αm∗ y
mK(xm,xn)

]
(17.5.24)

17.5.4 Probabilistic interpretation

Kernelised logistic-regression has some of the characteristics of the SVM but does not express the large
margin requirement. Also the sparse data usage of the SVM is similar to that of the Relevance Vector
Machine we discuss in section(18.2.5). However, a probabilistic model whose MAP assignment matches
exactly the SVM is hampered by the normalisation requirement for a probability distribution. Whilst,
arguably, no fully satisfactory direct match between the SVM and a related probabilistic model has been
achieved, approximate matches have been obtained[271].

17.6 Soft Zero-One Loss for Outlier Robustness

Both the support vector machine and logistic regression are potentially misled by outliers. For the SVM,
a mislabelled datapoint that is far from the correct side of the decision boundary would require a large
slack ξ. However, since exactly such large ξ are discouraged, it is unlikely that the SVM would admit such
a solution. For logistic regression, the probability of generating a mislabelled point far from the correct
side of the decision boundary is so exponentially small that this will never happen in practice. This means
that the model trained with maximum likelihood will never present such a solution. In both cases therefore
mislabelled points (or outliers) potentially have a significant impact on the location of the decision boundary.

A robust technique to deal with outliers is to use the zero-one loss in which a mislabeled point contributes
only a relatively small loss. Soft variants of this are obtained by using the objective

N∑
n=1

[
σβ(b+ wTxn)− cn

]2
+ λwTw (17.6.1)

which is to be minimised with respect to w and b. For β → ∞ the first term above tends to the zero-one
loss. The second term represents a penalty on the length of w and prevents overfitting. Kernel extensions
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Figure 17.16: Soft zero-one loss decision boundary (solid line) versus logistic
regression (dotted line). The number of mis-classified training points using
the soft zero-one loss is 2, compared to 3 for logistic regression. The penalty
λ = 0.01 was used for the soft-loss, with β = 10. For logistic regression, no
penalty term was used. The outliers have a significant impact on the decision
boundary for logistic regression, whilst the soft zero-one loss essentially
gives up on the outliers and fits a classifier to the remaining points. See
demoSoftLoss.m.

of this soft zero-one loss are straightforward.

Unfortunately, the objective (17.6.1) is non-convex and finding the optimal w, b is computationally dif-
ficult. A simple-minded scheme is to fix all components of w except one and then perform a numerical
one-dimensional optimisation over this single parameter wi. At the next step, another parameter wj is cho-
sen, and the procedure repeated until convergence. As usual, λ can be set using validation. The practical
difficulties of minimising non-convex high-dimensional objective functions means that these approaches are
rarely used in practice. A discussion of practical attempts in this area is given in [306].

An illustration of the difference between logistic regression and this soft zero-one loss is given in fig(17.16),
which demonstrates how logistic regression is influenced by the mass of the data points, whereas the zero-one
loss attempts to minimise the number of mis-classifications whilst maintaining a large margin.

17.7 Summary

• Fitting linear regression models based on least-squares is straightforward and requires only the solution of
a linear system.

• In classification, the maximum likelihood criterion typically results in a simple concave function of the
parameters, for which simple gradient based learning methods are suitable for training.

• The well-known and historically important perceptron can be viewed as a limiting case of logistic regression.

• The kernel extensions of these linear models enable one to find non-linear decision boundaries in the
classification case. These techniques are closely related to Gaussian Processes.

Historical note

The perceptron has a long history in artificial intelligence and machine learning. Rosenblatt discussed the
perceptron as a model for human learning, arguing that its distributive nature (the input-output ‘patterns’
are stored in the weight vector) is closely related to the kind of information storage believed to be present
in biological systems[251]. To deal with non-linear decision boundaries, the main thrust of research in the
ensuing neural network community was on the use of multilayered structures in which the outputs of per-
ceptrons are used as the inputs to other perceptrons, resulting in potentially highly non-linear discriminant
functions. This line of research was largely inspired by analogies to biological information processing in
which layered structures are prevalent. Such multilayered artificial neural networks are fascinating and,
once trained, are extremely fast in forming their decisions. However, reliably training these systems is a
highly complex task and probabilistic generalisations in which priors are placed on the parameters lead to
computational difficulties. Whilst perhaps less inspiring from a biological viewpoint, the alternative route
of using the kernel trick to boost the power of a linear classifier has the advantage of ease of training and
generalisation to probabilistic variants. More recently, however, there has been a resurgence of interest in
multilayer systems, with new heuristics aimed at improving the difficulties in training, see for example [147].
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17.8 Code

demoCubicPoly.m: Demo of fitting a cubic polynomial
demoLogReg.m: Demo of logistic regression
LogReg.m: Logistic regression gradient ascent training
demoLogRegNonLinear.m: Demo of logistic regression with a non-linear φ(x)
SVMtrain.m: SVM training using the SMO algorithm
demoSVM.m: SVM demo
demoSoftLoss.m: softloss demo
softloss.m: softloss function

17.9 Exercises

Exercise 17.1.

1. Give an example of a two-dimensional dataset for which the data are linearly separable, but not linearly
independent.

2. Can you find a dataset which is linearly independent but not linearly separable?

Exercise 17.2. Show that for both Ordinary and Orthogonal Least Squares regression fits to data (xn, yn), n =
1, . . . , N) the fitted lines go through the point

∑N
n=1(xn, yn)/N .

Exercise 17.3. Consider the softmax function for classifying an input vector x into one of c = 1, . . . , C
classes using

p(c|x) =
ew

T
c x∑C

c′=1 e
wT
c′x

(17.9.1)

A set of input-class examples is given by D = {(xn, cn), n = 1, . . . , N}.
1. Relate this model to logistic regression when C = 2.

2. Write down the log-likelihood L of the classes conditional on the inputs, assuming that the data is i.i.d.

3. Compute the Hessian with elements

Hij =
∂2L(D)

∂wiwj
(17.9.2)

where w is the stacked vector

w =
(
wT

1 , . . . ,w
T
C

)T
(17.9.3)

and show that the Hessian is negative semidefinite, that is zTHz ≤ 0 for any z. Hint: at some point
you need to use to use the result that the variance is non-negative.

Exercise 17.4. Derive from equation (17.5.9) the dual optimisation problem equation (17.5.15).

Exercise 17.5. A datapoint x is projected to a lower dimensional vector x́ using

x́ = Mx (17.9.4)

where M is a given ‘fat’ (short and wide) matrix. For a set of data {xn, n = 1, . . . , N} and corresponding
binary class labels yn ∈ {0, 1}, using logistic regression on the projected datapoints x́n corresponds to a form
of constrained logistic regression in the original higher dimensional space x. Explain if it is reasonable to
use an algorithm such as PCA to first reduce the data dimensionality before using logistic regression.
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Exercise 17.6. The logistic sigmoid function is defined as σ(x) = ex/(1+ex). What is the inverse function,
σ−1(x)?

Exercise 17.7. Given a dataset D = {(xn, cn), n = 1, . . . , N}, where cn ∈ {0, 1}, logistic regression uses the
model p(c = 1|x) = σ(wTx + b). Assuming the data is drawn independently and identically, show that the
derivative of the log likelihood L with respect to w is

∇wL =
N∑
n=1

(
cn − σ

(
wTxn + b

))
xn (17.9.5)

Exercise 17.8. Consider a dataset D = {(xn, cn), n = 1, . . . , N}, where cn ∈ {0, 1}, and x is a D dimen-
sional vector.

1. Show that if the training data is linearly separable with the hyperplane wTx + b, the data is also
separable with the hyperplane w̃Tx + b̃, where w̃ = λw, b̃ = λb for any scalar λ > 0.

2. What consequence does the above result have for maximum likelihood training of logistic regression for
linearly separable data?

Exercise 17.9. Consider a dataset D = {(xn, cn), n = 1, . . . , N}, where cn ∈ {0, 1}, and x is a N dimen-
sional vector. Hence we have N datapoints in a N dimensional space. In the text we showed that to find
a hyperplane (parameterised by w and b) that linearly separates this data we need, for each datapoint xn,
wTxn + b = εn where εn > 0 for cn = 1 and εn < 0 for cn = 0. Furthermore, we suggested an algorithm to
find such a hyperplane. Comment on the relation between maximum likelihood training of logistic regression
and the algorithm suggested above.

Exercise 17.10. Given training data D = {(xn, cn), n = 1, . . . , N}, cn ∈ {0, 1}, where x are vector inputs,
a discriminative model is

p(c = 1|x) = σ(b0 + v1g(wT
1 x + b1) + v2g(wT

2 x + b2)) (17.9.6)

where g(x) = exp(−0.5x2) and σ(x) = ex/(1 + ex) (this is a neural network[42] with a single hidden layer
and two hidden units).

1. Write down the log likelihood for the class conditioned on the inputs, based on the usual i.i.d. assump-
tion.

2. Calculate the derivatives of the log likelihood as a function of the network parameters, w1, w2, b1, b2,
v0,v1, v2.

3. Comment on the relationship between this model and logistic regression.

4. Comment on the decision boundary of this model.
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CHAPTER 18

Bayesian Linear Models

The previous chapter discussed the use of linear models in classification and regression. In this chapter
we discuss using priors on the parameters and the resulting posterior distribution over parameters. This
represents a powerful extension since it enables us to specify in a principled way our prior knowledge and
takes into account that when data is limited there will be considerable uncertainty as to which is the ‘best’
parameter estimate.

18.1 Regression With Additive Gaussian Noise

The linear models in chapter(17) were trained under maximum likelihood and do not deal with the is-
sue that, from a probabilistic perspective, parameter estimates are inherently uncertain due to the lim-
ited available training data. Regression refers to inferring a mapping on the basis of observed data
D = {(xn, yn), n = 1, . . . , N}, where (xn, yn) represents an input-output pair. We discuss here the scalar
output case (and vector inputs x) with the extension to the vector output case y being straightforward. We
assume that each (clean) output is generated from a model f (x; w) where the parameters w of the function
f are unknown. An observed output y is generated by the addition of noise η to the clean model output,

y = f (x; w) + η (18.1.1)

If the noise is Gaussian distributed, η ∼ N
(
η 0, σ2

)
, the model generates an output y for input x with

probability

p(y|w,x) = N
(
y f(x; w), σ2

)
=

1√
2πσ2

exp

(
− 1

2σ2
[y − f(x; w)]2

)
(18.1.2)

Here our interest is only in modelling this output distribution, and not the distribution of the inputs. As such
no parameters are used to model the inputs. If we assume that each data input-output pair is generated
identically and independently, the likelihood the model generates the data is

p(D|w) =
N∏
n=1

p(yn|w,xn)p(xn) (18.1.3)

We may use a prior weight distribution p(w) to quantify our a priori belief in the suitability of each parameter
setting. Writing D = {Dx,Dy}, the posterior weight distribution is then given by

p(w|D) ∝ p(D|w)p(w) ∝ p(Dy|w,Dx)p(w) (18.1.4)

Using the Gaussian noise assumption, and for convenience defining β = 1/σ2, this gives

log p(w|D) = −β
2

N∑
n=1

[yn − f(xn; w)]2 + log p (w) +
N

2
log β + const. (18.1.5)
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Figure 18.1: Belief Network representation of a Bayesian Model for
regression under the i.i.d. data assumption. The hyperparameter α
acts as a form of regulariser, controlling the flexibility of the prior on
the weights w. The hyperparameter β controls the level of noise on
the observations.

Note the similarity between equation (18.1.5) and the regularised training error equation (17.2.17). In the
probabilistic framework, we identify the choice of a sum squared error with the assumption of additive
Gaussian noise. Similarly, the regularising term is identified with log p(w).

18.1.1 Bayesian linear parameter models

Linear parameter models, as discussed in chapter(17), have the form

f(x; w) =

B∑
i=1

wiφi(x) ≡ wTφ(x) (18.1.6)

where the parameters wi are also called ‘weights’ and the number of basis functions is dim (w) = B. Such
models have a linear parameter dependence, but may represent a non-linear input-output mapping if the
basis functions φi(x) are non-linear in x. Since the output scales linearly with w, we can discourage extreme
output values by penalising large weight values. A natural weight prior is thus

p(w|α) = N
(
w 0, α−1I

)
=
( α

2π

)B
2

exp
(
−α

2
wTw

)
(18.1.7)

where the precision α is the inverse variance. If α is large, the total squared length of the weight vector w
is encouraged to be small. The full model p(D,w|α, β) is then specified, see fig(18.1). Under the Gaussian
noise assumption, the posterior distribution is

log p(w|Γ,D) = −β
2

N∑
n=1

[
yn −wTφ(xn)

]2
− α

2
wTw + const. (18.1.8)

where Γ = {α, β} represents the hyperparameter set. Parameters that determine the functions φ may also be
included in the hyperparameter set. Completing the square, section(8.4.1), the weight posterior is therefore
a Gaussian distribution,

p(w|Γ,D) = N (w m,S) (18.1.9)

where the covariance and mean are given by

S =

(
αI + β

N∑
n=1

φ (xn)φT (xn)

)−1

, m = βS
N∑
n=1

ynφ (xn) (18.1.10)

The mean prediction for an input x is then given by

f̄(x) ≡
∫
f(x; w)p(w|D,Γ)dw = mTφ (x) . (18.1.11)

Similarly, the variance of the underlying estimated clean function is

var(f(x)) =

〈[
wTφ(x)

]2
〉
p(w|D,Γ)

− f̄(x)2 = φT(x)Sφ(x) (18.1.12)

The output variance var(f(x)) depends only on the input variables and not on the training outputs y. Since
the additive noise η is uncorrelated with the model outputs, the predictive variance is

var(y(x)) = var(f(x)) + σ2 (18.1.13)

and represents the variance of the ‘noisy’ output for an input x.

362 DRAFT November 21, 2011



Regression With Additive Gaussian Noise

(a) (b) (c)

Figure 18.2: Along the horizontal axis we plot the input x and along the vertical axis the output y. (a):
The raw input-output training data and basis functions φi(x). (b): Prediction using regularised training
and (poorly chosen) fixed hyperparameters. (c): Prediction using ML-II optimised hyperparameters. Also
plotted are standard error bars on the clean underlying function, f̄(x)±

√
var(f(x)).

Example 18.1. In fig(18.2b), we show the mean prediction on the data in fig(18.2a) using 15 Gaussian
basis functions

φi(x) = exp
(
−0.5(x− ci)2/λ2

)
(18.1.14)

with width λ = 0.032 and centres ci spread out evenly over the 1-dimensional input space from −2 to 2. We
set the other hyperparameters by hand to β = 100 and α = 1. The prediction severely overfits the data, a
result of a poor choice of hyperparameter settings. This is resolved in fig(18.2c) using the ML-II parameters,
as described below.

18.1.2 Determining hyperparameters: ML-II

The hyperparameter posterior distribution is

p(Γ|D) ∝ p(D|Γ)p(Γ) (18.1.15)

A simple summarisation of the posterior is given by the MAP assignment which takes the single ‘optimal’
setting:

Γ∗ = argmax
Γ

p(Γ|D) (18.1.16)

If the prior belief about the hyperparameters is weak (p(Γ) ≈ const.), this is equivalent to using the Γ that
maximises the marginal likelihood

p(D|Γ) =

∫
p(D|Γ,w)p(w|Γ)dw (18.1.17)

This approach to setting hyperparameters is called ‘ML-II’ [33] or the Evidence Procedure[195].

In the case of Bayesian Linear Parameter models under Gaussian additive noise, computing the marginal
likelihood equation (18.1.17) involves only Gaussian integration. A direct approach to deriving an expression
for the marginal likelihood is to consider

p(D|Γ,w)p(w) = exp

(
−β

2

[
yn −wTφ(xn)

]2
− α

2
wTw

)
(2πβ)N/2 (2πα)B/2 (18.1.18)
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By collating terms in w (completing the square, section(8.4.1)), the above represents a Gaussian in w with
additional factors. After integrating over this Gaussian we have

2 log p(D|Γ) = −β
N∑
n=1

(yn)2 + dTS−1d− log det (S) +B logα+N log β −N log (2π) (18.1.19)

where

d = β
∑
n

φ(xn)yn (18.1.20)

See exercise(18.2) for an alternative expression.

Example 18.2. We return to the example in fig(18.2) and try to find a more appropriate setting for the
hyperparameters. Using the hyperparameters α, β, λ that optimise expression (18.1.19) gives the results in
fig(18.2c) where we plot both the mean predictions and standard predictive error bars. This demonstrates
that an acceptable setting for the hyperparameters can be obtained by maximising the marginal likelihood.
Generally speaking, provided the number of hyperparameters is low compared to the number of datapoints,
setting hyperparameters using ML-II will not be at risk of overfitting.

18.1.3 Learning the hyperparameters using EM

As described above, we can set hyperparameters Γ by maximising the marginal likelihood equation (18.1.17).
A convenient computational procedure to achieve this is to interpret the w as latent variables and apply
the EM algorithm, section(11.2). From equation (18.1.17), the energy term is

E ≡ 〈log p(D|w,Γ)p(w|Γ)〉p(w|D,Γold) (18.1.21)

According to the general EM procedure we need to maximise the energy term. For a hyperparameter Γ the
derivative of the energy is given by

∂

∂Γ
E ≡

〈
∂

∂Γ
log p(D|w,Γ)p(w|Γ)

〉
p(w|D,Γold)

(18.1.22)

For the Bayesian LPM with Gaussian weight and noise distributions, we obtain

∂

∂β
E =

N

2β
− 1

2

N∑
n=1

〈[
yn −wTφ(xn)

]2
〉
p(w|Γold,D)

(18.1.23)

=
N

2β
− 1

2

N∑
n=1

[
yn −mTφ(xn)

]2
− 1

2
trace

(
S

N∑
n=1

φ(xn)φT(xn)

)
(18.1.24)

where S and m are given in equation (18.1.10). Solving for the zero derivatives gives the M-step update

1

βnew
=

1

N

N∑
n=1

[
yn −mTφ(xn)

]2
+ trace

(
SŜ
)

(18.1.25)

where

Ŝ ≡ 1

N

N∑
n=1

φ(xn)φT(xn) (18.1.26)

Similarly, for α,

∂

∂α
E =

B

2α
− 1

2

〈
wTw

〉
p(w|Γold,D)

=
B

2α
− 1

2

(
trace (S) + mTm

)
which, on equating to zero, gives the update

1

αnew
=

1

B

(
trace (S) + mTm

)
(18.1.27)

An alternative fixed point procedure that can be more rapidly convergent than EM is given in equation
(18.1.37). Closed form updates for other hyperparameters, such as the width of the basis functions, are
generally not available, and the corresponding energy term needs to be optimised numerically.
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Figure 18.3: Predictions for an RBF for different widths λ. For each λ the ML-II optimal α, β are obtained
by running the EM procedure to convergence and subsequently used to form the predictions. In each panel
the dots represent the training points, with x along the horizontal axis and y along the vertical axis. Mean
predictions are plotted, along with predictive error bars of one standard deviation. According to ML-II, the
best model corresponds to λ = 0.37, see fig(18.4). The smaller values of λ overfit the data, giving rise to too
‘rough’ functions. The largest values of λ underfit, giving too ‘smooth’ functions. See demoBayesLinReg.m.

18.1.4 Hyperparameter optimisation : using the gradient

To maximise equation (18.1.17) with respect to hyperparameters Γ, we can make use of the general identity
from equation (11.6.3) which, in this context, is

∂

∂Γ
log p(D|Γ) =

〈
∂

∂Γ
log p(D|w,Γ)p(w|Γ)

〉
p(w|D,Γ)

(18.1.28)

Since the likelihood is independent of α,

∂

∂α
log p(D|Γ) =

〈
∂

∂α
log p(w|α)

〉
p(w|Γ,D)

(18.1.29)

Using

log p(w|α) = −α
2

wTw +
B

2
logα+ const. (18.1.30)
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Figure 18.4: The log marginal likelihood log p(D|λ, α∗(λ), β∗(λ))
having found the optimal values of the hyperparameters α and
β using ML-II. These optimal values are dependent on λ. Ac-
cording to ML-II, the best model corresponds to λ = 0.37. From
fig(18.3) we see that this gives a reasonable fit to the data.
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we obtain

∂

∂α
log p(D|Γ) =

1

2

〈
−wTw +

B

α

〉
p(w|Γ,D)

(18.1.31)

Setting the derivative to zero, the optimal α satisfies

0 = −
〈
wTw

〉
p(w|Γ,D)

+
B

α
(18.1.32)

One may now form a fixed point equation

αnew =
B

〈wTw〉p(w|Γ,D)

(18.1.33)

which is equivalent to an EM update, equation (18.1.27), for this model. For a Gaussian posterior,
p(w|Γ,D) = N (w m,S),〈

wTw
〉

= trace
(〈

wwT
〉
− 〈w〉 〈w〉T + 〈w〉 〈w〉T

)
= trace (S) + mTm (18.1.34)

αnew =
B

trace (S) + mTm
(18.1.35)

One may similarly find the gradient and associated fixed point update for β which, again is equivalent to
the EM update for this model.

Gull-MacKay fixed point iteration

From equation (18.1.32) we have

0 = −α
〈
wTw

〉
p(w|Γ,D)

+B = −αS− αmTm +B (18.1.36)

so that an alternative fixed point equation[135, 194] is

αnew =
B − αtrace (S)

mTm
(18.1.37)

In practice this update converges more rapidly than equation (18.1.35). Similarly, one can form an alternative
update for β

βnew =
1− βtrace

(
SŜ
)

1
N

∑N
n=1 [yn −mTφ(xn)]

2 (18.1.38)

Example 18.3 (Learning the basis function widths). In fig(18.3) we plot the training data for a regression
problem using a Bayesian LPM. A set of 10 Radial Basis Functions (RBFs) are used,

φi(x) = exp
(
−0.5(x− ci)2/λ2

)
(18.1.39)

with ci, i = 1, . . . , 10 spread out evenly between −2 and 2. The hyperparameters α and β are learned by
ML-II under EM updating. For a fixed width λ we then present the predictions, each time finding the
optimal α and β for this width. The optimal joint α, β, λ hyperparameter setting is obtained as described
in fig(18.4) which shows the marginal log likelihood for a range of widths. The fit resulting from the jointly
optimal α, β, λ hyperparameter is reasonable.
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18.1.5 Validation likelihood

The hyperparameters found by ML-II are those which are best at explaining the training data. In principle,
this is different from those that are best for prediction and, in practice therefore, it is reasonable to set
hyperparameters also by validation techniques. One such method is to set hyperparameters by minimal
prediction error on a validation set. Another common technique is to set hyperparameters Γ by their
likelihood on a validation set {Xval,Yval} ≡ {(xmval, ymval),m = 1, . . . ,M}:

p(Yval|Γ,Xtrain,Ytrain,Xval) =

∫
w
p(Yval|w,Γ)p(w|Γ,Xtrain,Ytrain) (18.1.40)

from which we obtain (see exercise(18.3))

log p(Yval|Γ,Dtrain,Xval) = −1

2
log det (2πCval)−

1

2
(yval −Φvalm)T C−1

val (yval −Φvalm) (18.1.41)

where yval =
[
y1
val, . . . , y

M
val

]T
, covariance

Cval ≡ ΦvalSΦT
val + σ2IM (18.1.42)

and the design matrix of explanatory variables

ΦT
val =

[
φ(x1

val), . . . ,φ(xMval)
]

(18.1.43)

The optimal hyperparameters Γ∗ can then be found by maximising (18.1.41) with respect to Γ.

18.1.6 Prediction and model averaging

For fixed hyperparameters, the Bayesian LPM defines a Gaussian posterior distribution on the weights w.
The distribution can be used to compute the expected predictor and also the variance of the predictor.
More generally, however, we can place a prior distribution on the hyperparameters themselves and obtain a
corresponding posterior

p(Γ|D) ∝ p(D|Γ)p(Γ) (18.1.44)

The mean function predictor is then given by integrating over both the posterior weights and the hyperpa-
rameters

f̄(x) =

∫
f(x; w)p(w,Γ|D)dwdΓ =

∫ {∫
f(x; w)p(w|Γ,D)dw

}
p(Γ|D)dΓ (18.1.45)

The term in curly brackets is the mean predictor for fixed hyperparameters. Equation(18.1.45) then weights
each mean predictor by the posterior probability of the hyperparameter p(Γ|D). This is a general recipe for
combining model predictions, where each model is weighted by its posterior probability. However, computing
the integral over the hyperparameter posterior is numerically challenging and approximations are usually
required. Provided the hyperparameters are well determined by the data, we may instead approximate the
above hyperparameter integral by finding the MAP hyperparameters and use

f̄(x) ≈
∫
f(x; w)p(w|Γ∗,D)dw (18.1.46)

Under a flat prior p(Γ) = const., this is equivalent to using the mean predictor with hyperparameters set by
ML-II. An alternative is to draw samples Γl, l = 1, . . . , L from the posterior distribution p(Γ|D) and form
then a predictor by averaging over the samples

f̄(x) ≈ 1

L

L∑
l=1

∫
f(x; w)p(w|Γl,D)dw (18.1.47)
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18.1.7 Sparse linear models

A common interest is to attempt to explain data using as few of the inputs as possible. More generally, we
can try to find the most parsimonious explanation using a limited number of features φi(x). From a Bayesian
LPM perspective, we require a prior that strongly encourages only a limited number of weights wi to be
active, with the rest being set to zero. Formally, this corresponds to a non-Gaussian prior on the weights
which hampers the use of exact Bayesian methods. Non Bayesian methods make use of penalty terms such
as L1 (lasso) regularisation

∑
i |wi| for which the objective of the LPM remains concave [291]l; this is closely

related to using Laplace priors in the Bayesian setting. Here we briefly discuss some approximate methods
for sparse linear regression.

The relevance vector machine

The relevance vector machine assumes that only a small number of components of the basis function vector
are relevant in determining the solution for w. For a predictor,

f(x; w) =

B∑
i=1

wiφi(x) ≡ wTφ(x) (18.1.48)

it is often the case that some basis functions will be redundant in the sense that a linear combination of the
other basis functions can reproduce the training outputs with insignificant loss in accuracy. To exploit this
effect and seek a parsimonious solution we may use a more refined prior that encourages each wi itself to be
small:

p(w|α) =
∏
i

p(wi|αi) (18.1.49)

For computational convenience, in the RVM one typically chooses a Gaussian

p(wi|αi) = N
(
wi 0, α−1

i

)
=
(αi

2π

) 1
2

exp
(
−αi

2
w2
i

)
. (18.1.50)

Sparsity is then achieved by optimising over the hyperparameters αi, with large αi effectively forcing a
weight wi to be zero. The modifications required to the description of section(18.1.1) are to replace S with

S =

(
diag (α) + β

N∑
n=1

φ (xn)φT (xn)

)−1

(18.1.51)

The marginal likelihood is then given by

2 log p(D|Γ) = −β
N∑
n=1

(yn)2 + dTS−1d− log det (S) +

B∑
i=1

logαi +N log β −N log (2π) (18.1.52)

The EM update for β is unchanged, and the EM update for each αi is

1

αnewi

= [S]ii +m2
i (18.1.53)

A potential difficulty with this approach is that there are as many hyperparameters as there are parameters
and finding the optimal hyperparameters by ML-II can be problematic, resulting in overly aggressive pruning
of the weights. This can be ameliorated by using a more fully Bayesian approach [294].

Spike and slab priors

A natural alternative approach to sparse linear regression is to use binary indicators si ∈ {0, 1}

f(x; w) =

B∑
i=1

siwiφi(x), p(w) =
∏
i

N
(
wi 0, σ2

)
(18.1.54)
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Algorithm 18.1 Evidence Procedure for Bayesian Logistic Regression

1: Initialise w and α.
2: while Not Converged do
3: Find optimal w∗ by iterating equation (18.2.16), equation (18.2.15) to convergence. . E-step
4: Update α according to equation (18.2.9). . M-Step
5: end while

so that only those weights wi with si = 1 will contribute to the function. One can specify a level of sparsity
by choosing a prior on the joint set p(s1, . . . , sB) that encourages only a small number of the si to be 1, the
rest being zero. This can be achieved using a product of Bernoulli distributions

p(s) =

B∏
i=1

θsi (1− θ)1−si (18.1.55)

where 0 ≤ θ ≤ 1 specifies the prior level of sparsity. This is equivalent to using the original LPM

f(x; w) =

B∑
i=1

wiφi(x), (18.1.56)

with the ‘spike and slab’ weight prior

p(w|s) =
∏
i

{
siN

(
wi 0, σ2

)
+ (1− si)δ (wi)

}
(18.1.57)

which places either a spike at 0 (when si = 0) or a broader Gaussian ‘slab’ N
(
wi 0, σ2

)
when si = 1. These

two formulations are equivalent and result in a non-Gaussian posterior for the weights, for which approx-
imation methods are required. Popular approaches include Gibbs sampling, chapter(27), and variational
methods chapter(28).

18.2 Classification

For the logistic regression model

p(c = 1|w,x) = σ

(
B∑
i=1

wiφi(x)

)
(18.2.1)

the maximum likelihood method returns only a single optimal w. To deal with the inevitable uncertainty
in estimating w we need to determine the posterior distribution. To do so we first define a prior on the
weights p(w). As for the regression case, a convenient choice is a Gaussian

p(w|α) = N
(
w 0, α−1I

)
=

αB/2

(2π)B/2
exp

(
−αwTw/2

)
(18.2.2)

where α is the inverse variance (precision). Given a dataset of input-class labels, D = {(xn, cn) , n = 1, . . . , N},
the parameter posterior is (assuming we make no model of the input distribution)

p(w|α,D) =
p(D|w, α)p(w|α)

p(D|α)
=

1

p(D|α)
p(w|α)

N∏
n=1

p(cn|xn,w) (18.2.3)

Unfortunately, this distribution is not of any standard form and exactly inferring statistics such as the mean
is formally computationally intractable.
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18.2.1 Hyperparameter optimisation

Analogous to the regression case, hyperparameters such as α can be set by maximising the marginal likelihood

p(D|α) =

∫
p(D|w)p(w|α)dw =

∫ N∏
n=1

p(cn|xn,w)
( α

2π

)B/2
exp

(
−α

2
wTw

)
dw. (18.2.4)

There are several approaches one could take to approximate this integral and below we discuss the Laplace
and a variational technique. Common to all approaches, however, is the form of the gradient, differing only
in the statistics under an approximation to the posterior. For this reason we derive first generic hyperpa-
rameter update formulae that apply under both approximations.

To find the optimal α, we search for the zero derivative of log p(D|α). This is equivalent to the linear
regression case, and we immediately obtain

∂

∂α
log p(D|α) =

1

2

〈
−wTw +

B

α

〉
p(w|α,D)

(18.2.5)

Setting the derivative to zero, an exact equation is that the optimal α satisfies

0 = −
〈
wTw

〉
p(w|α,D)

+
B

α
(18.2.6)

One may now form a fixed point equation

αnew =
B

〈wTw〉p(w|α,D)

(18.2.7)

The averages in the above expression cannot be computed exactly and are replaced by averages with respect
to an approximation of the posterior q(w|α,D). For a Gaussian approximation of the posterior, q(w|α,D) =
N (w m,S)〈

wTw
〉

= trace
(〈

wwT
〉
− 〈w〉 〈w〉T + 〈w〉 〈w〉T

)
= trace (S) + mTm (18.2.8)

αnew =
B

trace (S) + mTm
(18.2.9)

In this case the Gull-Mackay alternative fixed point equation[135, 194] is

αnew =
B − αS

mTm
(18.2.10)

The hyperparameter updates (18.2.9) and (18.2.10) have the same form as for the regression model. The
mean m and covariance S of the posterior in the regression and classification cases are however different.
In the classification case we need to approximate the mean and covariance, as discussed below.

18.2.2 Laplace approximation

The Laplace approximation, section(28.2) is a simple approximation made by fitting a Gaussian locally
around the most probable point of the posterior. The weight posterior for the logistic regression model is
given by

p(w|α,D) ∝ exp (−E(w)) (18.2.11)

where

E(w) =
α

2
wTw −

N∑
n=1

log σ
(
wThn

)
, hn ≡ (2cn − 1)φn (18.2.12)
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By approximating E(w) by a quadratic function in w, we obtain a Gaussian approximation q(w|D, α) to
p(w|D, α). To do so we first find the minimum of E(w). Differentiating, we obtain

∇E = αw −
N∑
n=1

(1− σn)hn, σn ≡ σ
(
wThn

)
(18.2.13)

It is convenient to use a Newton method to find the optimum. The Hessian matrix with elements

Hij ≡
∂2

∂wi∂wj
E(w) (18.2.14)

is given by

H = αI +

N∑
n=1

σn(1− σn)φn (φn)T

︸ ︷︷ ︸
J

(18.2.15)

Note that the Hessian is positive semidefinite (see exercise(18.4)) so that the function E(w) is convex (bowl
shaped), and finding a minimum of E(w) is numerically unproblematic. A Newton update then is

wnew = w −H−1∇E (18.2.16)

Given a converged w, the posterior approximation is given by

q(w|D, α) = N (w m,S) , S ≡ H−1 (18.2.17)

where m = w∗ is the converged estimate of the minimum point of E(w) and H is the Hessian of E(w) at
this point.

Approximating the marginal likelihood

Using the Laplace approximation, the marginal likelihood is given by

p(D|α) =

∫
w
p(D|w)p(w|α) =

∫
w

N∏
n=1

p(cn|xn,w)
( α

2π

)B/2
e−

α
2

wTw ∝
∫

w
e−E(w) (18.2.18)

For an optimum value m = w∗, we approximate the marginal likelihood using (see section(28.2))

log p(D|α) ≈ L(α) ≡ −α
2

(w∗)Tw∗ +
∑
n

log σ
(

(w∗)T hn
)
− 1

2
log det (αI + J) +

B

2
logα (18.2.19)

Given this approximation L(α) to the marginal likelihood, an alternative strategy for hyperparameter opti-
misation is to optimise L(α) with respect to α. By differentiating L(α) directly, the reader may show that
the resulting updates are in fact equivalent to using the general condition equation (18.2.6) under a Laplace
approximation to the posterior statistics.

Making predictions

Ultimately, our interest is to classify in novel situations, averaging over posterior weight uncertainty (as-
suming α is fixed to a suitable value),

p(c = 1|x,D) =

∫
p(c = 1|x,w)p(w|D)dw (18.2.20)

The B dimensional integrals over w cannot be computed analytically and numerical approximation is re-
quired. Using the Laplace approximation, we replace the exact posterior p(w|D) with our Laplace’s method
Gaussian approximation q(w|D) = N (w m,S)

p(c = 1|x,D) ≈
∫
p(c = 1|x,w)q(w|D)dw =

∫
σ
(
x̃Tw

)
N (w m,S) dw (18.2.21)
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Figure 18.5: Bayesian logistic regression using RBF
functions φi(x) = exp

(
−λ(x−mi)

2
)
, placing the cen-

tres mi on a subset of the training points. The green
points are training data from class 1, and the red
points are training data from class 0. The contours
represent the probability of being in class 1. The op-
timal value of α found by ML-II is 0.45 (λ is set by
hand to 2). See demoBayesLogRegression.m

where, for notational convenience, we write x̃ ≡ φ(x). To compute the predictions it would appear that we
need to carry out an integral in B dimensions. However, since the term σ

(
x̃Tw

)
depends on w via the scalar

product x̃Tw, we only require the integral over the one-dimensional projection h ≡ x̃Tw, see exercise(18.5).
That is

p(c = 1|x,D) ≈
∫
σ (h) q(h|x,D)dh (18.2.22)

Since under the Laplace approximation w is Gaussian distributed, then so is the linear projection h

q(h|x,D) = N
(
h x̃Tm, x̃TΣx̃

)
. (18.2.23)

Predictions may then be made by numerically evaluating the one-dimensional integral over the Gaussian
distribution in h, equation (18.2.22). Fast approximate methods for computing this are discussed below.

Approximating the Gaussian average of a logistic sigmoid

Predictions under a Gaussian posterior approximation require the computation of

I ≡ 〈σ(x)〉N (x µ,σ2) (18.2.24)

Gaussian quadrature is an obvious numerical candidate[244]. An alternative is to replace the logistic sigmoid
by a suitably transformed erf function[195], the reason being that the Gaussian average of an erf function
is another erf function. Using a single erf, an approximation is1

σ(x) ≈ 1

2
(1 + erf (νx)) (18.2.25)

These two functions agree at −∞, 0,∞. A reasonable criterion is that the derivatives of these two should
agree at x = 0 since then they have locally the same slope around the origin and have globally similar shape.
Using σ(0) = 0.5 and that the derivative is σ(0)(1− σ(0)), this requires

1

4
=

ν√
π
⇒ ν =

√
π

4
(18.2.26)

A more accurate approximation can be obtained by taking a convex combination of scaled erf functions [22],
see logsigapp.m

1Note that the definition of the erf function used here is taken to be consistent with MATLAB, namely that erf(x) ≡
2√
π

∫ x
0
e−t

2

dt. Other authors define it to be the cumulative density function of a standard Gaussian, 2√
π

∫ x
−∞ e

− 1
2
t2dt.
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18.2.3 Variational Gaussian approximation

An alternative to Laplace’s method is to use a so-called variational method. Since the marginal likelihood is a
key quantity that can be used for example for hyperparameter selection, it is useful to have a lower bound on
the log marginal likelihood. Like in EM, one can then find the best hyperparameters by maximising this lower
bound, rather than the likelihood itself. To keep the notation reasonably simple, we drop the conditioning
on hyperparameters throughout and attempt to find a lower bound on the log marginal likelihood p(D).
One approach to obtaining a bound is based on the Kullback-Leibler divergence

KL(q(w)|p(w|D)) ≥ 0 (18.2.27)

Since p(w|D) = p(D|w)p(w)/p(D) we obtain

log p(D) ≥ 〈log p(D|w)p(w)〉q(w) − 〈log q(w)〉q(w) (18.2.28)

which holds for any distribution q(w). The angled brackets 〈·〉q denote expectation with respect to q. Using

the explicit form for the logistic regression model, the right hand side is given by2

BKL ≡
N∑
n=1

〈
log σ

(
snw

Tx̃n

)〉
q(w)
−KL(q(w)|p(w)) (18.2.29)

To form a tractable lower bound, we need to choose a class of distributions q(w) for which the above expres-
sion can be evaluated, for example a Gaussian q(w) = N (w m,S). For a Gaussian prior p(w) = N (w 0,Σ)
then KL(q(w)|p(w)) is straightforward. For numerical convenience, we parameterise the covariance of the
approximation using a Cholesky decomposition S = CTC for upper triangular C. This gives

−2KL(q(w)|p(w)) = 4
∑
i

logCii − log det (Σ) + trace
(
CTCΣ−1

)
+ mTΣ−1m +B (18.2.30)

where B = dim (x̃). In computing the bound (18.2.29), the problematic remaining terms are

In ≡
〈

log σ
(
snw

Tx̃n

)〉
N (w m,S)

(18.2.31)

We define the activation an ≡ snwTx̃n. Since w is Gaussian distributed, so is the activation,

p(an) = N
(
an µ̃n, σ̃

2
n

)
, µ̃n = snx̃

>
nm, σ̃2

n = x̃>nC>Cx̃n (18.2.32)

so that

In = 〈log σ (an)〉N (an µ̃n,σ̃2
n) = 〈log σ (µ̃n + zσ̃n)〉z

where 〈·〉z denotes expectation with respect to the standard normal distribution z ∼ N (z 0, 1). In this
way In can be computed by any standard one-dimensional numerical integration method, such as Gaussian
quadrature. Since the bound (18.2.29) is therefore numerically accessible for any parameters m, C of the
approximating Gaussian, we may proceed to find the optimal parameters by direct numerical maximisation
of the lower bound. The gradient of the bound with respect to m is

∂BKL
∂m

= −Σ−1m +
N∑
n=1

snx̃n (1− 〈σ (µ̃n + zσ̃n)〉z) (18.2.33)

Similarly, one may show that

∂BKL
∂C

=C−T−CΣ−1 + C

N∑
n=1

x̃nx̃
T
n

σ̃n
〈zσ (µ̃n + zσ̃n)〉z (18.2.34)

with the understanding that only the upper triangular part of the matrix expression is to be taken. One
may show that the bound equation (18.2.29) is concave in the mean and covariance[60]. These gradients
may then be used as part of a general purpose optimisation routine to find the best m and C approximation
parameters.

2The generalisation to using φ(x) in the below follows from simply replacing x with φ(x) throughout.
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Figure 18.6: The logistic sigmoid σ(x) = 1/(1 +
exp(−x)) (red) and a Gaussian lower bound (blue
dashed curve) with operating point ξ = 2.5.

18.2.4 Local variational approximation

An alternative to the KL bounding method above is to use a so-called local method that bounds each term
in the integrand. To lower bound

p(D) =

∫ ∏
n

σ
(
snw

Tx̃n

)
p(w)dw (18.2.35)

we may bound the logistic sigmoid function[155], see fig(18.6),

σ(x) ≥ σ(ξ)

(
1

2
(x− ξ)− λ (ξ)

(
x2 − ξ2

))
, λ (ξ) ≡ 1

2ξ

(
σ (ξ)− 1

2

)
(18.2.36)

Hence

log σ
(
snw

Tx̃n

)
≥ log σ (ξn) +

1

2
snw

Tx̃n −
1

2
ξn − λ (ξn)

[(
wTx̃n

)2
− ξ2

n

]
(18.2.37)

Using this we can write

p(D) ≥
∫
dwN (w 0,Σ)

∏
n

e
log σ(ξn)+ 1

2
snwTx̃n− 1

2
ξn−λ(ξn)

[
(wTx̃n)

2−ξ2n
]

(18.2.38)

For fixed ξn, n = 1, . . . , N , the right hand side can be analytically integrated over w, resulting in the bound

log p(D) ≥ 1

2
log

det
(
Ŝ
)

det (Σ)
+

1

2
m̂TŜ−1m̂ +

N∑
n=1

[
log σ(ξn)− ξn

2
+ λ (ξn) ξ2

n

]
(18.2.39)

where

A = Σ−1 + 2

N∑
n=1

λ (ξn) x̃nx̃
T
n , b =

N∑
n=1

1

2
snx̃n, Ŝ ≡ A−1, m̂ ≡ A−1b (18.2.40)

The bound equation (18.2.39) may then be maximised with respect to the variational parameters ξn. At

convergence, we may take the Gaussian N
(
w m̂, Ŝ

)
as an approximation to the posterior.

Relation to KL variational procedure

As an alternative to the numerical integration in the KL procedure described in section(18.2.3), we may
instead bound the problematic term

〈
log σ

(
snw

Tx̃n
)〉
q(w)

in equation (18.2.29) using (18.2.37). As we dis-

cuss in section(28.5), this enables us to relate the KL and the local bounding procedures [60], showing that
for unconstrained Cholesky parameterisation C the KL approach results in a provably tighter lower bound
than the local approach.

As an illustration of these approximations, for two-dimensional data, D = 2, we plot contours of the
posterior and approximations in fig(18.7) which again demonstrates the over-compact nature of the local
approximation. The Laplace approximation, which does not yield a bound, is plotted for comparison.
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Figure 18.7: Posterior approximations for a two-dimensional Bayesian logistic regression posterior based on
N = 20 datapoints. (a) True posterior. (b) The Gaussian from the Jaakola-Jordan local approximation. (c)
The Laplace Gaussian approximation. (d) The variational Gaussian approximation from the KL approach.

18.2.5 Relevance vector machine for classification

It is straightforward to apply the sparse linear model methods of section(18.1.7) to classification. For
example, in adopting the RVM prior to classification, as before we encourage individual weights to be small
using

p(w|α) =
∏
i

p(wi|αi), p(wi|αi) = N
(
wi 0,

1

αi

)
(18.2.41)

The only alterations to the previous ML-II approach is to replace equation (18.2.13) and equation (18.2.15)
with

[∇E]i = αiwi −
∑
n

(1− σn)hni , H = diag (α) + J (18.2.42)

These are used in the Newton update formula as before. The update equation for the α’s is given by

αnewi =
1

m2
i + Sii

(18.2.43)

Similarly, the Gull-MacKay update is given by

αnewi =
1− αiSii
m2
i

(18.2.44)

Running this procedure, one typically finds that many of the α’s tend to infinity and the corresponding
weights are pruned from the system. The remaining weights typically correspond to basis functions (in the
RBF case) in the centres of mass of clusters of datapoints of the same class, see fig(18.8). Contrast this with
the situation in SVMs, where the retained datapoints tend to be on the decision boundaries. The number
of training points retained by the RVM tends to be very small – smaller indeed than the number retained
in the SVM framework. Whilst the RVM does not support large margins, and hence may be a less robust
classifier, it does retain the advantages of a probabilistic framework[295]. A potential critique of the RVM,
coupled with an ML-II procedure for learning the αi is that it is overly aggressive in terms of pruning.
Indeed, as one may verify running demoBayesLogRegRVM.m it is common to find an instance of a problem
for which there exists a set of αi such that the training data can be classified perfectly; however, after using
ML-II, so many of the αi are set to zero that the training data can no longer be classified perfectly. An
alternative is to apply the spike-and-slab prior technique which suffers less from overly aggressive pruning,
although requires more sophisticated approximation methods.

18.2.6 Multi-class case

We briefly note that the multi-class case can be treated by using the softmax function under a one-of-m
class coding scheme. The class probabilities are

p(c = m|y) =
eym

Σm′eym′
(18.2.45)
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Figure 18.8: Classification using the RVM with RBF e−λ(x−m)2 , placing a basis function on a subset of the
training data points. The green points are training data from class 1, and the red points are training data
from class 0. The contours represent the probability of being in class 1. (a): Training points. (b): The
training points weighted by their relevance value 1/αn. Nearly all the points have a value so small that they
effectively vanish. See demoBayesLogRegRVM.m

which automatically enforces the constraint
∑

m p(c = m) = 1. Naively it would appear that for C classes,
the cost of the Laplace approximation scales as O

(
C3N3

)
. However, one may show by careful implementa-

tion that the cost may be reduced to only O
(
CN3

)
, analogous to the cost savings possible in the Gaussian

Process classification model [318, 247].

18.3 Summary

• A simple extension of linear regression is achieved by using a Gaussian prior on the parameters. Coupled
with the assumption of additive Gaussian noise on the output, the posterior distribution is Gaussian, for
which predictions can be computed readily.

• In the case of classification, no closed form Bayesian solution is obtained by using simple Gaussian priors
on the parameters, and approximations are required. The parameter posterior is nevertheless well-behaved
so that simple unimodal approximations may be adequate.

18.4 Code

demoBayesLinReg.m: Demo of Bayesian linear Regression
BayesLinReg.m: Bayesian linear regression
demoBayesLogRegRVM.m: Demo of Bayesian logistic regression (RVM)
BayesLogRegressionRVM.m: Bayesian logistic regression (RVM)
avsigmaGauss.m: Approximation of the Gaussian average of a logistic sigmoid
logsigapp.m: Approximation of the logistic sigmoid using mixture of erfs
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18.5 Exercises

Exercise 18.1. This exercise concerns Bayesian regression.

1. Show that for f = wTx and p(w) ∼ N (w 0,Σ), that p(f |x) is Gaussian distributed. Furthermore,
find the mean and covariance of this Gaussian.

2. Consider a target point t = f + ε, where ε ∼ N
(
ε 0, σ2

)
. What is p(f |t,x)?

Exercise 18.2. A Bayesian Linear Parameter regression model is given by

yn = wTφ(xn) + ηn (18.5.1)

In vector notation y =
(
y1, . . . , yN

)T
this can be written

y = Φw + η (18.5.2)

with ΦT =
[
φ(x1), . . . ,φ(xN )

]
and η is a zero mean Gaussian distributed vector with covariance β−1I. An

expression for the marginal likelihood of a dataset is given in equation (18.1.19). We aim to find a more
compact expression for the likelihood given the hyperparameters Γ

p(y1, . . . , yN |x1, . . . ,xN ,Γ) (18.5.3)

Since yn is linearly related to w and p(w) = N
(
w 0, α−1I

)
, then y is Gaussian distributed with mean

〈y〉 = Φ 〈w〉 = 0 (18.5.4)

and covariance matrix

C =
〈
yyT

〉
− 〈y〉 〈y〉T =

〈
(Φw + η) (Φw + η)T

〉
(18.5.5)

1. Show that the covariance matrix can be expressed as

C =
1

β
I +

1

α
ΦΦT (18.5.6)

2. Hence show that the log marginal likelihood can we written as

log p(y1, . . . , yN |x1, . . . ,xN ,Γ) = −1

2
log det (2πC)− 1

2
yTC−1y (18.5.7)

Exercise 18.3. Using exercise(18.2) as a basis, derive expression (18.1.41) for the log likelihood on a
validation set.

Exercise 18.4. Consider the function E(w) as defined in equation (18.2.12).

1. Show that the Hessian matrix which has elements,

Hij ≡
∂2

∂wi∂wj
E(w) =

[
αI +

N∑
n=1

σn (1− σn)φn (φn)T
]
ij

(18.5.8)

2. Show that the Hessian is positive definite.

Exercise 18.5. Show that for any function f(·),∫
f(xTw)p(w)dw =

∫
f(h)p(h)dh (18.5.9)

where p(h) is the distribution of the scalar xTw. The significance is that any high-dimensional integral of
the above form can be reduced to a one-dimensional integral over the distribution of the ‘field’ h[22].
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Exercise 18.6. This exercise concerns Bayesian Logistic Regression. Our interest is to derive the op-
timal regularisation parameter α based on the Laplace approximation in section(18.2.2) to the marginal
log-likelihood given by

log p(D|α) ≈ L(α) ≡ −α
2

(w)Tw +
∑
n

log σ
(

(w)T hn
)
− 1

2
log det (αI + J) +

B

2
logα (18.5.10)

The Laplace procedure finds first an optimal w∗ that minimises αwTw/2−∑n log σ
(
wThn

)
, as in equation

(18.2.12) which will depend on the setting of α. Formally, therefore, in finding the α that optimises L(α)
we should make use of the total derivative formula

dL

dα
=
∂L

∂α
+
∑
i

∂L

∂wi

∂wi
∂α

(18.5.11)

However, when evaluated at w = w∗, ∂L
∂w = 0. This means that in order to compute the derivative with

respect to α, we only need consider the terms with an explicit α dependence. Equating the derivative to zero
and using

∂ log det (M) = trace
(
M−1∂M

)
(18.5.12)

show that the optimal α satisfies the fixed point equation

αnew =
N

(w∗)Tw∗ + trace
(

(αI + J)−1
) (18.5.13)
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CHAPTER 19

Gaussian Processes

In Bayesian linear parameter models, we saw that the only relevant quantities are related to the scalar
product of data vectors. In Gaussian Processes we use this to motivate a prediction method that does not
necessarily correspond to any ‘parametric’ model of the data. Such models are flexible Bayesian predictors.

19.1 Non-Parametric Prediction

Gaussian Processes are flexible Bayesian models that fit well within the probabilistic modelling framework.
In developing GPs it is useful to first step back and see what information we need to form a predictor. Given
a set of training data

D = {(xn, yn), n = 1, . . . , N} = X ∪ Y (19.1.1)

where xn is the input for datapoint n and yn the corresponding output (a continuous variable in the regression
case and a discrete variable in the classification case), our aim is to make a prediction y∗ for a new input x∗.
In the discriminative framework no model of the inputs x is assumed and only the outputs are modelled,
conditioned on the inputs. Given a joint model

p(y1, . . . , yN , y∗|x1, . . . , xN , x∗) = p(Y, y∗|X , x∗) (19.1.2)

we may subsequently use conditioning to form a predictor p(y∗|x∗,D). In previous chapters we’ve made
much use of the i.i.d. assumption that each datapoint is independently sampled from the same generating
distribution. In this context, this might appear to suggest the assumption

p(y1, . . . , yN , y∗|x1, . . . , xN , x∗) = p(y∗|X , x∗)
∏
n

p(yn|X , x∗) (19.1.3)

However, this is clearly of little use since the predictive conditional is simply p(y∗|D, x∗) = p(y∗|X , x∗)
meaning the predictions make no use of the training outputs. For a non-trivial predictor we therefore need
to specify a joint non-factorised distribution over outputs.

19.1.1 From parametric to non-parametric

If we revisit our i.i.d. assumptions for parametric models, we used a parameter θ to make a model of the
input-output distribution p(y|x, θ). For a parametric model predictions are formed using

p(y∗|x∗,D) ∝ p(y∗, x∗,D) =

∫
θ
p(y∗,Y, x∗,X , θ) ∝

∫
θ
p(y∗,Y|θ, x∗,X )p(θ|��

�x∗,X ) (19.1.4)
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θ

y1 yN y∗

x1 xN x∗

(a)

y1 yN y∗

x1 xN x∗

(b)

Figure 19.1: (a): A parametric model for predic-
tion assuming i.i.d. data. (b): The form of the
model after integrating out the parameters θ. Our
non-parametric model will have this structure.

Under the assumption that, given θ, the data is i.i.d., we obtain

p(y∗|x∗,D) ∝
∫
θ
p(y∗|x∗, θ)p(θ)

∏
n

p(yn|θ, xn) ∝
∫
θ
p(y∗|x∗, θ)p(θ|D) (19.1.5)

where

p(θ|D) ∝ p(θ)
∏
n

p(yn|θ, xn) (19.1.6)

After integrating over the parameters θ, the joint data distribution is given by

p(y∗,Y|x∗,X ) =

∫
θ
p(y∗|x∗, θ)p(θ)

∏
n

p(yn|θ, xn) (19.1.7)

which does not in general factorise into individual datapoint terms, see fig(19.1). The idea of a non-
parametric approach is to specify the form of the dependencies p(y∗,Y|x∗,X ) without reference to an
explicit parametric model. One route towards a non-parametric model is to start with a parametric model
and integrate out the parameters. In order to make this tractable, we use a simple linear parameter
predictor with a Gaussian parameter prior. For regression this leads to closed form expressions, although
the classification case will require numerical approximation.

19.1.2 From Bayesian linear models to Gaussian processes

To develop the GP, we briefly revisit the Bayesian linear parameter model of section(18.1.1). For parameters
w and basis functions φi(x) the output is given by (assuming zero output noise)

y =
∑
i

wiφi(x) (19.1.8)

If we stack all the y1, . . . , yN into a vector y, then we can write the predictors as

y = Φw (19.1.9)

where Φ =
[
φ(x1), . . . ,φ(xN )

]T
is the design matrix. Assuming a Gaussian weight prior

p(w) = N (w 0,Σw) (19.1.10)

the joint output

p(y|x) =

∫
w
δ (y −Φw) p(w) (19.1.11)

is Gaussian distributed with mean

〈y〉 = Φ 〈w〉p(w) = 0 (19.1.12)

and covariance〈
yyT

〉
= Φ

〈
wwT

〉
p(w)

ΦT = ΦΣwΦT =
(
ΦΣw

1
2

)(
ΦΣw

1
2

)T
. (19.1.13)
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From this we see that the Σw can be absorbed into Φ using its Cholesky decomposition. In other words,
without loss of generality we may assume Σw = I. Hence, after integrating out the weights, the Bayesian
linear regression model induces a Gaussian distribution on any set of outputs y as

p(y|x) = N (y 0,K) (19.1.14)

where the covariance matrix K depends on the training inputs alone via

[K]n,n′ = φ(xn)Tφ(xn
′
), n, n′ = 1, . . . , N (19.1.15)

Since the matrix K is formed as the scalar product of vectors, it is by construction positive semidefinite,
see section(19.4.2). After integrating out the weights, the only thing the model directly depends on is the
covariance matrix K. In a Gaussian process we directly specify the joint output covariance K as a function
of two inputs, rather than specifying a linear model with parameters w. Specifically we need to define the
n, n′ element of the covariance matrix for any two inputs xn and xn

′
. This is achieved using a covariance

function k(xn, xn
′
)

[K]n,n′ = k(xn, xn
′
) (19.1.16)

The matrix K formed from a covariance function k is called the Gram matrix. The required form of the
function k(xn, xn

′
) is very special – when applied to create the elements of the matrix K it must produce a

positive definite matrix. We discuss how to create such covariance functions in section(19.3). One explicit
straightforward construction is to form the covariance function from the scalar product of the basis vector
φ(xn) and φ(xn

′
). For finite-dimensional φ this is known as a finite dimensional Gaussian Process. Given

any covariance function we can always find a corresponding basis vector representation – that is, for any
GP, we can always relate this back to a parametric Bayesian LPM. However, for many commonly used
covariance functions, the basis functions corresponds to infinite dimensional vectors. It is in such cases that
the advantages of using the GP framework are particularly evident since we would not be able to compute
efficiently with the corresponding infinite dimensional parametric model.

19.1.3 A prior on functions

The nature of many machine learning applications is such that the knowledge about the true underlying
mechanism behind the data generation process is limited. Instead one relies on generic ‘smoothness’ assump-
tions; for example we might wish that for two inputs x and x′ that are close, the corresponding outputs
y and y′ should be similar. Many generic techniques in machine learning can be viewed as different char-
acterisations of smoothness. An advantage of the GP framework in this respect is that the mathematical
smoothness properties of the functions are well understood, giving confidence in the procedure.

For a given covariance matrix K, equation (19.1.14) specifies a distribution on functions1 in the following
sense: we specify a set of input points x = (x1, . . . , xN ) and a N ×N covariance matrix K. Then we draw
a vector y =

(
y1, . . . , yN

)
from the Gaussian defined by equation (19.1.14). We can then plot the sampled

‘function’ at the finite set of points (xn, yn), n = 1, . . . , N . What kind of function does a GP correspond
to? In fig(19.2a) we show three sample functions drawn from a Squared Exponential covariance function
defined over 500 points uniformly spaced from −2 to 3. Each sampled function looks reasonably smooth.
Conversely, for the Ornstein Uhlenbeck covariance function, the sampled functions fig(19.2c) look locally
rough. These smoothness properties are related to the form of the covariance function, as discussed in
section(19.4.1).

Consider two scalar inputs, xi and xj and corresponding sampled outputs yi and yj . For a covariance func-
tion with large k(xi, xj), we expect yi and yj to be very similar since they are highly correlated. Conversely,
for a covariance function that has low k(xi, xj), we expect yi and yj to be effectively independent. In general,
we would expect the correlation between yi and yj to decrease the further apart xi and xj are2.

1The term ‘function’ is potentially confusing since we do not have an explicit functional form for the input output-mapping.
For any finite set of inputs x1, . . . , xN the values for the ‘function’ are given by the outputs at those points y1, . . . , yN .

2For periodic functions one can have high correlation even if the inputs are far apart.
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The zero mean assumption implies that if we were to draw a large number of such ‘functions’, the mean
across these functions at a given point x tends to zero. Similarly, for any two points x and x′ if we compute
the sample covariance between the corresponding y and y′ for all such sampled functions, this will tend
to the covariance function value k(x, x′). The zero-mean assumption can be easily relaxed by defining a
mean function m(x) to give p(y|x) = N (y m,K). In many practical situations one typically deals with
‘detrended’ data in which such mean trends have been already removed. For this reason much of the
development of GPs in the machine learning literature is for the zero mean case.

19.2 Gaussian Process Prediction

For a dataset D = {x,y} and novel input x∗, a zero mean GP makes a Gaussian model of the joint outputs
y1, . . . , yN , y∗ given the joint inputs x1, . . . , xN , x∗. For convenience we write this as

p(y, y∗|x, x∗) = N
(
y, y∗ 0N+1,K

+
)

(19.2.1)

where 0N+1 is an N +1 dimensional zero-vector. The covariance matrix K+ is a block matrix with elements

K+ ≡

Kx,x Kx,x∗

Kx∗,x Kx∗,x∗

where Kx,x is the covariance matrix of the training inputs x =
(
x1, . . . , xN

)
– that is

[Kx,x]n,n′ ≡ k(xn, xn
′
), n, n′ = 1, . . . , N (19.2.2)

The N × 1 vector Kx,x∗ has elements

[Kx,x∗ ]n,∗ ≡ k(xn, x∗) n = 1, . . . , N (19.2.3)

Kx∗,x is the transpose of the above vector. The scalar covariance is given by

Kx∗,x∗ ≡ k(x∗, x∗) (19.2.4)

The predictive distribution p(y∗|x∗,x,y) is obtained by Gaussian conditioning using result(8.4), giving a
Gaussian distribution

p(y∗|x∗,D) = N
(
y∗ Kx∗,xK−1

x,xy,Kx∗,x∗ −Kx∗,xK−1
x,xKx,x∗

)
(19.2.5)

GP regression is an exact method and there are no issues with local minima. Furthermore, GPs are attractive
since they automatically model uncertainty in the predictions. However, the computational complexity for
making a prediction is O

(
N3
)

due to the requirement of performing the matrix inversion (or solving the
corresponding linear system by Gaussian elimination). This can be prohibitively expensive for large datasets
and a large body of research on efficient approximations exists. A discussion of these techniques is beyond
the scope of this book, and the reader is referred to [247].

19.2.1 Regression with noisy training outputs

To prevent overfitting to noisy data it is useful to assume that a training output yn is the result of some
clean Gaussian process fn corrupted by independent additive Gaussian noise,

yn = fn + εn, where εn ∼ N
(
εn 0, σ2

)
(19.2.6)
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In this case our interest is to predict the clean signal f∗ for a novel input x∗. Then the distribution
p(y, f∗|x, x∗) is a zero mean Gaussian with block covariance matrix(

Kx,x + σ2I Kx,x∗

Kx∗,x Kx∗,x∗

)
(19.2.7)

so that Kx,x is replaced by Kx,x + σ2I in forming the prediction, equation (19.2.5). This follows since

〈yn〉 = 〈fn〉+ 〈εn〉 = 0 + 0 (19.2.8)

and, using the assumed independence of the noise with the clean signal, fm⊥⊥ εn and the independence of
two noise components, εm⊥⊥εn,m 6= n, we have

〈ymyn〉 = 〈(fm + εm) (fn + εn)〉
= 〈fmfn〉︸ ︷︷ ︸

k(xm,xn)

+ 〈fmεn〉︸ ︷︷ ︸
〈fm〉〈εn〉

+ 〈fnεm〉〈fn〉〈εm〉 + 〈εmεn〉σ2δm,n
. (19.2.9)

Using 〈εm〉 = 0 we obtain the form in equation (19.2.7).

Example 19.1. Training data from a one-dimensional input x and one dimensional output y are plotted
in fig(19.2b,d), along with the mean regression function fit, based on two different covariance functions.
Note how the smoothness of the prior translates into smoothness of the prediction. The smoothness of
the function space prior is a consequence of the choice of covariance function. Naively, we can partially
understand this by the behaviour of the covariance function at the origin, section(19.4.1). An intuitive
way to think about GP regression is to sample an ‘infinite’ number of functions from the prior; these are
then ‘filtered’ by how well they fit the data by the likelihood term, leaving a posterior distribution on the
functions. See demoGPreg.m

The marginal likelihood and hyperparameter learning

For a set of N one-dimensional training inputs represented by the N×1 dimensional vector y and a covariance
matrix K defined on the inputs x =

(
x1, . . . , xN

)
, the log marginal likelihood is

log p(y|x) = −1

2
yTK−1y − 1

2
log det (2πK) (19.2.10)

One can learn any free (hyper)parameters of the covariance function by maximising the marginal likelihood.
For example, a squared exponential covariance function may have parameters λ, v0:

k(x, x′) = v0 exp

{
−1

2
λ
(
x− x′

)2}
(19.2.11)

The λ parameter in equation (19.2.11) specifies the appropriate length-scale of the inputs, and v0 the
variance of the function. The dependence of the marginal likelihood (19.2.10) on the parameters is typically
complex and no closed form expression for the maximum likelihood optimum exists; in this case one resorts
to numerical optimisation techniques such as conjugate gradients.

Vector inputs

For regression with vector inputs and scalar outputs we need to define a covariance as a function of the two
vectors, k(x,x′). Using the multiplicative property of covariance functions, definition(19.3), a simple way
to do this is to define

k(x,x′) =
∏
i

k(xi, x
′
i) (19.2.12)
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Figure 19.2: The input space from -2 to 3 is split evenly into 1000 points x1, . . . , x1000. (a):
Three samples from a GP prior with Squared Exponential (SE) covariance function, λ = 2. The
1000 × 1000 covariance matrix K is defined using the SE kernel, from which the samples are drawn us-
ing mvrandn(zeros(1000,1),K,3). (b): Prediction based on training points. Plotted is the posterior
predicted function based on the SE covariance. The central line is the mean prediction, with standard errors
bars on either side. The log marginal likelihood is ≈ 70. (c): Three samples from the Ornstein-Uhlenbeck
GP prior with λ = 2. (d): Posterior prediction for the OU covariance. The log marginal likelihood is
≈ 3, meaning that the SE covariance is much more heavily supported by the data than the rougher OU
covariance.

For example, for the squared exponential covariance function this gives

k(x,x′) = e−(x−x′)2 (19.2.13)

though ‘correlated’ forms are possible as well, see exercise(19.6). We can generalise the above using param-
eters:

k(x,x′) = v0 exp

{
−1

2

D∑
l=1

λl
(
xl − x′l

)2}
(19.2.14)

where xl is the lth component of x and θ = (v0, λ1, . . . , λD) are the parameters. The λl in equation (19.2.14)
allow a different length scale on each input dimension and can be learned by numerically maximising the
marginal likelihood. For irrelevant inputs, the corresponding λl will become small, and the model will ignore
the lth input dimension.

19.3 Covariance Functions

Covariance functions k(x, x′) are special in that they define elements of a positive definite matrix. These
functions are also referred to as ‘kernels’, particulary in the machine learning literature.
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Definition 19.1 (Covariance function). Given any collection of points x1, . . . , xM , a covariance function
k(xi, xj) defines the elements of an M ×M matrix

[C]i,j = k(xi, xj)

such that C is positive semidefinite.

19.3.1 Making new covariance functions from old

The following rules (see exercise(19.1)) generate new covariance functions from existing covariance functions
k1, k2 [196],[247].

Definition 19.2 (Sum).

k(x,x′) = k1(x,x′) + k2(x,x′) (19.3.1)

Definition 19.3 (Product).

k(x,x′) = k1(x,x′)k2(x,x′) (19.3.2)

Definition 19.4 (Product Spaces). For z =

(
x
y

)
,

k(z, z′) = k1(x,x′) + k2(y,y′) (19.3.3)

and

k(z, z′) = k1(x,x′)k2(y,y′) (19.3.4)

Definition 19.5 (Vertical Rescaling).

k(x,x′) = a(x)k1(x,x′)a(x′) (19.3.5)

for any function a(x).

Definition 19.6 (Warping and Embedding).

k(x,x′) = k1

(
u(x),u(x′)

)
(19.3.6)

for any mapping x→ u(x), where the mapping u(x) has arbitrary dimension.

A small collection of covariance functions commonly used in machine learning is given below. We refer the
reader to [247] and [117] for further popular covariance functions.

19.3.2 Stationary covariance functions

Definition 19.7 (Stationary Kernel). A kernel k(x, x′) is stationary if the kernel depends only on the
separation x− x′. That is

k(x,x′) = k(x− x′) (19.3.7)
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For a stationary covariance function we may write k(d), where d = x − x′. This means that for functions
drawn from the GP, on average, the functions depend only on the distance between inputs and not on
the absolute position of an input. In other words, the functions are on average translation invariant. For
isotropic covariance functions, the covariance is defined as a function of the distance |d|. Such covariance
functions are, by construction, rotationally invariant.

Definition 19.8 (Squared Exponential).

k(d) = exp
(
− |d|2

)
(19.3.8)

The Squared Exponential is one of the most common covariance functions. There are many ways to show
that this is a covariance function. An elementary technique is to consider

exp

(
−1

2

(
xn − xn

′
)T (

xn − xn
′
))

= exp

(
−1

2
|xn|2

)
exp

(
−1

2

∣∣∣xn′∣∣∣2)exp
(

(xn)T xn
′
)

(19.3.9)

The first two factors on the right above form a kernel of the form φ(xn)φ(xn
′
). In the final term k1(xn,xn

′
) =

(xn)T xn
′

is the linear kernel. Taking the exponential and writing the power series expansion of the expo-
nential, we have

exp
(
k1(xn,xn

′
)
)

=
∞∑
i=1

1

i!
ki1(xn,xn

′
) (19.3.10)

this can be expressed as a series of integer powers of k1, with positive coefficients. By the product (with
itself) and sum rules above, this is therefore a kernel as well. We then use the fact that equation (19.3.9) is
the product of two kernels, and hence also a kernel.

Definition 19.9 (γ-Exponential).

k(d) = exp (− |d|γ), 0 < γ ≤ 2 (19.3.11)

When γ = 2 we have the squared exponential covariance function. When γ = 1 this is the Ornstein-
Uhlenbeck covariance function.

Definition 19.10 (Matérn).

k(d) = |d|ν Kν (|d|) (19.3.12)

where Kν is a modified Bessel function, ν > 0.

Definition 19.11 (Rational Quadratic).

k(d) =
(

1 + |d|2
)−α

, α > 0 (19.3.13)

Definition 19.12 (Periodic). For 1-dimensional x and x′, a stationary (and isotropic) covariance function
can be obtained by first mapping x to the two dimensional vector u(x) = (cos(x), sin(x)) and then using

the SE covariance exp
(
− (u(x)− u(x′))2

)
[196]

k(x− x′) = exp
(
−λ sin2

(
ω(x− x′)

))
, λ > 0 (19.3.14)

See fig(19.4a).
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Figure 19.3: (a): Plots of the Gamma-Exponential covariance e−|x|
γ

versus x. The case γ = 2 corresponds
to the SE covariance function. The drop in the covariance is much more rapid as a function of the separation
x for small γ, suggesting that the functions corresponding to smaller γ will be locally rough (though possess
relatively higher long range correlation). (b): As for (a) but zoomed in towards the origin. For the SE
case, γ = 2, the derivative of the covariance function is zero, whereas the OU covariance γ = 1 has a first
order contribution to the drop in the covariance, suggesting that locally OU sampled functions will be much
rougher than SE functions.

19.3.3 Non-stationary covariance functions

Definition 19.13 (Linear).

k(x,x′) = xTx′ (19.3.15)

Definition 19.14 (Neural Network).

k(x,x′) = arcsin

(
2xTx′

√
1 + 2xTx

√
1 + 2x′Tx′

)
(19.3.16)

The functions defined by this covariance always go through the origin. To shift this, one may use the
embedding x→ (1,x) where the 1 has the effect of a ‘bias’ from the origin. To change the scale of the bias
and non-bias contributions one may use additional parameters x → (b, λx). The NN covariance function
can be derived as a limiting case of a neural network with infinite hidden units[317], and making use of
exact integral results in [21]. See fig(19.4b).

Definition 19.15 (Gibbs).

k(x,x′) =
∏
i

(
ri(x)ri(x

′)

r2
i (x) + r2

i (x
′)

) 1
2

exp

(
− (xi − x′i)2

r2
i (x) + r2

i (x
′)

)
(19.3.17)

for functions ri(x) > 0 [122].

19.4 Analysis of Covariance Functions

19.4.1 Smoothness of the functions

We examine local smoothness for a translation invariant kernel k(x, x′) = k(x−x′). For two one-dimensional
points x and x′, separated by a small amount δ � 1, x′ = x+ δ, the covariance between the outputs y and
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Figure 19.4: Samples from a GP prior for 500 x points uniformly placed from -20 to 20. (a): Samples
from the periodic covariance function exp

(
−2 sin2 0.5(x− x′)

)
. (b): Samples from the Neural Network

covariance function with bias b = 5 and λ = 1.

y′ is, by Taylor expansion,

k(x, x′) ≈ k(0) + δ
dk

dx
|x=0 +O

(
δ2
)

(19.4.1)

so that the change in the covariance at the local level is dominated by the first derivative of the covariance
function. For the SE covariance k(x) = e−x

2
,

dk

dx
= −2xe−x

2
(19.4.2)

is zero at x = 0. This means that for the SE covariance function, the first order change in the covariance is
zero, and only higher order δ2 terms contribute.

For the Ornstein-Uhlenbeck covariance, k(x) = e−|x|, the right derivative at the origin is

lim
δ→0

k(δ)− k(0)

δ
= lim

δ→0

e−δ − 1

δ
= −1 (19.4.3)

where this result is obtained using L’Hôpital’s rule. Hence for the OU covariance function, there is a first
order negative change in the covariance; at the local level, this decrease in the covariance is therefore much
more rapid than for the SE covariance, see fig(19.3). Since low covariance implies low dependence (in
Gaussian distributions), locally the functions generated from the OU process are rough, whereas they are
smooth in the SE case. A more formal treatment for the stationary case can be obtained by examining the
eigenvalue-frequency plot of the covariance function (spectral density), section(19.4.3). For rough functions
the density of eigenvalues for high frequency components is higher than for smooth functions.

19.4.2 Mercer kernels

Consider the function

k(x, x′) = φ(x)Tφ(x′) =

B∑
s=1

φs(x)φs(x
′) (19.4.4)

where φ(x) is a vector with component functions φ1(x), φ2(x), . . . , φB(x). Then for a set of points x1, . . . , xP ,
we construct the matrix K with elements

[K]ij = k(xi, xj) =

B∑
s=1

φs(x
i)φs(x

j) (19.4.5)

We claim that the matrix K so constructed is positive semidefinite and hence a valid covariance matrix.
Recalling that a matrix is positive semidefinite if for any non zero vector z, zTKz ≥ 0. Using the definition
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of K above we have

zTKz =

P∑
i,j=1

ziKijzj =

B∑
s=1

[
P∑
i=1

ziφs(x
i)

]
︸ ︷︷ ︸

γs

 P∑
j=1

φs(x
j)zj


︸ ︷︷ ︸

γs

=

B∑
s=1

γ2
s ≥ 0 (19.4.6)

Hence any function of the form equation (19.4.4) is a covariance function. We can generalise the Mercer
kernel to complex functions φ(x) using

k(x, x′) = φ(x)Tφ†(x′) (19.4.7)

where † represents the complex conjugate. Then the matrix K formed from inputs xi, i = 1, . . . , P is positive
semidefinite since for any real vector z,

zTKz =
B∑
s=1

[
P∑
i=1

ziφs(x
i)

]
︸ ︷︷ ︸

γs

 P∑
j=1

φ†s(x
j)zj


︸ ︷︷ ︸

γ†s

=

B∑
s=1

|γs|2 ≥ 0 (19.4.8)

where we made use of the general result for a complex variable xx† = |x|2. A further generalisation is to
write

k(x, x′) =

∫
f(s)φ(x, s)φ†(x′, s)ds (19.4.9)

for real f(s) ≥ 0, and scalar complex functions φ(x, s). Then replacing summations with integration (and
assuming we can interchange the sum over the components of z with the integral over s), we obtain

zTKz =

∫
f(s)

[
P∑
i=1

ziφ(xi, s)

]
︸ ︷︷ ︸

γ(s)

 P∑
j=1

φ†(xj , s)zj


︸ ︷︷ ︸

γ†(s)

ds =

∫
f(s) |γ(s)|2 ds ≥ 0 (19.4.10)

19.4.3 Fourier analysis for stationary kernels

For a function g(x) with Fourier transform g̃(s), we may use the inverse Fourier transform to write

g(x) =
1

2π

∫
g̃(s)e−ixsds (19.4.11)

where i ≡
√
−1. For a stationary kernel k(x) with Fourier transform k̃(s), we can therefore write

k(x− x′) =
1

2π

∫
k̃(s)e−i(x−x′)sds =

1

2π

∫
k̃(s)e−ixseix′sds (19.4.12)

which is of the same form as equation (19.4.9) where the Fourier transform k̃(s) is identified with f(s)
and φ(x, s) = e−isx. Hence, provided the Fourier transform k̃(s) is positive, the translation invariant kernel
k(x−x′) is a covariance function. Bochner’s Theorem[247] asserts the converse that any translation invariant
covariance function must have such a Fourier representation.

Application to the squared exponential kernel

For the translation invariant squared exponential kernel, k(x) = e−
1
2
x2 , its Fourier transform is

k̃(s) =

∫ ∞
−∞

e−
1
2
x2+isxdx = e−

s2

2

∫ ∞
−∞

e−
1
2

(x+is)2dx =
√

2πe−
s2

2 (19.4.13)

Hence the Fourier transform of the SE kernel is a Gaussian. Since this is positive the SE kernel is a covariance
function.
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y1 yN y∗

x1 xN x∗

Figure 19.5: GP classification. The GP induces a Gaussian distribution on
the latent activations y1, . . . , y

N , y∗, given the observed values of c1, . . . , cN .
The classification of the new input x∗ is then given via the correlation
induced by the training points on the latent activation y∗.

19.5 Gaussian Processes for Classification

Adapting the GP framework to classification requires replacing the Gaussian regression term p(y|x) with a
corresponding classification term p(c|x) for a discrete label c. To do so we will use the GP to define a latent
continuous space y which will then be mapped to a class probability using

p(c|x) =

∫
p(c|y,�x)p(y|x)dy =

∫
p(c|y)p(y|x)dy (19.5.1)

Given training data inputs X =
{
x1, . . . , xN

}
, corresponding class labels C =

{
c1, . . . , cN

}
, and a novel

input x∗, then

p(c∗|x∗, C,X ) =

∫
p(c∗|y∗)p(y∗|X , C)dy∗ (19.5.2)

where

p(y∗|X , C) ∝ p(y∗, C|X )

=

∫
p(y∗,Y, C|X , x∗)dY

=

∫
p(C|Y)p(y∗,Y|X , x∗)dY

=

∫ { N∏
n=1

p(cn|yn)

}
︸ ︷︷ ︸

class mapping

p(y1, . . . , yN , y∗|x1, . . . , xN , x∗)︸ ︷︷ ︸
Gaussian Process

dy1, . . . , dyN (19.5.3)

The graphical structure of the joint class and latent y distribution is depicted in fig(19.5.) The posterior
marginal p(y∗|X , C) is the marginal of a Gaussian Process, multiplied by a set of non-Gaussian maps from the
latent activations to the class probabilities. We can reformulate the prediction problem more conveniently
as follows:

p(y∗,Y|x∗,X , C) ∝ p(y∗,Y, C|x∗,X ) ∝ p(y∗|Y, x∗,X )p(Y|C,X ) (19.5.4)

where

p(Y|C,X ) ∝
{

N∏
n=1

p(cn|yn)

}
p(y1, . . . , yN |x1, . . . , xN ) (19.5.5)

In equation (19.5.4) the term p(y∗|Y, x∗,X ) does not contain any class label information and is simply a
conditional Gaussian. The advantage of the above description is that we can therefore form an approximation
to p(Y|C,X ) and then reuse this approximation in the prediction for many different x∗ without needing to
rerun the approximation[318, 247].

19.5.1 Binary classification

For the binary class case we will use the convention that c ∈ {1, 0}. We therefore need to specify p(c = 1|y)
for a real valued activation y. A convenient choice is the logistic transfer function3

σ(x) =
1

1 + e−x
(19.5.6)

3We will also refer to this as ‘the sigmoid function’. More strictly a sigmoid function refers to any ‘s-shaped’ function (from
the Greek for ‘s’).
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Then

p(c|y) = σ ((2c− 1) y) (19.5.7)

is a valid distribution since σ(−x) = 1− σ(x), ensuring that the sum over the class states is 1. A difficulty
is that the non-linear class mapping term makes the computation of the posterior distribution equation
(19.5.3) difficult since the integrals over y1, . . . , yN cannot be carried out analytically. There are many ap-
proximate techniques one could apply in this case, including variational methods analogous to that described
in section(18.2.3). Below we describe the straightforward Laplace method, leaving the more sophisticated
methods for further reading[247].

19.5.2 Laplace’s approximation

In the Laplace method, section(28.2), we approximate the non-Gaussian distribution (19.5.5) by a Gaussian4

q(Y|C,X ),

p(Y|C,X ) ≈ q(Y|C,X ) (19.5.8)

From equation (19.5.4), approximate predictions can then be formed through the joint Gaussian

p(y∗,Y|x∗,X , C) ≈ p(y∗|Y, x∗,X )q(Y|C,X ) (19.5.9)

We will then marginalise this Gaussian to find the Gaussian distribution on y∗ alone, and then use this to
form the prediction via p(c∗|y∗).
For compactness we define the class label vector, and outputs

c =
(
c1, . . . , cN

)T
, y =

(
y1, . . . , yN

)T
(19.5.10)

and notationally drop the (ever present) conditioning on the inputs x. Also for convenience, we define

σ =
(
σ(y1), . . . , σ(yN )

)T
(19.5.11)

Finding the mode

The Laplace approximation, section(28.2), corresponds to a second order expansion around the mode of the
distribution. Our task is therefore to find the maximum of

p(y|c) ∝ p(y, c) = exp (Ψ(y)) (19.5.12)

where

Ψ(y) = cTy −
N∑
n=1

log(1 + eyn)− 1

2
yTK−1

x,xy − 1

2
log det (Kx,x)− N

2
log 2π (19.5.13)

The maximum needs to be found numerically, and it is convenient to use the Newton method [132, 318, 247].

ynew = y − (∇∇Ψ)−1∇Ψ (19.5.14)

Differentiating equation 19.5.13 with respect to y we obtain the gradient and Hessian

∇Ψ = (c− σ)−K−1
x,xy (19.5.15)

∇∇Ψ = −K−1
x,x −D (19.5.16)

where the ‘noise’ matrix is given by

D = diag (σ1(1− σ1), . . . , σN (1− σN )) (19.5.17)

4Some authors use the term Laplace approximation solely for approximating an integral. Here we use the term to refer to a
Gaussian approximation of a non-Gaussian distribution.
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Using these expressions in the Newton update, (19.5.14) gives

ynew = y +
(
K−1

x,x + D
)−1 (

c− σ −K−1
x,xy

)
(19.5.18)

To avoid unnecessary inversions, one may rewrite this in the form

ynew = Kx,x (I + DKx,x)−1 (Dy + c− σ) (19.5.19)

For an initial guess of y, we repeatedly apply equation (19.5.19) until convergence. This is guaranteed to
converge since the Hessian is negative definite and has a unique maximum.

Making predictions

Given a converged solution ỹ we have found a Gaussian approximation

q(y|X , x∗, C) = N
(
y ỹ,

(
K−1

x,x + D
)−1
)

(19.5.20)

We now have Gaussians for p(y∗|y) and q(y|X , x∗, C) in equation (19.5.9). Predictions are then made using

p(y∗|x∗,X , C) ≈
∫
p(y∗|x∗,X ,y)q(y|X , x∗, C)dy (19.5.21)

where, by conditioning, section(8.4.2),

p(y∗|y, x∗,X ) = N
(
y∗ Kx∗,xK−1

x,xy,Kx∗,x∗ −Kx∗,xK−1
x,xKx,x∗

)
(19.5.22)

We can also write this as a linear system

y∗ = Kx∗,xK−1
x,xy + η (19.5.23)

where η ∼ N
(
η 0,Kx∗,x∗ −Kx∗,xK−1

x,xKx,x∗
)
. Using equation (19.5.23) and equation (19.5.20) and averag-

ing over y and the noise η, we obtain

〈y∗|x∗,X , C〉 ≈ Kx∗,xK−1
x,xỹ = Kx∗,x (c− σ (ỹ)) (19.5.24)

Similarly, the variance of the latent prediction is

var(y∗|x∗,X , C) ≈ Kx∗,xK−1
x,x

(
K−1

x,x + D
)−1

K−1
x,xKx,x∗ + Kx∗,x∗ −Kx∗,xK−1

x,xKx,x∗ (19.5.25)

= Kx∗,x∗ −Kx∗,x

(
Kx,x + D−1

)−1
Kx,x∗ (19.5.26)

where the last line is obtained using the Matrix Inversion Lemma, definition(29.11).

The class prediction for a new input x∗ is then given by

p(c∗ = 1|x∗,X , C) ≈ 〈σ(y∗)〉N (y∗ 〈y∗〉,var(y∗)) (19.5.27)

In order to calculate the Gaussian integral over the logistic sigmoid function, we use an approximation of
the sigmoid function based on the error function erf(x), see section(18.2.2) and avsigmaGauss.m.

Example 19.2. An example of binary classification is given in fig(19.6) in which one-dimensional input
training data with binary class labels is plotted along with the class probability predictions on a range
of input points. In both cases the covariance function is of the form 2exp (|xi − xj |γ) + 0.001δij . The
square exponential covariance produces a smoother class prediction than the Ornstein-Uhlenbeck covariance
function. See demoGPclass1D.m and demoGPclass.m.
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Figure 19.6: Gaussian Process classification. The x-axis are the inputs, and the class is the y-axis. Green
points are training points from class 1 and red from class 0. The dots are the predictions p(c = 1|x∗) for
points x∗ ranging across the x axis. (a): Square exponential covariance (γ = 2). (b): OU covariance
(γ = 1). See demoGPclass1D.m.

Marginal likelihood

The marginal likelihood is given by

p(C|X ) =

∫
Y
p(C|Y)p(Y|X ) (19.5.28)

Under the Laplace approximation, the marginal likelihood is approximated by

p(C|X ) ≈
∫

y
exp (Ψ(ỹ))exp

(
−1

2
(y − ỹ)T A (y − ỹ)

)
(19.5.29)

where A = −∇∇Ψ. Integrating over y gives

log p(C|X ) ≈ log q(C|X ) (19.5.30)

where

log q(C|X ) = Ψ(ỹ)− 1

2
log det (2πA) (19.5.31)

= Ψ(ỹ)− 1

2
log det

(
K−1

x,x + D
)

+
N

2
log 2π (19.5.32)

= cTỹ −
N∑
n=1

log(1 + exp (ỹn))− 1

2
ỹTK−1

x,xỹ − 1

2
log det (I + Kx,xD) (19.5.33)

where ỹ is the converged iterate of equation 19.5.18. One can also simplify the above using that at conver-
gence K−1

x,xỹ = c− σ(y).

19.5.3 Hyperparameter optimisation

The approximate marginal likelihood can be used to assess hyperparameters θ of the kernel. A little care is
required in computing derivatives of the approximate marginal likelihood since the optimum ỹ depends on
θ. We use the total derivative formula [25]

d

dθ
log q(C|X ) =

∂

∂θ
log q(C|X ) +

∑
i

∂

∂ỹi
log q(C|X )

d

dθ
ỹi (19.5.34)

∂

∂θ
log q(C|X ) = −1

2

∂

∂θ

[
yTK−1

x,xy + log det (I + Kx,xD)
]

(19.5.35)
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which can be evaluated using the standard results for the derivative of a matrix determinant and inverse.
Since the derivative of Ψ is zero at ỹ, and noting that D depends explicitly on ỹ,

∂

∂ỹi
log q(C|X ) = −1

2

∂

∂ỹi
log det (I + Kx,xD) (19.5.36)

The implicit derivative is obtained from using the fact that at convergence

ỹ = Kx,x (c− σ(y)) (19.5.37)

to give

d

dθ
ỹ = (I + Kx,xD)−1 ∂

∂θ
Kx,x (c− σ) (19.5.38)

These results are substituted into equation (19.5.34) to find an explicit expression for the derivative. See
exercise(19.7).

19.5.4 Multiple classes

The extension of the preceding framework to multiple classes is essentially straightforward and may be
achieved using the softmax function

p(c = m|y) =
eym

Σm′eym′
(19.5.39)

which automatically enforces the constraint
∑

m p(c = m) = 1. Naively it would appear that for C classes,
the cost of implementing the Laplace approximation for the multiclass case scales as O

(
C3N3

)
. However,

one may show by careful implementation that the cost is only O
(
CN3

)
, and we refer the reader to [318, 247]

for details.

19.6 Summary

• Gaussian Processes are powerful regression models and mathematically well understood.

• The computational complexity of the prediction is cubic in the number of datapoints. This can be prohibitive
for large datasets and approximate implementations are required.

• Gaussian Process classification is analytically intractable and approximations are required. The posterior is
log concave so that simple unimodal approximation schemes can provide satisfactory results.

• Many classical models in statistics and physics are related to Gaussian Processes. For example, one can
view linear dynamical systems, chapter(24), as specially constrained GPs.

Gaussian Processes have been heavily developed within the machine learning community over recent years
and finding efficient approximations for both regression and classification remains an active research topic.
We direct the interested reader to [262] and [247] for further discussion.

19.7 Code

GPreg.m: Gaussian Process Regression
demoGPreg.m: Demo GP regression
covfnGE.m: Gamma-Exponential Covariance function
GPclass.m: Gaussian Process Classification
demoGPclass.m: Demo Gaussian Process Classification
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19.8 Exercises

Exercise 19.1. The Gram matrix K of a covariance function k(x, x′) is positive semidefinite and hence
expressible as

Kij =
∑
l

uilujl (19.8.1)

for suitable uil.

1. The Gram matrix of the sum of two covariance functions, k+(x, x′) = k1(x, x′) + k2(x, x′), is of the
form

K+ = K1 + K2 (19.8.2)

for suitable Gram matrices K1 and K2. Show that k+(x, x′) is a covariance function.

2. Consider the element-wise (Hadamard) product of two positive semidefinite matrices. That is

K∗ij = K1
ijK

2
ij (19.8.3)

Using K1
ij =

∑
l uilujl and K2

ij =
∑

m vimvjm, show that K∗ is positive semidefinite, and hence that
the product of two covariance functions, k∗(x, x′) = k1(x, x′)k2(x, x′), is a covariance function.

Exercise 19.2. Show that the sample covariance matrix with elements Sij =
∑N

n=1 x
n
i x

n
j /N − x̄ix̄j, where

x̄i =
∑N

n=1 x
n
i /N , is positive semidefinite.

Exercise 19.3. Show that

k(x− x′) = exp
(
−
∣∣sin (x− x′)∣∣) (19.8.4)

is a covariance function.

Exercise 19.4. Consider the function

f(xi, xj) = exp

(
−1

2
(xi − xj)2

)
(19.8.5)

for one dimensional inputs xi. Show that

f(xi, xj) = exp

(
−1

2
x2
i

)
exp (xixj) exp

(
−1

2
x2
j

)
(19.8.6)

By Taylor expanding the central term, show that exp
(
−1

2 (xi − xj)2
)

is a kernel and find an explicit repre-

sentation for the kernel f(xi, xj) as the scalar product of two infinite dimensional vectors.

Exercise 19.5. Show that for a covariance function k1 (x,x′) then

k(x,x′) = f
(
k1

(
x,x′

))
(19.8.7)

is also a covariance function for any polynomial f(x) with positive coefficients. Show therefore that
exp (k1 (x,x′)) and tan (k1 (x,x′)) are covariance functions.

Exercise 19.6. For a covariance function

k1(x,x′) = f(
(
x− x′

)T (
x− x′

)
) (19.8.8)

show that

k2(x,x′) = f(
(
x− x′

)T
A
(
x− x′

)
) (19.8.9)

is also a valid covariance function for a positive definite symmetric matrix A.
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Exercise 19.7. Show that the derivative of the Laplace approximation to the marginal likelihood equation
(19.5.34) is given by

d

dθ
log q(C|X ) =

1

2
yTK−1

x,xK′x,xK−1
x,xy− 1

2
trace

(
L−1K′x,xD

)
− 1

2

∑
i

MiiD
′
ii

[
L−1K′x,x (c− σ)

]
i

(19.8.10)

where

K′x,x ≡
∂

∂θ
Kx,x, L ≡ I + Kx,xD, M ≡ L−1Kx,x, D′ ≡ diag

(
∂

∂y1
D11,

∂

∂y2
D22, . . .

)
(19.8.11)

Hint: You will need to make use of the general derivative results

∂

∂x
A−1 = −A−1

(
∂

∂x
A

)
A−1,

∂

∂x
log det (A) = trace

(
A−1 ∂

∂x
A

)
(19.8.12)

Exercise 19.8 (String kernel). Let x and x′ be two strings of characters and φs(x) be the number of times
that substring s appears in string x. Then

k(x, x′) =
∑
s

wsφs(x)φs(x
′) (19.8.13)

is a (string kernel) covariance function, provided the weight of each substring ws is positive.

1. Given a collection of strings about politics and another collection about sport, explain how to form a
GP classifier using a string kernel.

2. Explain how the weights ws can be adjusted to improve the fit of the classifier to the data and give an
explicit formula for the derivative with respect to ws of the log marginal likelihood under the Laplace
approximation.

Exercise 19.9 (Vector regression). Consider predicting a vector output y given training data X ∪ Y =
{xn,yn, n = 1, . . . , n}. To make a GP predictor

p(y∗|x∗,X ,Y) (19.8.14)

we need a Gaussian model

p(y1, . . . ,yN ,y∗|x1, . . . ,xn,x∗) (19.8.15)

A GP requires then a specification of the covariance c(ymi , y
n
j |xn,xm) of the components of the outputs for

two different input vectors. Show that under the dimension independence assumption

c(ymi , y
n
j |xn,xm) = ci(y

m
i , y

n
i |xn,xm)δi,j (19.8.16)

where ci(y
m
i , y

n
i |xn,xm) is a covariance function for the ith dimension, that separate GP predictors can be

constructed independently, one for each output dimension i.

Exercise 19.10. Consider the Markov update of a linear dynamical system, section(24.1),

xt = Axt−1 + ηt, t ≥ 2 (19.8.17)

where A is a given matrix and ηt is zero mean Gaussian noise with covariance
〈
ηi,tηj,t′

〉
= σ2δi,jδt,t′. Also,

p(x1) = N (x1 0,Σ).

1. Show that x1, . . . ,xt is Gaussian distributed.

2. Show that the covariance matrix of x1, . . . ,xt has elements〈
xt′x

T
t

〉
= At′−1Σ

(
At−1

)T
+ σ2

min(t,t′)∑
τ=2

At′−τ (At−τ)T (19.8.18)

and explain why a linear dynamical system is a (constrained) Gaussian Process.

3. Consider

yt = Bxt + εt (19.8.19)

where εt is zero mean Gaussian noise with covariance
〈
εi,tεj,t′

〉
= ν2δi,jδt,t′. The vectors ε are uncor-

related with the vectors η. Show that the sequence of vectors y1, . . . ,yt is a Gaussian Process with a
suitably defined covariance function.
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CHAPTER 20

Mixture Models

Mixture models assume that the data is essentially clustered with each component in the mixture repre-
senting a cluster. In this chapter we view mixture models from the viewpoint of learning with missing data
and discuss some of the classical algorithms, such as EM training of Gaussian mixture models. We also
discuss more powerful models which allow for the possibility that an object can be a member of more than
one cluster. These models have applications in areas such as document modelling.

20.1 Density Estimation Using Mixtures

A mixture model is one in which a set of component models is combined to produce a richer model:

p(v) =
H∑
h=1

p(v|h)p(h) (20.1.1)

The variable v is ‘visible’ or ‘observable’ and the discrete variable h with dom(h) = {1, . . . ,H} indexes each
component model p(v|h), along with its weight p(h). The variable v can be either discrete or continuous.
Mixture models have natural application in clustering data, where h indexes the cluster. This interpretation
can be gained from considering how to generate a sample datapoint v from the model equation (20.1.1).
First we sample a cluster h from p(h), and then draw a visible state v from p(v|h).

For a set of i.i.d. data v1, . . . , vN , a mixture model is of the form, fig(20.1),

p(v1, . . . , vN , h1, . . . , hn) =

N∏
n=1

p(vn|hn)p(hn) (20.1.2)

from which the observation likelihood is given by

p(v1, . . . , vN ) =
N∏
n=1

∑
hn

p(vn|hn)p(hn) (20.1.3)

Finding the most likely assignment of datapoints to clusters is achieved by inference of

argmax
h1,...,hN

p(h1, . . . , hN |v1, . . . , vN ) (20.1.4)

which, thanks to the factorised form of the distribution is equivalent to computing arg maxhn p(h
n|vn) for

each datapoint.
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hn

vn

θh

θv|h

N

Figure 20.1: A mixture model has a graphical representation as
a DAG with a single hidden node, h which indexes the mixture
component; given a setting of h, we then generate an observation
v from p(v|h). Independence of the N observations means the
model is replicated by the plate. The parameters are assumed
common across all datapoints.

In most applications, however, the ‘location’ of the clusters is a priori unknown and the parameters θ of
the model need to be learned to locate where these clusters are. Explicitly writing the dependence on the
parameters, the model for a single datapoint v and its corresponding cluster index h is

p(v, h|θ) = p(v|h, θv|h)p(h|θh) (20.1.5)

The optimal parameters θv|h, θh of a mixture model are then most commonly set by maximum likelihood,

θopt = argmax
θ

p(v1, . . . , vN |θ) = argmax
θ

∏
n

p(vn|θ) (20.1.6)

Numerically this can be achieved using an optimisation procedure such as gradient based approaches. Al-
ternatively, by treating the component indices as latent variables, one may apply the EM algorithm, as
described in the following section, which in many classical models produces simple update formulae.

Example 20.1. The data in fig(20.2) naturally has two clusters and can be modelled with a mixture of
two two-dimensional Gaussians, each Gaussian describing one of the clusters. Here there is a clear visual
interpretation of the meaning of ‘cluster’, with the mixture model placing two datapoints in the same cluster
if they are both likely to be generated by the same model component. A priori we don’t know the location
of these two clusters and need to find the parameters; the Gaussian mean and covariance for each cluster
mh, Ch, h = 1, 2. This can be achieved using maximum likelihood.

20.2 Expectation Maximisation for Mixture Models

Our task is to find the parameters θ that maximise the likelihood of the observations v1, . . . , vN

p(v1, . . . , vN |θ) =

N∏
n=1

{∑
h

p(vn|h, θ)p(h|θ)
}

(20.2.1)

By treating the index h as a missing variable, mixture models can be trained using the EM algorithm,
section(11.2). There are two sets of parameters – θv|h for each component model p(v|h, θv|h) and θh for the
mixture weights p(h|θh). According to the general approach for i.i.d. data of section(11.2), for the M-step

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

4

Figure 20.2: Two dimensional data which displays clusters. In this case a Gaussian
mixture model 1/2N (x m1,C1)+1/2N (x m2,C2) would fit the data well for suitable
means m1,m2 and covariances C1,C2. To the human eye, identifying these clusters
is an easy task; however, we will be interested in automatic methods that can cluster
potentially very high dimensional data, for which the cluster solutions may be far less
obvious.
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we need to consider the energy term:

E(θ) =

N∑
n=1

〈log p(vn, h|θ)〉pold(h|vn) (20.2.2)

=

N∑
n=1

〈
log p(vn|h, θv|h)

〉
pold(h|vn)

+

N∑
n=1

〈log p(h|θh)〉pold(h|vn) (20.2.3)

and maximise (20.2.3) with respect to the parameters θv|h, θh, h = 1, . . . ,H. The E-step results in the
update

pnew(h|vn) ∝ p(vn|h, θoldv|h)p(h|θoldh ) (20.2.4)

For initial parameters θ, one then updates the E and M-steps until convergence. This is a general approach
for training mixture models. Below we flesh out how these updates work for some specific models.

20.2.1 Unconstrained discrete tables

Here we consider training a simple belief network p(v|h, θv|h)p(h|θh), dom(v) = {1, . . . , V }, dom(h) = {1, . . . ,H}
in which the tables are unconstrained. This is a special case of the more general framework discussed in
section(11.2), although it is instructive to see how the EM algorithm can be derived for this specific case.

M-step: p(h)

If no constraint is placed on p(h|θh) we may write the parameters as simply p(h), with the understanding
that 0 ≤ p(h) ≤ 1 and

∑
h p(h) = 1. Isolating the dependence of equation (20.2.3) on p(h) we obtain

N∑
n=1

〈log p(h)〉pold(h|vn) =
∑
h

log p(h)

N∑
n=1

pold(h|vn) (20.2.5)

We now wish to maximise equation (20.2.5) with respect to p(h) under the constraint that
∑

hp(h) =
1. There are different ways to perform this constrained optimisation. One approach is to use Lagrange
multipliers, see exercise(20.4). Another, arguably more elegant approach is to use the techniques described
in section(11.2) based on the similarity of the above to a Kullback-Leibler divergence. First we define the
distribution

p̃(h) ≡
∑N

n=1 p
old(h|vn)∑

h

∑N
n=1 p

old(h|vn)
=

1

N

N∑
n=1

pold(h|vn) (20.2.6)

Then maximising equation (20.2.5) is equivalent to maximising

〈log p(h)〉p̃(h) = 〈log p(h)〉p̃(h) − 〈log p̃(h)〉p̃(h)︸ ︷︷ ︸
−KL(p̃|p)

+ 〈log p̃(h)〉p̃(h) (20.2.7)

since equation (20.2.5) is related to 〈log p(h)〉p̃(h) by the constant factor N . By subtracting the θ independent
term 〈log p̃(h)〉p̃(h) from equation (20.2.7), we obtain the negative Kullback-Leibler divergence KL(p̃|p). This
means that the optimal p(h) is that distribution which minimises the Kullback-Leibler divergence. Optimally,
therefore p(h) = p̃(h), so that the M-step is given by

pnew(h) =
1

N

N∑
n=1

pold(h|vn) (20.2.8)
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hn

vni

θh

θvi|h

n = 1, . . . , N

i = 1, . . . , D

Figure 20.3: Mixture of a product of Bernoulli distributions. In
a Bayesian Treatment, a parameter prior is used. In the text we
simply set the parameters using maximum likelihood.

M-step : p(v|h)

The dependence of equation (20.2.3) on p(v|h) is

N∑
n=1

〈
log p

(
vn|h, θv|h

)〉
pold(h|vn)

=
∑
v

N∑
n=1

H∑
h=1

I [vn = v] pold(h|vn) log p (v|h) (20.2.9)

If the distributions p
(
v|h, θv|h

)
are not constrained, we can apply a similar Kullback-Leibler method, as

we did in section(11.2) and above for p(h). As an alternative to that approach, we describe here how the
Lagrange method works in this case. We need to ensure that p(v|h) is a distribution for each of the mixture
states h = 1, . . . ,H. This can be achieved using a set of Lagrange multipliers, giving the Lagrangian:

L ≡
V∑
v=1

N∑
n=1

H∑
h=1

I [vn = v] pold(h|vn) log p (v|h) +
H∑
h=1

λ(h)

(
1−

V∑
v=1

p(v|h)

)
(20.2.10)

Differentiating with respect to p(v = i|h = j) and equating to zero,

∂L
∂p(v = i|h = j)

=

N∑
n=1

I [vn = i] pold(h = j|vn = i)

p(v = i|h = j)
− λ(h = j) = 0 (20.2.11)

Solving this, we have

p(v = i|h = j) =
1

λ(h = j)

N∑
n=1

I [vn = i] pold(h = j|vn = i) (20.2.12)

Using the normalisation requirement,
∑

v p(v = i|h = j) = 1 shows that λ(h = j) is just the numerator of
the above equation, summed over v. Hence the M-step update is given by

pnew(v = i|h = j) =

∑N
n=1 I [vn = i] pold(h = j|vn = i)∑V

i=1

∑N
n=1 I [vn = i] pold(h = j|vn = i)

(20.2.13)

E-step

According to the general EM procedure, section(11.2), optimally we set pnew(h|vn) = pold(h|vn):

pnew(h|vn) =
pold(vn|h)pold(h)∑
h p

old(vn|h)pold(h)
(20.2.14)

Equations (20.2.8,20.2.13,20.2.14) are repeated until convergence and guarantee that the likelihood equation
(20.2.1) cannot decrease. The initialisation of the tables and mixture probabilities can severely affect the
quality of the solution found since the likelihood often has local optima. If random initialisations are used,
it is recommended to record the converged value of the likelihood itself, to see which parameters have the
higher likelihood. The solution with the highest likelihood is to be preferred.
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20.2.2 Mixture of product of Bernoulli distributions

As an example mixture model, and one that can be used for practical clustering, see example(20.2), we
describe a simple mixture model that can be used to cluster binary vectors, v = (v1, . . . , vD)T, vi ∈ {0, 1}.
The mixture of Bernoulli products1 model is given by

p(v) =

H∑
h=1

p(h)

D∏
i=1

p(vi|h) (20.2.15)

where each term p(vi|h) is a Bernoulli distribution. The model is depicted in fig(20.3) and has parameters
p(h) and p(vi = 1|h), dom(h) = {1 . . . , H}. One way to understand the model is to imagine drawing
samples. In this case, for each datapoint n, we draw a cluster index h ∈ {1, . . . ,H} from p(h). Then for
each i = 1, . . . , D, we draw a state vi ∈ {0, 1} from p(vi|h).

EM training

To train the model under maximum likelihood it is convenient to use the EM algorithm which, as usual,
may be derived by writing down the energy:∑

n

〈log p(vn, h)〉pold(h|vn) =
∑
n

∑
i

〈log p(vni |h)〉pold(h|vn) +
∑
n

〈log p(h)〉pold(h|vn) (20.2.16)

and then performing the maximisation over the table entries. From our general results, section(11.2),
we know that the M-step is equivalent to maximum likelihood when all variables are observed, and then
replacing the unobserved variables h by the conditional distribution p(h|v). Using this we can write down
immediately the M-step as

pnew(vi = 1|h = j) =

∑
n I [vni = 1] pold(h = j|vn)∑

n I [vni = 1] pold(h = j|vn) +
∑

n I [vni = 0] pold(h = j|vn)

pnew(h = j) =

∑
n p

old(h = j|vn)∑
h′
∑

n p
old(h′|vn)

(20.2.17)

and the E-step by

pnew(h = j|vn) ∝ pold(h = j)
D∏
i=1

pold(vni |h = j) (20.2.18)

Equations (20.2.17,20.2.18) are iterated until convergence.

If an attribute i is missing for datapoint n, one needs to sum over the states of the corresponding vni . The
effect of performing the summation for this model is simply to remove the corresponding factor p(vni |h) from
the algorithm, see exercise(20.1).

Initialisation

The EM algorithm can be very sensitive to initial conditions. Consider the following initialisation: p(vi =
1|h = j) = 0.5, with p(h) set arbitrarily. This means that at the first iteration, pold(h = j|vn) = p(h = j).
The subsequent M-step updates are

pnew(h) = pold(h), pnew(vi|h = j) = pnew(vi|h = j′) (20.2.19)

for any j, j′. This means that the parameters p(v|h) immediately become independent of h and the model
is numerically trapped in a symmetric solution. It makes sense, therefore, to initialise the parameters in a
non-symmetric fashion.

The model is readily extendable to more than two output class, and this is left as an exercise for the
interested reader.

1This is similar to the Naive Bayes classifier in which the class labels are always hidden.

DRAFT November 21, 2011 401



Expectation Maximisation for Mixture Models

0 50 100 150

1

2

3

4

5

0 50 100 150
0

0.5

1

0 50 100 150
0

0.5

1

Figure 20.4: Top: Data from questionnaire responses. 150 people were each asked 5 questions, with ‘yes’
(white) and ‘no’ (black) answers. Gray denotes that the absence of a response (missing data). This training
data was generated by a two component product of Bernouilli model. Missing data was simulated by
randomly removing values from the dataset. Middle: the ‘correct’ h values sampled from the data. A ‘0’
denotes hn = 1 and ‘1’ denotes hn = 2. Bottom: The estimated p(hni = 2|vn) values.

Example 20.2 (Questionnaire). A company sends out a questionnaire containing a set of D ‘yes/no’
questions to a set of customers. The binary responses of a customer are stored in a vector v = (v1, . . . , vD)T.
In total N customers send back their questionnaires, v1, . . . ,vN , and the company wishes to perform an
analysis to find what kinds of customers it has. The company assumes there are H essential types of
customer for which the profile of responses is defined by only the customer type.

Data from a questionnaire containing 5 questions, with 150 respondents is presented in fig(20.4). The data
has a large number of missing values. We assume there are H = 2 kinds of respondents and attempt to assign
each respondent into one of the two clusters. Running the EM algorithm on this data, with random initial
values for the tables, produces the results in fig(20.5). Based on assigning each datapoint vn to the cluster
with maximal posterior probability hn = arg maxh p(h|vn), given a trained model p(v|h)p(h), the model
assigns 90% of the data to the correct cluster (which is known in this simulated case). See MIXprodBern.m.

Example 20.3 (Handwritten digits). We have a collection of 5000 handwritten digits which we wish to
cluster into 20 groups, fig(20.6). Each digit is a 28×28 = 784 dimensional binary vector. Using a mixture of
Bernoulli products, trained with 50 iterations of EM (with random initialisation), the clusters are presented
in fig(20.6). As we see, the method captures natural clusters in the data – for example, there are two kinds
of 1, one slightly more slanted than the other, two kinds of 4, etc.
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Figure 20.5: EM learning of a mixture of
Bernoulli products. (a): True p(h) (left)
and learned p(h) (right) for h = 1, 2. (b):
True p(v|h) (left) and learned p(v|h) (right)
for v = 1, . . . , 5. Each column pair corre-
sponds to p(vi|h = 1) (right column) and
p(vi|h = 2) (left column) with i = 1, . . . , 5.
The learned probabilities are reasonably
close to the true values.
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Figure 20.6: Top: a selection of 200 of the 5000 handwritten digits in the training set. Bottom: the trained
cluster outputs p(vi = 1|h) for h = 1, . . . , 20 mixtures. See demoMixBernoulliDigits.m.

20.3 The Gaussian Mixture Model

We turn our attention now to modelling continuous vector observations x (x plays the role of the ‘visible’
variable v previously). Gaussians are particularly convenient continuous mixture components since they
constitute ‘bumps’ of probability mass, aiding an intuitive interpretation of the model. As a reminder, a D
dimensional Gaussian distribution for a continuous variable x is

p (x|m,S) =
1√

det (2πS)
exp

{
−1

2
(x−m)T S−1 (x−m)

}
(20.3.1)

where m is the mean and S is the covariance matrix. A mixture of Gaussians is then

p (x) =
H∑
i=1

p(x|mi,Si)p(i) (20.3.2)

where p(i) is the mixture weight for component i. For a set of data X =
{
x1, . . . ,xN

}
and under the usual

i.i.d. assumption, the log likelihood is

log p(X|θ) =
N∑
n=1

log
H∑
i=1

p(i)
1√

det (2πSi)
exp

{
−1

2
(xn −mi)

T S−1
i (xn −mi)

}
(20.3.3)

where the parameters are θ = {mi,Si, p(i), i = 1, . . . ,H}. The optimal parameters θ can be set using maxi-
mum likelihood, bearing in mind the constraint that the Si must be symmetric positive definite matrices, in
addition to 0 ≤ p(i) ≤ 1,

∑
i p(i) = 1. Gradient based optimisation approaches are feasible under a parame-

terisation of the Si (e.g. Cholesky decomposition) and p(i) (e.g. softmax) that enforce the constraints. An
alternative is the EM approach which in this case is particularly convenient since it automatically provides
parameter updates that ensure these constraints.

20.3.1 EM algorithm

From the general approach, section(11.2), for the M-step we need to consider the energy. Using the fact
that the component index i plays the role of the latent variable, the energy is given by

N∑
n=1

〈log p(xn, i)〉pold(i|xn) =
N∑
n=1

〈log [p(xn|i)p(i)]〉pold(i|xn) (20.3.4)

Plugging in the definition of the Gaussian components, we have

N∑
n=1

H∑
i=1

pold(i|xn)

{
−1

2
(xn −mi)

T S−1
i (xn −mi)−

1

2
log det (2πSi) + log p(i)

}
(20.3.5)

The M-step requires the maximisation of the above with respect to mi,Si, p(i).
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M-step : optimal mi

Maximising equation (20.3.5) with respect to mi is equivalent to minimising

N∑
n=1

H∑
i=1

pold(i|xn) (xn −mi)
T S−1

i (xn −mi) (20.3.6)

Differentiating with respect to mi and equating to zero we have

−2

N∑
n=1

pold(i|xn)S−1
i (xn −mi) = 0 (20.3.7)

Hence, optimally,

mi =

∑N
n=1 p

old(i|xn)xn∑N
n=1 p

old(i|xn)
(20.3.8)

By defining the membership distribution

pold(n|i) ≡ pold(i|xn)∑N
n=1 p

old(i|xn)
(20.3.9)

which quantifies the membership of datapoints to cluster i, we can write equation (20.3.8) more compactly
as the update

mnew
i =

N∑
n=1

pold(n|i)xn (20.3.10)

Intuitively, this updates the mean for cluster i as the average over all datapoints weighted by their mem-
bership to cluster i.

M-step : optimal Si

Optimising equation (20.3.5) with respect to Si is equivalent to minimising

N∑
n=1

〈
(∆n

i )TS−1
i ∆n

i − log det
(
S−1
i

)〉
pold(i|xn)

(20.3.11)

where ∆n
i ≡ xn −mi. To aid the matrix calculus, we isolate the dependency on Si to give

trace

(
S−1
i

N∑
n=1

pold(i|xn)∆n
i (∆n

i )T

)
− log det

(
S−1
i

) N∑
n=1

pold(i|xn) (20.3.12)

Differentiating with respect to S−1
i and equating to zero, we obtain

N∑
n=1

pold(i|xn)∆n
i (∆n

i )T − Si

N∑
n=1

pold(i|xn) = 0 (20.3.13)

Using the membership distribution pold(n|i), the resulting update is given by

Snewi =
N∑
n=1

pold(n|i) (xn −mi) (xn −mi)
T (20.3.14)

As for the mean, this essentially softly ‘filters’ those datapoints that belong to cluster i and takes their
covariance. This update also ensures that Si is symmetric positive semidefinite. A special case is to
constrain the covariances Si to be diagonal for which the update is, see exercise(20.2),

Si =
N∑
n=1

pold(n|i)diag
(

(xn −mi) (xn −mi)
T
)

(20.3.15)
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Algorithm 20.1 EM training for the GMM

1: Initialise the centres mi, covariances Si and weights p(i) > 0,
∑

i p(i) = 1 i = 1, . . . ,H.
2: while Likelihood not converged or termination criterion not reached do
3: for n = 1, . . . N do
4: for i = 1, . . . ,H do

5: p(i|xn) = p(i) exp
{
−1

2(xn −mi)
T S−1

i (xn −mi)
}

det (Si)
− 1

2 . responsibility

6: end for
7: Normalise p(i|xn) so that

∑
i p(i|xn) = 1

8: p(n|i) = p(i|xn) . membership
9: end for

10: Normalise p(n|i) so that
∑

n p(n|i) = 1 for each i.
11: for i = 1, . . . ,H do
12: mi =

∑N
n=1 p(n|i)xn . M-step for means

13: Si =
∑N

n=1 p(n|i) (xn −mi) (xn −mi)
T . M-step for covariances

14: p(i) = 1
N

∑N
n=1 p(i|xn) . M-step for weights

15: end for
16: L =

∑N
n=1 log

∑H
i=1 p(i)

1√
det(2πSi)

exp
{
−1

2 (xn −mi)
T S−1

i (xn −mi)
}

. Log likelihood

17: end while

where above diag (M) means forming a new matrix from the matrix M with zero entries except for the
diagonal entries of M. A more extreme case is that of isotropic Gaussians Si = σ2

i I. The reader may show
that the optimal update for σ2

i in this case is given by taking the average of the diagonal entries of the
diagonally constrained covariance update,

σ2
i =

1

D

N∑
n=1

pold(n|i)(xn −mi)
2 (20.3.16)

M-step : optimal mixture coefficients

If no constraint is placed on the weights, the update follows the general formula given in equation (20.2.8),

pnew(i) =
1

N

N∑
n=1

pold(i|xn) (20.3.17)

E-step

From the general theory, section(11.2), the E-step is given by

p(i|xn) ∝ p(xn|i)p(i). (20.3.18)

Explicitly, this is given by the responsibility

p(i|xn) =
p(i) exp

{
−1

2(xn −mi)
T S−1

i (xn −mi)
}

det (Si)
− 1

2∑
i′ p(i

′) exp
{
−1

2(xn −mi′)
T S−1

i′ (xn −mi′)
}

det (Si′)
− 1

2

(20.3.19)

The above equations (20.3.8,20.3.14,20.3.17,20.3.19) are iterated in sequence until convergence. Note that
this means that the ‘new’ means are used in the update for the covariance, see algorithm(20.1).

The performance of EM for Gaussian mixtures can be strongly dependent on the initialisation, which we
discuss below. In addition, constraints on the covariance matrix are required in order to find sensible
solutions.
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(a) 1 iteration (b) 50 iterations

(c) 125 iterations (d) 150 iterations

Figure 20.7: Training a mixture of 10 isotropic
Gaussians (a): If we start with large variances
for the Gaussians, even after one iteration, the
Gaussians are centred close to the mean of the
data. (b): The Gaussians begin to separate
(c): One by one, the Gaussians move towards
appropriate parts of the data (d): The final con-
verged solution. The Gaussians are constrained
to have variances greater than a set amount. See
demoGMMem.m.

20.3.2 Practical issues

Infinite troubles

A difficulty arises with using maximum likelihood to fit a Gaussian mixture model. Consider placing a
component p(x|mi,Si) with mean mi set to one of the datapoints mi = xn. The contribution from that
Gaussian for datapoint xn will be

p(xn|mi,Si) =
1√

det (2πSi)
e−

1
2

(xn−xn)TS−1
i (xn−xn) =

1√
det (2πSi)

(20.3.20)

In the limit that the ‘width’ of the covariance goes to zero (the eigenvalues of Si tend to zero), this proba-
bility density becomes infinite. This means that one can obtain a maximum likelihood solution by placing
zero-width Gaussians on a selection of the datapoints, resulting in an infinite likelihood. This is clearly
undesirable and arises because, in this case, the maximum likelihood solution does not constrain the param-
eters in a sensible way. Note that this is not related to the EM algorithm, but a property of the maximum
likelihood method itself. All computational methods which aim to fit unconstrained mixtures of Gaussians
using maximum likelihood therefore succeed in finding ‘reasonable’ solutions merely by getting trapped in
favourable local maxima. A remedy is to include an additional constraint on the width of the Gaussians,
ensuring that they cannot become too small. One approach is to monitor the eigenvalues of each covariance
matrix and if an update would result in a new eigenvalue smaller than a desired threshold, the update is
rejected. In GMMem.m we use a similar approach in which we constrain the determinant (the product of
the eigenvalues) of the covariances to be greater than a desired specified minimum value. One can view
the formal failure of maximum likelihood in the case of Gaussian mixtures as a result of an inappropriate
prior. maximum likelihood is equivalent to MAP in which a flat prior is placed on each matrix Si. This is
unreasonable since the matrices are required to be positive definite and of non-vanishing width. A Bayesian
solution to this problem is possible, placing a prior on covariance matrices. The natural prior in this case is
the Wishart Distribution, or a Gamma distribution in the case of a diagonal covariance.

Initialisation

A useful initialisation strategy is to set the covariances to be diagonal with large variances. This gives the
components a chance to ‘sense’ where data lies. An illustration of the performance of the algorithm is given
in fig(20.7).

Symmetry breaking

If the covariances are initialised to large values, the EM algorithm appears to make little progress in the
beginning as each component jostles with the others to try to explain the data. Eventually one Gaussian
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Figure 20.8: (a): A Gaussian mixture model with H = 4 components. There is a component (purple)
with large variance and small weight that has little effect on the distribution close to where the other three
components have appreciable mass. As we move further away this additional component gains in influence.
(b): The GMM probability density function from (a). (c): Plotted on a log scale, the influence of each
Gaussian far from the origin becomes clearer.

component breaks away and takes responsibility for explaining the data in its vicinity, see fig(20.7). The
origin of this initial jostling is an inherent symmetry in the solution – it makes no difference to the likelihood
if we relabel what the components are called. The symmetries can severely handicap EM in fitting a large
number of component models in the mixture since the number of permutations increases dramatically with
the number of components. A heuristic is to begin with a small number of components, say two, for which
symmetry breaking is less problematic. Once a local broken solution has been found, more models are
included into the mixture, initialised close to the currently found solutions. In this way, a hierarchical
scheme is envisaged. Another popular method for initialisation is to center the means to those found by the
K-means algorithm, see section(20.3.5) – however, this itself requires a heuristic initialisation.

20.3.3 Classification using Gaussian mixture models

We can use GMMs as part of a class conditional generative model, in order to make a powerful classifier.
Consider data drawn from two classes, c ∈ {1, 2}. We can fit a GMM p(x|c = 1,X1) to the data X1 from
class 1, and another GMM p(x|c = 2,X2) to the data X2 from class 2. This gives rise to two class-conditional
GMMs,

p(x|c,Xc) =
H∑
i=1

p(i|c)N (x mc
i ,S

c
i ) (20.3.21)

For a novel point x∗, the posterior class probability is

p(c|x∗,X ) ∝ p(x∗|c,Xc)p(c) (20.3.22)

where p(c) is the prior class probability. The maximum likelihood setting is that p(c) is proportional to the
number of training points in class c.

Overconfident classification

Consider a testpoint x∗ a long way from the training data for both classes. For such a point, the proba-
bility that either of the two class models generated the data is very low. Nevertheless, one probability will
be exponentially higher than the other (since the Gaussians drop exponentially quickly at different rates),
meaning that the posterior probability will be confidently close to 1 for that class which has a component
closest to x∗. This is an unfortunate property since we would end up confidently predicting the class of
novel data that is not similar to anything we’ve seen before. We would prefer the opposite effect that for
novel data far from the training data, the classification confidence drops and all classes become equally likely.

A remedy for this situation is to include an additional component in the Gaussian mixture for each class
that is very broad. We first collect the input data from all classes into a dataset X , and let m be the mean
of all this data and S the covariance. Then for the model of each class c data we include an additional
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Figure 20.9: Class conditional GMM train-
ing and classification. (a): Data from two
different classes. We fit a GMM with two
components to the data from each class.
The (magenta) diamond is a test point far
from the training data we wish to classify.
(b): Upper subpanel are the class probabil-
ities p(c = 1|n) for the 40 training points,
and the 41st point, being the test point.
This shows how the test point is confidently
placed in class 1. The lower subpanel are
the class probabilities but including the ad-
ditional large variance Gaussian term. The
class label for the test point is now maxi-
mally uncertain. See demoGMMclass.m.

Gaussian (dropping the notational dependency on X )

p(x|c) =
H∑
i=1

p̃ciN (x mc
i ,S

c
i ) + p̃cH+1N (x m, λS) (20.3.23)

where

p̃ci ∝
{
pci i ≤ H
δ i = H + 1

(20.3.24)

where δ is a small positive value and λ inflates the covariance (we take δ = 0.0001 and λ = 10 in
demoGMMclass.m). The effect of the additional component on the training likelihood is negligible since
it has small weight and large variance compared to the other components, see fig(20.8). However, as we
move away from the region where the first H components have appreciable mass, the additional component
gains in influence since it has a higher variance. If we include the same additional component in the GMM
for each class c then the influence of this additional component will be the same for each class, dominating
as we move far from the influence of the other components. For a point far from the training data the
likelihood will be roughly equal for each class since in this region the additional broad component dominates
each class with equal measure. The posterior distribution will then tend to the prior class probability p(c),
mitigating the deleterious effect of a single GMM dominating when a testpoint is far from the training data.

Example 20.4. The data in fig(20.9a) has a cluster structure for each class. Based on fitting a GMM to
each of the two classes, a test point (diamond) far from the training data is confidently classified as belonging
to class 1. This is an undesired effect since we would prefer that points far from the training data are not
classified with any certainty. By including an additional large variance Gaussian component for each class
this has little effect on the class probabilities of the training data, yet has the desired effect of making the
class probability for the test point maximally uncertain, fig(20.9b).

20.3.4 The Parzen estimator

The Parzen density estimator is formed by placing a ‘bump of mass’, ρ(x|xn), on each datapoint,

p(x) =
1

N

N∑
n=1

ρ(x|xn) (20.3.25)

A popular choice is (for a D dimensional x)

ρ(x|xn) = N
(
x xn, σ2ID

)
(20.3.26)
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Algorithm 20.2 K-means

1: Initialise the centres mi, i = 1, . . . ,K.
2: while not converged do
3: For each centre i, find all the xn for which i is the nearest (in Euclidean sense) centre.
4: Call this set of points Ni. Let Ni be the number of datapoints in set Ni.
5: Update the means

mnew
i =

1

Ni

∑
n∈Ni

xn

6: end while

giving the mixture of Gaussians

p(x) =
1

N

N∑
n=1

1

(2πσ2)D/2
exp

(
− 1

2σ2
(x− xn)2

)
(20.3.27)

There is no training required for a Parzen estimator – only the positions of the N datapoints need storing.
Whilst the Parzen technique is a reasonable and cheap way to form a density estimator, it does not enable
us to form any simpler description of the data. In particular, we cannot perform clustering since there is
no lower number of clusters assumed to underly the data generating process. This is in contrast to GMMs
trained using maximum likelihood on a fixed number H ≤ N of components.

20.3.5 K-Means

Consider a mixture of K isotropic Gaussians in which each covariance is constrained to be equal to σ2I,
with mixture weights pi ≥ 0,

∑
i pi = 1

p(x) =

K∑
i=1

piN
(
x mi, σ

2I
)

(20.3.28)

Whilst the EM algorithm breaks down if a Gaussian component is allowed to set mi equal to a datapoint
with σ2 → 0, by constraining all components to have the same variance σ2, the algorithm has a well defined
limit as σ2 → 0. The reader may show, exercise(20.3), that in this case the membership distribution equation
(20.3.9) becomes deterministic

p(n|i) ∝
{

1 if mi is closest to xn

0 otherwise
(20.3.29)

In this limit the EM update (20.3.10) for the mean mi is given by taking the average of the points closest to
mi. This limiting and constrained GMM then reduces to the so-called K-means algorithm, algorithm(20.2).
Despite its simplicity the K-means algorithm converges quickly and often gives a reasonable clustering, pro-
vided the centres are initialised sensibly. See fig(20.10).

K-means is often used as a simple form of data compression. Rather than sending the datapoint xn, one
sends instead the index of the centre to which it is associated. This is called vector quantisation and is
a form of lossy compression. To improve the quality, more information can be transmitted such as an
approximation of the difference between xn and the corresponding closest mean m, which can be used to
improve the reconstruction of the compressed datapoint.

20.3.6 Bayesian mixture models

Bayesian extensions include placing priors on the parameters of each model in the mixture, and also on
the component mixture weights. In most cases this will give rise to an intractable integral for the marginal
likelihood. Methods that approximate the integral include sampling techniques [105]. See also [119, 70] for
an approximate variational treatment focussed on Bayesian Gaussian mixture models.
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Figure 20.10: (a): 550 datapoints
clustered using K-means with 3 com-
ponents. The means are given by the
red crosses. (b): Evolution of the
mean square distance to the nearest
centre against iterations of the algo-
rithm. The means were initialised to
be close to the overall mean of the
data. See demoKmeans.m.

20.3.7 Semi-supervised learning

In some cases we may know to which mixture component certain datapoints belong. For example, given a
collection of images that we wish to cluster, it may be that we already have cluster labels for a subset of
the images. Given this information we want to fit a mixture model with a specified number of components
H and parameters θ. We write (vm∗ , h

m
∗ ), m = 1, . . . ,M for the M known datapoints and corresponding

components, and (vn, hn), n = 1, . . . , N for the remaining datapoints whose components hn are unknown.
We aim then to maximise the likelihood

p(v1:M
∗ , v1:N |h1:M

∗ , θ) =

{∏
m

p(vm∗ |hm∗ , θ)
}{∏

n

∑
hn

p(vn|hn, θ)p(hn)

}
(20.3.30)

If we were to lump all the datapoints together, this is essentially equivalent to the standard unsupervised
case, expect that some of the h are fixed into known states. The only effect on the EM algorithm is therefore
in the terms p(h|vm∗ ) for the labelled datapoints which are delta functions p(h|vm∗ ) = δh,hm∗ in the known
state, resulting in a minor modification of the standard algorithm, exercise(20.6).

20.4 Mixture of Experts

The mixture of experts model[162] is an extension to input-dependent mixture weights. For an output y (a
discrete class or continuous regression variable) and input x, this has the general form, see fig(20.11),

p(y|x,W,U) =
H∑
h=1

p(y|x,wh)p(h|x,U), (20.4.1)

Here h indexes the mixture component. Each expert h has parameters wh with W = [w1, . . . ,wH ] and
corresponding gating parameters uh with U = [u1, . . . ,uH ]. Unlike a standard mixture model, the compo-
nent distribution p(h|x,U) is dependent on the input x. This so-called gating distribution is conventionally
taken to be of the softmax form

p(h|x,U) =
eu

T
hx∑

h e
uT
hx

(20.4.2)

The idea is that we have a set of H predictive models (experts), p(y|x,wh), each with a different parameter
wh, h = 1, . . . ,H. How suitable model h is for predicting the output for input x is determined by the
alignment of input x with the weight vector uh. In this way the input x is softly assigned to the appropriate
experts.

Learning the parameters

Maximum likelihood training can be achieved using a form of EM. We will not derive the EM algorithm
for the mixture of experts model in full, merely pointing the direction along which the derivation would
continue. For a single datapoint x, the EM energy term is

〈log p(y|x,wh)p(h|x,U)〉p(h|x,Wold,Uold) (20.4.3)

410 DRAFT November 21, 2011



Indicator Models

xn

hnyn

W U
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Figure 20.11: Mixture of experts model. The prediction of the
output yn (real or continuous) given the input xn is averaged
over individual experts p(yn|xn,whn). The expert hn is selected
by the gating mechanism with probability p(hn|xn,U), so that
some experts will be more responsible for predicting the output
for xn in ‘their’ part of the input space. The parameters W,U
can be learned by maximum likelihood after marginalising over
the hidden expert indices h1, . . . , hN .

For regression a simple choice is

p(y|x,wh) = N
(
y xTwh, σ

2
)

(20.4.4)

and for (binary) classification

p(y = 1|x,wh) = σ(xTwh) (20.4.5)

In both cases computing the derivatives of the energy with respect to the parameters W is straightforward,
so that an EM algorithm is readily available. An alternative to EM is to compute the gradient of the
likelihood directly using the standard approach discussed in section(11.6).

A Bayesian treatment is to consider

p(y,W,U, h|x) = p(y|x,wh)p(h|x,u)p(W)p(U) (20.4.6)

where it is conventional to assume p(W) =
∏
h p(wh), p(U) =

∏
h p(uh). The integrals required to calculate

the marginal likelihood are generally intractable and approximations are required. See [310] for a variational
treatment for regression and [44] for a variational treatment of classification. An extension to Bayesian model
selection in which the number of experts is estimated is considered in [156].

20.5 Indicator Models

Indicator models generalise our previous mixture models by allowing a more general prior distribution on
cluster assignments. For consistency with the literature we use an indicator z, as opposed to a hidden
variable h, although they play the same role. A clustering model with parameters θ on the component
models and joint indicator prior p(z1:N ) takes the form, see fig(20.12a),

p(v1:N |θ) =
∑
z1:N

p(v1:N |z1:N , θ)p(z1:N ) (20.5.1)

Since the zn indicate cluster membership,

p(v1:N |θ) =
∑
z1:N

p(z1:N )
N∏
n=1

p(vn|zn, θ) (20.5.2)

Below we discuss the role of different indicator priors p(z1:N ) in clustering.

20.5.1 Joint indicator approach: factorised prior

Assuming prior independence of indicators,

p(z1:N ) =
N∏
n=1

p(zn), zn ∈ {1, . . . ,K} (20.5.3)
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Figure 20.12: (a): A generic mixture model for
data v1:N . Each zn indicates the cluster of each
datapoint. θ is a set of parameters and zn = k
selects parameter θk for datapoint vn. (b): For
a potentially large number of clusters one way
to control complexity is to constrain the joint
indicator distribution. (c): Plate notation of
(b).

we obtain from equation (20.5.2)

p(v1:N |θ) =
∑
z1:N

N∏
n=1

p(vn|zn, θ)p(zn) =
N∏
n=1

∑
zn

p(vn|zn, θ)p(zn) (20.5.4)

which recovers the standard mixture model equation (20.1.3). As we discuss below, more sophisticated joint
indicator priors can be used to explicitly control the complexity of the indicator assignments and open the
path to essentially ‘infinite dimensional’ models.

20.5.2 Polya prior

For a large number of available clusters (mixture components) K � 1, using a factorised joint indicator
distribution could potentially lead to overfitting, resulting in little or no meaningful clustering. One way to
control the effective number of components that are used is via a parameter π that regulates the complexity,
see fig(20.12b,c),

p(z1:N ) =

∫
π

{∏
n

p(zn|π)

}
p(π) (20.5.5)

where p(z|π) is a categorical distribution,

p(zn = k|π) = πk (20.5.6)

This means, for example, that if πl is low, we are therefore unlikely to select cluster k for any datapoint n. A
convenient choice for p(π) is the Dirichlet distribution (since this is conjugate to the categorical distribution),

p(π) = Dirichlet (π|α) ∝
K∏
k=1

π
α/K−1
k (20.5.7)

The integral over π in equation (20.5.5) can be performed analytically to give a Polya distribution:

p(z1:N ) =
Γ(α)

Γ(N + α)

K∏
k=1

Γ(Nk + α/K)

Γ(α/K)
, Nk ≡

∑
n

I [zn = k] (20.5.8)

The number of unique clusters used is then given by U =
∑

k I [Nk > 0]. The distribution over likely cluster
numbers is controlled by the parameter α. The scaling α/K in equation (20.5.7) ensures a sensible limit
as K → ∞, see fig(20.13), in which limit the models are known as Dirichlet process mixture models. This
approach means that we do not need to explicitly constrain the number of possible components K since the
number of active components U remains limited even for very large K.

Clustering is achieved by considering argmax
z1:N

p(z1:N |v1:N ). In practice it is common to consider

argmax
zn

p(zn|v1:N ) (20.5.9)
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Figure 20.13: The distribution of the number of unique clusters U when indicators are sampled from a Polya
distribution equation (20.5.8), with α = 2, and N = 50 datapoints. (a): K = 50, (b): K = 100, (c):
K = 1000. Even though the number of available clusters K is larger than the number of datapoints, the
number of used clusters U remains constrained. See demoPolya.m.

Unfortunately, posterior inference of p(zn|v1:N ) for this class of models is formally computationally in-
tractable and approximate inference techniques are required. A detailed discussion of these techniques is
beyond the scope of this book and we refer the reader to [179] for a deterministic (variational) approach
and [221] for a discussion of sampling approaches.

20.6 Mixed Membership Models

Unlike standard mixture models in which each object is assumed to have been generated from a single
cluster, in mixed membership models an object may be a member of more than one group. Latent Dirichlet
Allocation discussed below is an example of such a mixed membership model, and is one of a number of
models developed in recent years [4, 98].

20.6.1 Latent Dirichlet allocation

Latent Dirichlet Allocation[46] considers that each datapoint may belong to more than a single cluster. A
typical application is to identify topic clusters in a collection of documents. A single document contains a
sequence of words, for example

v = (the, cat, sat, on, the,mat) (20.6.1)

If each word in the available dictionary of D words is assigned to a unique state (say dog = 1, tree = 2, cat =
3, . . .), we can represent then the nth document as a vector of word indices

vn =
(
vn1 , . . . , v

n
Wn

)
, vni ∈ {1, . . . , D} (20.6.2)

where Wn is the number of words in the nth document. The number of words Wn in each document can
vary although the overall dictionary from which they came is fixed.

The aim is to find common topics in documents, assuming that any document could potentially contain
more than one topic. It is useful to think first of an underlying generative model of words, including latent
topics (which we will later integrate out). For each document n we have a distribution of topics πn with∑K

k=1 π
n
k = 1 which gives a latent description of the document in terms of its topic membership. For example,

document n (which discusses issues related to wildlife conservation) might have a topic distribution with
high mass on the latent ‘animals’ and ‘environment’, topics. Note that the topics are indeed latent – the
name ‘animal’ would be given post-hoc based on the kinds of words that the latent topic would generate,
θi|k. As in section(20.5.2), to control complexity one may use a Dirichlet prior to limit the number of topics
active in any particular document:

p(πn|α) = Dirichlet (πn|α) (20.6.3)

where α is a vector of length the number of topics.
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Figure 20.14: Latent Dirichlet Allocation. For document n we first sample
a distribution of topics πn. Then for each word position w = 1, . . . ,Wn in
the document we sample a topic znw from the topic distribution. Given the
topic we then sample a word from the word distribution of that topic. The
parameters of the model are the word distributions for each topic θ, and the
parameters of the topic distribution α.

We first sample a probability distribution (histogram) πn that represents the topics likely to occur for this
document. Then, for each word-position in the document, sample a topic and subsequently a word from the
distribution of words for that topic. For document n and the wth word-position in the document, vnw, we
use znw ∈ {1, . . . ,K} to indicate to which of the K possible topics that word belongs. For each topic k, one
then has a categorical distribution over all the words i = 1, . . . , D, in the dictionary:

p(vnw = i|znw = k, θ) = θi|k (20.6.4)

For example, the ‘animal’ topic has high probability to emit animal-like words, etc.

A generative model for sampling a document vn with Wn word positions is then given by, see fig(20.14),:

1. Choose πn ∼ Dirichlet (πn|α)

2. For each of word position vnw, w = 1, . . . ,Wn :

(a) Choose a topic znw ∼ p (znw|πn)

(b) Choose a word vnw ∼ p
(
vnw|θ·|znw

)
Training the LDA model corresponds to learning the parameters α, which relates to the number of topics,
and θ, which describes the distribution of words within each topic. Unfortunately, finding the requisite
marginals for learning from the posterior is formally computationally intractable. Efficient approximate in-
ference for this class of models is a topic of research interest and both variational and sampling approaches
have recently been developed[46, 289, 242].

There are close similarities between LDA and PLSA[125], section(15.6.1), both of which describe a document
in terms of a distribution over latent topics. LDA is a probabilistic model for which issues such as setting
hyperparameters can be addressed using maximum likelihood. PLSA on the other hand is essentially
a matrix decomposition technique (such as PCA). Issues such as hyperparameters setting for PLSA are
therefore addressed using validation data. Whilst PLSA is a description only of the training data, LDA is
a generative data model and can in principle be used to synthesise new documents.

Example 20.5. An illustration of the use of LDA is given in fig(20.15)[46]. The documents are taken from
the TREC Associated Press corpus containing 16,333 newswire articles with 23,075 unique terms. After
removing a standard list of stop words (frequent words such as ‘the’,‘a’ etc. that would otherwise dominate
the statistics), the EM algorithm (with variational approximate inference) was used to find the Dirichlet and
conditional categorical parameters for a 100-topic LDA model. The top words from four resulting categorical
distributions θi|k are illustrated fig(20.15a). These distributions capture some of the underlying topics in
the corpus. An example document from the corpus is presented along with the words coloured by the most
probable latent topic they correspond to.
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Arts Budgets Children Education

new million children school
film tax women students
show program people schools
music budget child education
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musical year work public
best spending parents teacher
actor new says bennett
first state family manigat
york plan welfare namphy
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love congress life haiti

(a)

The William Randolph Hearst Foundation will give $ 1.25 million to Lin-
coln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard
School. Our board felt that we had a real opportunity to make a mark on
the future of the performing arts with these grants an act every bit as
important as our traditional areas of support in health, medical research,
education and the social services, Hearst Foundation President Randolph
A. Hearst said Monday in announcing the grants. Lincoln Centers share
will be $200,000 for its new building, which will house young artists and
provide new public facilities. The Metropolitan Opera Co. and New York
Philharmonic will receive $400,000 each. The Juilliard School, where music
and the performing arts are taught, will get $250,000. The Hearst Foun-
dation, a leading supporter of the Lincoln Center Consolidated Corporate
Fund, will make its usual annual $100,000 donation, too.

(b)

Figure 20.15: (a): A subset of the latent topics discovered by LDA and the high probability words
associated with each topic. Each column represents a topic, with the topic name such as ‘arts’ assigned by
hand after viewing the most likely words corresponding to the topic. (b): A document from the training
data in which the words are coloured according to the most likely latent topic. This demonstrates the
mixed-membership nature of the model, assigning the datapoint (document in this case) to several clusters
(topics). Reproduced from [46].
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Figure 20.16: (a) The social network of a set of 5 individuals, repre-
sented as an undirected graph. Here individual 3 belongs to the group
(1, 2, 3) and also (3, 4, 5). (b) By contrast, in graph partitioning, one
breaks the graph into roughly equally sized disjoint partitions such
that each node is a member of only a single partition, with a minimal
number of edges between partitions.

20.6.2 Graph based representations of data

Mixed membership models are used in a variety of contexts and are distinguished also by the form of data
available. Here we focus on analysing a representation of the interactions amongst a collection of objects;
in particular, the data has been processed such that all the information of interest is characterised by an
interaction matrix. For graph based representations of data, two objects are similar if they are neighbours
on a graph representing the data objects. In the field of social-networks, for example, each individual is
represented as a node in a graph, with a link between two nodes if the individuals are friends. Given a
graph one might wish to identify communities of closely linked friends. Interpreted as a social network, in
fig(20.16a), individual 3 is a member of his work group (1, 2, 3) and also the poker group (3, 4, 5). These two
groups of individuals are otherwise disjoint. Discovering such groupings contrasts with graph partitioning
in which each node is assigned to only one of a set of subgraphs, fig(20.16b), for which a typical criterion
is that each subgraph should be roughly of the same size and that there are few connections between the
subgraphs[169].

Another example is that nodes in the graph represent products and a link between nodes i and j indicates
that customers who buy product i frequently also buy product j. The aim is to decompose the graph into
groups, each corresponding to products that are commonly co-bought by customers[128]. A growing area of
application of graph based representations is in bioinformatics in which nodes represent genes, and a link
between them representing that the two genes have similar activity profiles. The task is then to identify
groups of similarly behaving genes[5].

20.6.3 Dyadic data

Consider two kinds of objects, for example, films and customers. Each film is indexed by f = 1, . . . , F and
each user by u = 1, . . . , U . The interaction of user u with film f can be described by the element of a matrix
Muf representing the rating a user gives to a film. A dyadic dataset consists of such a matrix and the aim
is to decompose this matrix to explain the ratings by finding types of films and types of user.
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(a) (b)

Figure 20.17: Graphical representation of dyadic data. (a): There are 6 documents and 13 words. A link
represents that a particular word-document pair occurs in the dataset. (b): A latent decomposition of (a)
using 3 ‘topics’. A topic corresponds to a collection of words, and each document a collection of topics. The
open nodes indicate latent variables.

Another example is to consider a collection of documents, summarised by an interaction matrix in which
Mwd is 1 if word w appears in document d and zero otherwise. This matrix can be represented as a bipartite
graph, as in fig(20.17a). The upper nodes represent documents, and the lower nodes words, with a link
between them if that word occurs in that document. One then seeks assignments of documents to groups
or latent ‘topics’ to succinctly explain the link structure of the bipartite graph via a small number of latent
nodes, as schematically depicted in fig(20.17b). One may view this as a form of matrix factorisation, as in
PLSA section(15.6.1) [148, 204]

Mwd ≈
∑
t

UwtV
T
td (20.6.5)

where t indexes the topics and the feature matrices U and V control the word-to-topic mapping and the topic-
to-document mapping. This differs from latent Dirichlet allocation which has a probabilistic interpretation
of first generating a topic and then a word, conditional on the chosen topic. Here the interaction between
document-topic matrix V and word-topic matrix U is non-probabilistic.
In [204], real-valued data is modelled using

p(M|U,W,V) = N
(
M UWVT, σ2I

)
(20.6.6)

where U and V are assumed binary and the real-valued W is a topic-interaction matrix. In this viewpoint
learning then consists of inferring U,W,V, given the dyadic observation matrix M. Assuming factorised
priors, the posterior over the matrices is

p(U,W,V|M) ∝ p(M|U,W,V)p(U)p(W)p(V) (20.6.7)

A convenient choice is a Gaussian prior distribution for W, with the feature matrices U and V sampled
from Beta-Bernoulli priors. The resulting posterior distribution is formally computationally intractable, and
in [204] this is addressed using a sampling approximation.

20.6.4 Monadic data

In monadic data there is only one type of object and the interaction between the objects is represented by
a square interaction matrix. For example one might have a matrix with elements Aij = 1 if proteins i and j
can bind to each other and 0 otherwise. A depiction of the interaction matrix is given by a graph in which an
edge represents an interaction, for example fig(20.18). In the following section we discuss a particular mixed
membership model and highlight potential applications. The method is based on clique decompositions of
graphs and as such we require a short digression into clique-based graph representations.

1

2

3

4 Figure 20.18: The minimal clique cover is (1, 2, 3), (2, 3, 4).
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Figure 20.19: Bipartite representations of the decomposi-
tions of fig(20.18). Shaded nodes represent observed vari-
ables, and open nodes latent variables. (a) Incidence matrix
representation. (b) Minimal clique decomposition.

20.6.5 Cliques and adjacency matrices for monadic binary data

A symmetric adjacency matrix has elements Aij ∈ {0, 1}, with a 1 indicating a link between nodes i and j.
For the graph in fig(20.18), the adjacency matrix is

A =

 1 1 1 0
1 1 1 1
1 1 1 1
0 1 1 1

 (20.6.8)

where we include self connections on the diagonal. Given A, our aim is to find a ‘simpler’ description that
reveals the underlying cluster structure, such as (1, 2, 3) and (2, 3, 4) in fig(20.18). Given the undirected
graph in fig(20.18), the incidence matrix Finc is an alternative description of the adjacency structure[86].
Given the V nodes in the graph, we construct Finc as follows: For each link i ∼ j in the graph, form a
column of the matrix Finc with zero entries except for a 1 in the ith and jth row. The column ordering is
arbitrary. For example, for the graph in fig(20.18) an incidence matrix is

Finc =

 1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1

 (20.6.9)

The incidence matrix has the property that the adjacency structure of the original graph is given by the
outer product of the incidence matrix with itself. The diagonal entries contain the degree (number of links)
of each node. For our example, this gives

FincF
T
inc =

 2 1 1 0
1 3 1 1
1 1 3 1
0 1 1 2

 (20.6.10)

so that

A = H
(
FincF

T
inc

)
(20.6.11)

Here H(·) is the element-wise Heaviside step function, [H(M)]ij = 1 if Mij > 0 and is 0 otherwise. A useful
viewpoint of the incidence matrix is that it identifies two-cliques in the graph (here we are using the term
‘clique’ in the non-maximal sense). There are five 2-cliques in fig(20.18), and each column of Finc specifies
which elements are in each 2-clique. Graphically we can depict this incidence decomposition as a bipartite
graph, as in fig(20.19a) where the open nodes represent the five 2-cliques. The incidence matrix can be
generalised to describe larger cliques. Consider the following matrix as a decomposition for fig(20.18), and
its outer-product:

F =

 1 0
1 1
1 1
0 1

, FFT =

 1 1 1 0
1 2 2 1
1 2 2 1
0 1 1 1

 (20.6.12)

The interpretation is that F represents a decomposition into two 3-cliques. As in the incidence matrix, each
column represents a clique, and the rows containing a ‘1’ express which elements are in the clique defined
by that column. This decomposition can be represented as the bipartite graph of fig(20.19b). For the graph
of fig(20.18), both Finc and F satisfy

A = H
(
FFT

)
= H

(
FincF

T
inc

)
(20.6.13)
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Figure 20.20: The function σ(x) ≡
(
1 + eβ(0.5−x)

)−1
for β = 1, 10, 100. As

β increases, this sigmoid function tends to a step function.

One can view equation (20.6.13) as a form of matrix factorisation of the binary square (symmetric) matrix A
into non-square binary matrices. For our clustering purposes, the decomposition using F is to be preferred
to the incidence decomposition since F decomposes the graph into a smaller number of larger cliques. A
formal specification of the problem of finding a minimum number of maximal fully-connected subsets is the
computationally hard problem MIN CLIQUE COVER[113, 267].

Definition 20.1 (Clique matrix). Given an adjacency matrix [A]ij , i, j = 1, . . . , V (Aii = 1), a clique

matrix F has elements Fic ∈ {0, 1} , i = 1, . . . , V, c = 1, . . . , C such that A = H(FFT). Diagonal elements[
FFT

]
ii

express the number of cliques/columns that node i occurs in. Off-diagonal elements
[
FFT

]
ij

contain the number of cliques/columns that nodes i and j jointly inhabit [18].

Whilst finding a clique decomposition F is easy (use the incidence matrix for example), finding a clique
decomposition with the minimal number of columns, i.e. solving MIN CLIQUE COVER, is NP-Hard[113, 9].
In [130] the cliques are required to be maximal, although in our definition the cliques may be non-maximal.

A generative model of adjacency matrices

Given an adjacency matrix A and a prior on clique matrices F, our interest is the posterior

p(F|A) ∝ p(A|F)p(F) (20.6.14)

We first concentrate on the generative term p(A|F). To find ‘well-connected’ clusters, we relax the constraint
that the decomposition is in the form of perfect cliques in the original graph and view the absence of links
as statistical fluctuations away from a perfect clique. Given a V × C matrix F, we desire that the higher
the overlap between rows2 fi and fj is, the greater the probability of a link between i and j. This may be
achieved using, for example,

p(Aij = 1|F) = σ
(
fif

T
j

)
(20.6.15)

with

σ(x) ≡
(

1 + eβ(0.5−x)
)−1

(20.6.16)

where β controls the steepness of the function, see fig(20.20). The 0.5 shift in equation (20.6.16) ensures
that σ approximates the step-function since the argument of σ is an integer. Under equation (20.6.15), if
fi and fj have at least one ‘1’ in the same position, fif

T
j − 0.5 > 0 and p(Aij = 1|F) is high. Absent links

contribute p(Aij = 0|F) = 1− p(Aij = 1|F). The parameter β controls how strictly σ(FFT) matches A; for
large β, very little flexibility is allowed and only cliques will be identified. For small β, subsets that would
be cliques if it were not for a small number of missing links, are clustered together. The setting of β is user
and problem dependent.

Assuming each element of the adjacency matrix is sampled independently from the generating process, the
joint probability of observing A is (neglecting its diagonal elements),

p(A|F) =
∏
i,j

[
σ
(
fif

T
j

)]Aij [
1− σ

(
fif

T
j

)]1−Aij
(20.6.17)

2We use lower indices fi to denote the ith row of F.
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Figure 20.21: (a): Adjacency ma-
trix of 105 Political Books (black=1).
(b): Clique matrix: 521 non-zero en-
tries. (c): Adjacency reconstruction
using an approximate clique matrix
with 10 cliques – see also fig(20.22)
and demoCliqueDecomp.m.

The ultimate quantity of interest is the posterior distribution of clique structure, equation (20.6.14), for
which we now specify a prior p(F) over clique matrices.

Clique matrix prior p(F)

Since we are interested in clustering, ideally we want to place as many nodes in the graph as possible in a
cluster. This means that we wish to bias the contributions to the adjacency matrix A to occur from a small
number of columns of F. To achieve this we first reparameterise F as

F =
(
α1f

1, . . . , αCmaxf
Cmax

)
(20.6.18)

where αc ∈ {0, 1} play the role of indicators and f c is column c of F. Cmax is an assumed maximal number
of clusters. Ideally, we would like to find an F with a low number of indicators α1, . . . , αCmax in state 1. To
achieve this we define a prior distribution on the binary hypercube α = (α1, . . . , αCmax),

p(α|ν) =
∏
c

ναc (1− ν)1−αc (20.6.19)

To encourage a small number of the α′cs to be 1, we use a Beta prior p(ν) with suitable parameters to ensure
that ν is less than 0.5. This gives rise to a Beta-Bernoulli distribution

p(α) =

∫
ν
p(α|ν)p(ν) =

B(a+N, b+ Cmax −N)

B(a, b)
(20.6.20)

where B(a, b) is the Beta function and N =
∑Cmax

c=1 αc is the number of indicators in state 1. To encour-
age that only a small number of components should be active, we set a = 1, b = 3. The distribution
(20.6.20) is on the vertices of the binary hypercube {0, 1}Cmax with a bias towards vertices close to the ori-
gin (0, . . . , 0). Through equation (20.6.18), the prior on α induces a prior on F. The resulting distribution
p(F,α|A) ∝ p(F|α)p(α) is formally intractable and in [18] this is addressed using a variational technique.

Clique matrices also play a natural role in the parameterisation of positive definite matrices under the
constraint of specified zeros in the matrix, see exercise(20.7)[18].

Example 20.6 (Political Books Clustering). The data consists of 105 books on US politics sold by the
online bookseller Amazon. The adjacency matrix with element Aij = 1 fig(20.21a), represents frequent
co-purchasing of books i and j (from Valdis Krebs). Additionally, books are labelled ‘liberal’, ‘neutral’,
or ‘conservative’ according to the judgement of a politically astute reader. The interest is to assign books
to clusters, using A alone, and then see if these clusters correspond in some way to the ascribed political
leanings of each book. Note that the information here is minimal – all that is known to the clustering
algorithm is which books were co-bought (matrix A); no other information on the content or title of the
books are exploited by the algorithm. With an initial Cmax = 200 cliques, Beta parameters a = 1, b = 3 and
steepness β = 10, the most probable posterior marginal solution contains 142 cliques fig(20.21b), giving a
perfect reconstruction of the adjacency A. For comparison, the incidence matrix has 441 2-cliques. However,
this clique matrix is too large to provide a compact interpretation of the data – indeed there are more clusters
than books. To cluster the data more aggressively, we fix Cmax = 10 and re-run the algorithm. This results
only in an approximate clique decomposition, A ≈ H(FFT), as plotted in fig(20.21c). The resulting 105×10
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Figure 20.22: Political Books. 105 × 10 dimensional clique matrix broken into 3 groups by a politically
astute reader. A black square indicates q(fic) > 0.5. Liberal books (red), Conservative books (green),
Neutral books(yellow). By inspection, cliques 5,6,7,8,9 largely correspond to ‘conservative’ books.

approximate clique matrix is plotted in fig(20.22) and demonstrates how individual books are present in
more than one cluster. Interestingly, the clusters found only on the basis of the adjacency matrix have some
correspondence with the ascribed political leanings of each book; cliques 5, 6, 7, 8, 9 correspond to largely
‘conservative’ books. Most books belong to more than a single clique/cluster, suggesting that they are not
single topic books, consistent with the assumption of a mixed membership model.

20.7 Summary

• Mixture models are discrete latent variable models and can be trained using maximum likelihood.

• A classical approach to training is to use the EM algorithm, though gradient based approaches are also
possible.

• Standard mixture models assume that a priori each object (datapoint) can be a member of only a single
cluster.

• In mixed-membership models, an object may a priori belong to more than a single cluster. Models such as
latent Dirichlet allocation have interesting application for example to text modelling including the automatic
discovery of latent topics.

• Mixed-membership models may also be considered for monadic or dyadic data.

The literature on mixture modelling is extensive, and a good overview and entrance to the literature is
contained in [203].

20.8 Code

MIXprodBern.m: EM training of a mixture of product Bernoulli distributions
demoMixBernoulli.m: Demo of a mixture of product Bernoulli distributions

GMMem.m: EM training of a mixture of Gaussians
GMMloglik.m: GMM log likelihood
demoGMMem.m: Demo of a EM for mixture of Gaussians
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demoGMMclass.m: Demo GMM for classification

Kmeans.m: K-means
demoKmeans.m: Demo of K-means

demoPolya.m: Demo of the number of active clusters from a Polya distribution
dirrnd.m: Dirichlet random distribution generator

cliquedecomp.m: Clique matrix decomposition
cliquedecomp.c: Clique matrix decomposition (C-code)
DemoCliqueDecomp.m: Demo clique matrix decomposition

20.9 Exercises

Exercise 20.1. Consider a mixture of factorised models for vector observations v

p(v) =
∑
h

p(h)
∏
i

p(vi|h) (20.9.1)

For assumed i.i.d. data vn, n = 1, . . . , N , some observation components may be missing so that, for example
the third component of the fifth datapoint, v5

3 is unknown. Show that maximum likelihood training on the
observed data corresponds to ignoring components vni that are missing.

Exercise 20.2. Derive the optimal EM update for fitting a mixture of Gaussians under the constraint that
the covariances are diagonal.

Exercise 20.3. Consider a mixture of K isotropic Gaussians, each with the same covariance, Si = σ2I. In
the limit σ2 → 0 show that the EM algorithm tends to the K-means clustering algorithm.

Exercise 20.4. Consider the term

N∑
n=1

〈log p(h)〉pold(h|vn) (20.9.2)

We wish to optimise the above with respect to the distribution p(h). This can be achieved by defining the
Lagrangian

L =
N∑
n=1

〈log p(h)〉pold(h|vn) + λ

(
1−

∑
h

p(h)

)
(20.9.3)

By differentiating the Lagrangian with respect to p(h) and using the normalisation constraint
∑

h p(h) = 1,
show that, optimally

p(h) =
1

N

N∑
n=1

pold(h|vn) (20.9.4)

Exercise 20.5. We showed that fitting an unconstrained mixture of Gaussians using maximum likelihood is
problematic since, by placing one of the Gaussians over a datapoint and letting the covariance determinant
go to zero, we obtain an infinite likelihood. In contrast, when fitting a single Gaussian N (x µ,Σ) to i.i.d.
data x1,x2, . . . ,xN show that the maximum likelihood optimum for Σ has non-zero determinant, and that
the optimal likelihood remains finite.

Exercise 20.6. Modify GMMem.m suitably so that it can deal with the semi-supervised scenario in which the
mixture component h of some of the observations v is known.
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Exercise 20.7. You wish to parameterise covariance matrices S under the constraint that specified elements
are zero. The constraints are specified using a matrix A with elements Aij = 0 if Sij = 0 and Aij = 1
otherwise. Consider a clique matrix Z, for which

A = H(ZZT) (20.9.5)

and matrix

S∗ = Z∗Z
T
∗ (20.9.6)

with

[Z∗]ij =

{
0 if Zij = 0
θij if Zij = 1

(20.9.7)

for parameters θ. Show that for any θ, S∗ is positive semidefinite and parameterises covariance matrices
under the zero constraints specified by A.

422 DRAFT November 21, 2011



CHAPTER 21

Latent Linear Models

In this chapter we discuss some simple continuous latent variable models. The Factor Analysis model is
a classical statistical model and is essentially a probabilistic version of PCA. Such models can be used
to form simple low-dimensional generative models of data. As an example we consider an application to
face recognition. By extending the model to use non-Gaussian priors on the latent variables, independent
dimensions underlying the data can be discovered, and can give rise to radically different low dimensional
representations of the data than afforded by PCA.

21.1 Factor Analysis

In chapter(15) we discussed Principal Components Analysis which forms lower dimensional representations
of data based on assuming that the data lies close to a linear subspace. Here we describe a related prob-
abilistic model for which extensions to Bayesian methods can be envisaged. Any probabilistic model may
also be used as a component of a larger more complex model, such as a mixture model, enabling natural
generalisations.

We use v to describe a real data vector to emphasise that this is a visible (observable) quantity. The dataset
is then given by a set of vectors,

V =
{
v1, . . . ,vN

}
(21.1.1)

where dim (v) = D. Our interest is to find a lower dimensional probabilistic description of this data. If
data lies close to a H-dimensional linear subspace we may accurately approximate each datapoint by a low
H-dimensional coordinate system. In general, datapoints will not lie exactly on the linear subspace and
we model this discrepancy with Gaussian noise. Mathematically, the FA model generates an observation v
according to, see fig(21.1),

v = Fh + c + ε (21.1.2)

where the noise ε is Gaussian distributed, with zero mean and covariance Ψ

ε ∼ N (ε 0,Ψ) (21.1.3)

The constant bias c sets the origin of the coordinate system1. The D ×H factor loading matrix F plays a
similar role as the basis matrix in PCA. Similarly, the hidden coordinates h plays the role of the components
we used in section(15.2). The difference between PCA and Factor Analysis is in the choice of Ψ:

1Depending on the application, it can be sometimes useful to force the origin to be zero to aid the interpretation of the
factors; this results in only a minor modification of the framework.
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Factor Analysis

h1 h2 h3

v1 v2 v3 v4 v5

Figure 21.1: Factor Analysis. The visible vector variable v is related
to the vector hidden variable h by a linear mapping, with independent
additive Gaussian noise on each visible variable. The prior on the
hidden variable may be taken to be an isotropic Gaussian, thus being
independent across its components.

Probabilistic PCA

Ψ = σ2I (21.1.4)

Factor Analysis

Ψ = diag (ψ1, . . . , ψD) (21.1.5)

Factor analysis therefore differs from probabilistic PCA in that it has a richer description for the off-subspace
noise Ψ.

A probabilistic description

From equation (21.1.2) and equation (21.1.3), given h, the data is Gaussian distributed with mean Fh + c
and covariance Ψ

p (v|h) = N (v Fh + c,Ψ) ∝ exp

(
−1

2
(v − Fh− c)T Ψ−1 (v − Fh− c)

)
(21.1.6)

To complete the model, we need to specify the hidden distribution p(h). A convenient choice is a Gaussian

p (h) = N (h 0, I) ∝ exp
(
−hTh/2

)
(21.1.7)

Under this prior the coordinates h will be preferentially concentrated around values close to 0. If we sample
a h vector from p(h) and then draw a value for v using p(v|h), the sampled v vectors would produce a saucer
or ‘pancake’ of points in the v space, see fig(21.2). Using a correlated Gaussian prior p(h) = N (h 0,ΣH) has
no effect on the flexibility of the model since ΣH can be absorbed into F, exercise(21.3). Since v is linearly
related to h through equation (21.1.2) and both ε and h are Gaussian, then v is Gaussian distributed. The
mean and covariance can be computed using propagation, result(8.3):

p (v) =

∫
p (v|h) p (h) dh = N

(
v c,FFT + Ψ

)
(21.1.8)

What this says is that our model for the data is a Gaussian centred on c with covariance matrix constrained
to be of the form FFT + Ψ. The number of free parameters for factor analysis is therefore D(H + 1).
Compared to an unconstrained covariance on v which has D(D+1)/2 free parameters, by choosing H � D,
we have significantly fewer parameters to estimate in factor analysis than in unconstrained covariance case.

Invariance of the likelihood under factor rotation

Since the matrix F only appears in the final model p(v) through FFT + Ψ, the likelihood is unchanged if
we rotate F using FR, with RRT = I:

FR(FR)T + Ψ = FRRTFT + Ψ = FFT + Ψ (21.1.9)

The solution space for F is therefore not unique – we can arbitrarily rotate the matrix F and produce an
equally likely model of the data. Some care is therefore required when interpreting the entries of F. Varimax
provides a more interpretable F by using a suitable rotation matrix R. The aim is to produce a rotated
F for which each column has only a small number of large values. Finding a suitable rotation results in a
non-linear optimisation problem and needs to be solved numerically. See [199] for details.
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Figure 21.2: Factor Analysis: 1000 points generated from the model. (a): 1000 latent two-dimensional
points hn sampled from N (h 0, I). These are transformed to a point on the three-dimensional plane by
xn0 = c + Fhn. The covariance of x0 is degenerate, with covariance matrix FFT. (b): For each point xn0
on the plane a random noise vector is drawn from N (ε 0,Ψ) and added to the in-plane vector to form a
sample xn, plotted in red. The distribution of points forms a ‘pancake’ in space. Points ‘underneath’ the
plane are not shown.

21.1.1 Finding the optimal bias

For a set of data V and using the usual i.i.d. assumption, the log likelihood is

log p(V|F,Ψ, c) =

N∑
n=1

log p(vn) = −1

2

N∑
n=1

(vn − c)T Σ−1
D (vn − c)− N

2
log det (2πΣD) (21.1.10)

where

ΣD ≡ FFT + Ψ (21.1.11)

Differentiating equation (21.1.10) with respect to c and equating to zero, we arrive at the maximum likelihood
optimal setting that the bias c is the mean of the data,

c =
1

N

N∑
n=1

vn ≡ v̄ (21.1.12)

We will use this setting throughout. With this setting the log likelihood equation (21.1.10) can be written

log p(V|F,Ψ) = −N
2

(
trace

(
Σ−1
D S

)
+ log det (2πΣD)

)
(21.1.13)

where S is the sample covariance matrix

S =
1

N

N∑
n=1

(v − v̄) (v − v̄)T (21.1.14)

21.2 Factor Analysis : Maximum Likelihood

We now specialise to the assumption that Ψ = diag (ψ1, . . . , ψD). We consider two methods for learning
the factor loadings F: the ‘eigen’ approach2 of section(21.2.1) and the EM approach, section(21.2.2). The
eigen-approach is common in statistics and software packages, whilst the EM approach is more common in
machine learning.

2The presentation here follows closely that of [323].
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21.2.1 Eigen-approach likelihood optimisation

As we will show, if the noise matrix Ψ is given, we can find the optimal factor matrix F by solving an
eigen-problem. If the Ψ is unknown, from a starting guess for Ψ, we can find the optimal F and use this to
reestimate the noise Ψ, iterating this two-step process until convergence. This section is necessarily rather
technical and can be skipped on first reading.

Optimal F for fixed Ψ

To find the maximum likelihood setting of F we differentiate the log likelihood equation (21.1.13) with
respect to F and equate to zero. This gives

0 = trace
(
Σ−1
D (∂FΣD)Σ−1

D S
)
− trace

(
Σ−1
D ∂FΣD

)
(21.2.1)

Using

∂F(ΣD)= ∂F(FFT) = F(∂FFT) + (∂FF)FT (21.2.2)

a stationary point is given when

Σ−1
D F = Σ−1

D SΣ−1
D F (21.2.3)

The optimal F therefore satisfies

F = SΣ−1
D F (21.2.4)

Using the definition of ΣD, equation (21.1.11), one can rewrite Σ−1
D F as (see exercise(21.4))

Σ−1
D F = Ψ−1F

(
I + FTΨ−1F

)−1
(21.2.5)

Plugging this into the zero derivative condition, equation (21.2.4) can be rearranged to

F
(
I + FTΨ−1F

)
= SΨ−1F (21.2.6)

Using the reparameterisations

F̃ ≡ Ψ−
1
2 F, S̃ = Ψ−

1
2 SΨ−

1
2 (21.2.7)

equation (21.2.6) can be written in the ‘isotropic’ form

F̃
(
I + F̃TF̃

)
= S̃F̃ (21.2.8)

We assume that the transformed factor matrix F̃ has a thin SVD decomposition

F̃ = UHLWT (21.2.9)

where dim (UH) = D ×H, dim (L) = H ×H, dim (W) = H ×H and

UT
HUH = IH , WTW = IH (21.2.10)

and L = diag (l1, . . . , lH) are the singular values of F̃. Plugging this assumption into equation (21.2.8) we
obtain

UHLWT
(
IH + WL2WT

)
= S̃UHLWT (21.2.11)

which gives

UH

(
IH + L2

)
= S̃UH , L2 = diag

(
l21, . . . , l

2
H

)
(21.2.12)

Equation(21.2.12) is then an eigen-equation for UH . Intuitively, it’s clear that we need to find then the
eigendecomposition of S̃ and then set the columns of UH to those eigenvectors corresponding to the largest
eigenvalues. This is derived more formally below.
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Determining the appropriate eigenvalues

We can relate the form of the solution to the eigen-decomposition of S̃

S̃ = UΛUT, U = [UH |Ur] (21.2.13)

where Ur are arbitrary additional columns chosen to complete UH to form an orthogonal U, UTU = UUT =
I. Using Λ = diag (λ1, . . . , λD), equation (21.2.12) stipulates 1 + l2i = λi, or li =

√
λi − 1, i = 1, . . . ,H.

Given the solution for F̃, the solution for F is found from equation (21.2.7). To determine the optimal λi
we write the log likelihood in terms of the λi as follows. Using the new parameterisation,

ΣD = Ψ
1
2

(
F̃F̃T + I

)
Ψ

1
2 (21.2.14)

and S = Ψ
1
2 S̃Ψ

1
2 , we have

trace
(
Σ−1
D S

)
= trace

((
F̃F̃T + ID

)−1
S̃

)
(21.2.15)

The log likelihood equation (21.1.10) in this new parameterisation is

− 2

N
log p(V|F,Ψ) = trace

((
ID + F̃F̃T

)−1
S̃

)
+ log det

(
ID + F̃F̃T

)
+ log det (2πΨ) (21.2.16)

Using λi = 1 + l2i , and equation (21.2.9) we can write

ID + F̃F̃T = ID + UHL2UT
H = Udiag (λ1, . . . , λH , 1, . . . , 1) UT (21.2.17)

so that the inverse of this matrix is given by Udiag
(
λ−1

1 , . . . , λ−1
H , 1, . . . , 1

)
UT and hence

trace

((
ID + F̃F̃T

)−1
S̃

)
=
∑
i

λi
λ′i
, λ′i =

{
λi i ≤ H
1 i > H

(21.2.18)

Similarly

log det
(
ID + F̃F̃T

)
=

H∑
i=1

log λi (21.2.19)

Using this we can write the log likelihood as a function of the eigenvalues (for fixed Ψ) as

− 2

N
log p(V|F,Ψ) =

H∑
i=1

log λi +H +

D∑
i=H+1

λi + log det (2πΨ) (21.2.20)

To maximise the likelihood we need to minimise the right hand side of the above. Since log λ < λ we should
place the largest H eigenvalues in the

∑
i log λi term. A solution for fixed Ψ is therefore

F = Ψ
1
2 UH (ΛH − IH)

1
2 R (21.2.21)

where

ΛH ≡ diag (λ1, . . . , λH) (21.2.22)

are the H largest eigenvalues of Ψ−
1
2 SΨ−

1
2 , with UH being the matrix of the corresponding eigenvectors.

R is an arbitrary orthogonal matrix.
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Algorithm 21.1 Factor analysis training using SVD for N D-dimensional datapoints v1, . . . ,vN . H is the
latent number of factors required.

1: Initialise the diagonal noise Ψ
2: Find the mean v̄ of the data v1, . . . ,vN

3: Find the variance σ2
i for each component i of the data v1

i , . . . , v
N
i

4: Compute the centred matrix X =
[
v1 − v̄, . . . ,xN − v̄

]
5: while Likelihood not converged or termination criterion not reached do

6: Form the scaled data matrix X̃ = Ψ−
1
2 X/
√
N

7: Perform SVD for X̃ = UΛ̃W̃T and set Λ = Λ̃
2

8: Set UH to the first H columns of U and set ΛH to contain the first H diagonal entries of Λ.

9: F = Ψ
1
2 UH (ΛH − IH)

1
2 . factor update

10: L = −N
2

{∑H
i=1 log λi +H +

∑D
i=H+1 λi + log det (2πΨ)

}
. log likelihood

11: Ψ = diag
(
σ2
)
− diag

(
FFT

)
. noise update

12: end while

SVD based approach

Rather than finding the eigen-decomposition of Ψ−
1
2 SΨ−

1
2 we can avoid forming the covariance matrix by

considering the thin SVD decomposition of

X̃ =
1√
N

Ψ−
1
2 X (21.2.23)

where the centred data matrix is

X ≡
[
v1 − v̄, . . . ,xN − v̄

]
(21.2.24)

Given a thin decomposition

X̃ = UHΛ̃W̃T (21.2.25)

we obtain the eigenvalues λi = Λ̃2
ii. When the matrix X is too large to store in memory, online SVD methods

are available[52].

Finding the optimal Ψ

The zero derivative of the log likelihood equation (21.1.13) with respect to Ψ occurs when

Ψ = diag
(
S− FFT

)
(21.2.26)

where F is given by equation (21.2.21). There is no closed form solution to equations(21.2.26, 21.2.21). A
simple iterative scheme is to first guess values for the diagonal entries of Ψ and then find the optimal F
using equation (21.2.21). Subsequently Ψ is updated using

Ψnew = diag
(
S− FFT

)
(21.2.27)

We update F using equation (21.2.21) and Ψ using equation (21.2.27) until convergence, see algorithm(21.1).

Alternative schemes for updating the noise matrix Ψ can improve convergence considerably. For example
updating only a single component of Ψ with the rest fixed can be achieved using a closed form expression[323].

21.2.2 Expectation maximisation

An alternative way way to train factor analysis that is popular in machine learning is to use EM, sec-
tion(11.2). We assume that the bias c has been optimally set to the data mean v̄.
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M-step

As usual, we need to consider the energy which, neglecting constants, is

E (F,Ψ) = −
N∑
n=1

〈
1

2
(dn − Fh)T Ψ−1 (dn − Fh)

〉
q(h|vn)

− N

2
log det (Ψ) (21.2.28)

where dn ≡ vn − v̄. The optimal variational distribution q(h|vn) is determined by the E-step below.
Maximising E (F,Ψ) with respect to F gives

F = AH−1 (21.2.29)

where

A ≡ 1

N

∑
n

dn 〈h〉Tq(h|vn) , H ≡ 1

N

∑
n

〈
hhT

〉
q(h|vn)

(21.2.30)

Finally

Ψ =
1

N

∑
n

diag

(〈
(dn − Fh) (dn − Fh)T

〉
q(h|vn)

)
= diag

(
1

N

∑
n

dn(dn)T − 2FAT + FHFT

)
(21.2.31)

Note that the new F is used in the above update for the covariance.

E-step

The above updates depend on the statistics 〈h〉q(h|vn) and
〈
hhT

〉
q(h|vn)

. Using the EM optimal choice for

the E-step we have

q(h|vn) ∝ p(vn|h)p(h) = N (h mn,Σ) (21.2.32)

with

mn = 〈h〉q(h|vn) =
(
I + FTΨ−1F

)−1
FTΨ−1dn, Σ =

(
I + FTΨ−1F

)−1
(21.2.33)

Using these results we can express the statistics in equation (21.2.30) as

H = Σ +
1

N

∑
n

mn(mn)T (21.2.34)

Equations (21.2.29,21.2.31,21.2.33) are iterated till convergence. As for any EM algorithm, the likelihood
equation (21.1.10) (under the diagonal constraint on Ψ) increases at each iteration. Convergence using this
EM technique can be slower than that of the eigen-approach of section(21.2.1). Provided however that a
reasonable initialisation is used, the performance of the two training algorithms can be similar. A useful
initialisation is to use PCA and then set F to the principal directions.

Mixtures of FA

An advantage of probabilistic models is that they may be used as components in more complex models, such
as mixtures of FA[293]. Training can then be achieved using EM or gradient based approaches. Bayesian
extensions are clearly of interest; whilst formally intractable they can be addressed using approximate
methods, for example [105, 192, 119].
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µ

f1

f2

F

G

G

x̄21

x̄22

x̄11

x̄12

x̄13

origin

Figure 21.3: Latent Identity Model. The mean µ represents
the mean of the faces. The subspace F represents the direc-
tions of variation of different faces so that f1 = µ+Fh1 is a
mean face for individual 1, and similarly for f2 = µ+ Fh2.
The subspace G denotes the directions of variability for
any individual face, caused by pose, lighting etc. This vari-
ability is assumed the same for each person. A particular
mean face is then given by the mean face of the person plus
pose/illumination variation, for example x̄12 = f1 + Gw12.
A sample face is then given by a mean face x̄ij plus Gaussian
noise from N (εij 0,Σ).

21.3 Interlude: Modelling Faces

Factor Analysis has widespread application in statistics and machine learning. As an inventive application
of FA, highlighting the probabilistic nature of the model, we describe a face modelling technique that has as
its heart a latent linear model[245]. Consider a gallery of face images X = {xij , i = 1, . . . , I; j = 1, . . . , J} so
that the vector xij represents the jth image of the ith person. As a latent linear model of faces we consider

xij = µ+ Fhi + Gwij + εij (21.3.1)

Here F (dim F = D × F ) is used to model variability between people, and G (dim G = D × G) models
variability related to pose, illumination etc. within the different images of each person. The contribution

fi ≡ µ+ Fhi (21.3.2)

accounts for variability between different people, being constant for individual i. For fixed i, the contribution

Gwij + εij , with εij ∼ N (εij 0,Σ) (21.3.3)

accounts for the variability over the images of person i, explaining why two images of the same person do not
look identical. See fig(21.3) for a graphical representation. As a probabilistic linear latent variable model,
we have for an image xij :

p(xij |hi,wij , θ) = N (xij µ+ Fhi + Gwij ,Σ) (21.3.4)

p(hi) = N (hi 0, I) , p(wij) = N (wij 0, I) (21.3.5)

The parameters are θ = {F,G,µ,Σ}. For the collection of images, assuming i.i.d. data,

p(X ,w,h|θ) =

I∏
i=1


J∏
j=1

p(xij |hi,wij , θ)p(wij)

 p(hi) (21.3.6)

xij

wij

hi

θ

J

I

Figure 21.4: The jth image of the ith person, xij , is modelled
using a linear latent model with parameters θ.
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(a) Mean (b) Variance

(c) (d) (e) (f) (g) (h)

Figure 21.5: Latent Identity Model of face images. Each image is represented by a 70× 70× 3 vector (the 3
comes from the RGB colour coding). There are I = 195 individuals in the database and J = 4 images per
person. (a): Mean of the data. (b): Per pixel standard deviation – black is low, white is high. (c,d,e):
Three directions from the between-individual subspace F. (f,g,h): Three samples from the model with h
fixed and drawing randomly from w in the within-individual subspace G. Reproduced from [245].

for which the graphical model is depicted in fig(21.4). The task of learning is then to maximise the likelihood

p(X|θ) =

∫
w,h

p(X ,w,h|θ) (21.3.7)

This model can be seem as a constrained version of Factor Analysis by using stacked vectors (here for only
a single individual, I = 1)

x11

x12
...

x1J

 =


µ
µ
...
µ

+


F G 0 . . . 0
F 0 G . . . 0
...

...
...

. . .
...

F 0 0 . . . G




h1

w11

w12
...

w1J

+


ε11

ε12
...
ε1J

 (21.3.8)

The generalisation to multiple individuals I > 1 is straightforward. The model can be trained using either a
constrained form of the eigen method, or EM as described in [245]. Example images from the trained model
are presented in fig(21.5).

Recognition

Using the above constrained factor analysis models for faces, one can extend their application to classifica-
tion, as we now briefly describe. In closed set face recognition a new ‘probe’ face x∗ is to be matched to
a person n in the gallery of training faces. In model Mn the nth gallery face is forced to share its latent
identity variable hn with the test face, indicating that these faces belong to the same person3, see fig(21.6).
Assuming a single exemplar per person (J = 1),

p(x1, . . . ,xI ,x∗|Mn) = p(xn,x∗)
I∏

i=1,i 6=n
p(xi) (21.3.9)

Bayes’ rule then gives the posterior class assignment

p(Mn|x1, . . . ,xI ,x∗) ∝ p(x1, . . . ,xI ,x∗|Mn)p(Mn) (21.3.10)

3This is analogous to Bayesian outcome analysis in section(12.6) in which the hypotheses assume that either the errors were
generated from the same or a different model.
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x1 x2 x∗

h1 h2

w1 w2 w∗

(a) M1

x1 x2 x∗

h1 h2

w1 w2 w∗

(b) M2

Figure 21.6: Face recognition model (de-
picted only for a single exemplar per per-
son, J = 1). (a): In model M1 the
test image (or ‘probe’) x∗ is assumed to
be from person 1, albeit with a different
pose/illumination. (b): For model M2

the test image is assumed to be from per-
son 2. One calculates p(x1,x2,x∗|M1) and
p(x1,x2,x∗|M2) and then uses Bayes’ rule
to infer to which person the test image x∗
most likely belongs.

For a uniform prior, the term p(Mn) is constant and can be neglected. All these marginal quantities are
straightforward to derive since they are simply marginals of a Gaussian.
In practice, the best results are obtained using a between-individual subspace dimension F and within-
individual subspace dimension G both equal to 128. This model then has performance competitive with the
state-of-the-art[245]. A benefit of the probabilistic model is that the extension to mixtures of this model
is essentially straightforward, which boosts performance further. Related models can also be used for the
‘open set’ face recognition problem in which the probe face may or may not belong to one of the individuals
in the database[245].

21.4 Probabilistic Principal Components Analysis

PPCA[296] corresponds to Factor Analysis under the restriction Ψ = σ2ID. Plugging this assumption into
the eigen-solution equation (21.2.21) gives

F = σUH (ΛH − IH)
1
2 R (21.4.1)

where the eigenvalues (diagonal entries of ΛH) and corresponding eigenvectors (columns of UH) are the
largest eigenvalues of σ−2S. Since the eigenvalues of σ−2S are those of S simply scaled by σ−2 (and the
eigenvectors are unchanged), we can equivalently write

F = UH

(
ΛH − σ2IH

) 1
2 R (21.4.2)

where R is an arbitrary orthogonal matrix with RTR = I and UH , ΛH are the eigenvectors and correspond-
ing eigenvalues of the sample covariance S. Classical PCA, section(15.2), is recovered in the limit σ2 → 0.
Note that for a full correspondence with PCA, one needs to set R = I, which points F along the principal
directions.

Optimal σ2

A particular convenience of PPCA is that the optimal noise σ2 can be found immediately. We order the
eigenvalues of S so that λ1 ≥ λ2, ... ≥ λD. In equation (21.2.20) an expression for the log likelihood is given
in which the eigenvalues are those σ−2S. On replacing λi with λi/σ

2 we can therefore write an explicit
expression for the log likelihood in terms of σ2 and the eigenvalues of the sample covariance S,

L(σ2) = −N
2

(
D log(2π) +

H∑
i=1

log λi +
1

σ2

D∑
i=H+1

λi + (D −H) log σ2 +H

)
(21.4.3)

By differentiating L(σ2) and equating to zero, the maximum likelihood optimal setting for σ2 is

σ2 =
1

D −H
D∑

j=H+1

λj (21.4.4)

In summary PPCA is obtained by taking the H principal eigenvalues and corresponding eigenvectors of the
sample covariance matrix S, and setting the variance by equation (21.4.4). The single-shot training nature
of PPCA makes it an attractive algorithm and also gives a useful initialisation for Factor Analysis.
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FA FA FA FA FA

PCA PCA PCA PCA PCA

Figure 21.7: For a 5 hidden unit model, here are plotted the
results of training PPCA and FA on 100 examples of the hand-
written digit seven. The top row contains the 5 Factor Analysis
factors and the bottom row the 5 largest eigenvectors from PPCA
are plotted.

Example 21.1 (A Comparison of FA and PPCA). We trained both PPCA and FA to model handwritten
digits of the number 7. From a database of 100 such images, we fitted both PPCA and FA (100 iterations
of EM in each case from the same random initialisation) using 5 hidden units. The learned factors for these
models are in fig(21.7). To get a feeling for how well each of these models the data, we drew 25 samples from
each model, as given in fig(21.8a). Compared with PPCA, in FA the individual noise on each observation
pixel enables a cleaner representation of the regions of zero sample variance.

21.5 Canonical Correlation Analysis and Factor Analysis

We outline how CCA, as discussed in section(15.8), is related to a constrained form of FA. As a brief re-
minder, CCA considers two spaces X and Y where, for example, X might represent an audio sequence of a
person speaking and Y the corresponding video sequence of the face of the person speaking. The two streams
of data are dependent since we would expect the parts around the mouth region to be correlated with the
speech signal. The aim in CCA is to find a low dimensional representation that explains the correlation
between the X and Y spaces.

A model that achieves a similar effect to CCA is to use a latent factor h to underlie the data in both the X
and Y spaces, see fig(21.5). That is

p(x,y) =

∫
p(x|h)p(y|h)p(h)dh (21.5.1)

where

p(x|h) = N (x ha,Ψx) , p(y|h) = N (y hb,Ψy) , p(h) = N (h 0, 1) (21.5.2)

We can express equation (21.5.2) as a form of Factor Analysis by writing(
x
y

)
=

(
a
b

)
h+

(
εx
εy

)
, εx ∼ N (εx 0,Ψx) , εy ∼ N (εy 0,Ψy) (21.5.3)

By using the stacked vectors

z =

(
x
y

)
, f =

(
a
b

)
, (21.5.4)

(a) Factor Analysis (b) PPCA

Figure 21.8: (a): 25 sam-
ples from the learned FA model.
Note how the noise variance de-
pends on the pixel, being zero
for pixels on the boundary of the
image. (b): 25 samples from
the learned PPCA model with
the same noise variance on each
pixel.
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h

x y

Figure 21.9: Canonical Correlation Analysis. CCA corresponds to the
latent variable model in which a common latent variable generates
both the observed x and y variables. This is therefore a formed of
constrained Factor Analysis.

and integrating out the latent variable h, we obtain

p(z) = N (z 0,Σ) , Σ = ffT + Ψ, Ψ =

(
Ψx 0
0 Ψy

)
(21.5.5)

This is therefore clearly simply a factor analysis model, in this case with a single latent factor. We can learn
the best a and b by maximising the likelihood on a set of data. From the FA results equation (21.2.6) the
optimal f is given by (with S being the sample covariance matrix)

f
(

1 + fTΨ−1f
)

= SΨ−1f ⇒ f ∝ SΨ−1f (21.5.6)

so that optimally f is given by the principal eigenvector of SΨ−1. By imposing Ψx = σ2
xI, Ψy = σ2

yI the
above equation can be expressed as the coupled equations

a ∝ 1

σ2
x

Sxxa +
1

σ2
y

Sxyb, b ∝ 1

σ2
x

Syxa +
1

σ2
y

Syyb (21.5.7)

Eliminating b we have, for an arbitrary proportionality constant γ,(
I− γ

σ2
x

Sxx

)
a =

γ2

σ2
xσ

2
y

Sxy

(
I− γ

σ2
y

Syy

)−1

Syxa (21.5.8)

In the limit σ2
x, σ

2
y → 0, this tends to the zero derivative condition equation (15.8.9) so that CCA can be

seen as in fact a limiting form of FA (see [11] for a more thorough correspondence). By viewing CCA in
this manner extensions to using more than a single latent dimension H become clear, see exercise(21.2), in
addition to the benefits of a probabilistic interpretation.

As we’ve indicated, CCA corresponds to training a form of FA by maximising the joint likelihood p(x,y|w,u).
If the x represents rather an input and y the output, we are more interested in finding a good predictive
representation. In this case, training based on maximising the conditional p(y|x,w,u) corresponds to a
special case of a technique called Partial Least Squares, see for example [82]. This correspondence is left as
an exercise for the interested reader.

21.6 Independent Components Analysis

Independent Components Analysis (ICA) seeks a representation of data v using a coordinate system h in
which the components hi are independent[238, 151]. Such independent coordinate systems arguably form a
natural representation of the data. In ICA it is common to assume that the observations are linearly related
to the latent variables h. For technical reasons, the most convenient practical choice is to use4

v = Ah (21.6.1)

where A is a square mixing matrix so that the likelihood of an observation v is

p(v|A) =

∫
p(v|h,A)

∏
i

p(hi)dh =

∫
δ (v −Ah)

∏
i

p(hi)dh =
1

|det (A)|
∏
i

p(
[
A−1v

]
i
) (21.6.2)

4This treatment follows that presented in [197].
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Figure 21.10: Latent data is sampled from the prior p(xi) ∝
exp(−5

√
|xi|) with the mixing matrix A shown in green to cre-

ate the observed two dimensional vectors y = Ax. The red lines
are the mixing matrix estimated by ica.m based on the obser-
vations. For comparison, PCA produces the blue (dashed) com-
ponents. Note that the components have been scaled to improve
visualisation. As expected, PCA finds the orthogonal directions
of maximal variation. ICA however, correctly estimates the di-
rections in which the components were independently generated.
See demoICA.m.

For a given set of data V =
(
v1, . . . ,vN

)
and prior p(h), our aim is to find A. For i.i.d. data, the log

likelihood is conveniently written in terms of B = A−1,

L(B) = N log det (B) +
∑
n

∑
i

log p([Bvn]i) (21.6.3)

Note that for a Gaussian prior

p(h) ∝ exp
(
−h2

)
(21.6.4)

the log likelihood becomes

L(B) = N log det (B)−
∑
n

(vn)T BTBvn + const. (21.6.5)

which is invariant with respect to an orthogonal rotation B → RB, with RTR = I. This means that for
a Gaussian prior p(h), we cannot estimate uniquely the mixing matrix. To break this rotational invariance
we therefore need to use a non-Gaussian prior. Assuming we have a non-Gaussian prior p(h), taking the
derivative w.r.t. Bab we obtain

∂

∂Bab
L(B) = NAba +

∑
n

φ([Bv]a)v
n
b (21.6.6)

where

φ(x) ≡ d

dx
log p(x) =

1

p(x)

d

dx
p(x) (21.6.7)

A simple gradient ascent learning rule for B is then

Bnew = B + η

(
B−T +

1

N

∑
n

φ(Bvn) (vn)T

)
(21.6.8)

An alternative ‘natural gradient’ algorithm[7, 197] that approximates a Newton update is given by multi-
plying the gradient by BTB on the right to give the update

Bnew = B + η

(
I +

1

N

∑
n

φ(Bvn) (Bvn)T

)
B (21.6.9)

Here η is a learning rate which in the code ica.m we nominally set to 0.5. The performance of the algorithm
is relatively insensitive to the choice of the prior function φ(x). In ica.m we use the tanh function. An
example is given in fig(21.10) in which the data clearly has an underlying ‘X’ shape, although the axes of
the ‘X’ are not orthogonal. In this case, the ICA and PCA representations are very different, see fig(21.10).
A natural extension is to consider noise on the outputs, exercise(21.6), for which an EM algorithm is readily
available. However, in the limit of low output noise, the EM formally fails, an effect which is related to the
general discussion in section(11.4).
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A popular alternative estimation method is FastICA5 and can be related to an iterative maximum likelihood
optimisation procedure. ICA can also be motivated from several alternative directions, including information
theory[29]. We refer the reader to [151] for an in-depth discussion of ICA and related extensions.

21.7 Summary

• Factor Analysis is a classical probabilistic method for finding low-dimensional representations of the data.

• There is no closed form solution in general and iterative procedures are typically used to find the maximum
likelihood parameters.

• Canonical Correlation Analysis is a special case of Factor Analysis.

• Under the assumption of non-Gaussian latent variable priors, one is able to discover independent directions
in the data.

21.8 Code

FA.m: Factor Analysis
demoFA.m: Demo of Factor Analysis
ica.m: Independent Components Analysis
demoIca.m: Demo ICA

21.9 Exercises

Exercise 21.1. Factor Analysis and scaling. Assume that a H-factor model holds for x. Now consider the
transformation y = Cx, where C is a non-singular square diagonal matrix. Show that Factor Analysis is
scale invariant, i.e. that the H-factor model also holds for y, with the factor loadings appropriately scaled.
How must the specific factors be scaled?

Exercise 21.2. For the constrained Factor Analysis model

x =

(
A 0
0 B

)
h + ε, ε ∼ N (ε 0, diag (ψ1, . . . , ψn)) , h ∼ N (h 0, I) (21.9.1)

derive a maximum likelihood EM algorithm for the matrices A and B, assuming the datapoints x1, . . . ,xN

are i.i.d.

Exercise 21.3. An apparent extension of FA analysis is to consider a correlated prior

p(h) = N (h 0,ΣH) (21.9.2)

Show that, provided no constraints are placed on the factor loading matrix F, using a correlated prior p(h)
is an equivalent model to the original uncorrelated FA model.

Exercise 21.4. Using the Woodbury identity and the definition of ΣD in equation (21.2.3), show that one
can rewrite Σ−1

D F as

Σ−1
D F = Ψ−1F

(
I + FTΨ−1F

)−1
(21.9.3)

5See www.cis.hut.fi/projects/ica/fastica/
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Exercise 21.5. For the log likelihood function

L(σ2) = −N
2

(
D log(2π) +

H∑
i=1

log λi +
1

σ2

D∑
i=H+1

λi + (D −H) log σ2 +H

)
(21.9.4)

Show L(σ2) is maximal for

σ2 =
1

D −H
D∑

j=H+1

λj (21.9.5)

Exercise 21.6. Consider an ICA model in which y represents the outputs and x the latent components

p(y,x|W) =
∏
j

p(yj |x,W)
∏
i

p(xi), W = [w1, . . . ,wJ ] (21.9.6)

with

p(yj |x,W) = N
(
yj wT

j x, σ2
)

(21.9.7)

1. For the above model derive an EM algorithm for a set of i.i.d. data y1, . . . ,yN and show that the
required statistics for the M-step are 〈x〉p(x|yn,W) and

〈
xxT

〉
p(x|yn,W)

.

2. Show that for a non-Gaussian prior p(xi), the posterior

p(x|y,W) (21.9.8)

is non-factorised, non-Gaussian and generally intractable (its normalisation constant cannot be com-
puted efficiently).

3. Show that in the limit σ2 → 0, the EM algorithm fails.
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CHAPTER 22

Latent Ability Models

In this chapter we discuss an application of latent variable models to ascertaining the ability of players
in games. These models are applicable in a variety of contexts from exam performance to football match
prediction to online gaming analysis.

22.1 The Rasch Model

Consider an exam in which student s answers question q either correctly xqs = 1 or incorrectly xqs = 0.
For a set of N students and Q questions, the performance of all students is given in the Q × N binary
matrix X. Based on this data alone we wish to evaluate the ability of each student. One approach is to
define the ability as as the fraction of questions student s answered correctly. A more subtle analysis is to
accept that some questions are more difficult than others so that a student who answered difficult questions
should be awarded more highly than a student who answered the same number of easy questions. A priori,
however, we do not know which are the difficult questions and this needs to be estimated based on X. To
account for inherent differences in question difficulty we may model the probability that a student s gets
a question q correct based on the student’s latent ability αs and the latent difficulty of the question δq. A
simple generative model of the response is, see fig(22.2)

p(xqs = 1|α, δ) = σ (αs − δq) (22.1.1)

where σ (x) = 1/(1 + e−x). Under this model, the higher the latent ability is above the latent difficulty of
the question, the more likely it is that the student will answer the question correctly.

22.1.1 Maximum likelihood training

We may use maximum likelihood to find the best parameters α, δ. Making the i.i.d. assumption, the
likelihood of the data X under this model is

p(X|α, δ) =

S∏
s=1

Q∏
q=1

σ (αs − δq)xqs (1− σ (αs − δq))1−xqs (22.1.2)

The log likelihood is then

L ≡ log p(X|α, δ) =
∑
q,s

xqs log σ (αs − δq) + (1− xqs) log (1− σ (αs − δq)) (22.1.3)

with derivatives

∂L

∂αs
=

Q∑
q=1

(xqs − σ (αs − δq)) ,
∂L

∂δq
= −

S∑
s=1

(xqs − σ (αs − δq)) (22.1.4)
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xqs αs

δq

S

Q

Figure 22.1: The Rasch model for analysing questions. Each
element of the binary matrix X, with xqs = 1 if student s gets
question q correct, is generated using the latent ability of the
student αs and the latent difficulty of the question δq.

A simple way to learn the parameters is to use gradient ascent, see demoRasch.m, with extensions to Newton
methods being straightforward.

The generalisation to more than two responses xqs ∈ {1, 2, . . .} can be achieved using a softmax-style
function. More generally, the Rasch model falls under item response theory , a subject dealing with the
analysis of questionnaires[101].

Missing data

Assuming the data is missing at random, missing data can be treated by computing the likelihood of only
the observed elements of X. In rasch.m missing data is assumed to be coded as nan so that the likelihood
and gradients are straightforward to compute based on summing only over terms containing non nan entries.

Example 22.1. We display an example of the use of the Rasch model in fig(22.2), estimat-
ing the latent abilities of 20 students based on a set of 50 questions. Based on using the
number of questions each student answered correctly, the best students are (ranked from first)
8, 6, 1, 19, 4, 17, 20, 7, 15, 5, 12, 16, 2, 3, 18, 9, 11, 14, 10, 13. Alternatively, ranking students according to the
latent ability gives 8, 6, 19, 1, 20, 4, 17, 7, 15, 12, 5, 16, 2, 3, 18, 9, 11, 14, 10, 13. This differs (only slightly in this
case) from the number-correct ranking since the Rasch model takes into account the fact that some students
answered difficult questions correctly. For example student 20 answered some difficult questions correctly.

22.1.2 Bayesian Rasch models

The Rasch model will potentially overfit the data especially when there is only a small amount of data. For
this case a natural extension is to use a Bayesian technique, placing independent priors on the ability and
question difficulty, so that the posterior ability and question difficulty is given by

p(α, δ|X) ∝ p(X|α, δ)p(α)p(δ) (22.1.5)

Natural priors are those that discourage very large values of the parameters, such as Gaussians

p(α) =
∏
s

N
(
αs 0, σ2

)
, p(δ) =

∏
q

N
(
δq 0, τ2

)
(22.1.6)

where σ2 and τ2 are hyperparameters that can be learned by maximising p(X|σ2, τ2). Even using Gaussian
priors, however, the posterior distribution p(α, δ|X) is not of a standard form and approximations are
required. In this case however, the posterior is log concave so that approximation methods based on
variational or Laplace techniques are potentially adequate, chapter(28); alternatively one may use sampling
approximations, chapter(27).
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Figure 22.2: Rasch model. (a): The data of correct answers (white) and incorrect answers (black). (b):
The estimated latent difficulty of each question. (c): The fraction of questions each student answered
correctly. (d): The estimated latent ability.

22.2 Competition Models

22.2.1 Bradley-Terry-Luce model

The Bradley-Terry-Luce model assesses the ability of players based on one-on-one matches. Here we describe
games in which only win/lose outcomes arise, leaving aside the complicating possibility of draws. For this
win/lose scenario, the BTL model is a straightforward modification of the Rasch model so that for latent
ability αi of player i and latent ability αj of player j, the probability that i beats j is given by

p(iB j|α) = σ (αi − αj) (22.2.1)

where iB j stands for player i beats player j. Based on a matrix of games data X with

xnij =

{
1 if iB j in game n
0 otherwise

(22.2.2)

the likelihood of the model is given by

p(X|α) =
∏
n

∏
ij

[σ (αi − αj)]x
n
ij =

∏
ij

[σ (αi − αj)]Mij (22.2.3)

where Mij =
∑

n x
n
ij is the number of times player i beat player j. Training using maximum likelihood or a

Bayesian technique can then proceed as for the Rasch model.

These models are also called pairwise comparison models and pioneered by Thurstone in the 1920’s who
applied such models to a wide range of data [77].
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Figure 22.3: BTL model. (a): The data M with Mij being the number of times that competitor i beat
competitor j. (b): The true versus estimated ability of the 100 competitors (unlabelled). Even though the
data is quite sparse, a reasonable estimate of the latent ability of each competitor is found.

Example 22.2. An example application of the BTL model is given in fig(22.3) in which a matrix M
containing the number of times that competitor i beat competitor j is given. The matrix entries M were
drawn from a BTL model based on ‘true abilities’. Using M alone the maximum likelihood estimate of these
latent abilities is in close agreement with the true abilities.

22.2.2 Elo ranking model

The Elo system [95] used in chess ranking is closely related to the BTL model above, though there is the
added complication of the possibility of draws. In addition, the Elo system takes into account a measure
of the variability in performance. For a given ability αi, the actual performance πi of player i in a game is
given by

πi = αi + εi (22.2.4)

where εi ∼ N
(
εi 0, σ2

)
. The variance σ2 is fixed across all players and thus takes into account intrinsic

variability in the performance. More formally the Elo model modifies the BTL model to give

p(X|α) =

∫
π
p(X|π)p(π|α), p(π|α) = N

(
π α, σ2I

)
(22.2.5)

where p(X|π) is given by equation (22.2.3) on replacing α with π.

22.2.3 Glicko and TrueSkill

Glicko[126] and TrueSkill[142] are essentially Bayesian versions of the Elo model with the refinement that
the latent ability is modelled, not by a single number, but by a Gaussian distribution

p(αi|θi) = N
(
αi µi, σ

2
i

)
(22.2.6)

This can capture the fact that a player may be consistently reasonable (quite high µi and low σ2
i ) or an

erratic genius (high µi but with large σ2
i ). The parameters of the model are then

θ =
{
µi, σ

2
i , i = 1, . . . , S

}
(22.2.7)

for a set of S players. The interaction model p(X|α) is as for the win/lose Elo model, equation (22.2.1).
The likelihood for the model given the parameters is

p(X|θ) =

∫
α
p(X|α)p(α|θ) (22.2.8)
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This integral is formally intractable and numerical approximations are required. In this context expectation
propagation, section(28.8), has proven to be a useful technique[210]. The TrueSkillsystem is used for example
to assess the abilities of players in online gaming, also taking into account the abilities of teams of individuals
in tournaments. A temporal extension has recently been used to reevaluate the change in ability of chess
players with time[76].

22.3 Summary

• The Rasch model is a simple model of latent student ability and question difficulty. In principle it is better
able to assess student performance than simply counting the number of correct questions since it implicitly
takes into account the fact that some questions are more difficult than others.

• Related models can be used to assess the underlying ability of players in games.

22.4 Code

rasch.m: Rasch model training
demoRasch.m: Demo for the Rasch model

22.5 Exercises

Exercise 22.1 (Bucking Bronco). bronco.mat contains information about a bucking bronco competition.
There are 500 competitors and 20 bucking broncos. A competitor j attempts to stay on a bucking bronco i
for a minute. If the competitor succeeds, the entry Xij is 1, otherwise 0. Each competitor gets to ride three
bucking broncos only (the missing data is coded as nan). Having viewed all the 500 amateurs, Desperate Dan
enters the competition and bribes the organisers into letting him avoid having to ride the difficult broncos.
Based on using a Rasch model, which are the top 10 most difficult broncos, in order of the most difficult
first?

Exercise 22.2 (BTL training).

1. Show that the log likelihood for the Bradley-Terry-Luce model is given by

L(α) =
∑
ij

Mij log σ (αi − αj) (22.5.1)

where Mij is the number of times that player i beats player j in a set of games.

2. Compute the gradient of L(α).

3. Compute the Hessian of the BTL model and verify that it is negative semidefinite.

Exercise 22.3 (La Reine).

1. Program a simple gradient ascent routine to learn the latent abilities of competitors based on a series
of win/lose outcomes.

2. In a modified form of Swiss cow ‘fighting’, a set of cows compete by pushing each other until submission.
At the end of the competition one cow is deemed to be ‘la reine’. Based on the data in BTL.mat (for
which Xij contains the number of times cow i beat cow j), fit a BTL model and return a ranked list of
the top ten best fighting cows, ‘la reine’ first.
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Exercise 22.4. An extension of the BTL model is to consider additional factors that describe the state
of the competitors when they play. For example, we have a set of S football teams, and a set of matrices
X1, . . . ,XN , with Xn

ij = 1 if team i beat team j in match n. In addition we have for each match n and team
i a vector of binary factors fnh,i ∈ {0, 1} , h = 1, . . . ,H that describes the team. For example, for the team
i = 1 (Madchester United), the factor fn1,1 = 1 if Bozo is playing in match n, 0 if not. It is suggested that
the ability of team i in game n is measured by

αni = di +
H∑
h=1

wh,if
n
h,i. (22.5.2)

Here di is a default latent ability of the team which is assumed constant across all games. We have such a
set of factors for each match.

1. Using the above definition of the latent ability in the BTL model, our interest is to find the weights
W and abilities d that best describe the ability of the team, given that we have a set of historical plays
(Xn,Fn), n = 1, . . . , N . Write down the likelihood for the BTL model as a function of the set of all
team weights W,d.

2. Compute the gradient of the log likelihood of this model.

3. Explain how this model can be used to assess the importance of Bozo’s contribution to Madchester
United’s ability.

4. Given learned W,d and the knowledge that Madchester United (team 1) will play Chelski (team 2)
tomorrow explain how, given the list of factors f for Chelski (which includes issues such as who will
be playing in the team), one can select the best Madchester United team to maximise the probability of
winning the game.
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Introduction to Part IV

Natural organisms inhabit a dynamical environment and arguably a large part
of natural intelligence is in modelling causal relations and consequences of ac-
tions. In this sense, modelling temporal data is of fundamental interest. In a
more artificial environment, there are many instances where predicting the future is
of interest, particularly in areas such as finance and also in tracking of moving objects.

In Part IV, we discuss some of the classical models of timeseries that may be used to
represent temporal data and also to make predictions of the future. Many of these
models are well known in different branches of science from Physics to Engineering
and are heavily used in areas such as speech recognition, financial prediction and
control. We also discuss some more sophisticated models in chapter 25, which may be
skipped at first reading.

As an allusion to the fact that natural organisms inhabit a temporal world, we also ad-
dress in chapter 26 some basic models of how information processing might be achieved
in distributed systems.
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CHAPTER 23

Discrete-State Markov Models

Timeseries require specialised models since the number of variables can be very large and typically increases
as new datapoints arrive. In this chapter we discuss models in which the process generating the observed
data is fundamentally discrete. These models give rise to classical models with interesting applications in
many fields from finance to speech processing and website ranking.

23.1 Markov Models

Timeseries are datasets for which the constituent datapoints can be naturally ordered. This order often
corresponds to an underlying single physical dimension, typically time, though any other single dimension
may be used. The time-series models we consider are probability models over a collection of random variables
v1, . . . , vT with individual variables vt indexed by discrete time t. A probabilistic time-series model requires
a specification of the joint distribution p(v1, . . . , vT ). For the case in which the observed data vt are discrete,
the joint probability table for p(v1, . . . , vT ) has exponentially many entries. We therefore cannot expect to
independently specify all the exponentially many entries and need to make simplified models under which
these entries can be parameterised in a lower dimensional manner. Such simplifications are at the heart of
timeseries modelling and we will discuss some classical models in the following sections.

Definition 23.1 (Time-Series Notation).

xa:b ≡ xa, xa+1, . . . , xb, with xa:b = xa for b ≤ a (23.1.1)

For timeseries data v1, . . . , vT , we need a model p(v1:T ). For consistency with the causal nature of time, it
is natural to consider the cascade decomposition

p(v1:T ) =
T∏
t=1

p(vt|v1:t−1) (23.1.2)

with the convention p(vt|v1:t−1) = p(v1) for t = 1. It is often useful to assume that the influence of the
immediate past is more relevant than the remote past and in Markov models only a limited number of
previous observations are required to predict the future, see fig(23.1).

Definition 23.2 (Markov chain). A Markov chain defined on either discrete or continuous variables v1:T is
one in which the following conditional independence assumption holds:

p(vt|v1, . . . , vt−1) = p(vt|vt−L, . . . , vt−1) (23.1.3)
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v1 v2 v3 v4

(a)

v1 v2 v3 v4

(b)

Figure 23.1: (a): First order Markov chain. (b): Second order Markov chain.

where L ≥ 1 is the order of the Markov chain and vt = ∅ for t < 1. For a first order Markov chain,

p(v1:T ) = p(v1)p(v2|v1)p(v3|v2) . . . p(vT |vT−1) (23.1.4)

For a stationary Markov chain the transitions p(vt = s′|vt−1 = s) = f(s′, s) are time-independent. Otherwise
the chain is non-stationary, p(vt = s′|vt−1 = s) = f(s′, s, t).

For a discrete state first order time-independent Markov chain one can visualise the transition p(vt|vt−1)
using a state-transition diagram, as in fig(23.2).

1

23

Figure 23.2: A state transition diagram for a three state Markov
chain. Note that a state transition diagram is not a graphical
model – it simply displays the non-zero entries of the transition
matrix p(i|j). The absence of a link from j to i indicates that
p(i|j) = 0.

23.1.1 Equilibrium and stationary distribution of a Markov chain

For a transition p(xt|xt−1), it is interesting to know how the marginal p(xt) evolves through time. For a
discrete state system, this is given by

p(xt = i) =
∑
j

p(xt = i|xt−1 = j)︸ ︷︷ ︸
Mij

p(xt−1 = j) (23.1.5)

For an initial distribution p(x1), the above recursively defines the marginal for all future timepoints. The
marginal p(xt = i) has the interpretation of the frequency that we visit state i at time t, given we started
with a sample from p(x1) and subsequently repeatedly drew samples from the transition p(xτ |xτ−1). That
is, by drawing a state x1 = x1, from p(x1) we can draw samples x2, . . . , xt from the Markov chain by first
drawing a sample from p(x2|x1 = x1), and then from p(x3|x2 = x2) etc. As we repeatedly sample a new
state from the chain, the marginal distribution at time t, represented by the vector [pt]i = p(xi = i) and
initial distribution p1 is

pt = Mpt−1 = Mt−1p1 (23.1.6)

If, for t→∞, p∞ is independent of the initial distribution p1, then p∞ is called the equilibrium distribution
of the chain. See exercise(23.2) for an example of a Markov chain which does not have an equilibrium
distribution. The so-called stationary distribution of a Markov chain is defined by the condition

p∞(i) =
∑
j

p(xt = i|xt−1 = j)p∞(j) (23.1.7)

In matrix notation this can be written as the vector equation

p∞ = Mp∞ (23.1.8)

so that the stationary distribution is proportional to the eigenvector with unit eigenvalue of the transition
matrix. Note that there may be more than one stationary distribution. See exercise(23.1) and [134].
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h

v1 v2 v3 v4

(a)

Figure 23.3: Mixture of first order Markov chains. The
discrete hidden variable dom(h) = {1, . . . ,H} indexes
the Markov chain

∏
t p(vt|vt−1, h). Such models can

be useful as simple sequence clustering tools.

Example 23.1 (PageRank). Despite their apparent simplicity, Markov chains have been put to interesting
use in information retrieval and search-engines. Define the matrix

Aij =

{
1 if website j has a hyperlink to website i
0 otherwise

(23.1.9)

From this we can define a Markov transition matrix with elements

Mij =
Aij∑
i′ Ai′j

(23.1.10)

The equilibrium distribution of this Markov Chain has the interpretation : If we follow links at random,
jumping from website to website, the equilibrium distribution component p∞(i) is the relative number of
times we will visit website i. This has a natural interpretation as the ‘importance’ of website i; if a website
is isolated in the web, it will be visited infrequently by random hopping; if a website is linked by many
others it will be visited more frequently.

A crude search engine works as follows. For each website i a list of words associated with that website is
collected. After doing this for all websites, one can make an ‘inverse’ list of which websites contain word
w. When a user searches for word w, the list of websites that contain that word is then returned, ranked
according to the importance of the site (as defined by the equilibrium distribution).

23.1.2 Fitting Markov models

Given a sequence v1:T , fitting a stationary first order Markov chain by maximum likelihood corresponds to
setting the transitions by counting the number of observed (first-order) transitions in the sequence:

p(vτ = i|vτ−1 = j) ∝
T∑
t=2

I [vt = i, vt−1 = j] (23.1.11)

To show this, for convenience we write p(vτ = i|vτ−1 = j) ≡ θi|j , so that the likelihood is (assuming v1 is
known):

p(v2:T |θ, v1) =

T∏
t=2

θvt|vt−1
=

T∏
t=2

∏
i,j

θ
I[vt=i,vt−1=j]
i|j (23.1.12)

Taking logs and adding the Lagrange constraint for the normalisation,

L(θ) =
T∑
t=2

∑
i,j

I [vt = i, vt−1 = j] log θi|j +
∑
j

λj

(
1−

∑
i

θi|j

)
(23.1.13)

Differentiating with respect to θi|j and equating to zero, we immediately arrive at the intuitive setting, equa-
tion (23.1.11). For a set of timeseries, vn1:Tn

, n = 1, . . . , N , the transition is given by counting all transitions
across time and datapoints. The maximum likelihood setting for the initial first timestep distribution is
p(v1 = i) ∝∑n I [vn1 = i].
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Bayesian fitting

For simplicity, we assume a factorised prior on the transition

p(θ) =
∏
j

p(θ·|j) (23.1.14)

A convenient choice for each conditional transition is a Dirichlet distribution with hyperparameters uj ,
p(θ·|j) = Dirichlet

(
θ·|j |uj

)
, since this is conjugate to the categorical transition, giving

p(θ|v1:T ) ∝ p(v1:T |θ)p(θ) ∝
∏
t

∏
i,j

θ
I[vt=i,vt−1=j]
i|j θ

uij−1

i|j =
∏
j

Dirichlet
(
θ·|j |ûj

)
(23.1.15)

where ûj =
∑T

t=2 I [vt−1 = j, vt = i], being the number of j → i transitions in the dataset.

23.1.3 Mixture of Markov models

Given a set of sequences V = {vn1:T , n = 1, . . . , N}, how might we cluster them? To keep the notation less
cluttered, we assume that all sequences are of the same length T with the extension to differing lengths being
straightforward. One simple approach is to fit a mixture of Markov models. Assuming the data is i.i.d.,
p(V) =

∏
n p(v

n
1:T ), we define a mixture model for a single sequence v1:T . Here we assume each component

model is first order Markov

p(v1:T ) =
H∑
h=1

p(h)p(v1:T |h) =

H∑
h=1

p(h)

T∏
t=1

p(vt|vt−1, h) (23.1.16)

The graphical model is depicted in fig(23.3). Clustering can then be achieved by finding the maximum
likelihood parameters p(h), p(vt|vt−1, h) and subsequently assigning the clusters according to p(h|vn1:T ).

EM algorithm

The EM algorithm, section(11.2), is particularly convenient for finding the maximum likelihood solution in
this case since the M-step can be performed simply. Under the i.i.d. data assumption, the log likelihood is

log p(V) =

N∑
n=1

log

H∑
h=1

p(h)

T∏
t=1

p(vnt |vnt−1, h) (23.1.17)

For the M-step, our task is to maximise the energy

E =

N∑
n=1

〈log p(vn1:T , h)〉pold(h|vn1:T ) =

N∑
n=1

{
〈log p(h)〉pold(h|vn1:T ) +

T∑
t=1

〈log p(vt|vt−1, h)〉pold(h|vn1:T )

}
The contribution to the energy from the parameter p(h) is

N∑
n=1

〈log p(h)〉pold(h|vn1:T ) (23.1.18)

By defining

p̂old(h) ∝
N∑
n=1

pold(h|vn1:T ) (23.1.19)

one can view maximising (23.1.18) as equivalent to minimising

KL
(
p̂old(h)|p(h)

)
(23.1.20)

so that the optimal choice from the M-step is to set pnew = p̂old, namely

pnew(h) ∝
N∑
n=1

pold(h|vn1:T ) (23.1.21)
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For those less comfortable with this argument, a direct maximisation including a Lagrange term to ensure
normalisation of p(h) can be used to derive the same result.

Similarly, the M-step for p(vt|vt−1, h) is

pnew(vt = i|vt−1 = j, h = k) ∝
N∑
n=1

pold(h = k|vn1:T )

T∑
t=2

I [vnt = i] I
[
vnt−1 = j

]
(23.1.22)

The initial term p(v1|h) is updated using

pnew(v1 = i|h = k) ∝
N∑
n=1

pold(h = k|vn1:T )I [vn1 = i] (23.1.23)

Finally, the E-step sets

pold(h|vn1:T ) ∝ p(h)p(vn1:T |h) = p(h)
T∏
t=1

p(vnt |vnt−1, h) (23.1.24)

Given an initialisation, the EM algorithm then iterates (23.1.21),(23.1.22), (23.1.23) and (23.1.24) until
convergence.

For long sequences, explicitly computing the product of many terms may lead to numerical underflow issues.
In practice it is therefore best to work with logs,

log pold(h|vn1:T ) = log p(h) +
T∑
t=1

log p(vnt |vnt−1, h) + const. (23.1.25)

In this way any large constants common to all h can be removed and the distribution may be computed
accurately. See mixMarkov.m.

Example 23.2 (Gene Clustering). Consider the 20 fictitious gene sequences below presented in an arbitrarily
chosen order. Each sequence consists of 20 symbols from the set {A,C,G, T}. The task is to try to cluster
these sequences into two groups, based on the assumption that gene sequences in the same cluster follow a
stationary Markov chain.

CATAGGCATTCTATGTGCTG CCAGTTACGGACGCCGAAAG TGGAACCTTAAAAAAAAAAA GTCTCCTGCCCTCTCTGAAC
GTGCCTGGACCTGAAAAGCC CGGCCGCGCCTCCGGGAACG AAAGTGCTCTGAAAACTCAC ACATGAACTACATAGTATAA
GTTGGTCAGCACACGGACTG CCTCCCCTCCCCTTTCCTGC CACTACGGCTACCTGGGCAA CGGTCCGTCCGAGGCACTC
TAAGTGTCCTCTGCTCCTAA CACCATCACCCTTGCTAAGG AAAGAACTCCCCTCCCTGCC CAAATGCCTCACGCGTCTCA
GCCAAGCAGGGTCTCAACTT CATGGACTGCTCCACAAAGG AAAAAAACGAAAAACCTAAG GCGTAAAAAAAGTCCTGGGT

(23.1.26)

A simple approach is to assume that the sequences are generated from a two-component H = 2 mixture of
Markov models and train the model using maximum likelihood. The likelihood has local optima so that the
procedure needs to be run several times and the solution with the highest likelihood chosen. One can then
assign each of the sequences by examining p(h = 1|vn1:T ). If this posterior probability is greater than 0.5, we
assign it to cluster 1, otherwise to cluster 2. Using this procedure, we find the following clusters:

CATAGGCATTCTATGTGCTG TGGAACCTTAAAAAAAAAAA
CCAGTTACGGACGCCGAAAG GTCTCCTGCCCTCTCTGAAC
CGGCCGCGCCTCCGGGAACG GTGCCTGGACCTGAAAAGCC
ACATGAACTACATAGTATAA AAAGTGCTCTGAAAACTCAC

GTTGGTCAGCACACGGACTG CCTCCCCTCCCCTTTCCTGC
CACTACGGCTACCTGGGCAA TAAGTGTCCTCTGCTCCTAA
CGGTCCGTCCGAGGCACTCG AAAGAACTCCCCTCCCTGCC
CACCATCACCCTTGCTAAGG AAAAAAACGAAAAACCTAAG
CAAATGCCTCACGCGTCTCA GCGTAAAAAAAGTCCTGGGT
GCCAAGCAGGGTCTCAACTT
CATGGACTGCTCCACAAAGG

(23.1.27)

where sequences in the first column are assigned to cluster 1, and sequences in the second column to cluster
2. In this case the data in (23.1.26) were in fact generated by a two-component Markov mixture and the
posterior assignment (23.1.27) is in agreement with the known clusters. See demoMixMarkov.m
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v1 v2 v3 v4

h1 h2 h3 h4
Figure 23.4: A first order hidden Markov model with
‘hidden’ variables dom(ht) = {1, . . . ,H}, t = 1 : T .
The ‘visible’ variables vt can be either discrete or con-
tinuous.

23.2 Hidden Markov Models

The Hidden Markov Model (HMM) defines a Markov chain on hidden (or ‘latent’) variables h1:T . The
observed (or ‘visible’) variables are dependent on the hidden variables through an emission p(vt|ht). This
defines a joint distribution

p(h1:T , v1:T ) = p(v1|h1)p(h1)

T∏
t=2

p(vt|ht)p(ht|ht−1) (23.2.1)

for which the graphical model is depicted in fig(23.4). For a stationary HMM the transition p(ht|ht−1) and
emission p(vt|ht) distributions are constant through time. The use of the HMM is widespread and a subset
of the many applications of HMMs is given in section(23.5).

Definition 23.3 (Transition Distribution). For a stationary HMM the transition distribution p(ht+1|ht) is
defined by the H ×H transition matrix

Ai′,i = p(ht+1 = i′|ht = i) (23.2.2)

and an initial distribution

ai = p(h1 = i). (23.2.3)

Definition 23.4 (Emission Distribution). For a stationary HMM and emission distribution p(vt|ht) with
discrete states vt ∈ {1, . . . , V }, we define a V ×H emission matrix

Bi,j = p(vt = i|ht = j) (23.2.4)

For continuous outputs, ht selects one of H possible output distributions p(vt|ht), ht ∈ {1, . . . ,H}.

In the engineering and machine learning communities, the term HMM typically refers to the case of discrete
variables ht, a convention that we adopt here. In statistics the term HMM often refers to any model with
the independence structure in equation (23.2.1), regardless of the form of the variables ht (see for example
[57]).

23.2.1 The classical inference problems

The common inference problems in HMMs are summarised below:

Filtering (Inferring the present) p(ht|v1:t)
Prediction (Inferring the future) p(ht|v1:s) t > s
Smoothing (Inferring the past) p(ht|v1:u) t < u
Likelihood p(v1:T )
Most likely Hidden path (Viterbi alignment) argmax

h1:T

p(h1:T |v1:T )

The most likely hidden path problem is termed Viterbi alignment in the engineering and speech recognition
literature. All these classical inference problems are computationally straightforward since the distribution
is singly-connected, so that any standard inference method can be adopted for these problems. The factor
graph and junction trees for the first order HMM are given in fig(23.5). In both cases, after suitable setting
of the factors and clique potentials, filtering corresponds to passing messages from left to right and upwards;
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smoothing corresponds to a valid schedule of message passing/absorption both forwards and backwards along
all edges. It is also straightforward to derive appropriate recursions directly, as we will do below. This is
both instructive and also useful in constructing compact and numerically stable algorithms. The algorithms
we derive below only exploit the conditional independence statements in the belief network structure so
that analogous procedures hold for all models which have these conditional independencies; for example for
continuous states on replacing summation with integration.

23.2.2 Filtering p(ht|v1:t)

Filtering refers to ascertaining the distribution of the latent variable ht given all information up to the present
v1:t. To do so, we first compute the joint marginal p(ht, v1:t) from which the conditional marginal p(ht|v1:t)
can subsequently be obtained by normalisation. A recursion for p(ht, v1:t) is obtained by considering:

p(ht, v1:t) =
∑
ht−1

p(ht, ht−1, v1:t−1, vt) (23.2.5)

=
∑
ht−1

p(vt|���v1:t−1, ht,��
�ht−1)p(ht|���v1:t−1, ht−1)p(v1:t−1, ht−1) (23.2.6)

=
∑
ht−1

p(vt|ht)p(ht|ht−1)p(ht−1, v1:t−1) (23.2.7)

The cancellations follow from the conditional independence assumptions of the model. Hence if we define

α(ht) = p(ht, v1:t) (23.2.8)

equation (23.2.7) above gives the α-recursion

α(ht) = p(vt|ht)︸ ︷︷ ︸
corrector

∑
ht−1

p(ht|ht−1)α(ht−1)

︸ ︷︷ ︸
predictor

, t > 1 (23.2.9)

with

α(h1) = p(h1, v1) = p(v1|h1)p(h1) (23.2.10)

This recursion has the interpretation that the filtered distribution α(ht−1) is propagated forwards by the
dynamics for one timestep to reveal a new ‘prior’ distribution at time t. This distribution is then modulated
by the observation vt, incorporating the new evidence into the filtered distribution (this is also referred to
as a predictor-corrector method). Since each α is smaller than 1, and the recursion involves multiplication
by terms less than 1, the α’s can become very small. To avoid numerical problems it is therefore advisable
to work with logα(ht), see HMMforward.m.

Normalisation gives the filtered posterior

p(ht|v1:t) ∝ α(ht) (23.2.11)

If we only require the filtered posterior we are free to rescale the α’s as we wish. In this case an alternative
to working with logα messages is to work with normalised α messages so that

∑
ht
α(ht) = 1.

h1 h2 h3 h4

v1 v2 v3 v4

(a)

v1, h1 h1, h2 h2, h3 h3, h4

v2, h2 v3, h3 v4, h4

h1 h2 h3

h2 h3 h4

(b)

Figure 23.5: (a): Factor graph for the first order HMM of fig(23.4). (b): Junction tree for fig(23.4).
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We can write equation (23.2.7) above directly as a recursion for the filtered distribution

p(ht|v1:t) ∝
∑
ht−1

p(vt|ht)p(ht|ht−1)p(ht−1|v1:t−1) t > 1 (23.2.12)

Intuitively, the term p(ht−1|v1:t−1) has the effect of removing all nodes in the graph before time t − 1 and
replacing their influence by a modified ‘prior’ distribution on ht. One may interpret p(vt|ht)p(ht|ht−1) as a
likelihood, giving rise to the joint posterior p(ht, ht−1|v1:t) under Bayesian updating. At the next timestep
the previous posterior becomes the new prior.

23.2.3 Parallel smoothing p(ht|v1:T )

There are two main approaches to computing p(ht|v1:T ). Perhaps the most common in the HMM literature
is the parallel method which is equivalent to message passing on factor graphs. In this one separates the
smoothed posterior into contributions from the past and future:

p(ht, v1:T ) = p(ht, v1:t, vt+1:T ) = p(ht, v1:t)︸ ︷︷ ︸
past

p(vt+1:T |ht,��v1:t)︸ ︷︷ ︸
future

= α(ht)β(ht) (23.2.13)

The cancellation above occurs due to the fact that ht d-separates the past from the future. The term α(ht)
is obtained from the ‘forward’ α recursion, (23.2.9). The β(ht) term may be obtained using a ‘backward’ β
recursion as we show below. The forward and backward recursions are independent and may therefore be
run in parallel, with their results combined to obtain the smoothed posterior.

The β recursion

p(vt:T |ht−1) =
∑
ht

p(vt, vt+1:T , ht|ht−1) (23.2.14)

=
∑
ht

p(vt|����vt+1:T , ht,��
�ht−1)p(vt+1:T , ht|ht−1) (23.2.15)

=
∑
ht

p(vt|ht)p(vt+1:T |ht,���ht−1)p(ht|ht−1) (23.2.16)

Defining

β(ht) ≡ p(vt+1:T |ht) (23.2.17)

equation (23.2.16) above gives the β-recursion

β(ht−1) =
∑
ht

p(vt|ht)p(ht|ht−1)β(ht), 2 ≤ t ≤ T (23.2.18)

with β(hT ) = 1. As for the forward pass, working in log space is recommended to avoid numerical difficulties.
If one only desires posterior distributions, one can also perform local normalisation at each stage to give∑

ht
β(ht) = 1 since only the relative magnitude of the components of β are of importance. The smoothed

posterior is then given by

p(ht|v1:T ) ≡ γ(ht) =
α(ht)β(ht)∑
ht
α(ht)β(ht)

(23.2.19)

Together the α− β recursions are called the Forward-Backward algorithm.

23.2.4 Correction smoothing

An alternative to the parallel method is to form a recursion directly for the smoothed posterior. This can
be achieved by recognising that conditioning on the present makes the future redundant:

p(ht|v1:T ) =
∑
ht+1

p(ht, ht+1|v1:T ) =
∑
ht+1

p(ht|ht+1, v1:t,����vt+1:T )p(ht+1|v1:T ) (23.2.20)
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This gives a recursion for γ(ht) ≡ p(ht|v1:T ):

γ(ht) =
∑
ht+1

p(ht|ht+1, v1:t)γ(ht+1) (23.2.21)

with γ(hT ) ∝ α(hT ). The term p(ht|ht+1, v1:t) may be computed using the filtered results p(ht|v1:t):

p(ht|ht+1, v1:t) =
p(ht+1, ht|v1:t)

p(ht+1|v1:t)
=
p(ht+1|ht)p(ht|v1:t)

p(ht+1|v1:t)
(23.2.22)

where the term p(ht+1|v1:t) =
∑

ht
p(ht+1|ht)p(ht|v1:t) can be found by normalisation. This is a form of

dynamics reversal , as if we are reversing the direction of the hidden to hidden arrow in the HMM. This
procedure, also termed the Rauch-Tung-Striebel smoother1, is sequential since we need to first complete
the α recursions, after which the γ recursion may begin. This is a so-called correction smoother since it
‘corrects’ the filtered result. Interestingly, once filtering has been carried out, the evidential states v1:T are
not needed during the subsequent γ recursion. The α− β and α− γ recursions are related through

γ(ht) ∝ α(ht)β(ht) (23.2.23)

Computing the pairwise marginal p(ht, ht+1|v1:T )

To implement the EM algorithm for learning, section(23.3.1), we require terms such as p(ht, ht+1|v1:T ).
These can be obtained by message passing on either a factor graph or junction tree (for which the pairwise
marginals are contained in the cliques, see fig(23.4b)). Alternatively, an explicit recursion is as follows:

p(ht, ht+1|v1:T ) ∝ p(v1:t, vt+1, vt+2:T , ht+1, ht)

= p(vt+2:T |((((((v1:t, vt+1, ht, ht+1)p(v1:t, vt+1, ht+1, ht)

= p(vt+2:T |ht+1)p(vt+1|����v1:t, ht, ht+1)p(v1:t, ht+1, ht)

= p(vt+2:T |ht+1)p(vt+1|ht+1)p(ht+1|��v1:t, ht)p(v1:t, ht) (23.2.24)

Rearranging, we therefore have

p(ht, ht+1|v1:T ) ∝ α(ht)p(vt+1|ht+1)p(ht+1|ht)β(ht+1) (23.2.25)

See HMMsmooth.m.

The likelihood p(v1:T )

The likelihood of a sequence of observations can be computed from

p(v1:T ) =
∑
hT

p(hT , v1:T ) =
∑
hT

α(hT ) (23.2.26)

An alternative computation can be found by making use of the decomposition

p(v1:T ) =

T∏
t=1

p(vt|v1:t−1) (23.2.27)

Each factor can be computed using

p(vt|v1:t−1) =
∑
ht

p(vt, ht|v1:t−1) (23.2.28)

=
∑
ht

p(vt|ht,���v1:t−1)p(ht|v1:t−1) (23.2.29)

=
∑
ht

p(vt|ht)
∑
ht−1

p(ht|ht−1,���v1:t−1)p(ht−1|v1:t−1) (23.2.30)

1It is most common to use this terminology for the continuous variable case, though we adopt it here also for the discrete
variable case.
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where the final term p(ht−1|v1:t−1) is the filtered result.

In both approaches the likelihood of an output sequence requires only a forward computation (filtering). If
required, one can also compute the likelihood using equation (23.2.13),

p(v1:T ) =
∑
ht

α(ht)β(ht) (23.2.31)

which is valid for any 1 ≤ t ≤ T .

23.2.5 Sampling from p(h1:T |v1:T )

Sometimes one wishes to sample joint trajectories h1:T from the posterior p(h1:T |v1:T ). A general purpose
method is described in section(27.2.2) which can be applied in this case by noting that conditioned on the
observations v1:T , one can write the latent distribution as a Markov network. This means that the posterior
distribution p(h1:T |v1:T ) is a simple linear Markov chain and we can reexpress the distribution as

p(h1:T |v1:T ) = p(h1|h2, v1:T ) . . . p(hT−1|hT , v1:T )p(hT |v1:T ) (23.2.32)

where, from equation (23.2.25),

p(ht−1|ht, v1:T ) ∝ p(ht−1, ht|v1:T ) ∝ α(ht−1)p(ht|ht−1) (23.2.33)

Sampling then begins by first drawing a state hT from p(hT |v1:T ). Given this state, one then draws from
p(hT−t|hT , v1:T ) using equation (23.2.33). This procedure is known as forward-filtering-backward-sampling
since one first needs to run filtering to compute the required ‘time-reversed’ transitions p(ht−1|ht, v1:T ).

23.2.6 Most likely joint state

The most likely path h1:T of p(h1:T |v1:T ) is the same as the most likely state (for fixed v1:T ) of

p(h1:T , v1:T ) =
∏
t

p(vt|ht)p(ht|ht−1) (23.2.34)

The most likely path can be found using the max-product version of the factor graph or max-absorption on
the junction tree. Alternatively, an explicit derivation can be obtained by considering:

max
hT

T∏
t=1

p(vt|ht)p(ht|ht−1) =

{
T−1∏
t=1

p(vt|ht)p(ht|ht−1)

}
max
hT

p(vT |hT )p(hT |hT−1)︸ ︷︷ ︸
µ(hT−1)

(23.2.35)

The message µ(hT−1) conveys information from the end of the chain to the penultimate timestep. We can
continue in this manner, defining the recursion

µ(ht−1) = max
ht

p(vt|ht)p(ht|ht−1)µ(ht), 2 ≤ t ≤ T (23.2.36)

with µ(hT ) = 1. This means that the effect of maximising over h2, . . . , hT is compressed into a message
µ(h1) so that the most likely state h∗1 is given by

h∗1 = argmax
h1

p(v1|h1)p(h1)µ(h1) (23.2.37)

Once computed, backtracking gives

h∗t = argmax
ht

p(vt|ht)p(ht|h∗t−1)µ(ht) (23.2.38)

This special case of the max-product algorithm is called the Viterbi algorithm. Similarly, one may use the
N -max-product algorithm, section(5.2.1), to obtain the N -most likely hidden paths.
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(a) ‘Creaks’ (b) ‘Bumps’

Figure 23.6: Localising the burglar. The latent variable ht ∈
{1, . . . , 25} denotes the positions, defined over the 5 × 5 grid
of the ground floor of the house. (a): A representation of the
probability that the ‘floor will creak’ at each of the 25 positions,
p(vcreak|h). Light squares represent probability 0.9 and dark
square 0.1. (b): A representation of the probability p(vbump|h)
that the burglar will bump into something in each of the 25 po-
sitions.

(a) Creaks and Bumps

(b) Filtering

(c) Smoothing

(d) Viterbi

(e) True Burglar position

Figure 23.7: Localising the burglar through time for 10 time steps. (a): Each panel represents the

visible information vt =
(
vcreakt , vbumpt

)
, where vcreakt = 1 means that there was a ‘creak in the floorboard’

(vcreakt = 2 otherwise) and vbumpt = 1 meaning ‘bumped into something’ (and is in state 2 otherwise). There
are 10 panels, one for each time t = 1, . . . , 10. The left half of the panel represents v1

t and the right half v2
t .

The lighter shade represents the occurrence of a creak or bump, the darker shade the absence. (b): The
filtered distribution p(ht|v1:t) representing where we think the burglar is. (c): The smoothed distribution
p(ht|v1:10) that represents the distribution of the burglar’s position given that we know both the past and
future observations. (d): The most likely (Viterbi) burglar path arg maxh1:10 p(h1:10|v1:10). (e): The actual
path of the burglar.

23.2.7 Prediction

The one-step ahead predictive distribution is given by

p(vt+1|v1:t) =
∑

ht,ht+1

p(vt+1|ht+1)p(ht+1|ht)p(ht|v1:t) (23.2.39)

Example 23.3 (A localisation example). You’re asleep upstairs in your house and awoken by noises from
downstairs. You realise that a burglar is on the ground floor and attempt to understand where he is from
listening to his movements. You mentally partition the ground floor into a 5×5 grid. For each grid position
you know the probability that if someone is in that position the floorboard will creak, fig(23.6a). Similarly
you know for each position the probability that someone will bump into something in the dark, fig(23.6b).
The floorboard creaking and bumping into objects can occur independently. In addition you assume that
the burglar will move only one grid square – forwards, backwards, left or right in a single timestep. Based
on a series of bump/no bump and creak/no creak information, fig(23.7a), you try to figure out based on
your knowledge of the ground floor, where the burglar might be.

We can represent the scenario using a HMM where h ∈ {1, . . . , 25} denotes the grid square. The visible
variable has a composite form v = vcreak ⊗ vbump where vcreak and vbump each take two states. To use our

DRAFT November 21, 2011 459



Hidden Markov Models

v1 v2 v3 v4

h1 h2 h3 h4

m1 m2 m3
Figure 23.8: A model for robot self-localisation. At
each time the robot makes an intended movement, mt.
As a generative model, knowing the intended move-
ment mt and the current grid position ht, the robot
has an idea of where he should be at the next time-
step and what sensor reading vt+1 he would expect
there. Based on only the sensor information v1:T and
the intended movements m1:T , the task is to infer a
distribution over robot locations p(h1:T |m1:T , v1:T ).

standard code we form a new visible variable v with four states using

p(v|h) = p(vcreak|h)p(vbump|h) (23.2.40)

Based on the past information, our belief as to where the burglar might be is represented by the filtered
distribution p(ht|v1:t), fig(23.7). In the beginning the filtered distribution has significant mass in many states
since we don’t yet have sufficient information to establish where the burglar is. As time goes along and we
gather more information, the filtered distribution becomes more concentrated in a small number of states.
After the burglar has left at T = 10, the police arrive and try to piece together where the burglar went,
based on the sequence of creaks and bumps you provide. At any time t, the information as to where the
burglar could have been is represented by the smoothed distribution p(ht|v1:10). The smoothed distribution
is generally more concentrated in a few states than the filtered distribution since we have more information
(from the past and future) to help establish the burglar’s position at that time. The police’s single best-guess
for the trajectory the burglar took is provided by the most likely joint hidden state arg maxh1:10 p(h1:10|v1:10).
See demoHMMburglar.m.

23.2.8 Self localisation and kidnapped robots

A robot has an internal grid-based map of its environment and for each location h ∈ {1, . . . ,H} knows the
likely sensor readings he would expect in that location. The robot is ‘kidnapped’ and placed somewhere in
the environment. The robot then starts to move, gathering sensor information. Based on these readings
v1:t and intended movements m1:t, the robot attempts to figure out his location by comparing his actual
sensor readings with his internal map of expected sensor readings for each location. Due to wheel slippage
on the floor an intended action by the robot, such as ‘move forwards’, might not be successful. Given all
the information the robot has, he would like to infer p(ht|v1:t,m1:t). This problem differs from the burglar
scenario in that the robot now has knowledge of the intended movements he makes. This should give more
information as to where he could be. One can view this as extra ‘visible’ information, though it is more
natural to think of this as additional input information. A model of this scenario is, see fig(23.9),

p(v1:T ,m1:T , h1:T ) =

T∏
t=1

p(vt|ht)p(ht|ht−1,mt−1)p(mt) (23.2.41)

The visible variables v1:T are known, as are the intended movements m1:T . The model expresses that the
movements selected by the robot are random (hence no decision making in terms of where to go next).
We assume that the robot has full knowledge of the conditional distributions defining the model (he knows
the ‘map’ of his environment and all state transition and emission probabilities). If our interest is only in
localising the robot, since the inputs m are known, this model is in fact a form of time-dependent HMM:

p(v1:T , h1:T ) =
T∏
t=1

p(vt|ht)p(ht|ht−1, t) (23.2.42)

for a time-dependent transition p(ht|ht−1, t) defined by the intended movement mt−1. Any inference task
required then follows the standard stationary HMM algorithms, albeit on replacing the time-independent
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(a) (b) (c)

Figure 23.9: Filtering and smoothing for robot tracking using a HMM with S = 50. (a): A realisation from
the HMM example described in the text. The dots indicate the true latent locations of the robot, whilst
the open circles indicate the noisy measured locations. (b): The squares indicate the filtering distribution
at each timestep t, p(ht|v1:t). This probability is proportional to the grey level with black corresponding to
1 and white to 0. Note that the posterior for the first timesteps is multimodal, therefore the true position
cannot be accurately estimated. (c): The squares indicate the smoothing distribution at each timestep t,
p(t|v1:T ). Note that, for t < T , we estimate the position retrospectively and the uncertainty is significantly
lower when compared to the filtered estimates.

transitions p(ht|ht−1) with the known time-dependent transitions.

In self localisation and mapping (SLAM) the robot does not know the map of his environment. This corre-
sponds to having to learn the transition and emission distributions on-the-fly as he explores the environment.

Example 23.4 (Robot localisation).

Consider the following toy tracking problem (from Taylan Cemgil). A robot
is moving around a circular corridor and at any time occupies one of S
possible locations, as indicated. At each timestep t, the robot stays where
it is with probability ε, or moves to the next point in a counter-clockwise
direction with probability 1− ε.
This can be conveniently represented by an S × S matrix A with elements Aji = p(ht = j|ht−1 = i). For
example, for S = 3, we have

A = ε

 1 0 0
0 1 0
0 0 1

+ (1− ε)

 0 0 1
1 0 0
0 1 0

 . (23.2.43)

At each timestep t, the robot sensors measure its position, obtaining either the correct location with prob-
ability w or a uniformly random location with probability 1− w. For example, for S = 3, we have

B = w

 1 0 0
0 1 0
0 0 1

+
(1− w)

3

 1 1 1
1 1 1
1 1 1

 . (23.2.44)

A typical realisation y1:T from the process defined by this HMM with S = 50, ε = 0.5, T = 30 and w = 0.3 is
depicted in fig(23.9a). We are interested in inferring the true locations of the robot from the noisy measured
locations. At each time t, the true location can be inferred from the filtered posterior p(ht|v1:t), fig(23.9b),
which uses measurements up to t; or from the smoothed posterior p(ht|v1:T ), fig(23.9c), which uses both
past and future observations and is therefore generally more accurate.
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23.2.9 Natural language models

A simple generative model of language can be obtained from the letter-to-letter transitions (a so-called
bigram). In the example below, we use this in a HMM to clean up mis-typings.

Example 23.5 (Stubby fingers). A ‘stubby fingers’ typist has the tendency to hit either the correct key
or a single neighbouring key. For simplicity we assume that there are 27 keys: lower case a to lower case z
and the space bar. To model this we use an emission distribution Bij = p(v = i|h = j) where i = 1, . . . , 27,
j = 1, . . . , 27, as depicted in fig(23.10). A database of letter-to-next-letter frequencies, yields the transition
matrix Aij = p(h′ = i|h = j) in English. For simplicity we assume that p(h1) is uniform. Also we assume
that each intended key press results in a single press. Given a typed sequence kezrninh what is the most
likely word that this corresponds to? By listing the 200 most likely hidden sequences (using the N -max-
product algorithm) and discarding those that are not in a standard English dictionary, the most likely word
that was intended is learning. See demoHMMbigram.m.
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Figure 23.10: (a): The letter-to-letter transition matrix for English p(h′ = i|h = j). (b): The letter
emission matrix for a typist with ‘stubby fingers’ in which the key or a neighbour on the keyboard is likely
to be hit.

23.3 Learning HMMs

Given a set of data V =
{
v1, . . . ,vN

}
of N sequences, where sequence vn = vn1:Tn

is of length Tn, we seek
the HMM transition matrix A, emission matrix B, and initial vector a most likely to have have generated
V. We make the i.i.d. assumption so that each sequence is independently generated and assume that we
know the number of hidden states H. For simplicity we concentrate here on the case of discrete visible
variables, assuming also we know the number of states V . Whilst implementing either EM or gradient
based maximum likelihood is straightforward for the HMM, the likelihood has many local optima, and care
needs to be taken with initialisation.

23.3.1 EM algorithm

The application of EM to the HMM model is called the Baum-Welch algorithm and follows the general
strategy outlined in section(11.2). The EM algorithm is convenient in this case and leads to closed form
expressions for the M-step.
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M-step

Assuming i.i.d. data, the M-step is given by maximising the ‘energy’:

N∑
n=1

〈log p(vn1 , v
n
2 . . . , v

n
Tn , h

n
1 , h

n
2 , . . . , h

n
Tn)〉pold(hn|vn) (23.3.1)

with respect to the parameters A,B,a; hn denotes h1:Tn . Using the form of the HMM, we obtain

N∑
n=1

{
〈log p(h1)〉pold(h1|vn) +

Tn−1∑
t=1

〈log p(ht+1|ht)〉pold(ht,ht+1|vn) +

Tn∑
t=1

〈log p(vnt |ht)〉pold(ht|vn)

}
(23.3.2)

where for compactness we drop the sequence index from the h variables. To avoid potential confusion, we
write pnew(h1 = i) to denote the (new) table entry for the probability that the initial hidden variable is in
state i. Optimising equation (23.3.2) with respect to p(h1), (and enforcing p(h1) to be a distribution) we
obtain

anewi ≡ pnew(h1 = i) =
1

N

N∑
n=1

pold(h1 = i|vn) (23.3.3)

which is the average number of times (with respect to pold) that the first hidden variable is in state i.
Similarly, the M-step for the transition is

Anewi′,i ≡ pnew(ht+1 = i′|ht = i) ∝
N∑
n=1

Tn−1∑
t=1

pold(ht = i, ht+1 = i′|vn) (23.3.4)

which is the number of times that a transition from hidden state i to hidden state i′ occurs, averaged over
all times (since we assumed stationarity) and training sequences. Normalising, we obtain

Anewi′,i =

∑N
n=1

∑Tn−1
t=1 pold(ht = i, ht+1 = i′|vn)∑

i′
∑N

n=1

∑Tn−1
t=1 pold(ht = i, ht+1 = i′|vn)

(23.3.5)

Finally, the M-step update for the emission is

Bnew
j,i ≡ pnew(vt = j|ht = i) ∝

N∑
n=1

Tn∑
t=1

I [vnt = j] pold(ht = i|vn) (23.3.6)

which is the expected number of times that, for the observation being in state j, the hidden state is i. The
proportionality constant is determined by the normalisation requirement.

E-step

In computing the M-step above the quantities pold(h1 = i|vn), pold(ht = i, ht+1 = i′|vn) and pold(ht = i|vn)
are obtained by smoothed inference using the techniques described in section(23.2.1).

Equations (23.3.3,23.3.5,23.3.6) are repeated until convergence. See HMMem.m and demoHMMlearn.m.

Parameter initialisation

The EM algorithm converges to a local maximum of the likelihood and, in general, there is no guarantee that
the algorithm will find the global maximum. How best to initialise the parameters is a thorny issue, with a
suitable initialisation of the emission distribution often being critical for success[246]. A practical strategy is
to initialise the emission p(v|h) based on first fitting a simpler non-temporal mixture model

∑
h p(v|h)p(h)

to the data.
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Continuous observations

For a continuous vector observation vt, with dim (vt) = D, we require a model p(vt|ht) mapping the discrete
state ht to a distribution over outputs. Using a continuous output does not change any of the standard
inference message passing equations so that inference can be carried out for essentially arbitrarily complex
emission distributions. Indeed, for filtering, smoothing and Viterbi inference, the normalisation Z of the
emission p(v|h) = φ(v, h)/Z is not required. For learning, however, the emission normalisation constant is
required since this is dependent on the parameters of the model.

23.3.2 Mixture emission

To make a richer emission model (particularly for continuous observations), one approach is use a mixture

p(vt|ht) =
∑
kt

p(vt|kt, ht)p(kt|ht) (23.3.7)

where kt is a discrete summation variable. For learning, it is useful to consider the kt as additional latent
variables; the EM algorithm then carries through in a straightforward way. Using the notation q as shorthand
for pold, the E-step sets:

q(kt|hnt ) ∝ p(vn|hnt , kt)p(kt|ht) (23.3.8)

The energy is given by

E =
∑
n

T∑
t=1

〈
−〈log q(kt|hnt )〉q(kt|hnt ) + 〈log p(vnt |kt, hnt )〉q(kt|hnt ) + 〈log p(kt|hnt )〉q(kt|hnt )

〉
q(hnt |vn1:T )

(23.3.9)

The contribution from each emission component p(v = v|h = h, k = k) is

∑
n

T∑
t=1

q(kt = k|hnt = h)q(hnt = h|vn1:T ) log p(vnt |h = h, k = k) (23.3.10)

For fixed q(kt = k|hnt = h), one needs to numerically optimise the above expression with respect to the
emission parameters. Similarly, the contribution to the energy bound from the mixture weights is given by

log p(k = k|h = h)
∑
n

T∑
t=1

q(kt = k|hnt = h)q(hnt = h|vn1:T ) (23.3.11)

so that the M-step update for the mixture weights is,

p(k = k|h = h) ∝
∑
n

T∑
t=1

q(kt = k|hnt = h)q(hnt = h|vn1:T ) (23.3.12)

In this case the EM algorithm is composed of an ‘emission’ EM loop in which the transitions and q(hnt =
h|vn1:T ) are fixed, during which the emissions p(v|h, k) are learned, along with updating q(kt = k|hnt = h).
The ‘transition’ EM loop fixes the emission distribution p(v|h) and learns the best transition p(ht|ht−1).

23.3.3 The HMM-GMM

A common continuous observation mixture emission model component is a Gaussian

p(vt|kt, ht) = N
(
vt µkt,ht ,Σkt,ht

)
(23.3.13)

so that kt, ht indexes the K ×H mean vectors and covariance matrices. EM updates for these means and
covariances are straightforward to derive from equation (23.3.9), see exercise(23.14). These models are
common in tracking applications and speech recognition (usually under the constraint that the covariances
are diagonal).
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v1 v2 v3 v4

h1 h2 h3 h4

c1 c2 c3 c4

Figure 23.11: An explicit duration HMM. The counter
variables ct deterministically count down to zero.
When they reach one, a h transition is allowed, and a
new value for the duration ct is sampled.

23.3.4 Discriminative training

HMMs can be used for supervised learning of sequences. That is, for each sequence vn1:T , we have a cor-
responding class label cn. For example, we might associate a particular composer c ∈ {1, . . . , C} with a
sequence v1:T and wish to make a model that will predict the composer for a novel music sequence. A
generative approach to using HMMs for classification is to train a separate HMM for each class, p(v1:T |c)
and subsequently use Bayes’ rule to form the classification for a novel sequence v∗1:T using

p(c∗|v∗1:T ) =
p(v∗1:T |c∗)p(c∗)∑C
c′=1 p(v

∗
1:T |c′)p(c′)

(23.3.14)

If the data are noisy and difficult to model, however, this generative approach may not work well since
much of the expressive power of each model is used to model the complex data, rather than focussing on
the decision boundary. In applications such as speech recognition, improvements in performance are often
reported when the models are trained in a discriminative way. In discriminative training, see for example
[163], one defines a new single discriminative model, formed from the C HMMs using

p(c|v1:T ) =
p(v1:T |c)p(c)∑C

c′=1 p(v1:T |c′)p(c′)
(23.3.15)

and then maximises the likelihood of a set of observed classes and corresponding observations v1:T . For a
single data pair, (cn, vn1:T ), the log likelihood is

log p(cn|vn1:T ) = log p(vn1:T |cn)︸ ︷︷ ︸
generative likelihood

+ log p(cn)− log
C∑
c′=1

p(vn1:T |c′)p(c′) (23.3.16)

The first term above represents the generative likelihood term, with the last term accounting for the dis-
crimination. Whilst deriving EM style updates is hampered by the discriminative terms, computing the
gradient is straightforward using the technique described in section(11.6).

23.4 Related Models

23.4.1 Explicit duration model

For a HMM with self-transition p(ht = i|ht−1 = i) ≡ θi, the probability that the latent dynamics stays in
state i for τ timesteps is θτi , which decays exponentially with time. In practice, however, we would often
like to constrain the dynamics to remain in the same state for a minimum number of timesteps, or to have
a specified duration distribution. A way to enforce this is to use a latent counter variable ct which at the
beginning is initialised to a duration sampled from the duration distribution pdur(ct) with maximal duration
Dmax. Then at each timestep the counter decrements by 1, until it reaches 1, after which a new duration is
sampled:

p(ct|ct−1) =

{
δ (ct, ct−1 − 1) ct−1 > 1
pdur(ct) ct−1 = 1

(23.4.1)

The state ht can transition only when ct = 1:

p(ht|ht−1, ct) =

{
δ (ht, ht−1) ct > 1
ptran(ht|ht−1) ct = 1

(23.4.2)
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Including the counter variable c defines a joint latent distribution p(c1:T , h1:T ) that ensures h remains in a
desired minimal number of timesteps, see fig(23.11). Since dim (ct ⊗ ht) = DmaxH, naively the computa-
tional complexity of inference in this model scales as O

(
TH2D2

max

)
. However, when one runs the forward

and backward recursions, the deterministic nature of the transitions means that this can be reduced to
O
(
TH2Dmax

)
[214] – see also exercise(23.15).

The hidden semi-Markov model generalises the explicit duration model in that once a new duration ct is
sampled, the model emits a distribution p(vt:t+ct−1|ht) defined on a segment of the next ct observations[232].

23.4.2 Input-Output HMM

The IOHMM[31] is a HMM with additional input variables x1:T , see fig(23.12). Each input can be continuous
or discrete and modulates the transitions

p(v1:T , h1:T |x1:T ) =
∏
t

p(vt|ht, xt)p(ht|ht−1, xt) (23.4.3)

The IOHMM may be used as a conditional predictor, where the outputs vt represent the prediction at time
t. In the case of continuous inputs and discrete outputs, the tables p(vt|ht, xt) and p(ht|ht−1, xt) are usually
parameterised using a non-linear function, for example

p(vt = y|ht = h, xt = x,w) ∝ exp
(
wT
h,yx

)
(23.4.4)

Inference then follows in a similar manner as for the standard HMM. Defining

α(ht) ≡ p(ht, v1:t|x1:t) (23.4.5)

the forward pass is given by

α(ht) =
∑
ht−1

p(ht, ht−1, v1:t−1, vt|x1:t) (23.4.6)

=
∑
ht−1

p(vt|v1:t−1, x1:t, ht, ht−1)p(ht|v1:t−1, x1:t, ht−1)p(v1:t−1, ht−1|x1:t) (23.4.7)

= p(vt|xt, ht)
∑
ht−1

p(ht|ht−1, xt)α(ht−1) (23.4.8)

The γ backward pass is

p(ht|x1:T , v1:T ) =
∑
ht+1

p(ht, ht+1|x1:t+1, xt+2:T , v1:T ) =
∑
ht+1

p(ht|ht+1, x1:t+1, v1:t)p(ht+1|x1:T , v1:T )

(23.4.9)

for which we need

p(ht|ht+1, x1:t+1, v1:t) =
p(ht+1, ht|x1:t+1, v1:t)

p(ht+1|x1:t+1, v1:t)
=

p(ht+1|ht, xt+1)p(ht|x1:t, v1:t)∑
ht
p(ht+1|ht, xt+1)p(ht|x1:t, v1:t)

(23.4.10)

The likelihood can be found from
∑

hT
α(hT ).

v1 v2 v3 v4

h1 h2 h3 h4

x1 x2 x3 x4

Figure 23.12: A first order input-output hidden
Markov model. The input x and output v nodes are
shaded to emphasise that their states are known dur-
ing training. During testing, the inputs are known and
the outputs are predicted.
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x

y1 y2 y3

Figure 23.13: Linear chain CRF. Since the input x is observed, the distribu-
tion is just a linear chain factor graph. The inference of pairwise marginals
p(yt, yt−1|x) is therefore straightforward using message passing.

Direction bias

Consider predicting the output distribution p(vt|x1:T ) given both past and future input information x1:T .
Because the hidden states are unobserved we have p(vt|x1:T ) = p(vt|x1:t). Thus the IOHMM prediction uses
only past information and discards any future contextual information. This ‘direction bias’ is sometimes
considered problematic (particularly in natural language modelling) and motivates the use of undirected
models, such as conditional random fields.

23.4.3 Linear chain CRFs

Linear chain Conditional Random Fields (CRFs) are an extension of the unstructured CRFs we briefly
discussed in section(9.6.5) and have application to modelling the distribution of a set of outputs y1:T given
an input vector x. For example, x might represent a sentence in English, and y1:T should represent the
translation into French. Note that the vector x does not have to have dimension T . A first order linear
chain CRF has the form

p(y1:T |x,λ) =
1

Z(x,λ)

T∏
t=2

φt(yt, yt−1,x,λ) (23.4.11)

where λ are the free parameters of the potentials. In practice it is common to use potentials of the form

exp

(
K∑
k=1

λkfk,t(yt, yt−1,x)

)
(23.4.12)

where fk,t(yt, yt−1, x) are ‘features’, see also section(9.6.5). Given a set of input-output sequence pairs,
{(xn, yn1:T ) , n = 1, . . . , N} (assuming all sequences have equal length T for simplicity), we can learn the
parameters λ by maximum likelihood. Under the standard i.i.d. data assumption, the log likelihood is

L(λ) =
∑
t,n

∑
k

λkfk(y
n
t , y

n
t−1,x

n)−
∑
n

logZ(xn,λ) (23.4.13)

The reader may readily check that the log likelihood is concave so that the objective function has no local
optima. The gradient is given by

∂

∂λi
L(λ) =

∑
n,t

(
fi(y

n
t , y

n
t−1,x

n)− 〈fi(yt, yt−1,x
n)〉p(yt,yt−1|xn,λ)

)
(23.4.14)

Learning therefore requires inference of the marginal terms p(yt, yt−1|x,λ). Since equation (23.4.11) cor-
responds to a linear chain factor graph, see fig(23.13), inference of pairwise marginals is straightforward
using message passing. This can be achieved using either the standard factor graph message passing or by
deriving an explicit algorithm, see exercise(23.10). Given the gradient, one may use any standard numeri-
cal optimisation routine to learn the parameters λ. In some applications, particularly in natural language
processing, the dimension K of the vector of features f1, . . . , fK may be many hundreds of thousands. This
means that the storage of the Hessian is not feasible for Newton based training and either limited memory
methods or conjugate gradient techniques are typically preferred[308].

After training we can use the model to find the most likely output sequence for a novel input x∗. This is
straightforward since

y∗1:T = argmax
y1:T

∏
t

φt(yt, yt−1,x
∗,λ) (23.4.15)

corresponds again to a simple linear chain, for which max-product inference yields the required result, see
also exercise(23.9). See example(9.11) for a small example.
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x1(t)

x2(t)

x3(t)

x1(t+ 1)

x2(t+ 1)

x3(t+ 1)

Figure 23.14: A Dynamic Bayesian Network. Possible
transitions between variables at the same time-slice
have not been shown.

v1(t)

h1(t)

h2(t)

v2(t)

v1(t+ 1)

h1(t+ 1)

h2(t+ 1)

v2(t+ 1)

Figure 23.15: A Coupled HMM. For example the up-
per HMM might model speech, and the lower the cor-
responding video sequence. The upper hidden units
then correspond to phonemes, and the lower to mouth
positions; this model therefore captures the expected
coupling between mouth positions and phonemes.

23.4.4 Dynamic Bayesian networks

A DBN is defined as a belief network replicated through time. For a multivariate xt, with dim (xt) = D,
the DBN defines a joint model

p(x1, . . . ,xT ) =
T∏
t=1

D∏
i=1

p(xi(t)|x\i(t),x(t− 1)) (23.4.16)

where x\i(t) denotes the set of variables at time t, except for xi(t). The form of each p(xi(t)|x\i(t),x(t− 1))
is chosen such that the overall distribution remains acyclic. At each time-step t there is a set of variables
xi(t), i = 1, . . . , D, some of which may be observed. In a first order DBN, each variable xi(t) has parental
variables taken from the set of variables in the previous time-slice, xt−1, or from the present time-slice. In
most applications, the model is temporally homogeneous so that one may fully describe the distribution in
terms of a two-time-slice model, fig(23.14). The generalisation to higher-order models is straightforward. A
coupled HMM is a special DBN that may be used to model coupled ‘streams’ of information, for example
video and audio, see fig(23.15)[224].

23.5 Applications

23.5.1 Object tracking

HMMs are used to track moving objects, based on an understanding of the dynamics of the object (encoded
in the transition distribution) and an understanding of how an object with a known position would be
observed (encoded in the emission distribution). Given an observed sequence, the hidden position can then
be inferred. The burglar, example(3.1) is a case in point. HMMs have been applied in many tracking
contexts, including tracking people in videos, musical pitch, and many more[57, 246, 54].

23.5.2 Automatic speech recognition

Many speech recognition systems make use of HMMs[321]. Roughly speaking, the raw scalar speech signal
x1:T is first translated into a stream of continuous acoustic vectors v1:T where at time t, vt represents which
frequencies are present in the speech signal in a small window around time t. These acoustic vectors are
typically formed from taking a discrete Fourier transform of the speech signal over a small window around
time t, with additional transformations to mimic human auditory processing. Alternatively, related forms
of linear coding of the observed acoustic waveform may be used[143].

The corresponding discrete latent state ht represents a phoneme – a basic unit of human speech (for which
there are 44 in standard English). Training data is painstakingly constructed by a human linguist who
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determines the phoneme ht for each time t and many different observed sequences x1:T . Given then each
acoustic vector vt and an associated phoneme ht, one may use maximum likelihood to fit a mixture of
(usually isotropic) Gaussians p(vt|ht) to vt. This forms the emission distribution for a HMM.

Using the database of labelled phonemes, the phoneme transition p(ht|ht−1) can be learned (by simple count-
ing) and forms the transition distribution for a HMM. Note that in this case, since the ‘hidden’ variable
h and observation v are known during training, training the HMM is straightforward and boils down to
training the emission and transition distributions independently using the observed acoustic vectors and
associated phonemes.

For a new sequence of acoustic vectors v1:T we can then use the HMM to infer the most likely phoneme
sequence through time, arg maxh1:T p(h1:T |v1:T ), which takes into account both the way that phonemes
generate acoustic vectors, and also the prior language constraints of phoneme to phoneme transitions. The
fact that people speak at different speeds can be addressed using time-warping in which the latent phoneme
remains in the same state for a number of timesteps. If the HMM is used to model a single word, it is natural
to constrain the hidden state sequence to only go ‘forwards’ through the set of available phonemes (i.e. one
cannot revisit a state, except possibly the current state). In this case the structure of the transition matrices
corresponds to a DAG state-transition diagram; under suitable labelling of the states, this can always be
represented by a triangular left-to-right transition matrix .

23.5.3 Bioinformatics

In the field of Bioinformatics HMMs have been widely applied to modelling genetic sequences. Multiple
sequence alignment using forms of constrained HMMs have been particularly successful. Other applications
involve gene finding and protein family modelling[177, 90].

23.5.4 Part-of-speech tagging

Consider the sentence below in which each word has been linguistically tagged

hospitality_NN is_BEZ an_AT excellent_JJ virtue_NN ,_,

but_CC not_XNOT when_WRB the_ATI guests_NNS have_HV

to_TO sleep_VB in_IN rows_NNS in_IN the_ATI cellar_NN !_!

The linguistic tags are denoted at the end of each word, for example NN is the singular common noun
tag, ATI is the article tag etc. Given a training set of such tagged sentences, the task is to tag a novel
sentence. One approach is to use ht to be a tag, and vt to be a word and fit a HMM to this data. For the
training data, both the tags and words are observed so that maximum likelihood training of the transition
and emission distributions can be achieved by simple counting. Given a new sequence of words, the most
likely tag sequence can be inferred using the Viterbi algorithm.

More recent part-of-speech taggers tend to use conditional random fields in which the input sequence x1:T

is the sentence and the output sequence y1:T is the tag sequence. One possible parameterisation of a linear
chain CRF is to use a potential of the form φ(yt−1, yt)φ(yt,x), see section(9.6.5), in which the first factor
encodes the grammatical structure of the language and the second the a priori likely tag yt[180].

23.6 Summary

• Timeseries require simplifying assumptions such as the Markov assumption which makes it feasible to specify
a model for the process.

• A discrete-state Markov chain is a generalisation of deterministic finite-state transitions to stochastic tran-
sitions between states.

• Mixtures of Markov models and extensions thereof can be used as simple timeseries clustering models.

DRAFT November 21, 2011 469



Exercises

• Hidden Markov models are popular timeseries models in which the latent process is a discrete-state Markov
chain. The observations can be either discrete or continuous and the classical inference tasks of filtering,
smoothing and computing the joint most likely latent sequence are computationally straightforward.

• Dynamic Bayes nets are essentially structured HMMs with conditional independencies encoded in their
transition and emission distributions.

• HMMs have widespread application in a variety of tracking scenarios, from speech recognition to genetic
sequence analysis.

• Undirected linear chain structures such as the conditional random field are popular in areas such as natural
language processing for translating an input sequence to a structured output sequence.

23.7 Code

demoMixMarkov.m: Demo for mixture of Markov models
mixMarkov.m: Mixture of Markov models
demoHMMinference.m: Demo of HMM inference
HMMforward.m: Forward α recursion
HMMbackward.m: Forward β recursion
HMMgamma.m: RTS γ ‘correction’ recursion
HMMsmooth.m: Single and pairwise α− β smoothing
HMMviterbi.m: Most likely state (Viterbi) algorithm
demoHMMburglar.m: Demo of burglar localisation
demoHMMbigram.m: Demo of stubby fingers typing
HMMem.m: EM algorithm for HMM (Baum-Welch)
demoHMMlearn.m: Demo of EM algorithm for HMM (Baum-Welch)
demoLinearCRF.m: Demo of learning a linear chain CRF
linearCRFpotential.m: Linear CRF potential
linearCRFgrad.m: Linear CRF gradient
linearCRFloglik.m: Linear CRF log likelihood

23.8 Exercises

Exercise 23.1. A stochastic matrix Mij has non-negative entries with
∑

iMij = 1. Consider an eigenvalue
λ and eigenvector e such

∑
jMijej = λei. By summing over i show that, provided

∑
i ei > 0, then λ must

be equal to 1.

Exercise 23.2. Consider the Markov chain with transition matrix

M =

(
0 1
1 0

)
(23.8.1)

Show that this Markov chain does not have an equilibrium distribution and state a stationary distribution
for this chain.

Exercise 23.3. Consider a HMM with 3 states (M = 3) and 2 output symbols, with a left-to-right state
transition matrix

A =

 0.5 0.0 0.0
0.3 0.6 0.0
0.2 0.4 1.0

 (23.8.2)
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where Aij ≡ p(ht+1 = i|ht = j), emission matrix Bij ≡ p(vt = i|ht = j)

B =

(
0.7 0.4 0.8
0.3 0.6 0.2

)
(23.8.3)

and initial state probability vector a = (0.9 0.1 0.0)T. Given the observed symbol sequence is v1:3 = (1, 2, 1):

1. Compute p(v1:3).

2. Compute p(h1|v1:3).

3. Find the most probable hidden state sequence arg maxh1:3 p(h1:3|v1:3).

Exercise 23.4. This exercise follows from example(23.5). Given the 27 long character string
rgenmonleunosbpnntje vrancg typed with ‘stubby fingers’, what is the most likely correct English sentence
intended? In the list of decoded sequences, what value is log p(h1:27|v1:27) for this sequence? You will need
to modify demoHMMbigram.m suitably.

Exercise 23.5. Show that if a HMM transition matrix A and emission matrix B are initialised to uniformly
constant values, then the EM algorithm fails to update the parameters meaningfully.

Exercise 23.6. Consider the problem of finding the most likely joint output sequence v1:T for a HMM. That
is,

v∗1:T ≡ argmax
v1:T

p(v1:T ) (23.8.4)

where

p(h1:T , v1:T ) =
T∏
t=1

p(vt|ht)p(ht|ht−1) (23.8.5)

1. Explain why a local message passing algorithm cannot, in general, be found for this problem and discuss
the computational complexity of finding an exact solution.

2. Explain how to adapt the expectation maximisation algorithm to form a recursive algorithm for finding
an approximate v∗1:T . Explain why your approach guarantees an improved solution at each iteration.
Additionally, explain how the algorithm can be implemented using local message passing.

Exercise 23.7. Explain how to train a HMM using EM (expectation maximisation), but with a constrained
transition matrix. In particular, explain how to learn a transition matrix with a triangular structure.

Exercise 23.8.

Using the correspondence A = 1, C = 2, G = 3, T = 4 define a 4 × 4 transition matrix p that produces
sequences of the form

A,C,G, T,A,C,G, T,A,C,G, T,A,C,G, T, . . . (23.8.6)

Now define a new transition matrix

pnew = 0.9*p + 0.1*ones(4)/4 (23.8.7)

Define a 4× 4 transition matrix q that produces sequences of the form

T,G,C,A, T,G,C,A, T,G,C,A, T,G,C,A, . . . (23.8.8)

Now define a new transition matrix

qnew = 0.9*q + 0.1*ones(4)/4 (23.8.9)

Assume that the probability of being in the initial state of the Markov chain p(h1) is constant for all four
states A,C,G, T .
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1. What is the probability that the Markov chain pnew generated the sequence S given by

S ≡ A,A,G, T,A,C, T, T,A,C,C, T,A,C,G,C (23.8.10)

2. Similarly what is the probability that S was generated by qnew? Does it make sense that S has a higher
likelihood under pnew compared with qnew?

3. Using the function randgen.m, generate 100 sequences of length 16 from the Markov chain defined by
pnew. Similarly, generate 100 sequences each of length 16 from the Markov chain defined by qnew.
Concatenate all these sequences into a cell array v so that v{1} contains the first sequence and v{200}
the last sequence. Use MixMarkov.m to learn the Maximum Likelihood parameters that generated these
sequences. Assume that there are H = 2 kinds of Markov chain. The result returned in phgv indicates
the posterior probability of sequence assignment. Do you agree with the solution found?

4. Take the sequence S as defined in equation (23.8.10). Define an emission distribution that has 4 output
states such that

p(v = i|h = j) =

{
0.7 i = j
0.1 i 6= j

(23.8.11)

Using this emission distribution and the transition given by pnew defined in equation (23.8.7), adapt
demoHMMinferenceSimple.m suitably to find the most likely hidden sequence hp1:16 that generated the
observed sequence S. Repeat this computation but for the transition qnew to give hq1:16. Which hidden
sequence – hp1:16 or hq1:16 is to be preferred? Justify your answer.

Exercise 23.9. Derive an algorithm that will find the most likely joint state

argmax
h1:T

T∏
t=2

φt(ht−1, ht) (23.8.12)

for arbitrarily defined potentials φt(ht−1, ht).

1. First consider

max
h1:T

T∏
t=2

φt(ht−1, ht) (23.8.13)

Show how the maximisation over hT may be pushed inside the product and that the result of the
maximisation can be interpreted as a message

γT−1←T (hT−1) (23.8.14)

2. Derive the recursion

γt−1←t(ht−1) = max
ht

φt(ht, ht−1)γt←t+1(ht) (23.8.15)

3. Explain how the above recursion enables the computation of

argmax
h1

T∏
t=2

φt(ht, ht−1) (23.8.16)

4. Explain how once the most likely state for h1 is computed, one may efficiently compute the remaining
optimal states h2, . . . , hT .

Exercise 23.10. Derive an algorithm that will compute pairwise marginals

p(ht, ht−1) (23.8.17)

from the joint distribution

p(h1:T ) ∝
T∏
t=2

φt(ht−1, ht) (23.8.18)

for arbitrarily defined potentials φt(ht−1, ht).
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1. First consider

∑
h1,...,hT

T∏
t=2

φt(ht, ht−1) (23.8.19)

Show how the summation over h1 may be pushed inside the product and that the result of the maximi-
sation can be interpreted as a message

α1→2(h2) =
∑
h1

φ2(h1, h2) (23.8.20)

2. Show that the summation over the variables h1:t−1 can be accomplished via the recursion

αt−1→t(ht) =
∑
ht−1

φt(ht−1, ht)αt−2→t−1(ht−1) (23.8.21)

3. Similarly, show that one can push the summation of hT inside the product to define

βT−1←T (hT−1) =
∑
hT

φT (hT−1, hT ). (23.8.22)

Show that the summation over the variables hT :t+1 can be accomplished via the recursion

βt←t+1(ht) =
∑
ht+1

φt+1(ht, ht+1)βt+1←t+2(ht+1) (23.8.23)

4. Show that

p(ht, ht−1) ∝
∑
ht+1

αt−2→t−1(ht−1)φ(ht−1, ht)βt←t+1(ht) (23.8.24)

Exercise 23.11. A second order HMM is defined as

p(h1:T , v1:T ) = p(h1)p(v1|h1)p(h2|h1)p(v2|h2)
T∏
t=3

p(ht|ht−1, ht−2)p(vt|ht) (23.8.25)

Following a similar approach to the first order HMM, derive explicitly a message passing algorithm to
compute the most likely joint state

argmax
h1:T

p(h1:T |v1:T ) (23.8.26)

Exercise 23.12. Derive an algorithm to efficiently compute the gradient of the log likelihood for an HMM;
assume unconstrained discrete transition and emission matrices.

Exercise 23.13. Consider the HMM defined on hidden variables H = {h1, . . . , hT } and observations V =
{v1, . . . , vT }

p(V,H) = p(h1)p(v1|h1)
T∏
t=2

p(ht|ht−1)p(vt|ht) (23.8.27)

Show that the posterior p(H|V) is a Markov chain

p(H|V) = p̃(h1)
T∏
t=2

p̃(ht|ht−1) (23.8.28)

where p̃(ht|ht−1) and p̃(h1) are suitably defined distributions.
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Exercise 23.14. For training a HMM with a Gaussian mixture emission (the HMM-GMM model) in sec-
tion(23.3.3), derive the following EM update formulae for the means and covariances:

µnewk,h =
N∑
n=1

T∑
t=1

ρk,h(t, n)vnt (23.8.29)

and

Σnew
k,h =

N∑
n=1

T∑
t=1

ρk,h(t, n)
(
vnt − µk,h

) (
vnt − µk,h

)T
(23.8.30)

where

ρk,h(t, n) =
q(kt = k|hnt = h)q(hnt = h|vn1:T )∑

n

∑
t q(kt = k|hnt = h)q(hnt = h|vn1:T )

(23.8.31)

Exercise 23.15. Consider the HMM duration model defined by equation (23.4.2) and equation (23.4.1)
with emission distribution p(vt|ht). Our interest is to derive a recursion for the filtered distribution

αt(ht, ct) ≡ p(ht, ct, v1:t) (23.8.32)

1. Show that :

αt(ht, ct) = p(vt|ht)
∑

ht−1,ct−1

p(ht|ht−1, ct)p(ct|ct−1)αt−1(ht−1, ct−1) (23.8.33)

2. Using this derive

αt(ht, ct)

p(vt|ht)
=
∑
ht−1

p(ht|ht−1, c)p(ct|ct−1 = 1)αt−1(ht−1, ct−1 = 1)

+
∑
ht−1

p(ht|ht−1, c)

Dmax∑
ct−1=2

p(c|ct−1)αt−1(ht−1, ct−1) (23.8.34)

3. Show that the right hand side of the above can be written as∑
ht−1

p(ht|ht−1, ct = c)p(ct = c|ct−1 = 1)αt−1(ht−1, 1)

+ I [c 6= Dmax]
∑
ht−1

p(ht|ht−1, c)αt−1(ht−1, c + 1) (23.8.35)

4. Show that the recursion for α is then given by

αt(h, 1) = p(vt|ht = h)pdur(1)
∑
ht−1

ptran(h|ht−1)αt−1(ht−1, 1)

+ I [Dmax 6= 1] p(vt|ht = h)
∑
ht−1

ptran(ht|ht−1)αt−1(ht−1, 2) (23.8.36)

and for c > 1

αt(h, c) = p(vt|ht = h) {pdur(c)αt−1(h, 1) + I [c 6= Dmax]αt−1(h, c+ 1)} (23.8.37)

5. Explain why the computational complexity of filtered inference in the duration model is O
(
TH2Dmax

)
.

6. Derive an efficient smoothing algorithm for this duration model.
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CHAPTER 24

Continuous-state Markov Models

Many physical systems can be understood as continuous variable models undergoing a transition that de-
pends only on the state of the system at the previous time. In this chapter we discuss some of the classical
models in this area which are highly specialised to retain tractability of inference. These models are found
in a wide variety of fields from finance to signal processing in engineering.

24.1 Observed Linear Dynamical Systems

In many practical timeseries applications the data is naturally continuous, particularly for models of the
physical environment. In contrast to discrete-state Markov models, chapter(23), parametric continuous state
distributions are not automatically closed under operations such as products and marginalisation. To make
practical algorithms for which inference and learning can be carried out efficiently, we therefore are heavily
restricted in the form of the continuous transition p(vt|vt−1). A simple yet powerful class of such transitions
are the linear dynamical systems. A deterministic observed linear dynamical system1 (OLDS) defines the
temporal evolution of a vector vt according to the discrete-time update equation

vt = Atvt−1 (24.1.1)

where At is the transition matrix at time t. For the case that At is invariant with t, the process is called
stationary or time-invariant, which we assume throughout unless explicitly stated otherwise.

A motivation for studying OLDSs is that many equations that describe the physical world can be written
as an OLDS. OLDSs are interesting since they may be used as simple prediction models: if vt describes
the state of the environment at time t, then Avt predicts the environment at time t + 1. As such, these
models, have widespread application in many branches of science, from engineering and physics to economics.

The OLDS equation (24.1.1) is deterministic so that if we specify v1, all future values v2,v3, . . . , are defined.
For a dim (v) = V dimensional vector, its evolution is described by (assuming A is diagonalisable)

vt = At−1v1 = PΛt−1P−1v1 (24.1.2)

where Λ = diag (λ1, . . . , λV ), is the diagonal eigenvalue matrix, and P is the corresponding eigenvector
matrix of A. If any λi > 1 then for large t, vt will explode. On the other hand, if λi < 1, then λt−1

i will
tend to zero. For stable systems we require therefore no eigenvalues of magnitude greater than 1 and only
unit eigenvalues |λi = 1| will contribute in the long term. Note that the eigenvalues may be complex which

1We use the terminology ‘observed’ LDS to differentiate from the more general LDS state-space model. In some texts,
however, the term LDS is applied to the models under discussion in this chapter.
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corresponds to rotational behaviour, see exercise(24.1).

More generally, we may consider additive noise on v and define a stochastic OLDS, as defined below.

Definition 24.1 (Observed Linear Dynamical System).

vt = Atvt−1 + ηt (24.1.3)

where ηt is a noise vector sampled from a Gaussian distribution,

N (ηt µt,Σt) (24.1.4)

This is equivalent to a first order Markov model with transition

p(vt|vt−1) = N (vt Atvt−1 + µt,Σt) (24.1.5)

At t = 1 we have an initial distribution p(v1) = N (v1 µ1,Σ1). For t > 1 if the parameters are time-
independent, µt ≡ µ, At ≡ A, Σt ≡ Σ, the process is called time-invariant.

24.1.1 Stationary distribution with noise

Consider the one-dimensional linear system with independent additive noise

vt = avt−1 + ηt, ηt ∼ N
(
ηt 0, σ2

v

)
(24.1.6)

If we start at some state v1, and then for t > 1 recursively sample according to vt = avt−1 + ηt, what is the
distribution of vt? Since the transitions are linear and the noise is Gaussian, then vt must also be Gaussian.
Assuming that we can represent the distribution of vt−1 as a Gaussian with mean µt−1 and variance σ2

t−1,
vt−1 ∼ N

(
vt−1 µt−1, σ

2
t−1

)
, then using 〈ηt〉 = 0 we have

〈vt〉 = a 〈vt−1〉+ 〈ηt〉 ⇒ µt = aµt−1 (24.1.7)〈
v2
t

〉
=
〈

(avt−1 + ηt)
2
〉

= a2
〈
v2
t−1

〉
+ 2a 〈vt−1〉 〈ηt〉+

〈
η2
t

〉
(24.1.8)

⇒ σ2
t = a2σ2

t−1 + σ2
v (24.1.9)

so that

vt ∼ N
(
vt aµt−1, a

2σ2
t−1 + σ2

v

)
(24.1.10)

Infinite time limit

Does the distribution of the vt, t � 1 tend to a steady, fixed distribution? If a ≥ 1 the variance increases
indefinitely with t, as does the mean value.

For a < 1, and assuming there is a finite variance σ2
∞ for the infinite time case, from equation (24.1.9), the

stationary distribution satisfies

σ2
∞ = a2σ2

∞ + σ2
v ⇒ σ2

∞ =
σ2
v

1− a2
(24.1.11)

Similarly, the mean is given by µ∞ = a∞µ1. Hence, for a < 1, the mean tends to zero yet the variance
remains finite. Even though the magnitude of vt−1 is decreased by a factor of a at each iteration, the
additive noise on average boosts the magnitude so that it remains steady in the long run. More generally
for a system updating a vector vt according to non-zero additive noise,

vt = Avt−1 + ηt (24.1.12)

for the existence of a steady state we require that all eigenvalues of A must be < 1.
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Figure 24.1: Fitting an order 3 AR model to the training points. The x
axis represents time, and the y axis the value of the timeseries. The dots
represent the 100 observations y1:100. The solid line indicates the mean
predictions 〈y〉t , t > 100, and the dashed lines 〈y〉t±σ. See demoARtrain.m

24.2 Auto-Regressive Models

A scalar time-invariant auto-regressive model is defined by

vt =

L∑
l=1

alvt−l + ηt, ηt ∼ N
(
ηt µ, σ

2
)

(24.2.1)

where a = (a1, . . . , aL)T are called the AR coefficients and σ2 is called the innovation noise. The model
predicts the future based on a linear combination of the previous L observations. As a belief network, the
AR model can be written as an Lth order Markov model:

p(v1:T ) =
T∏
t=1

p(vt|vt−1, . . . , vt−L), with vi = ∅ for i ≤ 0 (24.2.2)

with

p(vt|vt−1, . . . , vt−L) = N
(
vt

L∑
l=1

alvt−l, σ
2

)
(24.2.3)

Introducing the vector of the L previous observations

v̂t−1 ≡ [vt−1, vt−2, . . . , vt−L]T (24.2.4)

we can write more compactly

p(vt|vt−1, . . . , vt−L) = N
(
vt aTv̂t−1, σ

2
)

(24.2.5)

AR models are heavily used in financial time-series prediction (see for example [288]), being able to capture
simple trends in the data. Another common application area is in speech processing whereby for a one-
dimensional speech signal partitioned into windows of length T � L, the AR coefficients best able to describe
the signal in each window are found[231]. These AR coefficients then form a compressed representation of
the signal and subsequently transmitted for each window, rather than the original signal itself. The signal
can then be approximately reconstructed based on the AR coefficients. This is known as a linear predictive
vocoder[273]. Note that an interesting property of the AR representation of a signal is that if we scale the
signal by a constant amount ρ, then

ρvt =
L∑
l=1

alρvt−l + ρηt, (24.2.6)

so that provided we scale the noise suitably, the same AR coefficients can be used to represent the signal;
the AR coefficients are therefore to a degree amplitude invariant.
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24.2.1 Training an AR model

Maximum likelihood training of the AR coefficients is straightforward based on

log p(v1:T ) =
T∑
t=1

log p(vt|v̂t−1) = − 1

2σ2

T∑
t=1

(
vt − v̂T

t−1a
)2
− T

2
log(2πσ2) (24.2.7)

Differentiating w.r.t. a and equating to zero we arrive at∑
t

(
vt − v̂T

t−1a
)

v̂t−1 = 0 (24.2.8)

so that optimally

a =

(∑
t

v̂t−1v̂
T
t−1

)−1∑
t

vtv̂t−1 (24.2.9)

These equations can be solved by Gaussian elimination. The linear system has a Toeplitz form that can be
more efficiently solved using the Levinson-Durbin method [89]. Similarly, optimally,

σ2 =
1

T

T∑
t=1

(
vt − v̂T

t−1a
)2

(24.2.10)

Above we assume that ‘negative’ timesteps are available in order to keep the notation simple. If times before
the window over which we learn the coefficients are not available, a minor adjustment is required to start
the summations from t = L+ 1. Given a trained a, future predictions can be made using vt+1 = v̂T

t a.

Example 24.1 (Fitting a trend). We illustrate with a simple example how AR models can be used to
estimate trends underlying timeseries data. A third-order AR model was fit to the set of 100 observations
shown in fig(24.1) using maximum likelihood. A prediction for the mean 〈y〉t was then recursively generated
as

〈y〉t =

{ ∑3
i=1 ai 〈y〉t−i for t > 100,

yt for t ≤ 100 .

As we can see (solid line in fig(24.1)), the predicted means for time t > 100 capture an underlying trend in
the data. Whilst this example is very simple, AR models are quite powerful and can model complex signal
behaviour.

24.2.2 AR model as an OLDS

We can write equation (24.2.1) as an OLDS using
vt
vt−1

...
vt−L+1

 =


a1 a2 . . . aL
1 0 . . . 0
... 1 . . . 0
0 . . . 1 0




vt−1

vt−2
...

vt−L

+


ηt
0
...
0

 (24.2.11)

which in vector notation is

v̂t = Av̂t−1 + ηt, ηt ∼ N (ηt 0,Σ) (24.2.12)

where we define the block matrices

A =

(
a1:L−1 aL

I 0

)
, Σ =

(
σ2 01,1:L−1

01:L−1,1 01:L−1,1:L−1

)
(24.2.13)

In this representation, the first component of the vector is updated according to the standard AR model,
with the remaining components being copies of the previous values.
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v1 v2 v3 v4

a1 a2 a3 a4
Figure 24.2: A time-varying AR model as a latent
LDS. Since the observations are known, this model is a
time-varying latent LDS, for which smoothed inference
determines the time-varying AR coefficients.

24.2.3 Time-varying AR model

An alternative to maximum likelihood is to view learning the AR coefficients as a problem in inference in
a latent LDS, a model which is discussed in detail in section(24.3). If at are the latent AR coefficients, the
term

vt = v̂T
t−1at + ηt, ηt ∼ N

(
ηt 0, σ2

)
(24.2.14)

can be viewed as the emission distribution of a latent LDS in which the hidden variable is at and the
time-dependent emission matrix is given by v̂T

t−1. By placing a simple latent transition

at = at−1 + ηat , ηat ∼ N
(
ηat 0, σ2

aI
)

(24.2.15)

we encourage the AR coefficients to change slowly with time. This defines a model, see fig(24.2)

p(v1:T ,a1:T ) =
∏
t

p(vt|at, v̂t−1)p(at|at−1) (24.2.16)

Our interest is then in the conditional p(a1:T |v1:T ) from which we can compute the a-posteriori most likely
sequence of AR coefficients. Standard smoothing algorithms can then be applied to yield the time-varying
AR coefficients, see demoARlds.m.

Definition 24.2 (Discrete Fourier Transform). For a sequence x0:N−1 the DFT f0:N−1 is defined as

fk =

N−1∑
n=0

xne
− 2πi
N
kn, k = 0, . . . , N − 1 (24.2.17)

fk is a (complex) representation as to how much frequency k is present in the sequence x0:N−1. The power
of component k is defined as the absolute length of the complex fk.

Definition 24.3 (Spectrogram). Given a timeseries x1:T the spectrogram at time t is a representation of
the frequencies present in a window localised around t. For each window one computes the Discrete Fourier
Transform, from which we obtain a vector of log power in each frequency. The window is then moved
(usually) one step forward and the DFT recomputed. Note that by taking the logarithm, small values in
the original signal can translate to visibly appreciable values in the spectrogram.

Example 24.2 (Nightingale). In fig(24.3a) we plot the raw acoustic recording for a 5 second fragment of a
nightingale song (freesound.org, sample 17185). The spectrogram is also plotted and gives an indication
of which frequencies are present in the signal as a function of time. The nightingale song is very complicated
but at least locally can be very repetitive. A crude way to find which segments repeat is to cluster the
time-slices of the spectrogram. In fig(24.3c) we show the results of fitting a Gaussian mixture model,
section(20.3), with 8 components, from which we see there is some repetition of components locally in time.
An alternative representation of the signal is given by the time-varying AR coefficients, section(24.2.3), as
plotted in fig(24.3d). A GMM clustering with 8 components fig(24.3e) in this case produces a somewhat
clearer depiction of the different phases of the nightingale singing than that afforded by the spectrogram.
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(a)

(b)

(c)

(d)

(e)

Figure 24.3: (a): The raw recording of 5 seconds of a nightingale song (with additional background
birdsong). (b): Spectrogram of (a) up to 20,000 Hz. (c): Clustering of the results in panel (b) using an
8 component Gaussian mixture model. Plotted at each time vertically is the distribution over the cluster
indices (from 1 to 8), so that the darker the component, the more responsible that component is for the
spectrogram slice at that timepoint. (d): The 20 time-varying AR coefficients learned using σ2

v = 0.001,
σ2
h = 0.001, see ARlds.m. (e): Clustering the results in panel (d) using a Gaussian mixture model with 8

components. The AR components group roughly according to the different song regimes.

24.2.4 Time-varying variance AR models

In the standard AR model, equation (24.2.1), the variance σ2 is assumed fixed throughout time. For some
applications, particular in finance, this is undesirable since the ‘volatility’ can change dramatically with
time. A simple extension of the AR model is to write

vt =
L∑
l=1

alvt−l + ηt, ηt ∼ N
(
ηt µ, σ

2
t

)
(24.2.18)

v̄t =

L∑
l=1

alvt−l (24.2.19)

σ2
t = α0 +

Q∑
i=1

αi (vt−i − v̄t−i)2 (24.2.20)

where αi ≥ 0. The motivation is that equation (24.2.20) represents an estimate of the variance of the
noise, based on a weighted sum of the squared discrepancies between the mean prediction v̄ and the actual
observation v over the previous Q timesteps. This is called an AutoRegressive Conditional Heteroskedasticity
(ARCH) model [96]. A further extension is to the generalised ARCH (GARCH) model, for which

σ2
t = α0 +

Q∑
i=1

αi (vt−i − v̄t−i)2 +

P∑
i=1

βiσ
2
t−i (24.2.21)
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Figure 24.4: (a): A first order L = 1, Q = 1 ARCH model, in which the observations are dependent
on the previous observation, and the variance is dependent on the previous observations in a deterministic
manner. (b): An L = 1, Q = 1, P = 2 GARCH model, in which the observations are dependent on
the previous observation, and the variance is dependent on the previous observations and previous two
variances in a deterministic manner. These are special cases of the general deterministic latent variable
models, section(26.4).

where βi ≥ 0.

One can interpret these as deterministic latent variable models, see section(26.4), albeit with the extension
to a higher-order Markov process. In this sense, learning of the parameters by maximum likelihood is
straightforward since derivatives of the log likelihood can be computed by deterministic propagation, as
described in section(26.4). Indeed, based on this insight, a whole range of possible non-linear ‘volatility’
models come into view.

24.3 Latent Linear Dynamical Systems

The Latent LDS defines a stochastic linear dynamical system in a latent (or ‘hidden’) space on a sequence
of vectors h1:T . Each observation vt is as linear function of the latent vector ht. This model is also called a
linear Gaussian state space model2. The model can also be considered a form of LDS on the joint variables
xt = (vt, ht), with parts of the vector xt missing. For this reason we will also sometimes refer to this model
as a Linear Dynamical System (without the ‘latent’ prefix). These models are powerful models of timeseries
and their use is widespread. Their latent nature means that we can use the latent variable ht to track and
explain the observation t. The formal definition of the model is given below.

Definition 24.4 (Latent linear dynamical system).

ht = Atht−1 + ηht ηht ∼ N
(
ηht h̄t,Σ

h
t

)
transition model

vt = Btht + ηvt ηvt ∼ N (ηvt v̄t,Σ
v
t ) emission model

(24.3.1)

where ηht and ηvt are noise vectors. At is called the transition matrix and Bt the emission matrix . The
terms h̄t and v̄t are the hidden and output bias respectively. The transition and emission models define a
first order Markov model

p(h1:T ,v1:T ) = p(h1)p(v1|h1)

T∏
t=2

p(ht|ht−1)p(vt|ht) (24.3.2)

with the transitions and emissions given by Gaussian distributions

p(ht|ht−1) = N
(
ht Atht−1 + h̄t,Σ

h
t

)
, p(h1) = N (h1 µπ,Σπ) (24.3.3)

p(vt|ht) = N (vt Btht + v̄t,Σ
v
t ) (24.3.4)

2These models are also often called Kalman Filters. We avoid this terminology here since the word ‘filter’ refers to a specific
kind of inference and runs the risk of confusing a filtering algorithm with the model itself.
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v1 v2 v3 v4

h1 h2 h3 h4

Figure 24.5: A (latent) LDS. Both hidden and visible
variables are Gaussian distributed.

Figure 24.6: A single phasor plotted as a damped two
dimensional rotation ht+1 = γRθht with a damping
factor 0 < γ < 1. By taking a projection onto the y
axis, the phasor generates a damped sinusoid.

The model is represented as a belief network in fig(24.5) with the extension to higher orders being intuitive.
One may also include an external input ot at each time, which will add Cot to the mean of the hidden
variable and Dot to the mean of the observation.

Explicit expressions for the transition and emission distributions are given below for the time-invariant
case At ≡ A, Bt ≡ B, Σh

t ≡ Σh, Σv
t ≡ Σv with zero biases v̄t = 0, h̄t = 0. Each hidden variable is a

multidimensional Gaussian distributed vector ht, with transition

p(ht|ht−1) =
1√
|2πΣh|

exp

(
−1

2
(ht −Aht−1)T Σ−1

h (ht −Aht−1)

)
(24.3.5)

which states that ht has a mean Aht−1 and covariance Σh. Similarly,

p(vt|ht) =
1√
|2πΣv|

exp

(
−1

2
(vt −Bht)

T Σ−1
v (vt −Bht)

)
(24.3.6)

describes an output vt with mean Bht and covariance Σv.

Example 24.3. Consider a dynamical system defined on two dimensional vectors ht:

ht+1 = Rθht, with Rθ =

(
cos θ − sin θ
sin θ cos θ

)
(24.3.7)

Rθ rotates the vector ht through angle θ in one timestep. Under this LDS we trace out points on a circle,
h1, . . . ,ht through time. By taking a scalar projection of ht, for example,

vt = [ht]1 = [1 0]Tht, (24.3.8)

the elements vt, t = 1, . . . , T describe a sinusoid through time, see fig(24.6). By using a block diagonal
R = blkdiag (Rθ1 , . . . ,Rθm) and taking a scalar projection of the extended m×2 dimensional ht vector, one
can construct a representation of a signal in terms of m sinusoidal components. Hence we see that LDSs
can represent potentially highly complex period behaviour.

24.4 Inference

Given an observation sequence v1:T we here consider filtering and smoothing, as we did for the HMM,
section(23.2.1). For the HMM, in deriving the various message passing recursions, we used only the inde-
pendence structure encoded by the belief network. Since the LDS has the same independence structure as
the HMM, we can use the same independence assumptions in deriving the updates for the LDS. However,
in implementing them we need to deal with the issue that we now have continuous hidden variables, rather
than discrete states. The fact that the distributions are Gaussian means that we can deal with continuous
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messages exactly. In translating the HMM message passing equations, we first replace summation with
integration. For example, the filtering recursion (23.2.7) becomes

p(ht|v1:t) ∝
∫

ht−1

p(vt|ht)p(ht|ht−1)p(ht−1|v1:t−1), t > 1 (24.4.1)

Since the product of two Gaussians is another Gaussian, and the integral of a Gaussian is another Gaussian,
the resulting p(ht|v1:t) is also Gaussian. This closure property of Gaussians means that we may represent
p(ht−1|v1:t−1) = N (ht−1 ft−1,Ft−1) with mean ft−1 and covariance Ft−1. The effect of equation (24.4.1) is
equivalent to updating the mean ft−1 and covariance Ft−1 into a mean ft and covariance Ft for p(ht|v1:t).
Our task below is to find explicit algebraic formulae for these updates.

Numerical stability

Translating the message passing inference techniques we developed for the HMM into the LDS is largely
straightforward. Indeed, one could simply run a standard sum-product algorithm (albeit for continuous
variables), see demoSumprodGaussCanonLDS.m. In long timeseries, however, numerical instabilities can build
up and may result in grossly inaccurate results, depending on the transition and emission distribution
parameters and the method of implementing the message updates. For this reason specialised routines
have been developed that are numerically stable under certain parameter regimes[303]. For the HMM
in section(23.2.1), we discussed two alternative methods for smoothing, the parallel β approach, and the
sequential γ approach. The β recursion is suitable when the emission and transition covariance entries are
large, and the γ recursion preferable in the more standard case of small covariance values.

Analytical shortcuts

In deriving the inference recursions we need to frequently multiply and integrate Gaussians. Whilst in prin-
ciple straightforward, this can be algebraically tedious and, wherever possible, it is useful to appeal to known
shortcuts. For example, one can exploit the general result that the linear transform of a Gaussian random
variable is another Gaussian random variable. Similarly it is convenient to make use of the conditioning
formulae, as well as the dynamics reversal intuition. These results are stated in section(8.4), and below we
derive the most useful for our purposes here. This will also explain how the equations for filtering can be
derived.

Consider a linear transformation of a Gaussian random variable:

y = Mx + η, η ∼ N (η µ,Σ) , x ∼ N (x µx,Σx) (24.4.2)

where x and η are assumed to be generated from independent processes. To find the distribution p(y), one
approach would be to write this formally as

p(y) =

∫
N (y Mx + µ,Σ)N (x µx,Σx) dx (24.4.3)

and carry out the integral (by completing the square). However, since a Gaussian variable under linear
transformation is another Gaussian, we can take a shortcut and just find the mean and covariance of the
transformed variable. Its mean is given by

〈y〉 = M 〈x〉+ 〈η〉 = Mµx + µ (24.4.4)

To find the covariance of p(y), consider the displacement of a variable x from its mean, which we write as

∆x ≡ x− 〈x〉 (24.4.5)

The covariance is, by definition,
〈
∆x∆xT

〉
. For y, the displacement is

∆y = M∆x + ∆η, (24.4.6)
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Algorithm 24.1 LDS Forward Pass. Compute the filtered posteriors p(ht|v1:t) ≡ N (ft,Ft) for a LDS with
parameters θt =

{
A,B,Σh,Σv, h̄, v̄

}
t
. The log-likelihood L = log p(v1:T ) is also returned.

{f1,F1, p1} = LDSFORWARD(0,0,v1; θ1)
L← log p1

for t← 2, T do
{ft,Ft, pt} = LDSFORWARD(ft−1,Ft−1,vt; θt)
L← L+ log pt

end for
function ldsforward(f ,F,v; θ)
µh ← Af + h̄, µv ← Bµh + v̄ . Mean of p(ht,vt|v1:t−1)
Σhh ← AFAT + Σh, Σvv ← BΣhhB

T + Σv, Σvh ← BΣhh . Covariance of p(ht,vt|v1:t−1)
f ′ ← µh + ΣT

vhΣ
−1
vv (v − µv), F′ ← Σhh −ΣT

vhΣ
−1
vv Σvh . Find p(ht|v1:t) by conditioning

p′ ← exp
(
−1

2 (v − µv)T Σ−1
vv (v − µv)

)
/
√

det (2πΣvv) . Compute p(vt|v1:t−1)

return f ′,F′, p′

end function

So that the covariance is〈
∆y∆yT

〉
=
〈

(M∆x + ∆η) (M∆x + ∆η)T
〉

= M
〈

∆x∆xT
〉

MT + M
〈

∆x∆ηT
〉

+
〈

∆η∆xT
〉

MT +
〈

∆η∆ηT
〉

Since the noises η and x are assumed independent,
〈
∆η∆xT

〉
= 0 we have

Σy = MΣxM
T + Σ (24.4.7)

24.4.1 Filtering

We represent the filtered distribution as a Gaussian with mean ft and covariance Ft,

p(ht|v1:t) ∼ N (ht ft,Ft) (24.4.8)

This is called the moment representation. Our task is then to find a recursion for ft,Ft in terms of ft−1,
Ft−1. A convenient approach is to first find the joint distribution p(ht,vt|v1:t−1) and then condition on
vt to find the distribution p(ht|v1:t). The term p(ht,vt|v1:t−1) is a Gaussian whose statistics can be found
from the relations

vt = Bht + ηvt , ht = Aht−1 + ηht (24.4.9)

Using the above, and assuming time-invariance and zero biases, we readily find〈
∆ht∆hT

t |v1:t−1

〉
= AFt−1A

T + Σh, (24.4.10)〈
∆vt∆hT

t |v1:t−1

〉
= B

(
AFt−1A

T + Σh

)
, (24.4.11)〈

∆vt∆vT
t |v1:t−1

〉
= B

(
AFt−1A

T + Σh

)
BT + Σv, (24.4.12)

〈vt|v1:t−1〉 = BA 〈ht−1|v1:t−1〉 , (24.4.13)

〈ht|v1:t−1〉 = A 〈ht−1|v1:t−1〉 (24.4.14)

In the above, using our moment representation of the forward messages

〈ht−1|v1:t−1〉 ≡ ft−1,
〈

∆ht−1∆hT
t−1|v1:t−1

〉
≡ Ft−1 (24.4.15)

Then, using conditioning3 p(ht|vt,v1:t−1) will have mean

ft ≡ 〈ht|v1:t−1〉+
〈

∆ht∆vT
t |v1:t−1

〉〈
∆vt∆vT

t |v1:t−1

〉−1
(vt − 〈vt|v1:t−1〉) (24.4.16)

3p(x|y) is a Gaussian with mean µx + ΣxyΣ
−1
yy

(
y − µy

)
and covariance Σxx −ΣxyΣ

−1
yy Σyx.
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and covariance

Ft ≡
〈

∆ht∆hT
t |v1:t−1

〉
−
〈

∆ht∆vT
t |v1:t−1

〉〈
∆vt∆vT

t |v1:t−1

〉−1 〈
∆vt∆hT

t |v1:t−1

〉
(24.4.17)

Writing out the above explicitly we have for the mean and covariance:

ft = Aft−1 + PBT
(
BPBT + Σv

)−1
(vt −BAft−1) (24.4.18)

Ft = P−PBT
(
BPBT + Σv

)−1
BP (24.4.19)

where

P ≡ AFt−1A
T + Σh (24.4.20)

The recursion is initialised with f0 = 0, F0 = 0. The filtering procedure is presented in algorithm(24.1) with
a single update in LDSforwardUpdate.m.

One can write the covariance update as

Ft = (I−KB) P (24.4.21)

where we define the Kalman gain matrix

K = PBT
(
ΣV + BPBT

)−1
(24.4.22)

Symmetrising the updates

A potential numerical issue with the covariance update (24.4.21) is that it is the difference of two positive
definite matrices. If there are numerical errors, the Ft may not be numerically positive definite, nor sym-
metric. Using the Woodbury identity, definition(29.11), equation (24.4.19) can be written more compactly
as

Ft =
(
P−1 + BTΣ−1

v B
)−1

(24.4.23)

Whilst this is positive semidefinite, this is numerically expensive since it involves two matrix inversions. An
alternative is to use the definition of K, from which we can write

KΣvK
T = (I−KB) PBTKT (24.4.24)

Hence we arrive at Joseph’s symmetrized update[114]

Ft = (I−KB) P (I−KB)T + KΣvK
T (24.4.25)

The right-hand side of the above is the addition of two positive definite matrices so that the resulting update
for the covariance is more numerically stable. A similar method can be used in the backward pass below.
An alternative is to avoid using covariance matrices directly and use their square root as the parameter,
deriving updates for these instead[243, 39].

Prediction

From the dynamics, definition(24.4), the distribution of the future visible variable is given by propagating
the filtered distribution forwards one timestep (written here for the time-independent case)

p(vt+1|v1:t) =

∫
ht,ht+1

p(vt+1|ht+1)p(ht+1|ht)p(ht|v1:t) (24.4.26)

= N
(
vt+1 B

(
Aft + h̄

)
+ v̄,B

(
AFtA

T + Σh

)
BT + Σv

)
(24.4.27)

DRAFT November 21, 2011 485



Inference

24.4.2 Smoothing : Rauch-Tung-Striebel correction method

The smoothed posterior p(ht|v1:T ) is necessarily Gaussian since it is the conditional marginal of a larger
Gaussian. By representing the posterior as a Gaussian with mean gt and covariance Gt,

p(ht|v1:T ) ∼ N (ht gt,Gt) (24.4.28)

we can form a recursion for gt and Gt as follows:

p(ht|v1:T ) =

∫
ht+1

p(ht,ht+1|v1:T ) (24.4.29)

=

∫
ht+1

p(ht|v1:T ,ht+1)p(ht+1|v1:T ) =

∫
ht+1

p(ht|v1:t,ht+1)p(ht+1|v1:T ) (24.4.30)

The term p(ht|v1:t,ht+1) can be found by conditioning the joint distribution

p(ht,ht+1|v1:t) = p(ht+1|ht,��v1:t)p(ht|v1:t) (24.4.31)

which is obtained in the usual manner by finding its mean and covariance: The term p(ht|v1:t) is a known
Gaussian from filtering with mean ft and covariance Ft. Hence the joint distribution p(ht,ht+1|v1:t) has
means

〈ht|v1:t〉 = ft, 〈ht+1|v1:t〉 = Aft (24.4.32)

and covariance elements〈
∆ht∆hT

t |v1:t

〉
= Ft,

〈
∆ht∆hT

t+1|v1:t

〉
= FtA

T,
〈

∆ht+1∆hT
t+1|v1:t

〉
= AFtA

T + Σh (24.4.33)

To find p(ht|v1:t,ht+1) we may use the conditioned Gaussian results, result(8.4). However, it will turn out to
be useful to use the system reversal result, section(8.4.2), which interprets p(ht|v1:t,ht+1) as an equivalent
linear system going backwards in time:

ht =
←−
Atht+1 +←−mt +←−η t (24.4.34)

where

←−
At ≡

〈
∆ht∆hT

t+1|v1:t

〉〈
∆ht+1∆hT

t+1|v1:t

〉−1
(24.4.35)

←−mt ≡ 〈ht|v1:t〉 −
〈

∆ht∆hT
t+1|v1:t

〉〈
∆ht+1∆hT

t+1|v1:t

〉−1
〈ht+1|v1:t〉 (24.4.36)

and ←−η t ∼ N
(←−η t 0,

←−
Σ t

)
, with

←−
Σ t ≡

〈
∆ht∆hT

t |v1:t

〉
−
〈

∆ht∆hT
t+1|v1:t

〉〈
∆ht+1∆hT

t+1|v1:t

〉−1 〈
∆ht+1∆hT

t |v1:t

〉
(24.4.37)

Using dynamics reversal, equation (24.4.34) and assuming that ht+1 is Gaussian distributed, it is then
straightforward to work out the statistics of p(ht|v1:T ). The mean is given by

gt ≡ 〈ht|v1:T 〉 =
←−
At 〈ht+1|v1:T 〉+←−mt =

←−
Atgt+1 +←−mt (24.4.38)

and covariance

Gt ≡
〈

∆ht∆hT
t |v1:T

〉
=
←−
At

〈
∆ht+1∆hT

t+1|v1:T

〉←−
AT
t +
←−
Σ t =

←−
AtGt+1

←−
AT
t +
←−
Σ t (24.4.39)

This procedure is the Rauch-Tung-Striebel Kalman smoother[248]. This is called a ‘correction’ method
since it takes the filtered estimate p(ht|v1:t) and ‘corrects’ it to form a smoothed estimate p(ht|v1:T ). The
procedure is outlined in algorithm(24.2) and is detailed in LDSbackwardUpdate.m. See also LDSsmooth.m.
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Algorithm 24.2 LDS Backward Pass. Compute the smoothed posteriors p(ht|v1:T ). This requires the
filtered results from algorithm(24.1).

GT ← FT , gT ← fT
for t← T − 1, 1 do
{gt,Gt} = LDSBACKWARD(gt+1,Gt+1, ft,Ft; θt)

end for
function ldsbackward(g,G, f ,F; θ)
µh ← Af + h̄, Σh′h′ ← AFAT + Σh, Σh′h ← AF . Statistics of p(ht,ht+1|v1:t)←−
Σ ← F−ΣT

h′hΣ
−1
h′h′Σh′h,

←−
A ← ΣT

h′hΣ
−1
h′h′ ,

←−m← f −←−Aµh . Dynamics Reversal p(ht|ht+1,v1:t)

g′ ←←−Ag +←−m, G′ ←←−AG
←−
AT +

←−
Σ . Backward propagation

return g′,G′

end function

Sampling a trajectory from p(h1:T |v1:T )

One may use equation (24.4.34) to draw a sample trajectory h1:T from the posterior p(h1:T |v1:T ). We start
by first drawing a sample hT from the Gaussian posterior p(hT |v1:T ) = N (hT fT ,FT ). Given this value,
we write

hT−1 =
←−
AT−1hT +←−mT−1 +←−η T−1 (24.4.40)

By drawing a sample from the zero mean Gaussian N
(←−η T−1 0,

←−
ΣT−1

)
, we then have a value for hT−1. We

continue in this way, reversing backwards in time, to build up the sample trajectory hT ,hT−1,hT−2, . . . ,h1.
This is equivalent to the forward-filtering-backward-sampling approach described in section(23.2.5).

The cross moment

An advantage of the dynamics reversal interpretation given above is that the cross moment (which is required
for learning) is immediately obtained from〈

∆ht∆hT
t+1|v1:T

〉
=
←−
AtGt+1 ⇒

〈
hth

T
t+1|v1:T

〉
=
←−
AtGt+1 + gtg

T
t+1 (24.4.41)

24.4.3 The likelihood

For the discrete HMM in section(23.2), we showed how the likelihood can be computed directly from the
filtered messages

∑
hT
α(hT ). We cannot apply that technique here since the message distributions we are

passing are conditional distributions p(ht|v1:t), rather than joint distributions p(ht,v1:t). However, help is
at hand and we may compute the likelihood using the decomposition

p(v1:T ) =

T∏
t=1

p(vt|v1:t−1) (24.4.42)

in which p(vt|v1:t−1) = N (vt µt,Σt) with

µ1 ≡ Bµπ Σ1 ≡ BΣBT + Σπ t = 1
µt ≡ BAft−1 Σt ≡ B

(
AFt−1A

T + Σh

)
BT + Σv t > 1

(24.4.43)

The log likelihood is then given by

log p(v1:T ) = −1

2

T∑
t=1

[
(vt − µt)T Σ−1

t (vt − µt) + log det (2πΣt)
]

(24.4.44)
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24.4.4 Most likely state

Since the mode of a Gaussian is equal to its mean, there is no difference between the most probable joint
posterior state

argmax
h1:T

p(h1:T |v1:T ) (24.4.45)

and the set of most probable marginal states

ht = argmax
ht

p(ht|v1:T ), t = 1, . . . , T (24.4.46)

Hence the most likely hidden state sequence is equivalent to the smoothed mean sequence.

24.4.5 Time independence and Riccati equations

Both the filtered Ft and smoothed Gt covariance recursions are independent of the observations v1:T ,
depending only on the parameters of the model. This is a general characteristic of linear Gaussian systems.
Typically the covariance recursions converge quickly to values that are constant throughout the dynamics,
with only appreciable differences close to the boundaries t = 1 and t = T . In practice therefore one
often drops the time-dependence of the covariances and approximates them with a single time-independent
covariance. This approximation dramatically reduces storage requirements. The converged filtered F satisfies
the recursion

F = AFAT + Σh −
(
AFAT + Σh

)
BT
(
B
(
AFAT + Σh

)
BT + Σv

)−1
B
(
AFAT + Σh

)
(24.4.47)

which is a form of algebraic Riccati equation. A technique to solve these equations is to initialise the
covariance F to Σ. With this, a new F is found using the right hand side of (24.4.47), and subsequently
recursively updated. Alternatively, using the Woodbury identity, the converged covariance satisfies

F =

((
AFAT + Σh

)−1
+ BTΣv

−1B

)−1

(24.4.48)

although this form is less numerically convenient in forming an iterative solver for F since it requires two
matrix inversions.

Example 24.4 (Newtonian Trajectory Analysis). A toy rocket with unknown mass and initial velocity
is launched in the air. In addition, the constant accelerations from the rocket’s propulsion system are
unknown. It is known that Newton’s laws apply and an instrument can make very noisy measurements
of the horizontal distance x(t) and vertical height y(t) of the rocket at each time t. Based on these noisy
measurements, our task is to infer the position of the rocket at each time.

Although this is perhaps most appropriately considered using continuous time dynamics, we will translate
this into a discrete time approximation. Newton’s law states that

d2

dt2
x =

fx(t)

m
,

d2

dt2
y =

fy(t)

m
(24.4.49)

where m is the mass of the object and fx(t), fy(t) are the horizontal and vertical forces respectively. As
they stand, these equations are not in a form directly usable in the LDS framework. A naive approach is to
reparameterise time to use the variable t̃ such that t ≡ t̃∆, where t̃ is integer and ∆ is a unit of time. The
dynamics is then

x((t̃+ 1)∆) = x(t̃∆) + ∆x′(t̃∆), y((t̃+ 1)∆) = y(t̃∆) + ∆y′(t̃∆) (24.4.50)

where y′(t) ≡ dy
dt . We can write an update equation for the x′ and y′ as

x′((t̃+ 1)∆) = x′(t̃∆) + fx(t̃∆)∆/m, y′((t̃+ 1)∆) = y′(t̃∆) + fx(t̃∆)∆/m (24.4.51)
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Figure 24.7: Estimate of the trajectory of a Newtonian
ballistic object based on noisy observations (small cir-
cles). All time labels are known but omitted in the
plot. The ‘x’ points are the true positions of the ob-
ject, and the crosses ‘+’ are the estimated smoothed
mean positions 〈xt, yt|v1:T 〉 of the object plotted every
several time steps. See demoLDStracking.m

These two sets of coupled discrete time difference equations approximate Newton’s law equation (24.4.49).
For simplicity, we relabel ax(t) = fx(t)/m(t), ay(t) = fy(t)/m(t). These accelerations are unknown but
assumed to change slowly over time

ax((t̃+ 1)∆) = ax(t̃∆) + ηx, ay((t̃+ 1)∆) = ay(t̃∆) + ηy, (24.4.52)

where ηx and ηy are small noise terms. The initial distributions for the accelerations are assumed vague,
using a zero mean Gaussian with large variance. We describe the above model by defining

ht ≡
[
x′(t), x(t), y′(t), y(t), ax(t), ay(t)

]T
(24.4.53)

as the hidden variable, giving rise to a H = 6 dimensional LDS with transition and emission matrices as
below:

A =



1 0 0 0 ∆ 0
∆ 1 0 0 0 0
0 0 1 0 0 ∆
0 0 ∆ 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , B =

(
0 1 0 0 0 0
0 0 0 1 0 0

)
(24.4.54)

We use large a covariance Σπ to state that little is known about the latent state initial values. Based
then on noisy observations vt = Bht + ηt we attempt to infer the unknown trajectory using smoothing. A
demonstration is given in fig(24.7). Despite the significant observation noise, the object trajectory can be
accurately inferred.

24.5 Learning Linear Dynamical Systems

Whilst in many applications, particularly of underlying known physical processes, the paremeters of the
LDS are known, in many machine learning tasks we need to learn the parameters of the LDS based on v1:T .
For simplicity we assume that we know the dimensionality H of the LDS.

24.5.1 Identifiability issues

An interesting question is whether we can uniquely identify (learn) the parameters of an LDS. There are
always trivial redundancies in the solution obtained by permuting the hidden variables arbitrarily and
flipping their signs. To show that there are potentially many more equivalent solutions, consider the following
LDS

vt = Bht + ηvt , ht = Aht−1 + ηht (24.5.1)

We now attempt to transform this original system to a new form which will produce exactly the same
outputs v1:T . For an invertible matrix R we consider

Rht = RAR−1Rht−1 + Rηht (24.5.2)
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which is representable as a new latent dynamics

ĥt = Âĥt−1 + η̂ht (24.5.3)

where Â ≡ RAR−1, ĥt ≡ Rht, η̂
h
t ≡ Rηht . In addition, we can reexpress the outputs to be a function of

the transformed h:

vt = BR−1Rht + ηvt = B̂ĥt + ηvt (24.5.4)

Hence, provided we place no constraints on A, B and Σh there exists an infinite space of equivalent solutions,
Â = RA R−1, B̂ = BR−1, Σ̂H = RΣhR

T, all with the same likelihood value. This means that interpreting
the learned parameters needs to be done with some care.

24.5.2 EM algorithm

For simplicity, we assume we have a single sequence v1:T , to which we wish to fit a LDS using maximum
likelihood. Since the LDS contains latent variables one approach is to use the EM algorithm. As usual, the
M-step of the EM algorithm requires us to maximise the energy

〈log p(v1:T ,h1:T )〉pold(h1:T |v1:T ) (24.5.5)

with respect to the parameters A, B, a, Σ, Σv, Σh. Thanks to the form of the LDS the energy decomposes
as

〈log p(h1)〉pold(h1|v1:T ) +
T∑
t=2

〈log p(ht|ht−1)〉pold(ht,ht−1|v1:T ) +
T∑
t=1

〈log p(vt|ht)〉pold(ht|v1:T ) (24.5.6)

It is straightforward to derive that the M-step for the parameters is given by (angled brackets 〈·〉 denote
expectation with respect to the smoothed posterior pold(h1:T |v1:T )):

µnewπ = 〈h1〉 (24.5.7)

Σnew
π =

〈
h1h

T
1

〉
− 〈h1〉 〈h1〉T (24.5.8)

Anew =
T−1∑
t=1

〈
ht+1h

T
t

〉(T−1∑
t=1

〈
hth

T
t

〉)−1

(24.5.9)

Bnew =

T∑
t=1

vt 〈ht〉T
(

T∑
t=1

〈
hth

T
t

〉)−1

(24.5.10)

Σnew
v =

1

T

T∑
t=1

(
vtv

T
t − vt 〈ht〉T BnewT −Bnew 〈ht〉vT

t + Bnew
〈
hth

T
t

〉
BnewT

)
(24.5.11)

Σnew
h =

1

T − 1

T−1∑
t=1

(〈
ht+1h

T
t+1

〉
−Anew

〈
hth

T
t+1

〉
−
〈
ht+1h

T
t

〉
AnewT + Anew

〈
hth

T
t

〉
AnewT

)
(24.5.12)

The above can be simplified to

Σnew
v =

1

T

∑
t

(
vtv

T
t − vt 〈ht〉T BnewT

)
(24.5.13)

Similarly,

Σnew
h =

1

T − 1

T−1∑
t=1

(〈
ht+1h

T
t+1

〉
−Anew

〈
hth

T
t+1

〉)
(24.5.14)

The statistics required therefore include smoothed means, covariances, and cross moments. The extension
to learning multiple timeseries is straightforward since the energy is simply summed over the individual
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sequences.

The performance of the EM algorithm for the LDS often depends heavily on the initialisation. If we remove
the hidden to hidden links, the model is closely related to Factor Analysis (the LDS can be considered a
temporal extension of Factor Analysis). One initialisation technique therefore is to learn the B matrix using
Factor Analysis by treating the observations as temporally independent.

Note that whilst the LDS model in not identifiable, as described in section(24.5.1), the M-step for the EM
algorithm is unique. This apparent contradiction is resolved when one considers that the EM algorithm is
a conditional method, updating depending on the previous parameters and ultimately the initialisation. It
is this initialisation that breaks the invariance.

24.5.3 Subspace Methods

An alternative to maximum likelihood training is to use a subspace method[301, 265]. The chief benefit
of these techniques is that they avoid the convergence difficulties of EM. To motivate subspace techniques,
consider a deterministic LDS

ht = Aht−1, vt = Bht (24.5.15)

Under this assumption, vt = Bht = BAht−1 and, more generally, vt = BAt−1h1. This means that a H-
dimensional system underlies all visible information since all points Ath1 lie in a H-dimensional subspace,
which is then projected to form the observation. This suggests that some form of subspace identification
technique will enable us to learn A and B.

Given a set of observation vectors v1, . . . ,vt, consider the block Hankel matrix formed from stacking L
consecutive observation vectors. For example, for T = 6 and L = 3, this is

M =

 v1 v2 v3 v4

v2 v3 v4 v5

v3 v4 v5 v6

 (24.5.16)

If the v are generated from a (noise free) LDS, we can write

M =

 Bh1 Bh2 Bh3 Bh4

BAh1 BAh2 BAh3 BAh4

BA2h1 BA2h2 BA2h3 BA2h4

 =

 B
BA
BA2

 (h1 h2 h3 h4) (24.5.17)

We now find the SVD of M,

M = Û ŜV̂T︸ ︷︷ ︸
W

(24.5.18)

where W is termed the extended observability matrix . The matrix Ŝ will contain the singular values up to
the dimension of the hidden variables H, with the remaining singular values 0. From equation (24.5.17),
this means that the emission matrix B is contained in Û1:V,1:H . The estimated hidden variables are then
contained in the submatrix W1:H,1:T−L+1,

(h1 h2 h3 h4) = W1:H,1:T−L+1 (24.5.19)

Based on the relation ht = Aht−1 one can then find the best least squares estimate for A by minimising

T∑
t=2

(ht −Aht−1)2 (24.5.20)

for which the optimal solution is

A = (h2 h3 . . . ht) (h1 h2 . . . hT−1)† (24.5.21)
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v1 v2 v3 v4

s1 s2 s3 s4

Figure 24.8: A first order switching AR model. In
terms of inference, conditioned on v1:T , this is a HMM.

where † denotes the pseudo inverse, see LDSsubspace.m. Estimates for the covariance matrices can also be
obtained from the residual errors in fitting the block Hankel matrix and extended observability matrix.
Whilst this derivation formally holds only for the noise free case one can nevertheless apply this in the case
of non-zero noise and hope to gain an estimate for A and B that is correct in the mean. In addition to
forming a solution in its own right, the subspace method forms a potentially useful way to initialise the EM
algorithm.

24.5.4 Structured LDSs

Many physical equations are local both in time and space. For example in weather models the atmosphere
is partitioned into cells hi(t) each containing the pressure at that location. The equations describing how
the pressure updates only depend on the pressure at the current cell and small number of neighbouring cells
at the previous time t− 1. If we use a linear model and measure some aspects of the cells at each time, then
the weather is describable by a LDS with a highly structured sparse transition matrix A. In practice, the
weather models are non-linear but local linear approximations are often employed[270]. A similar situation
arises in brain imaging in which voxels (local cubes of activity) depend only on their neighbours from the
previous timestep[111].

Another application of structured LDSs is in temporal independent component analysis. This is defined
as the discovery of a set of independent latent dynamical processes, from which the data is a projected
observation. If each independent dynamical process can itself be described by a LDS, this gives rise to
a structured LDS with a block diagonal transition matrix A. Such models can be used to extract inde-
pendent components under prior knowledge of the likely underlying frequencies in each of the temporal
compoments[62].

24.5.5 Bayesian LDSs

The extension to placing priors on the transition and emission parameters of the LDS leads in general to
computational difficulties in computing the likelihood. For example, for a prior on A, the likelihood is
p(v1:T ) =

∫
A p(v1:T |A)p(A) which is difficult to evaluate since the dependence of the likelihood on the

matrix A is a complicated function. Approximate treatments of this case are beyond the scope of this
book, although we briefly note that sampling methods[57, 105] are popular in this context, in addition to
deterministic variational approximations[27, 23, 62].

24.6 Switching Auto-Regressive Models

Whilst the linear dynamical models considered so far in this chapter are powerful, they nevertheless have
some inherent restrictions. For example, they cannot model abrupt changes in the observation. Here we
describe an extension of the AR model. We consider a set of S different AR models, each with associated
coefficients a(s), s = 1, . . . , d, and allow the model to select one of these AR models at each time. For a
time-series of scalar values v1:T an Lth order switching AR model can be written as

vt = v̂T
t−1a(st) + ηt, ηt ∼ N

(
ηt 0, σ2(st)

)
(24.6.1)

where we now have a set of AR coefficients θ =
{
a(s), σ2(s), s ∈ {1, . . . , S}

}
. The discrete switch variables

themselves have a Markov transition p(s1:T ) =
∏
t p(st|st−1) so that the full model is, see fig(24.7),

p(v1:T , s1:T |θ) =
∏
t

p(vt|vt−1, . . . , vt−L, st, |θ)p(st|st−1) (24.6.2)
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Figure 24.9: Learning a Switching AR
model. The upper plot shows the train
data. The colour indicates which of the
two AR models is active at that time.
Whilst this information is plotted here, this
is assumed unknown to the learning algo-
rithm, as are the coefficients a(s). We
assume that the order L = 2 and num-
ber of switches S = 2 however is known.
In the bottom plot we show the time se-
ries again after training in which we colour
the points according to the most likely
smoothed AR model at each timestep. See
demoSARlearn.m.

24.6.1 Inference

Given an observed sequence v1:T and parameters θ inference is straightforward since this is a form of HMM.
To make this more apparent we may write

p(v1:T , s1:T ) =
∏
t

p̂(vt|st)p(st|st−1) (24.6.3)

where

p̂(vt|st) ≡ p(vt|vt−1, . . . , vt−L, st) = N
(
vt v̂T

t−1a(st), σ
2(st)

)
(24.6.4)

Note that the emission distribution p̂(vt|st) is time-dependent. The filtering recursion is then

α(st) =
∑
st−1

p̂(vt|st)p(st|st−1)α(st−1) (24.6.5)

Smoothing can be achieved using the standard recursions, modified to use the time-dependent emissions,
see demoSARinference.m.

With high frequency data it is unlikely that a change in the switch variable is reasonable at each time t. A
simple constraint to account for this is to use a modified transition

p̂(st|st−1) =

{
p(st|st−1) mod (t, Tskip) = 0
δ (st − st−1) otherwise

(24.6.6)

24.6.2 Maximum likelihood learning using EM

To fit the set of AR coefficients and innovation variances, a(s), σ2(s), s = 1, . . . , S, using maximum likelihood
training for a set of data v1:T , we may make use of the EM algorithm.

M-step

Up to negligible constants, the energy is given by

E =
∑
t

〈log p(vt|v̂t−1,a(st))〉pold(st|v1:T ) +
∑
t

〈log p(st|st−1)〉pold(st,st−1) (24.6.7)

which we need to maximise with respect to the parameters θ. Using the definition of the emission and
isolating the dependency on a, we have

−2E =
∑
t

〈
1

σ2(st)

(
vt − v̂T

t−1a(st)
)2

+ log σ2(st)

〉
pold(st|v1:T )

+ const. (24.6.8)
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On differentiating with respect to a(s) and equating to zero, the optimal a(s) satisfies the linear equation

∑
t

pold(st = s|v1:T )
vtv̂t−1

σ2(s)
=

[∑
t

pold(st = s|v1:T )
v̂t−1v̂

T
t−1

σ2(s)

]
a(s) (24.6.9)

which may be solved using Gaussian elimination. Similarly one may show that updates that maximise the
energy with respect to σ2 are

σ2(s) =
1∑

t′ p
old(s′t = s|v1:T )

∑
t

pold(st = s|v1:T )
[
vt − v̂T

t−1a(s)
]2

(24.6.10)

The update for p(st|st−1) follows the standard EM for HMM rule, equation (23.3.5), see SARlearn.m. Here
we don’t include an update for the prior p(s1) since there is insufficient information at the start of the
sequence and assume p(s1) is flat.

E-step

The M-step requires the smoothed statistics pold(st = s|v1:T ) and pold(st = s, st−1 = s′|v1:T ) which can be
obtained from HMM inference.

Example 24.5 (Learning a switching AR model). In fig(24.9) the train data is generated by an Switching
AR model so that we know the ground truth as to which model generated which parts of the data. Based
on the train data (assuming the labels st are unknown), a Switching AR model is fitted using EM. In this
case the problem is straightforward so that a good estimate is obtained of both the sets of AR parameters
and which switches were used at which time.

Example 24.6 (Modelling parts of speech). In fig(24.10) a segment of a speech signal (corresponding to
the spoken digit ‘four’) is shown. We model this data using a switching AR model with S = 10 states.
Each of the 10 available AR models is responsible for modelling the dynamics of a basic subunit of speech
[97, 207]. The model was trained on many example clean spoken digit sequences using S = 10 states with a
left-to-right transition matrix. An additional complexity is that we wish to use the model to clean up a noisy
speech signal. A simple model for the noise is that it is Gaussian and additive on the original speech signal
vt, forming now a new noisy observation ṽt. Based then on a sequence of noisy ṽ1:T we wish to infer the
switch states and the clean signal v1:T . Unfortunately, this task is no longer in the form of an SAR since we
now have both continuous and discrete latent states. Formally this model falls in the class of the switching
linear dynamical systems, as described in the following chapter. The results using this more complex model
show how denoising of complex signals can be achieved and are a prelude to the more advanced material in
the following chapter.

24.7 Summary

• Continuous observations can be modelled using autoregressive models.

• Observed linear dynamical systems are the vector versions of autoregressive models.

• Latent continuous dynamical processes can be used to model many physical systems. In order for these
to be computationally tractable, one needs to restrict the transition and emission distributions. The latent
linear dynamical system is such as restriction to linear Gaussian transitions and emissions.

• The latent linear dynamical system is a powerful timeseries model with widespread application in tracking
and signal representation.
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ṽ1 ṽ2 ṽ3 ṽ4

v1 v2 v3 v4

s1 s2 s3 s4

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 24.10: (a): A latent switching (second order) AR model. Here the st indicates which of a set of 10
available AR models is active at time t. The square nodes emphasise that these are discrete variables. The
‘clean’ AR signal vt, which is not observed, is corrupted by additive noise to form the noisy observations
ṽt. In terms of inference, conditioned on ṽ1:T , this can be expressed as a Switching LDS, chapter(25).
(b): Signal reconstruction using the latent switching AR model in (a). Top: noisy signal ṽ1:T ; bottom:
reconstructed clean signal v1:T . The dashed lines and the numbers show the most-likely state segmentation
arg maxs1:T p(s1:T |ṽ1:T ) of the 10 states, from left (1) to right (10).

24.8 Code

In the Linear Dynamical System code below only the simplest form of the recursions is given. No attempt
has been made to ensure numerical stability.

LDSforwardUpdate.m: LDS forward
LDSbackwardUpdate.m: LDS backward
LDSsmooth.m: Linear dynamical system : filtering and smoothing
LDSforward.m: Alternative LDS forward algorithm (see SLDS chapter)
LDSbackward.m: Alternative LDS backward algorithm (see SLDS chapter)
demoSumprodGaussCanonLDS.m: Sum-product algorithm for smoothed inference
demoLDStracking.m: Demo of tracking in a Newtonian system
LDSsubspace.m: Subspace Learning (Hankel matrix method)
demoLDSsubspace.m: Demo of subspace learning method

24.8.1 Autoregressive models

Note that in the code the autoregressive vector a has as its last entry the first AR coefficient (i.e. in reverse
order to that presented in the text).

ARtrain.m: Learn AR coefficients (Gaussian Elimination)
demoARtrain.m: Demo of fitting an AR model to data
ARlds.m: Learn time-varying AR coefficients using a LDS
demoARlds.m: Demo of learning AR coefficients using an LDS
demoSARinference.m: Demo for inference in a switching autoregressive model
SARlearn.m: Learning of a SAR using EM
demoSARlearn.m: Demo of SAR learning
HMMforwardSAR.m: Switching autoregressive HMM forward pass
HMMbackwardSAR.m: Switching autoregressive HMM backward pass
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24.9 Exercises

Exercise 24.1. Consider the two-dimensional linear model

ht = Rθht−1, Rθ =

(
cos θ − sin θ
sin θ cos θ

)
(24.9.1)

where Rθ is a rotation matrix which rotates the vector ht through angle θ in one timestep.

1. Explain why the eigenvalues of a rotation matrix are (in general) imaginary.

2. Explain how to model a sinusoid, rotating with angular velocity ω using a two-dimensional latent LDS.

3. By writing(
xt
yt

)
=

(
R11 R12

R21 R22

)(
xt−1

yt−1

)
(24.9.2)

eliminate yt to write an equation for xt+1 in terms of xt and xt−1.

4. Explain how to model a sinusoid using an AR model.

5. Explain the relationship between the second order differential equation ẍ = −λx, which describes
a Harmonic Oscillator, and the second order difference equation which approximates this differential
equation. Is it possible to find a difference equation which exactly matches the solution of the differential
equation at particular points?

Exercise 24.2. Show that for any square anti-symmetric matrix M,

M = −MT (24.9.3)

the matrix exponential (in MATLAB this is expm)

A = exp (M) (24.9.4)

is orthogonal, namely

ATA = I (24.9.5)

Explain how to construct random orthogonal matrices with some control over the angles of the complex
eigenvalues.

Exercise 24.3. Run demoLDStracking.m which tracks a ballistic object using a Linear Dynamical system,
see example(24.4). Modify demoLDStracking.m so that in addition to the x and y positions, the x speed is
also observed. Compare and contrast the accuracy of the tracking with and without this extra information.

Exercise 24.4. nightsong.mat contains a small stereo segment nightingale song sampled at 44100 Hertz.

1. Plot the original waveform using plot(x(:,1))

2. Plot the spectrogram using
y=myspecgram(x(:,1),1024,44100); imagesc(log(abs(y)))

3. The routine demoGMMem.m demonstrates fitting a mixture of Gaussians to data. The mixture assign-
ment probabilities are contained in phgn. Write a routine to cluster the data v=log(abs(y)) using 8
Gaussian components, and explain how one might segment the series x into different regions.

4. Examine demoARlds.m which fits autoregressive coefficients using an interpretation as a Linear Dy-
namical System. Adapt the routine demoARlds.m to learn the AR coefficients of the data x. You will
almost certainly need to subsample the data x – for example by taking every 4th datapoint. With the
learned AR coefficients (use the smoothed results) fit a Gaussian mixture with 8 components. Compare
and contrast your results with those obtained from the Gaussian mixture model fit to the spectrogram.
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Exercise 24.5. Consider a supervised learning problem in which we make a linear model of the scalar output
yt based on vector input xt:

yt = wT
t xt + ηyt (24.9.6)

where ηyt is zero mean Gaussian noise with variance σ2
y. Train data D = {(xt, yt), t = 1, . . . , T} is available.

1. For a time-invariant weight vector wt ≡ w, explain how to find the single weight vector w and the
noise variance σ2

y by maximum likelihood.

2. Extend the above model to include a transition

wt = wt−1 + ηwt (24.9.7)

where ηwt is zero mean Gaussian noise with a given covariance Σw; w1 has zero mean. Explain
how to cast finding 〈wt|D〉 as smoothing in a related Linear Dynamical System. Write a routine W =

LinPredAR(X,Y,SigmaW,SigmaY) that takes an input data matrix X = [x1, . . . ,xT ] where each column
contains an input, and vector Y = [y1, . . . , yT ]T; SigmaW is the additive weight noise and SigmaY is an
assumed known time-invariant output noise. The returned W contains the smoothed mean weights.

Exercise 24.6. This exercise relates to forming an α-β style smoothing approach, as described in sec-
tion(23.2.3), but applied to the LDS. Note that the derivations in section(23.2.3) hold for continuous vari-
ables as well simply on replacing summation with integration.

1. By virtue of the fact that the smoothed posterior for a LDS, γ(ht) ≡ p(ht|v1:T ) is Gaussian, and using
the relation γ(ht) = α(ht)β(ht), explain why the β message for an LDS can be represented in the form

β(ht) = ztexp

(
−1

2
hT
t Ztht + hT

t zt

)
(24.9.8)

where Zt is a (not necessarily full rank) matrix.

2. Based on the recursion

β(ht−1) =

∫
ht

p(vt|ht)p(ht|ht−1)β(ht) (24.9.9)

derive the recursion (ignoring the prefactor zt)

Lt = Q−1
t + BT

t R−1
t Bt + Zt (24.9.10)

Zt−1 = AT
t

(
Q−1
t −Q−1

t L−1
t Q−1

t

)
At (24.9.11)

zt−1 = AT
t Q−1

t L−1
t

(
BT
t R−1

t + zt

)
(24.9.12)

with initialisation ZT = 0, zT = 0. The notation Qt ≡ Σh
t is the covariance matrix of the transition

distribution p(ht|ht−1), and Rt ≡ Σv
t is the covariance of the emission p(vt|ht).

3. Show that the posterior covariance and mean are given by(
F−1
t + Zt

)−1
,

(
F−1
t + Zt

)−1 (
F−1
t ft + zt

)
(24.9.13)

where Ft and ft are the filtered mean and covariance.

Note that this parallel smoothing recursion is not appropriate in the case of small covariance since, due to
the explicit appearance of the inverse of the covariances, numerical stability issues can arise. However, it is
possible to reexpress the recursion without explicit reference to inverse noise covariances, see [16].
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CHAPTER 25

Switching Linear Dynamical Systems

Hidden Markov models assume that the underlying process is discrete; linear dynamical systems that the
underlying process is continuous. However, there are scenarios in which the underlying system might jump
from one continuous regime to another. In this chapter we discuss a class of models that can be used in this
situation. Unfortunately the technical demands of this class of models are somewhat more involved than in
previous chapters, although the models are correspondingly more powerful.

25.1 Introduction

Complex timeseries which are not well described globally by a single Linear Dynamical System may be
divided into segments, each modelled by a potentially different LDS. Such models can handle situations
in which the underlying model ‘jumps’ from one parameter setting to another. For example a single LDS
might well represent the normal flows in a chemical plant. When a break in a pipeline occurs, the dynamics
of the system changes from one set of linear flow equations to another. This scenario can be modelled
using a set of two linear systems, each with different parameters. The discrete latent variable at each time
st ∈ {normal, pipe broken} indicates which of the LDSs is most appropriate at the current time. This is
called a Switching LDS and is used in many disciplines, from econometrics to machine learning[12, 63, 59,
235, 324, 189].

25.2 The Switching LDS

At each time t, a switch variable st ∈ 1, . . . , S describes which of a set of LDSs is to be used. The continuous
observation (or ‘visible’) variable vt, dim (vt) = V is linearly related to the continuous hidden variable ht,
dim (ht) = H by

vt = B(st)ht + ηv(st), ηv(st) ∼ N (ηv(st) v̄(st),Σv(st)) (25.2.1)

Here st describes which one from the set of emission matrices {B(1), . . . ,B(S)} is active at time t. The
observation noise ηv(st) is drawn from a Gaussian with mean v̄(st) and covariance Σv(st). The transition
dynamics of the continuous hidden state ht is linear,

ht = A(st)ht−1 + ηh(st), ηh(st) ∼ N
(
ηh(st) h̄(st),Σh(st)

)
(25.2.2)

and the switch variable st selects a single transition matrix from the available set {A(1), . . . ,A(S)}. The
Gaussian transition noise ηh(st) also depends on the switch variable. The dynamics of st itself is Markovian,
with transition p(st|st−1). For the more general ‘augmented’ aSLDS model the switch st is dependent on
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Figure 25.1: The independence structure of the aSLDS.
Square nodes st denote discrete switch variables; ht are
continuous latent/hidden variables, and vt continuous ob-
served/visible variables. The discrete state st determines
which Linear Dynamical system from a finite set of Linear
Dynamical systems is operational at time t. In the SLDS
links from h to s are not normally considered.

both the previous st−1 and ht−1. The model defines a joint distribution (see fig(25.1))

p(v1:T ,h1:T , s1:T ) =
T∏
t=1

p(vt|ht, st)p(ht|ht−1, st)p(st|ht−1, st−1)

with

p(vt|ht, st) = N (vt v̄(st) + B(st)ht,Σv(st)) , p(ht|ht−1, st) = N
(
ht h̄(st) + A(st)ht,Σh(st)

)
(25.2.3)

At time t = 1, p(s1|h0, s0) denotes the initial switch distribution p(s1), and p(h1|h0, s1) denotes the initial
Gaussians p(h1|s1) = N (h1 µπ(s1),Σπ(s1)).

The SLDS can be thought of as a marriage between a hidden Markov model and a Linear Dynamical System.
The SLDS is also called a Jump Markov model/process, switching Kalman Filter, Switching Linear Gaussian
State Space model, Conditional Linear Gaussian Model.

25.2.1 Exact inference is computationally intractable

Both exact filtered and smoothed inference in the SLDS is intractable, scaling exponentially with time. As
an informal explanation, consider filtered posterior inference for which, by analogy with equation (23.2.9),
the forward pass is

p(st+1,ht+1|v1:t+1) =
∑
st

∫
ht

p(st+1,ht+1|st,ht,vt+1)p(st,ht|v1:t) (25.2.4)

At timestep 1, p(s1,h1|v1) = p(h1|s1,v1)p(s1|v1) is an indexed set of Gaussians. At timestep 2, due to the
summation over the states s1, p(s2,h2|v1:2) will be an indexed set of S Gaussians; similarly at timestep
3, it will be S2 and, in general, gives rise to St−1 Gaussians at time t. Even for small t, the number of
components required to exactly represent the filtered distribution is therefore computationally intractable.
Analogously, smoothing is also intractable. The origin of the intractability of the SLDS differs from ‘struc-
tural intractability’ that we’ve previously encountered. In the SLDS, in terms of the cluster variables x1:T ,
with xt ≡ (st,ht) and visible variables v1:T , the graph of the distribution is singly-connected. From a purely
graph theoretic viewpoint, one would therefore envisage little difficulty in carrying out inference. Indeed, as
we saw above, the derivation of the filtering algorithm is straightforward since the graph is singly-connected.
However, the numerical implementation of the algorithm is intractable since the description of the messages
requires an exponentially increasing number of terms.

In order to deal with this intractability, several approximation schemes have been introduced [105, 120,
188, 174, 173]. Here we focus on techniques which approximate the switch conditional posteriors using a
limited mixture of Gaussians. Since the exact posterior distributions are mixtures of Gaussians, albeit with
an exponentially large number of components, the aim is to drop low weight components such that the
resulting approximation accurately represents the posterior.

25.3 Gaussian Sum Filtering

Equation(25.2.4) describes the exact filtering recursion and generates an exponentially increasing number of
components with time. In general, however, the influence of ancient observations will be much less relevant
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than that of recent observations. This suggests that the ‘effective time’ is limited and that therefore a cor-
responding limited number of components in the Gaussian mixture may suffice to accurately represent the
filtered posterior [6]. Our aim is to form a recursion for p(st,ht|v1:t) based on a Gaussian mixture approxi-
mation of p(ht|st,v1:t). Given an approximation of the filtered distribution p(st,ht|v1:t) ≈ q(st,ht|v1:t), the
exact recursion equation (25.2.4) is approximated by

q(st+1,ht+1|v1:t+1) =
∑
st

∫
ht

p(st+1,ht+1|st,ht,vt+1)q(st,ht|v1:t) (25.3.1)

This approximation to the filtered posterior at the next timestep will contain S times more components
than in the previous timestep and, to prevent an exponential explosion in mixture components, we will need
to subsequently collapse the mixture q(st+1,ht+1|v1:t+1) in a suitable way. It is useful to break the filtered
approximation for equation (25.2.4) into continuous and discrete parts:

q(ht, st|v1:t) = q(ht|st,v1:t)q(st|v1:t) (25.3.2)

and derive separate filtered update formulae, as described below.

25.3.1 Continuous filtering

The exact representation of p(ht|st,v1:t) is a mixture with O
(
St−1

)
components. To retain computational

feasibility we therefore approximate this with a limited I-component mixture

q(ht|st,v1:t) =
I∑

it=1

q(ht|it, st,v1:t)q(it|st,v1:t) (25.3.3)

where q(ht|it, st,v1:t) is a Gaussian parameterised with mean f(it, st) and covariance F(it, st). Strictly
speaking, we should use the notation ft(it, st) since, for each time t, we have a set of means indexed by it, st,
although we drop these dependencies in the notation used here.

An important remark is that many techniques approximate p(ht|st,v1:t) using a single Gaussian, one for each
state of st. Naturally, this gives rise to a mixture of Gaussians for p(ht|v1:t) =

∑
st
p(ht|st,v1:t)p(st|v1:t).

However, in making a single Gaussian approximation to p(ht|st,v1:t) the representation of the posterior
may be poor. Our aim here is to maintain an accurate approximation to p(ht|st,v1:t) by using a mixture of
Gaussians.

To find a recursion for the approximating distribution we first assume that we know the filtered approxi-
mation q(ht, st|v1:t) and then propagate this forwards using the exact dynamics. To do so consider first the
relation

q(ht+1|st+1,v1:t+1) =
∑
st,it

q(ht+1, st, it|st+1,v1:t+1)

=
∑
st,it

q(ht+1|st, it, st+1,v1:t+1)q(st, it|st+1,v1:t+1) (25.3.4)

Wherever possible we now substitute the exact dynamics and evaluate each of the two factors above. The
usefulness of decomposing the update in this way is that the new filtered approximation is of the form of
a Gaussian mixture, where q(ht+1|st, it, st+1,v1:t+1) is Gaussian and q(st, it|st+1,v1:t+1) are the weights or
mixing proportions of the components. We describe below how to compute these terms explicitly. Equa-
tion(25.3.4) produces a new Gaussian mixture with I × S components which we will collapse back to I
components at the end of the computation.

Evaluating q(ht+1|st, it, st+1,v1:t+1)

We aim to find a filtering recursion for q(ht+1|st, it, st+1,v1:t+1). Since this is conditional on switch states
and components, this corresponds to a single LDS forward step which can be evaluated by considering first
the joint distribution

q(ht+1,vt+1|st, it, st+1,v1:t) =

∫
ht

p(ht+1,vt+1|ht,��st,��it, st+1,v1:t)q(ht|st, it,���st+1,v1:t) (25.3.5)
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and subsequently conditioning on vt+1. In the above we use the exact dynamics where possible. To ease
the burden on notation we derive this for h̄t, v̄t ≡ 0 for all t. The exact forward dynamics is then given by

ht+1 = A(st+1)ht + ηh(st+1), vt+1 = B(st+1)ht+1 + ηv(st+1), (25.3.6)

Given the mixture component index it,

q(ht|v1:t, it, st) = N (ht f(it, st),F(it, st)) (25.3.7)

we propagate this Gaussian with the exact dynamics equation (25.3.6). Then q(ht+1,vt+1|st, it, st+1,v1:t)
is a Gaussian with covariance and mean elements

Σhh = A(st+1)F(it, st)A
T(st+1) + Σh(st+1), Σvv = B(st+1)ΣhhB

T(st+1) + Σv(st+1)

Σvh = B(st+1)Σhh = ΣT
hv, µv = B(st+1)A(st+1)f(it, st), µh = A(st+1)f(it, st) (25.3.8)

These results are obtained from integrating the forward dynamics, equations (25.2.1,25.2.2) over ht, using
result(8.3). To find q(ht+1|st, it, st+1,v1:t+1) we now condition q(ht+1,vt+1|st, it, st+1,v1:t) on vt+1 using
the standard Gaussian conditioning formulae, result(8.4), to obtain

q(ht+1|st, it, st+1,v1:t+1) = N
(
ht+1 µh|v,Σh|v

)
(25.3.9)

with

µh|v = µh + ΣhvΣ
−1
vv (vt+1 − µv) , Σh|v = Σhh −ΣhvΣ

−1
vv Σvh (25.3.10)

where the quantities required are defined in equation (25.3.8).

Evaluating the mixture weights q(st, it|st+1,v1:t+1)

Up to a normalisation constant the mixture weight in equation (25.3.4) can be found from

q(st, it|st+1,v1:t+1) ∝ q(vt+1|it, st, st+1,v1:t)q(st+1|it, st,v1:t)q(it|st,v1:t)q(st|v1:t) (25.3.11)

The first factor in equation (25.3.11), q(vt+1|it, st, st+1,v1:t) is Gaussian with mean µv and covariance Σvv,
as given in equation (25.3.8). The last two factors q(it|st,v1:t) and q(st|v1:t) are given from the previous
filtered iteration. Finally, q(st+1|it, st,v1:t) is found from

q(st+1|it, st,v1:t) =

{ 〈p(st+1|ht, st)〉q(ht|it,st,v1:t)
augmented SLDS

p(st+1|st) standard SLDS
(25.3.12)

In the aSLDS, the term in equation (25.3.12) will generally need to be computed numerically. A sim-
ple approximation is to evaluate equation (25.3.12) at the mean value of the distribution q(ht|it, st,v1:t).
To take covariance information into account an alternative would be to draw samples from the Gaussian
q(ht|it, st,v1:t) and thus approximate the average of p(st+1|ht, st) by sampling. Note that this does not
equate Gaussian Sum filtering for the augmented SLDS with a sequential sampling procedure, such as
Particle Filtering, section(27.6.2). The sampling here is exact, for which no convergence issues arise.

Closing the recursion

We are now in a position to calculate equation (25.3.4). For each setting of the variable st+1, we have a
mixture of I × S Gaussians. To prevent the number of components increasing exponentially with time, we
numerically collapse q(ht+1|st+1,v1:t+1) back to I Gaussians to form

q(ht+1|st+1,v1:t+1)→
I∑

it+1=1

q(ht+1|it+1, st+1,v1:t+1)q(it+1|st+1,v1:t+1) (25.3.13)

The numerical collapse then generates the new Gaussian components and corresponding mixture weights.
Any method of choice may be supplied to collapse a mixture to a smaller mixture. A straightforward
approach is to repeatedly merge low-weight components, as explained in section(25.3.4). In this way the
new mixture coefficients q(it+1|st+1,v1:t+1), it+1 ∈ 1, . . . , I are defined. This completes the description of
how to form a recursion for the continuous filtered posterior approximation q(ht+1|st+1,v1:t+1) in equation
(25.3.2).

502 DRAFT November 21, 2011



Gaussian Sum Filtering

t+1t

Figure 25.2: Gaussian Sum Filtering. The leftmost column depicts the
previous Gaussian mixture approximation q(ht, it|v1:t) for two states S = 2
(red and blue) and three mixture components I = 3, with the mixture weight
represented by the area of each oval. There are S = 2 different linear systems
which take each of the components of the mixture into a new filtered state,
the colour of the arrow indicating which dynamic system is used. After one
time-step each mixture component branches into a further S components so
that the joint approximation q(ht+1, st+1|v1:t+1) contains S2I components
(middle column). To keep the representation computationally tractable the
mixture of Gaussians for each state st+1 is collapsed back to I components.
This means that each coloured set of Gaussians needs to be approximated
by a smaller I component mixture of Gaussians. There are many ways to
achieve this. A naive but computationally efficient approach is to simply
ignore the lowest weight components, as depicted on the right column, see
mix2mix.m.

25.3.2 Discrete filtering

A recursion for the switch variable distribution in equation (25.3.2) is

q(st+1|v1:t+1) ∝
∑
it,st

q(st+1, it, st,vt+1,v1:t) (25.3.14)

The r.h.s. of the above equation is proportional to∑
st,it

q(vt+1|st+1, it, st,v1:t)q(st+1|it, st,v1:t)q(it|st,v1:t)q(st|v1:t) (25.3.15)

for which all terms have been computed during the recursion for q(ht+1|st+1,v1:t+1). We therefore now have
all the quantities required to compute the Gaussian Sum approximation of the filtering forward pass. A
schematic representation of Gaussian Sum filtering is given in fig(25.2) and the pseudo code is presented in
algorithm(25.1). See also SLDSforward.m.

25.3.3 The likelihood p(v1:T )

The likelihood p(v1:T ) may be found from

p(v1:T ) =

T−1∏
t=0

p(vt+1|v1:t) (25.3.16)

where

p(vt+1|v1:t) ≈
∑

it,st,st+1

q(vt+1|it, st, st+1,v1:t)q(st+1|it, st,v1:t)q(it|st,v1:t)q(st|v1:t)

In the above expression, all terms have been computed in forming the recursion for the filtered posterior
q(ht+1, st+1|v1:t+1).

25.3.4 Collapsing Gaussians

A central part of the above filtering recursion is the collapse of a mixture of Gaussians to a smaller number
of Gaussians. That is, given a mixture of N Gaussians

p(x) =

N∑
i=1

piN (x µi,Σi) (25.3.17)

we wish to collapse this to a smaller K < N mixture of Gaussians. We describe a simple method which
has the advantage of computational efficiency, but the disadvantage that no spatial information about the

DRAFT November 21, 2011 503



Gaussian Sum Smoothing

Algorithm 25.1 aSLDS Forward Pass. Approximate the filtered posterior p(st|v1:t) ≡ αt, p(ht|st,v1:t) ≡∑
it
wt(it, st)N (ht ft(it, st),Ft(it, st)). Also return the approximate log-likelihood L ≡ log p(v1:T ). It are

the number of components in each Gaussian mixture approximation. We require I1 = 1, I2 ≤ S, It ≤ S×It−1.
θ(s) =

{
A(s),B(s),Σh(s),Σv(s), h̄(s), v̄(s)

}
. The routine LDSFORWARD is found in algorithm(24.1).

for s1 ← 1 to S do
{f1(1, s1),F1(1, s1), p̂} = LDSFORWARD(0, 0,v1; θ(s1))
α1 ← p(s1)p̂

end for

for t← 2 to T do
for st ← 1 to S do

for i← 1 to It−1, and s← 1 to S do
{µx|y(i, s),Σx|y(i, s), p̂} = LDSFORWARD(ft−1(i, s),Ft−1(i, s),vt; θ(st))
p∗(st|i, s) ≡ 〈p(st|ht−1, st−1 = s)〉p(ht−1|it−1=i,st−1=s,v1:t−1)

p′(st, i, s)← wt−1(i, s)p∗(st|i, s)αt−1(s)p̂
end for
Collapse the It−1 × S mixture of Gaussians defined by µx|y,Σx|y, and weights
p(i, s|st) ∝ p′(st, i, s) to a Gaussian with It components, p(ht|st,v1:t) ≈∑It

it=1 p(it|st,v1:t)p(ht|st, it,v1:t). This defines the new means ft(it, st), covariances
Ft(it, st) and mixture weights wt(it, st) ≡ p(it|st,v1:t).
Compute αt(st) ∝

∑
i,s p

′(st, i, s)
end for
normalise αt
L← L+ log

∑
st,i,s

p′(st, i, s)
end for

mixture is used[297]. First we describe how to collapse a mixture to a single Gaussian. This can be achieved
by finding the mean and covariance of the mixture distribution (25.3.17). These are

µ =
∑
i

piµi, Σ =
∑
i

pi

(
Σi + µiµ

T
i

)
− µµT (25.3.18)

To collapse a mixture then to a K-component mixture we may first retain the K − 1 Gaussians with the
largest mixture weights. The remaining N −K + 1 Gaussians are simply merged to a single Gaussian using
the above method. Alternative heuristics such as recursively merging the two Gaussians with the lowest
mixture weights are also reasonable.

More sophisticated methods which retain some spatial information would clearly be potentially useful. The
method presented in [188] is a suitable approach which considers removing Gaussians which are spatially
similar (and not just low-weight components), thereby retaining a sense of diversity over the possible solu-
tions. In applications with many thousands of timesteps, speed can be a factor in determining which method
of collapsing Gaussians is to be preferred.

25.3.5 Relation to other methods

Gaussian Sum Filtering can be considered a form of ‘analytical particle filtering’, section(27.6.2), in which
instead of point distributions (delta functions) being propagated, Gaussians are propagated. The collapse
operation to a smaller number of Gaussians is analogous to resampling in Particle Filtering. Since a Gaussian
is more expressive than a delta-function, the Gaussian Sum filter is generally an improved approximation
technique over using point particles. See [17] for a numerical comparison.

25.4 Gaussian Sum Smoothing

Approximating the smoothed posterior p(ht, st|v1:T ) is more involved than filtering and requires additional
approximations. For this reason smoothing is more prone to failure since there are more assumptions that
need to be satisfied for the approximations to hold. The route we take here is to assume that a Gaussian Sum
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filtered approximation has been carried out, and then approximate the γ backward pass, analogous to that
of section(23.2.4). By analogy with the RTS smoothing recursion equation (23.2.20), the exact backward
pass for the SLDS reads

p(ht, st|v1:T ) =
∑
st+1

∫
ht+1

p(ht, st|ht+1, st+1,v1:t)p(ht+1, st+1|v1:T ) (25.4.1)

where p(ht+1, st+1|v1:T ) = p(st+1|v1:T )p(ht+1|st+1,v1:T ) is composed of the discrete and continuous com-
ponents of the smoothed posterior at the next time step. The recursion runs backwards in time, beginning
with the initialisation p(hT , sT |v1:T ) set by the filtered result (at time t = T , the filtered and smoothed
posteriors coincide). Apart from the fact that the number of mixture components will increase at each step,
computing the integral over ht+1 in equation (25.4.1) is problematic since the conditional distribution term
is non-Gaussian in ht+1. For this reason it is more useful to derive an approximate recursion by beginning
with the exact relation

p(ht, st|v1:T ) =
∑
st+1

p(st+1|v1:T )p(ht|st, st+1,v1:T )p(st|st+1,v1:T ) (25.4.2)

which can be expressed more directly in terms of the SLDS dynamics as

p(ht, st|v1:T ) =
∑
st+1

p(st+1|v1:T ) 〈p(ht|ht+1, st, st+1,v1:t,����vt+1:T )〉p(ht+1|st,st+1,v1:T )

× 〈p(st|ht+1, st+1,v1:T )〉p(ht+1|st+1,v1:T ) (25.4.3)

In forming the recursion we assume access to the distribution p(ht+1, st+1|v1:T ) from the future timestep.
However, we also require the distribution p(ht+1|st, st+1,v1:T ) which is not directly known and needs to be
inferred, in itself a computationally challenging task. In the Expectation Correction (EC) approach [17] one
assumes the approximation (see fig(25.3))

p(ht+1|st, st+1,v1:T ) ≈ p(ht+1|st+1,v1:T ) (25.4.4)

resulting in an approximate recursion for the smoothed posterior,

p(ht, st|v1:T ) ≈
∑
st+1

p(st+1|v1:T ) 〈p(ht|ht+1, st, st+1,v1:t)〉ht+1
〈p(st|ht+1, st+1,v1:T )〉ht+1

(25.4.5)

where 〈·〉ht+1
represents averaging with respect to the distribution p(ht+1|st+1,v1:T ). In carrying out the

approximate recursion, (25.4.5) we will end up with a mixture of Gaussians that grows at each timestep.
To avoid the exponential explosion problem, we use a finite mixture approximation, q(ht+1, st+1|v1:T ):

p(ht+1, st+1|v1:T ) ≈ q(ht+1, st+1|v1:T ) = q(ht+1|st+1,v1:T )q(st+1|v1:T ) (25.4.6)

and plug this into the approximate recursion above. From equation (25.4.5) a recursion for the approximation
is given by

q(ht, st|v1:T ) =
∑
st+1

q(st+1|v1:T ) 〈q(ht|ht+1, st, st+1,v1:t)〉q(ht+1|st+1,v1:T )︸ ︷︷ ︸
q(ht|st,st+1,v1:T )

〈q(st|ht+1, st+1,v1:t)〉q(ht+1|st+1,v1:T )︸ ︷︷ ︸
q(st|st+1,v1:T )

(25.4.7)

As for filtering, wherever possible, we replace approximate terms by their exact counterparts and parame-
terise the posterior using

q(ht+1, st+1|v1:T ) = q(ht+1|st+1,v1:T )q(st+1|v1:T ) (25.4.8)

To reduce the notational burden here we outline the method only for the case of using a single component
approximation in both the forward and backward passes. The extension to using a mixture to approximate
each p(ht+1|st+1,v1:T ) is conceptually straightforward and deferred to section(25.4.4). In the single Gaussian
case we assume we have a Gaussian approximation available for

q(ht+1|st+1,v1:T ) = N (ht+1 g(st+1),G(st+1)) (25.4.9)
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Figure 25.3: The EC backpass approximates
p(ht+1|st+1, st,v1:T ) by p(ht+1|st+1,v1:T ). The moti-
vation for this is that st influences ht+1 only indirectly
through ht. However, ht will most likely be heavily in-
fluenced by v1:t, so that not knowing the state of st
is likely to be of secondary importance. The green
shaded node is the variable we wish to find the pos-
terior for. The values of the blue shaded nodes are
known, and the red shaded node indicates a known
variable which is assumed unknown in forming the ap-
proximation.

25.4.1 Continuous smoothing

For given st, st+1, an RTS style recursion for the smoothed continuous distribution is obtained from equation
(25.4.7), giving

q(ht|st, st+1,v1:T ) =

∫
ht+1

p(ht|ht+1, st, st+1,v1:t)q(ht+1|st+1,v1:T ) (25.4.10)

To compute equation (25.4.10) we then perform a single update of the LDS backward recursion, sec-
tion(24.4.2).

25.4.2 Discrete smoothing

The second average in equation (25.4.7) corresponds to a recursion for the discrete variable and is given by

〈q(st|ht+1, st+1,v1:t)〉q(ht+1|st+1,v1:T ) ≡ q(st|st+1,v1:T ). (25.4.11)

The average of q(st|ht+1, st+1,v1:t) with respect to q(ht+1|st+1,v1:T ) cannot be achieved in closed form. A
simple approach is to approximate the average by evaluation at the mean1

〈q(st|ht+1, st+1v1:t)〉q(ht+1|st+1,v1:T ) ≈ q(st|ht+1, st+1,v1:t)
∣∣
ht+1=〈ht+1|st+1,v1:T 〉

(25.4.12)

where 〈ht+1|st+1,v1:T 〉 is the mean of ht+1 with respect to q(ht+1|st+1,v1:T ).

Replacing ht+1 by its mean gives the approximation

〈q(st|ht+1, st+1,v1:t)〉q(ht+1|st+1,v1:T ) ≈
1

Z

e−
1
2
zT
t+1(st,st+1)Σ−1(st,st+1|v1:t)zt+1(st,st+1)√

det (Σ(st, st+1|v1:t))
q(st|st+1,v1:t) (25.4.13)

where

zt+1(st, st+1) ≡ 〈ht+1|st+1,v1:T 〉 − 〈ht+1|st, st+1,v1:t〉 (25.4.14)

and Z ensures normalisation over st. Σ(st, st+1|v1:t) is the filtered covariance of ht+1 given st, st+1 and the
observations v1:t, which may be taken from Σhh in equation (25.3.8). Approximations which take covariance
information into account can also be considered, although the above simple (and fast) method may suffice
in practice [17, 207].

25.4.3 Collapsing the mixture

From section(25.4.1) and section(25.4.2) we now have all the terms in equation (25.4.8) to compute the
approximation to equation (25.4.7). Due to the summation over st+1 in equation (25.4.7), the number of
mixture components is multiplied by S at each iteration. To prevent an exponential explosion of components,
the mixture equation (25.4.7) is then collapsed to a single Gaussian

q(ht, st|v1:T )→ q(ht|st,v1:T )q(st|v1:T ) (25.4.15)

The collapse to a mixture is discussed in section(25.4.4).

1In general this approximation has the form 〈f(x)〉 ≈ f(〈x〉).
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Algorithm 25.2 aSLDS: EC Backward Pass. Approximates p(st|v1:T ) and p(ht|st,v1:T ) ≡∑Jt
jt=1 ut(jt, st)N (gt(jt, st),Gt(jt, st)) using a mixture of Gaussians. JT = IT , Jt ≤ S × It × Jt+1. This

routine needs the results from algorithm(25.1). The routine LDSBACKWARD is found in algorithm(24.2).

GT ← FT , gT ← fT , uT ← wT
for t← T − 1 to 1 do

for s← 1 to S, s′ ← 1 to S, i← 1 to It, j
′ ← 1 to Jt+1 do

(µ,Σ)(i, s, j′, s′) = LDSBACKWARD(gt+1(j′, s′),Gt+1(j′, s′), ft(i, s),Ft(i, s), θ(s
′))

p(it, st|jt+1, st+1, v1:T ) = 〈p(st = s, it = i|ht+1, st+1 = s′, jt+1 = j′,v1:t)〉p(ht+1|st+1=s′,jt+1=j′,v1:T )

p(i, s, j′, s′|v1:T )← p(st+1 = s′|v1:T )ut+1(j′, s′)p(it, st|jt+1, st+1, v1:T )
end for
for st ← 1 to S do

Collapse the mixture defined by weights p(it = i, st+1 = s′, jt+1 = j′|st,v1T ) ∝
p(i, st, j

′, s′|v1:T ), means µ(it, st, jt+1, st+1) and covariances Σ(it, st, jt+1, st+1) to a mix-
ture with Jt components. This defines the new means gt(jt, st), covariances Gt(jt, st) and
mixture weights ut(jt, st).
p(st|v1:T )←∑

it,j′,s′
p(it, st, j

′, s′|v1:T )
end for

end for

25.4.4 Using mixtures in smoothing

The extension to the mixture case is straightforward based on the representation

p(ht|st,v1:T ) ≈
J∑

jt=1

q(jt|st,v1:T )q(ht|st, jt,v1:T ). (25.4.16)

Analogously to the case with a single component,

q(ht, st|v1:T ) =
∑

it,jt+1,st+1

p(st+1|v1:T )p(jt+1|st+1,v1:T )q(ht|jt+1, st+1, it, st,v1:T )

× 〈q(it, st|ht+1, jt+1, st+1,v1:t)〉q(ht+1|jt+1,st+1,v1:T ) (25.4.17)

The average in the last line of the above equation can be tackled using the same techniques as outlined in
the single Gaussian case. To approximate q(ht|jt+1, st+1, it, st,v1:T ) we consider this as the marginal of the
joint distribution

q(ht,ht+1|it, st, jt+1, st+1,v1:T ) = q(ht|ht+1, it, st, jt+1, st+1,v1:t)q(ht+1|it, st, jt+1, st+1,v1:T ) (25.4.18)

As in the case of a single mixture, the problematic term is q(ht+1|it, st, jt+1, st+1,v1:T ). Analogously to
equation (25.4.4), we make the assumption

q(ht+1|it, st, jt+1, st+1,v1:T ) ≈ q(ht+1|jt+1, st+1,v1:T ) (25.4.19)

meaning that information about the current switch state st, it is ignored. We can then form

p(ht|st,v1:T ) =
∑

it,jt+1,st+1

p(it, jt+1, st+1|st,v1:T )p(ht|it, st, jt+1, st+1,v1:T ) (25.4.20)

This mixture can then be collapsed to a smaller mixture using any method of choice, to give

p(ht|st,v1:T ) ≈
∑
jt

q(jt|st,v1:T )q(ht|jt, st,v1:T ) (25.4.21)

The resulting procedure is sketched in algorithm(25.2), including using mixtures in both the forward and
backward passes.
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25.4.5 Relation to other methods

A classical smoothing approximation for the SLDS is generalised pseudo Bayes (GPB) [12, 173, 172].
In GPB one starts from the exact recursion

p(st|v1:T ) =
∑
st+1

p(st, st+1|v1:T ) =
∑
st+1

p(st|st+1,v1:T )p(st+1|v1:T ) (25.4.22)

The quantity p(st|st+1,v1:T ) is difficult to obtain and GPB makes the approximation

p(st|st+1,v1:T ) ≈ p(st|st+1,v1:t) (25.4.23)

Plugging this into equation (25.4.22) we have

p(st|v1:T ) ≈
∑
st+1

p(st|st+1,v1:t)p(st+1|v1:T ) (25.4.24)

=
∑
st+1

p(st+1|st)p(st|v1:t)∑
st
p(st+1|st)p(st|v1:t)

p(st+1|v1:T ) (25.4.25)

The recursion is initialised with the approximate filtered p(sT |v1:T ). Computing the smoothed recursion
for the switch states in GPB is then equivalent to running the RTS backward pass on a hidden Markov
model, independently of the backward recursion for the continuous variables. The only information the
GPB method uses to form the smoothed distribution p(st|v1:T ) from the filtered distribution p(st|v1:t)
is the Markov switch transition p(st+1|st). This approximation drops information from the future since
information passed via the continuous variables is not taken into account. In contrast to GPB, the EC
Gaussian smoothing technique preserves future information passing through the continuous variables. GPB
forms an approximation for p(ht|st,v1:T ) by using the recursion (25.4.8) where q(st|st+1,v1:T ) is replaced
by q(st|st+1,v1:t). In SLDSbackward.m one may choose to use either EC or GBP.

Example 25.1 (Traffic Flow). A illustration of modelling and inference with a SLDS is to consider a simple
network of traffic flow, fig(25.4). Here there are 4 junctions a, b, c, d and traffic flows along the roads in the
direction indicated. Traffic flows into the junction at a and then goes via different routes to d. Flow out of
a junction must match the flow into a junction (up to noise). There are traffic light switches at junctions a
and b which, depending on their state, route traffic differently along the roads. Using φ to denote the clean
(noise free) flow, we model the flows using the switching linear system:

φa(t)
φa→d(t)
φa→b(t)
φb→d(t)
φb→c(t)
φc→d(t)


=



φa(t− 1)
φa(t− 1) (0.75× I [sa(t) = 1] + 1× I [sa(t) = 2])
φa(t− 1) (0.25× I [sa(t) = 1] + 1× I [sa(t) = 3])
φa→b(t− 1)0.5× I [sb(t) = 1]
φa→b(t− 1) (0.5× I [sb(t) = 1] + 1× I [sb(t) = 2])
φb→c(t− 1)

(25.4.26)

By identifying the flows at time t with a 6 dimensional vector hidden variable ht, we can write the above
flow equations as

ht = A(st)ht−1 + ηht (25.4.27)

for a set of suitably defined matrices A(s) indexed by the switch variable s = sa
⊗
sb, which takes 3×2 = 6

states. We additionally include noise terms to model cars parking or de-parking during a single timestep.
The covariance Σh is diagonal with a larger variance at the inflow point a to model that the total volume
of traffic entering the system can vary.

Noisy measurements of the flow into the network are taken at a

v1,t = φa(t) + ηv1(t) (25.4.28)
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a b

cd

Figure 25.4: A representation of the traffic flow between junctions at a,b,c,d, with
traffic lights at a and b. If sa = 1 a→ d and a→ b carry 0.75 and 0.25 of the flow out
of a respectively. If sa = 2 all the flow from a goes through a→ d; for sa = 3, all the
flow goes through a → b. For sb = 1 the flow out of b is split equally between b → d
and b→ c. For sb = 2 all flow out of b goes along b→ c.
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Figure 25.5: Time evolution of the traffic flow measured at
two points in the network. Sensors measure the total flow
into the network (upper panel) φa(t)and the total flow out
of the network (lower panel), φd(t) = φa→d(t) + φb→d(t) +
φc→d(t). The total inflow at a undergoes a random walk.
Note that the flow measured at d can momentarily drop
to zero if all traffic is routed through a → b → c in two
consecutive time steps.

along with a noisy measurement of the total flow out of the system at d,

v2,t = φa→d(t) + φb→d(t) + φc→d(t) + ηv2(t) (25.4.29)

The observation model can be represented by vt = Bht + ηvt using a constant 2 × 6 projection matrix B.
The switch variables follow a simple Markov transition p(st|st−1) which biases the switches to remain in
the same state in preference to jumping to another state. See demoSLDStraffic.m for details.

Given the above system and a prior which initialises all flow at a, we draw samples from the model using
forward (ancestral) sampling which form the observations v1:100, fig(25.5). Using only the observations
and the known model structure we then attempt to infer the latent switch variables and traffic flows using
Gaussian Sum filtering and smoothing (EC method) with 2 mixture components per switch state, fig(25.6).

We note that a naive HMM approximation based on discretising each continuous flow into 20 bins would
contain 2 × 3 × 206 or 384 million states. Even for modest size problems, a naive approximation based on
discretisation is therefore impractical.

Example 25.2 (Following the price trend). The following is a simple model of the price trend of a stock,
which assumes that the price tends to continue going up (or down) for a while before it reverses direction:

h1,t = h1,t−1 + h2,t−1 + ηh1 (st) (25.4.30)

h2(t) = I [st = 1]h2,t−1 + ηh2 (st) (25.4.31)

vt = h1,t + ηv(st) (25.4.32)

here h1 represents the ‘clean’ price and h2 the direction. There is only a single observation variable at each
time, which is the clean price plus a small amount of noise. There are two switch states, dom(st) = {1, 2}.
When st = 1, the model functions normally, with the direction being equal to the previous direction plus
a small amount of noise ηh2 (st = 1). When st = 2 however, the direction is sampled from a Gaussian with
a large variance. The transition p(st|st−1) is set so that normal dynamics is more likely, and when st = 2
it is likely to go back to normal dynamics the next timestep. Full details are in SLDSpricemodel.mat.
In fig(25.7) we plot some samples from the model and also smoothed inference of the switch distribution,
showing how we can analyse the series to infer the points of likely change in the stock price direction. See
also exercise(25.1).
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Figure 25.6: Given the observations from fig(25.5) we infer the flows and switch states of all the latent
variables. (a): The correct latent flows through time along with the switch variable state used to generate
the data. The colours corresponds to the flows at the corresponding coloured edges/nodes in fig(25.4). (b):
Filtered flows based on a I = 2 Gaussian Sum forward pass approximation. Plotted are the 6 components
of the vector 〈ht|v1:t〉 with the posterior distribution of the sa and sb traffic light states p(sat |v1:t),p(s

b
t |v1:t)

plotted below. (c): Smoothed flows 〈ht|v1:T 〉 and corresponding smoothed switch states p(st|v1:T ) using a
Gaussian Sum smoothing approximation (EC with J = 1).
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Figure 25.7: The top panel is a time series of ‘prices’. The prices
tend to keep going up or down with infrequent changes in the
direction. Based on fitting a simple SLDS model to capture this
kind of behaviour, the probability of a significant change in the
price direction is given in the panel below based on the smoothed
distribution p(st = 2|v1:T ).

25.5 Reset Models

Reset models are special switching models in which the switch state isolates the present from the past,
resetting the position of the latent dynamics (these are also known as changepoint models). Whilst these
models are rather general, it can be helpful to consider a specific model, and here we consider the SLDS
changepoint model with two states. We use the state st = 0 to denote that the LDS continues with the
standard dynamics. With st = 1, however, the continuous dynamics is reset to a prior:

p(ht|ht−1, st) =

{
p0(ht|ht−1) st = 0
p1(ht) st = 1

(25.5.1)

where

p0(ht|ht−1) = N
(
ht Aht−1 + µ0,Σ0

)
, p1(ht) = N

(
ht µ

1,Σ1
)

(25.5.2)

Similarly we write

p(vt|ht, st) =

{
p0(vt|ht) st = 0
p1(vt|ht) st = 1

(25.5.3)

For simplicity we assume the switch dynamics are first order Markov with transition p(st|st−1), see fig(25.8).
Under this model the dynamics follows a standard LDS, but when st = 1, ht is reset to a value drawn from
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Figure 25.8: The independence structure of a reset model.
Square nodes st denote the binary reset variables and ht
the continuous state. The ht are continuous variables, and
vt continuous observations. If the dynamics resets, st = 1,
the dependence of the continuous ht on the past is cut.

a Gaussian distribution, independent of the past. Such models are of interest in prediction where the time-
series is following a trend but suddenly changes and the past is forgotten. Whilst this may not seem like a
big change to the model, this model is computationally more tractable, exact filtered inference scaling with
O
(
T 2
)
, compared to O

(
T2T

)
in the general two-state SLDS. To see this, consider the filtering recursion

α(ht, st) ∝
∫

ht−1

∑
st−1

p(vt|ht, st)p(ht|ht−1, st)p(st|st−1)α(ht−1, st−1) (25.5.4)

We now consider the two cases

α(ht, st = 0) ∝
∫

ht−1

∑
st−1

p0(vt|ht)p0(ht|ht−1)p(st = 0|st−1)α(ht−1, st−1) (25.5.5)

α(ht, st = 1) ∝ p1(vt|ht)p1(ht)

∫
ht−1

∑
st−1

p(st = 1|st−1)α(ht−1, st−1)

∝ p1(vt|ht)p1(ht)
∑
st−1

p(st = 1|st−1)α(st−1) (25.5.6)

Equation(25.5.6) shows that p(ht, st = 1|v1:t) is not a mixture model in ht, but contains only a single
component proportional to p1(vt|ht)p1(ht). If we use this information in equation (25.5.5) we have

α(ht, st = 0) ∝
∫

ht−1

p0(vt|ht)p0(ht|ht−1)p(st = 0|st−1 = 0)α(ht−1, st−1 = 0)

+

∫
ht−1

p0(vt|ht)p0(ht|ht−1)p(st = 0|st−1 = 1)α(ht−1, st−1 = 1) (25.5.7)

Assuming α(ht−1, st−1 = 0) is a mixture distribution withK components, then α(ht, st = 0) will be a mixture
with K + 1 components. In general, therefore, α(ht, st = 0) will contain T components and α(ht, st = 1)
a single component. As opposed to the full SLDS case, the number of components therefore grows only
linearly with time, as opposed to exponentially. This means that the computational effort to perform exact
filtering scales as O

(
T 2
)
. Smoothing can be achieved using the α− β approach, see exercise(25.3). Despite

this reduction in complexity over the SLDS, for long timeseries T � 1, filtering and smoothing for these
reset models can still be computationally expensive. See [51] for approximations based on retaining only a
limited number of mixture components, reducing the complexity to linear in T .

Run-length formalism

One may also describe reset models using a ‘run-length’ formalism defining at each time t a latent variable
rt which describes the length of the current segment[3]. If there is a change, the run-length variable is reset
to zero, otherwise it is increased by 1:

p(rt|rt−1) =

{
Pcp rt = 0
1− Pcp rt = rt−1 + 1

(25.5.8)

where Pcp is the probability of a reset (or ‘changepoint’). The joint distribution is given by

p(v1:T , r1:T ) =
∏
t

p(rt|rt−1)p(vt|v1:t−1, rt), p(vt|v1:t−1, rt) = p(vt|vt−rt:t−1) (25.5.9)
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with the understanding that if rt = 0 then p(vt|vt−rt:t−1) = p(vt). The graphical model of this distribution
is awkward to draw since the number of links depends on the run-length rt. Predictions can be made using

p(vt+1|v1:t) =
∑
rt

p(vt+1|vt−rt:t)p(rt|v1:t) (25.5.10)

where the filtered ‘run-length’ p(rt|v1:t) is given by the forward recursion:

p(rt, v1:t) =
∑
rt−1

p(rt, rt−1, v1:t−1, vt) =
∑
rt−1

p(rt, vt|rt−1, v1:t−1)p(rt−1, v1:t−1)

=
∑
rt−1

p(vt|rt,���rt−1, v1:t−1)p(rt|rt−1,���v1:t−1)p(rt−1, v1:t−1)

=
∑
rt−1

p(rt|rt−1)p(vt|vt−rt:t−1)p(rt−1, v1:t−1)

which shows that filtered inference scales with O
(
T 2
)
.

25.5.1 A Poisson reset model

The changepoint structure is not limited to conditionally Gaussian cases only. To illustrate this, we consider
the following model2: At each time t, we observe a count yt which we assume is Poisson distributed with an
unknown positive intensity h. The intensity is constant, but at certain unknown times t, it jumps to a new
value. The indicator variable ct denotes whether time t is such a changepoint or not. Mathematically, the
model is:

p(h0) = G(h0; a0, b0) (25.5.11)

p(ct) = BE(ct;π) (25.5.12)

p(ht|ht−1, ct) = I [ct = 0] δ(ht, ht−1) + I [ct = 1]G(ht; ν, b) (25.5.13)

p(vt|ht) = PO(vt;ht) (25.5.14)

The symbols G, BE and PO denote the Gamma, Bernoulli and the Poisson distributions respectively:

G(h; a, b) = exp ((a− 1) log h− bh− log Γ(a) + a log b) (25.5.15)

BE(c;π) = exp (c log π + (1− c) log(1− π)) (25.5.16)

PO(v;h) = exp (v log h− h− log Γ(v + 1)) (25.5.17)

Given observed counts v1:T , the task is to find the posterior probability of a change and the associated
intensity levels for each region between two consecutive changepoints. Plugging the above definitions in the
generic updates equation (25.5.5) and equation (25.5.6), we see that α(ht, ct = 0) is a Gamma potential,
and that α(gt, ct = 1) is a mixture of Gamma potentials, where a Gamma potential is defined as

φ(h) = elG(h; a, b) (25.5.18)

via the triple (a, b, l). For the corrector update step we need to calculate the product of a Poisson term with
the observation model p(vt|ht) = PO(vt;ht). A useful property of the Poisson distribution is that, given the
observation, the latent variable is Gamma distributed:

PO(v;h) = v log h− h− log Γ(v + 1) (25.5.19)

= (v + 1− 1) log h− h− log Γ(v + 1) (25.5.20)

= G(h; v + 1, 1) (25.5.21)

Hence, the update equation requires multiplication of two Gamma potentials. A nice property of the Gamma
density is that the product of two Gamma densities is also a Gamma potential:

(a1, b1, l1)× (a2, b2, l2) = (a1 + a2 − 1, b1 + b2, l1 + l2 + g(a1, b1, a2, b2)) (25.5.22)

2This example is due to Taylan Cemgil.
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where

g(a1, b1, a2, b2) ≡ log
Γ(a1 + a2 − 1)

Γ(a1)Γ(a2)
+ log(b1 + b2) + a1 log(b1/(b1 + b2)) + a2 log(b2/(b1 + b2)) (25.5.23)

The α recursions for this reset model are therefore closed in the space of a mixture of Gamma potentials,
with an additional Gamma potential in the mixture at each timestep. A similar approach can be used to
form the smoothing recursions, see exercise(25.3).

Example 25.3 (Coal mining disasters). We illustrate the Poisson reset model on the coal mining disaster
dataset [157]. The data set consists of the number of deadly coal-mining disasters in England per year over
a time span of 112 years from 1851 to 1962. It is widely agreed in the statistical literature that a change in
the intensity (the expected value of the number of disasters) occurs around the year 1890, after new health
and safety regulations were introduced. In fig(25.9) we show the marginals p(ht|y1:T ) along with the filtering
density. Note that we are not constraining the number of changepoints and in principle allow any number.
The smoothed density suggests a sharp decrease around t = 1890.
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Figure 25.9: Estimation of change points. (Top)
coal mining disaster dataset. (Middle) Filtered esti-
mate of the marginal intensity p(ht|v1:t) and (Bottom)
smoothed estimate p(ht|v1:T ). Here, darker color
means higher probability.

25.5.2 Reset-HMM-LDS

The reset model defined by equations (25.5.1,25.5.3) above is useful in many applications, but is limited
since only a single dynamical model is considered. An extension is to consider a set of available dynamical
models, indexed by st ∈ {1, . . . , S}, with a reset that cuts dependency of the continuous variable on the
past[100, 59]:

p(ht|ht−1, st, ct) =

{
p0(ht|ht−1, st) ct = 0
p1(ht|st) ct = 1

(25.5.24)

The states st follow a Markovian dynamics p(st|st−1, ct−1), see fig(25.10). A reset occurs if the state st
changes, otherwise, no reset occurs:

p(ct = 1|st, st−1) = I [st 6= st−1] (25.5.25)

The computational complexity of filtering for this model is O
(
S2T 2

)
which can be understood by analogy

with the reset α recursions, equations(25.5.5,25.5.6) on replacing ht by (ht, st). To see this we consider the
filtering recursion for the two cases

α(ht, st, ct = 0) =

∫
ht−1

∑
st−1,ct−1

p0(vt|ht, st)p0(ht|ht−1, st)p(st|st−1, ct−1)p(ct = 0|st, st−1)α(ht−1, ct−1)

(25.5.26)

α(ht, st, ct = 1) =

∫
ht−1

∑
st−1,ct−1

p1(vt|ht, st)p1(ht|st)p(st|st−1, ct)p(ct = 1|st, st−1)α(ht−1, st−1, ct−1)

= p1(vt|ht, st)p1(ht|st)
∑

st−1,ct−1

p(ct = 1|st, st−1)p(st|st−1, ct−1)α(st−1, ct−1) (25.5.27)
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Figure 25.10: The independence structure of a reset-HMM-
LDS model. Square nodes ct ∈ {0, 1} denote reset vari-
ables; ht are continuous latent variables, and vt continuous
observations. The discrete state st ∈ {1, . . . , S} determines
which Linear Dynamical system from a finite set of Linear
Dynamical systems is operational at time t.

From equation (25.5.27) we see that α(ht, st, ct = 1) contains only a single component proportional to
p1(vt|ht, st)p1(ht|st). This is therefore exactly analogous to the standard reset model, except that we
need now to index a set of messages with st, therefore each message taking O (S) steps to compute. The
computational effort to perform exact filtering scales as O

(
S2T 2

)
.

25.6 Summary

• The switching linear dynamical system is a marriage of a discrete state HMM with the continuous latent
state linear dynamical system. It is able to model discrete jumps in an underlying continuous process,
finding application in a large variety of domains from finance to speech processing.

• The classical inference problems in the SLDS are formally intractable since representing the messages
requires an exponential amount of space.

• Many approximation methods have been developed for the SLDS and in this chapter we described a robust
deterministic method based on a mixture of Gaussians representation.

• Reset models are such that the continuous variable forgets the past when reset. Unlike the SLDS such
models are much more amenable to exact inference. Extensions include the reset-HMM which allows for a
set of discrete and continuous states in which a special discrete state resets the continuous states.

25.7 Code

SLDSforward.m: SLDS forward
SLDSbackward.m: SLDS backward (Expectation Correction)
mix2mix.m: Collapse a mixture of Gaussians to a smaller mixture of Gaussians
SLDSmargGauss.m: Marginalise an SLDS Gaussian mixture
logeps.m: Logarithm with offset to deal with log(0)
demoSLDStraffic.m: Demo of traffic flow using a switching linear dynamical system

25.8 Exercises

Exercise 25.1. Consider the setup described in example(25.2), for which the full SLDS model is given in
SLDSpricemodel.mat, following the notation used in demoSLDStraffic.m. Given the data in the vector v

your task is to fit a prediction model to the data. To do so, approximate the filtered distribution p(ht, st|v1:t)
using a mixture of I = 2 components. The prediction of the mean price at the next day is then

vpredt+1 = 〈h1,t + h2,t〉p(ht|v1:t) (25.8.1)
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Figure 25.11: Data from an intermittent mean-reverting process. See exercise(25.2).

where p(ht|v1:t) =
∑

st
p(ht, st|v1:t).

1. Compute the mean prediction error
mean_abs_pred_error=mean(abs(vpred(2:200)-v(2:200)))

2. Compute the mean naive prediction error
mean_abs_pred_error_naive=mean(abs(v(1:199)-v(2:200)))

which corresponds to saying that tomorrow’s price will be the same as today’s.

Hint: you might find SLDSmargGauss.m of interest.

Exercise 25.2. The data in fig(25.11) are observed prices from an intermittent mean-reverting process,
contained in meanrev.mat. There are two states S = 2. There is a true (latent) price pt and an observed
price vt (which is plotted). When s = 1, the true underlying price reverts back towards the mean m = 10
with rate r = 0.9. Otherwise the true price follows a random walk:

pt =

{
r(pt−1 −m) +m+ ηpt st = 1
pt−1 + ηpt st = 2

(25.8.2)

where

ηpt ∼
{
N (ηpt 0, 0.0001) st = 1
N (ηpt 0, 0.01) st = 2

(25.8.3)

The observed price vt is related to the unknown price pt by

vt ∼ N (vt pt, 0.001) (25.8.4)

It is known that 95% of the time st+1 is in the same state as at time t > 1 and that at time t = 1 either
state of s1 is equally likely. Also at t = 1, p1 ∼ N (p1 m, 0.1). Based on this information, and using
Gaussian Sum filtering with I = 2 components (use SLDSforward.m), what is the probability at time t = 280
that the dynamics is following a random walk, p(s280 = 2|v1:280)? Repeat this computation for smoothing
p(s280 = 2|v1:400) based on using Expectation Correction with I = J = 2 components.

Exercise 25.3. We here derive a smoothing recursion based on the α − β approach for the reset-LDS
described in section(25.5). Smoothing can be achieved using

p(ht, st|v1:T ) ∝ p(ht, st|v1:t)︸ ︷︷ ︸
α(ht,st)

p(vt+1:T |ht, st)︸ ︷︷ ︸
β(ht,st)

(25.8.5)

From the formal β recursion, we have

β(ht−1, st−1) =
∑
st

∫
ht

p(vt|ht, st)p(ht|ht−1, st)p(st|st−1)β(ht, st) (25.8.6)

1. Show that the rhs of equation (25.8.6) can be written as

p(st = 0|st−1)

∫
ht

p0(vt|ht)p0(ht|ht−1)β(ht, st = 0)︸ ︷︷ ︸
β0(ht−1,st−1)

+ p(st = 1|st−1)

∫
ht

p1(vt|ht)p1(ht)β(ht, st = 1)︸ ︷︷ ︸
β1(st−1)

(25.8.7)
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2. Writing

β(ht, st) = β0(ht, st) + β1(st) (25.8.8)

derive then the recursions

β0(ht−1, st−1) = p(st = 0|st−1)

∫
ht

p0(vt|ht)p0(ht|ht−1)
[
β0(ht, st = 0) + β1(st = 0)

]
(25.8.9)

and

β1(st−1) = p(st = 1|st−1)

∫
ht

p1(vt|ht)p1(ht)
[
β0(ht, st = 1) + β1(st = 1)

]
(25.8.10)

The β1 contribution is simply a scalar, so that its complexity of representation is fixed. According to the
above β0 recursion, we include an additional component in the representation of β0 with each timestep that
we go backwards in time. Thus the number of components to represent β0(ht, st) will be O (T − t), since
at time T , we may define β(hT , st) = 1. This means that the term p(ht, st,v1:T ) = α(ht, st)β(ht, st) will
contain O (t(T − t)) components. To form a complete smoothing pass over all time therefore takes O

(
T 3
)

time.
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CHAPTER 26

Distributed Computation

In this chapter we discuss from a probabilistic perspective models that are loosely based on a crude under-
standing of neural systems in biology. This is a fascinating area and we show how patterns can be stored
and recalled by reference to our standard tools from learning probabilistic models. We also discuss a general
model that enables us to consider non-linear latent continuous dynamics whilst retaining computational
tractability.

26.1 Introduction

How natural organisms process information is a fascinating subject and one of the grand challenges of science.
Whilst this subject is still in its early stages, loosely speaking, there are some generic properties that most
such systems are believed to possess: patterns are stored in a set of neurons; recall of patterns is robust to
noise; neural activity is essentially binary; information processing is distributed and highly modular. In this
chapter we discuss some of the classical toy models that have been developed as a test bed for analysing
such properties[65, 80, 68, 144].

26.2 Stochastic Hopfield Networks

Hopfield networks are models of biological memory in which a pattern is represented by the activity of a
set of V interconnected neurons. The term ‘network’ here refers to the set of neurons, see fig(26.1), and not
the belief network representation of distribution of neural states unrolled through time, fig(26.2). At time
t neuron i fires vi(t) = +1 or is quiescent vi(t) = −1 (not firing) depending on the states of the neurons at
the preceding time t− 1. Explicitly, neuron i fires depending on the potential

ai(t) ≡ bi +

V∑
j=1

wijvj(t) (26.2.1)

where wij characterizes the efficacy with which neuron j transmits a binary signal to neuron i. The bias
bi relates to the neuron’s predisposition to firing. Writing the state of the network at time t as v(t) ≡
(v1(t), . . . , vV (t))T, the probability that neuron i fires at time t+ 1 is modelled as

p(vi(t+ 1) = 1|v(t)) = σβ (ai(t)) (26.2.2)

where σβ(x) = 1/(1 + e−βx) and β controls the level of stochastic behaviour of the neuron. The probability
of being in the quiescent state is given by normalization

p(vi(t+ 1) = −1|v(t)) = 1− p(vi(t+ 1) = 1|v(t)) = 1− σβ (ai(t)) (26.2.3)
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Figure 26.1: A depiction of a Hopfield network (for 5 neurons).
The connectivity of the neurons is described by a weight matrix
with elements wij . The graph represents a snapshot of the state
of all neurons at time t which simultaneously update as functions
of the network at the previous time t− 1.

These two rules can be compactly written as

p(vi(t+ 1)|v(t)) = σβ (vi(t+ 1)ai(t)) (26.2.4)

which follows directly from 1− σβ(x) = σβ(−x). In the limit β →∞, the neuron updates deterministically

vi(t+ 1) = sgn (ai(t)) (26.2.5)

In a synchronous Hopfield network all neurons update independently and simultaneously, and we can rep-
resent the temporal evolution of the neurons as a dynamic belief network, fig(26.2)

p(v(t+ 1)|v(t)) =

V∏
i=1

p(vi(t+ 1)|v(t)). (26.2.6)

Given this description of how neurons update, we wish to use the network to do interesting things, for
example to store pattern sequences and recall them under some cue. The patterns will be stored in the
weights and biases and in the following section we address how to learn suitable settings based on simple
local learning rules.

26.3 Learning Sequences

26.3.1 A single sequence

Given a sequence of network states, V = {v(1), . . . ,v(T )}, we would like the network to store this sequence
such that it can be later recalled under some cue. That is, if the network is initialized in the correct starting
state of the training sequence v(t = 1), the remainder of the training sequence for t > 1 should be reproduced
under the deterministic dynamics equation (26.2.5), without error. Two classical approaches to learning a
temporal sequence are the Hebb and Pseudo Inverse rules[144]. In both the standard Hebb and PI cases,
the biases bi are usually set to zero.

Standard Hebb rule

The standard Hebb rule sets the weights according to1

wij =
1

V

T−1∑
t=1

vi(t+ 1)vj(t) (26.3.1)

1Donald Hebb, a neurobiologist actually stated[139]

Let us assume that the persistence or repetition of a reverberatory activity (or ‘trace’) tends to induce lasting
cellular changes that add to its stability. . . When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

This statement is sometimes misinterpreted to mean that weights are exclusively of the correlation form equation (26.3.1)(see
[286] for a discussion). This can severely limit the performance and introduce adverse storage artifacts including local
minima[144].
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Figure 26.2: A dynamic belief network representation of a Hop-
field Network. The network operates by simultaneously gener-
ating a new set of neuron states from the previous set. Equa-
tion(26.2.6) defines a Markov transition matrix, modelling the
transition probability v(t) → v(t + 1) and furthermore imposes
the constraint that the neurons are conditionally independent
given the previous state of the network.

The Hebb rule can be motivated mathematically by considering

∑
j

wijvj(t) =
1

V

T−1∑
τ=1

vi(τ + 1)
∑
j

vj(τ)vj(t) (26.3.2)

=
1

V
vi(t+ 1)

∑
j

v2
j (t) +

1

V

T−1∑
τ 6=t

vi(τ + 1)
∑
j

vj(τ)vj(t) (26.3.3)

= vi(t+ 1) +
1

V

T−1∑
τ 6=t

vi(τ + 1)
∑
j

vj(τ)vj(t) (26.3.4)

If the patterns are uncorrelated then the ‘interference’ term

Ω ≡ 1

V

T−1∑
τ 6=t

vi(τ + 1)
∑
j

vj(τ)vj(t) (26.3.5)

will be relatively small. To see this, we first note that for uniform randomly drawn patterns, the mean of Ω
is zero, since the patterns are randomly ±1. The variance is therefore given by

〈
Ω2
〉

=
1

V 2

T−1∑
τ,τ ′ 6=t

∑
j,k

〈
vi(τ + 1)vi(τ

′ + 1)vj(τ)vj(t)vk(τ
′)vk(t)

〉
(26.3.6)

For j 6= k, all the terms are independent and contribute zero on average. Therefore

〈
Ω2
〉

=
1

V 2

T−1∑
τ,τ ′=1

∑
j

〈
vi(τ + 1)vi(τ

′ + 1)vj(τ)vj(τ
′)v2

j (t)
〉

(26.3.7)

When τ 6= τ ′ all the terms are independent zero mean and contribute zero. Hence〈
Ω2
〉

=
1

V 2

∑
τ 6=t

∑
j

〈
v2
i (τ + 1)v2

j (τ)v2
j (t)

〉
=
T − 1

V
(26.3.8)

Provided that the number of neurons V is significantly larger than the length of the sequence, T , the average
size of the interference will therefore be small. In this case the term vi(t+1) in equation (26.3.4) dominates,
meaning that the sign of

∑
j wijvj(t) will be that of vi(t+ 1), and the correct pattern sequence recalled. A

careful analysis beyond our scope shows that the Hebb rule is capable of storing a random (uncorrelated)
temporal sequence of length 0.269V time steps[91]. However, the Hebb rule performs poorly for the case of
correlated patterns since interference from the other patterns becomes significant[144, 68].

Pseudo inverse rule

The PI rule finds a matrix [W]ij = wij that solves the linear equations∑
j

wijvj(t) = vi(t+ 1), t = 1, . . . , T − 1 (26.3.9)
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Under this condition sgn
(∑

j wijvj(t)
)

= sgn (vi(t+ 1)) = vi(t + 1) so that patterns will be correctly

recalled. In matrix notation we require

WV = V̂ (26.3.10)

where

[V]it = vi(t), t = 1, . . . , T − 1,
[
V̂
]
it

= vi(t+ 1), t = 2, . . . , T (26.3.11)

For T < V the problem is under-determined so that multiple solutions exist. One solution is given by the
pseudo inverse:

W = V̂
(
VTV

)−1
VT (26.3.12)

The Pseudo Inverse (PI) rule can store any sequence of V linearly independent patterns. Whilst attractive
compared to the standard Hebb rule in terms of its ability to store longer correlated sequences, this rule
suffers from very small basins of attraction for temporally correlated patterns, see fig(26.3).

The maximum likelihood Hebb rule

An alternative to the above classical algorithms is to view this as a problem of pattern storage in the DBN,
equation (26.2.6) [19]. First, we need to clarify what we mean by ‘store’. Given that we initialize the network
in a state v(t = 1), we wish that the remaining sequence will be generated with high probability. That is,
we wish to adjust the network parameters such that the probability

p(v(T ),v(T − 1), . . . ,v(2)|v(1)) (26.3.13)

is maximal2. Furthermore, we might hope that the sequence will be recalled with high probability not just
when initialized in the correct state but also for states close (in Hamming distance) to the correct initial
state v(1).

Due to the Markov nature of the dynamics, the conditional likelihood is

p(v(T ),v(T − 1), . . . ,v(2)|v(1)) =
T−1∏
t=1

p(v(t+ 1)|v(t)) (26.3.14)

This is a product of transitions from given states to given states. Since these transition probabilities are
known, equation (26.2.6) and equation (26.2.2), the conditional likelihood can be easily evaluated. The
sequence log (conditional) likelihood is

L(w, b) ≡ log

T−1∏
t=1

p(v(t+ 1)|v(t)) =
T−1∑
t=1

log p(v(t+ 1)|v(t)) =
T−1∑
t=1

V∑
i=1

log σβ (vi(t+ 1)ai(t)) (26.3.15)

Our task is then to find weights w and biases b that maximise L(w, b). There is no closed form solution
and the parameters need to be determined numerically. Nevertheless, this corresponds to a straightforward
computational problem since the log likelihood is a convex function. To show this, we compute the Hessian
(neglecting b for expositional clarity):

d2L

dwijdwkl
= −β2

T−1∑
t=1

vi(t+ 1)vj(t)γi(t)(1− γi(t))vk(t+ 1)vl(t)δik (26.3.16)

where we defined

γi(t) ≡ 1− σβ (vi(t+ 1)ai(t)) . (26.3.17)

2Static patterns can also be considered in this framework as a set of patterns that map to each other.
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Figure 26.3: Leftmost panel: The highly-correlated train-
ing sequence we desire to store. The other panels show the
temporal evolution of the network after initialization in the
correct starting state but corrupted with 30% noise. During
recall, deterministic updates β = ∞ were used. The Max-
imum Likelihood rule was trained using 10 batch epochs
with η = 0.1. See also demoHopfield.m

It is straightforward to show that the Hessian is negative semidefinite (see exercise(26.4)) and hence the
likelihood has a single global maximum. To increase the likelihood of the sequence, we can use a simple
method such as gradient ascent3

wnewij = wij + η
dL

dwij
, bnewi = bi + η

dL

dbi
(26.3.18)

where

dL

dwij
= β

T−1∑
t=1

γi(t)vi(t+ 1)vj(t),
dL

dbi
= β

T−1∑
t=1

γi(t)vi(t+ 1) (26.3.19)

The learning rate η is chosen empirically to be sufficiently small to ensure convergence. The maximum
likelihood learning rule equation (26.3.19) can be seen as a modified Hebb learning rule, the basic Hebb rule
being given when γi(t) ≡ 1. As learning progresses, the factors γi(t) will typically tend to values close to
either 1 or 0, and hence the learning rule can be seen as asymptotically equivalent to making an update
only in the case of disagreement (ai(t) and vi(t + 1) are of different signs). This batch training procedure
can be readily converted to an online process in which an update occurs immediately after the presentation
of two consecutive patterns.

Storage capacity of the ML Hebb rule

The ML Hebb rule is capable of storing a sequence of V linearly independent patterns. To see this, we first
form an input-output training set for each neuron i, {(v(t), vi(t+ 1)), t = 1, . . . , T − 1}. Each neuron has
an associated weight vector wi ≡ wij , j = 1, . . . , V , which forms a logistic regressor or, in the limit β =∞,
a perceptron[144]. For perfect recall of the patterns, we therefore need only that the vectors constituting
the pattern sequence be linearly separable. This will be the case if the patterns are linearly independent,
regardless of the outputs vi(t+ 1), t = 1, . . . , T − 1, see section(17.4.1).

Relation to the perceptron rule

In the limit that the activation is large, |ai| � 1

γi(t) ≈
{

1 vi(t+ 1)ai < 0
0 vi(t+ 1)ai ≥ 0

(26.3.20)

Provided the activation and desired next output are the same sign, no update is made for neuron i. In
this limit, equation (26.3.19) is called the perceptron rule[144, 85]. For an activation a that is close to the
decision boundary, a small change can lead to a different sign of the neural firing. To guard against this it
is common to include a stability criterion

γi(t) =

{
1 vi(t+ 1)ai < M
0 vi(t+ 1)ai ≥M (26.3.21)

3Naturally, one can use more sophisticated methods such as the Newton method, or conjugate gradients. In theoretical
neurobiology the emphasis is on gradient style updates since these are deemed to be biologically more plausible.
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Figure 26.4: The fraction of neurons correct for the fi-
nal state of the network T = 50 for a 100 neuron Hop-
field network trained to store a length 50 sequence of
patterns. After initialization in the correct initial state
at t = 1, the Hopfield network is updated determinis-
tically, with a randomly chosen percentage of the neu-
rons flipped after updating. The correlated sequence
of length T = 50 was produced by flipping with prob-
ability 0.5, 20% of the previous state of the network.
A fraction correct value of 1 indicates perfect recall
of the final state, and a value of 0.5 indicates a per-
formance no better than random guessing of the final
state. For maximum likelihood 50 epochs of training
were used with η = 0.02. During recall, deterministic
updates β = ∞ were used. The results presented are
averages over 5000 simulations, resulting in standard
errors of the order of the symbol sizes.

where M is an empirically chosen positive threshold.

Example 26.1 (Storing a correlated sequence). In fig(26.3) we consider storage of a temporal sequence
of length T = 20 of 100 neurons using the three learning rules: Hebb, Maximum Likelihood and Pseudo
Inverse. The sequence is highly correlated and therefore represents a difficult learning task. The biases bi
are set to zero throughout to facilitate comparison. The initial state of the training sequence, corrupted by
30% noise is presented to the trained networks, and we desire that the remaining training sequence will be
recalled from this initial noisy state. Whilst the Hebb rule is operating in a feasible limit for uncorrelated
patterns, the strong correlations in this training sequence give rise to poor results. The PI rule is capable
of storing a sequence of length 100 yet is not robust to perturbations from the correct initial state. The
Maximum Likelihood rule performs well after a small amount of training.

Stochastic interpretation

By straightforward manipulations, the weight update rule in equation (26.3.19) can be written as

dL

dwij
=

T−1∑
t=1

1

2

(
vi(t+ 1)− 〈vi(t+ 1)〉p(vi(t+1)|ai(t))

)
vj(t) (26.3.22)

A stochastic, online learning rule is therefore

∆wij(t) = η (vi(t+ 1)− ṽi(t+ 1)) vj(t) (26.3.23)

where ṽi(t+1) is sampled in state 1 with probability σβ(ai(t)), and −1 otherwise. Provided that the learning
rate η is small, this stochastic updating will approximate the learning rule (26.3.18,26.3.19).

Example 26.2 (Recalling sequences under perpetual noise). We consider 50 neurons storing a T = 50
length sequence (with zero biases and compare the performance of the Maximum Likelihood learning rule
with the Hebb, Pseudo Inverse, and Perceptron rule. The training sequences are produced by starting from
a random initial state, v(1), and then choosing at random 20% percent of the neurons to flip, each of the
chosen neurons being flipped with probability 0.5, giving a random training sequence with a high degree of
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(a) (b)

Figure 26.5: (a): Original T = 15 binary video sequence on a set of 81× 111 = 8991 neurons. (b): The
reconstructions beginning from a 20% noise perturbed initial state. Every odd time reconstruction is also
randomly perturbed. Despite the high level of noise the basin of attraction of the pattern sequence is very
broad and the patterns immediately fall back close to the pattern sequence even after a single timestep.

temporal correlation.

After training, the network is initialized to a noise corrupted version of the correct initial state v(t = 1)
from the training sequence. The dynamics is then run (at β = ∞) for the same number of steps as the
length of the training sequence. The fraction of bits of the recalled final state which are the same as the
training sequence final state v(T ) is then measured, fig(26.4). At each stage in the dynamics (except the
last), the state of the network is corrupted with noise by flipping each neuron state with the specified flip
probability.

The standard Hebb rule performs relatively poorly, particularly for small flip rates, whilst the other
methods perform relatively well, being robust at small flip rates. As the flip rate increases, the pseudo
inverse rule becomes unstable, especially for the longer temporal sequence which places more demands
on the network. The perceptron rule can perform as well as the maximum likelihood rule, although its
performance is critically dependent on an appropriate choice of the threshold M . The results for M = 0
Perceptron training are poor for small flip rates. An advantage of the maximum likelihood rule is that it
performs well without the need for fine tuning of parameters.

A similar example for a larger network is given in fig(26.5) which consists of highly correlated sequences.
The weights are learned using the maximum likelihood procedure. For such short sequences the basin of
attraction is very large and the video sequence can be stored robustly.

26.3.2 Multiple sequences

We now address learning a set of sequences {Vn, n = 1, . . . , N}. If we assume that the sequences are
independent, the log likelihood of a set of sequences is the sum of the individual sequences. The gradient is
given by

dL

dwij
= β

N∑
n=1

T−1∑
t=1

γni (t)vni (t+ 1)vnj (t),
dL

dbi
= β

N∑
n=1

T−1∑
t=1

γni (t)vni (t+ 1) (26.3.24)

where

γni (t) ≡ 1− σβ (vni (t+ 1)ani (t)) , ani (t) = bi +
∑
j

wijv
n
j (t) (26.3.25)

The log likelihood remains convex since it is a sum of convex functions, so that the standard gradient based
learning algorithms can be used successfully here as well.
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26.3.3 Boolean networks

The Hopfield network is one particular parameterisation of the table p(vi(t + 1) = 1|v(t)). However, less
constrained parameters may be considered. In the fully unconstrained case each neuron i has an associated
2V parental states. However, to specify this exponentially large number of states is impractical and an
interesting restriction is to consider that each neuron has only K parents, so that each table contains 2K

entries. Learning the table parameters by maximum likelihood is straightforward since the log likelihood is
a convex function of the table entries. Hence, for any given sequence (or set of sequences) one may readily
find parameters that maximise the sequence reconstruction probability. The maximum likelihood method
also produces large basins of attraction for the associated stochastic dynamical system. Such models are of
interest in Artificial Life and Random Boolean networks in which emergent macroscopic behaviour appears
from local update rules. Such systems are also used to study the robustness of chemical and gene regulatory
networks[171].

26.3.4 Sequence disambiguation

A limitation of time-independent first order networks defined on visible variables alone (such as the Hopfield
network) is that the observation transition p(vt+1|vt = v) is the same every time the joint state v is
encountered. This means that if the sequence contains a subsequence such as a, b, a, c this cannot be recalled
with high probability since a joint state a transitions to different states at different times. Whilst one could
attempt to resolve this sequence disambiguation problem using a higher order Markov model to account
for a longer temporal context, or by using a time-dependent model, we would lose biological plausibility.
Using latent variables is an alternative way to sequence disambiguation. In the Hopfield model the recall
capacity can be increased using latent variables by making a sequencing in the joint latent-visible space
that is linearly independent, even if the visible variable sequence alone is not. In section(26.4) we discuss a
general method that extends dynamic belief networks defined on visible variables alone, such as the Hopfield
network, to include non-linearly updating latent variables.

26.4 Tractable Continuous Latent Variable Models

A dynamic belief network with hidden (latent) variables h and visible variables (observations) v takes the
form

p(v(1 : T ), h(1 : T )) = p(v(1))p(h(1)|v(1))
T−1∏
t=1

p(v(t+ 1)|v(t), h(t))p(h(t+ 1)|v(t), v(t+ 1), h(t)) (26.4.1)

As we saw in chapter(23), provided all hidden variables are discrete, inference in these models is straight-
forward. However, in many physical systems it is more natural to assume continuous h(t). In chapter(24)
we saw that one such tractable continuous h(t) model is given by linear Gaussian transitions and emissions
- the LDS. Whilst this is useful, we cannot represent non-linear changes in the latent process using an LDS
alone. The Switching LDS of chapter(25) is able to model non-linear continuous dynamics (via switching)
although we saw that this leads to computational difficulties. For computational reasons we therefore seem
limited to either purely discrete h (with no limitation on the discrete transitions) or purely continuous h
(but be forced to use simple linear dynamics). Is there a way to have a continuous state with non-linear
dynamics for which posterior inference remains tractable? The answer is yes, provided that we assume the
hidden transitions are deterministic[13]. When conditioned on the visible variables, this renders the hidden
unit distribution trivial. This allows the consideration of rich non-linear dynamics in the hidden space. Note
that such models are limited to the distributed computation context of this chapter; for example the ARCH
and GARCH models of chapter(24) are special cases.

26.4.1 Deterministic latent variables

Consider a Belief Network defined on a sequence of visible variables v(1 : T ). To enrich the model we
include additional continuous latent variables h(1 : T ) that follow a non-linear Markov transition. To retain
tractability of inference, we constrain the latent dynamics to be deterministic, described by

p(h(t+ 1)|v(t+ 1), v(t), h(t)) = δ (h(t+ 1)− f (v(t+ 1), v(t), h(t), θh)) (26.4.2)
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v(1) v(2) v(t)

h(1) h(2) h(t)

(a)

h(1) h(2) h(t)

(b)

v(1) v(2) v(t)

(c)

Figure 26.6: (a): A first order dynamic belief network with deterministic hidden transitions (represented
by diamonds) that is, each hidden node is certainly in a single state, determined by its parents. (b):
Conditioning on the visible variables forms a directed chain in the hidden space which is deterministic.
Hidden unit inference can be achieved by forward propagation alone. (c): Integrating out hidden variables
gives a cascade style directed visible graph so that each v(t) depends on all v(1 : t− 1).

The (possibly non-linear) function f parameterises the conditional probability table. Whilst the restric-
tion to deterministic transitions appears severe, the model retains some attractive features: The marginal
p(v(1 : T )) is non-Markovian, coupling all the variables in the sequence, see fig(26.6c), whilst hidden unit
inference p(h(1 : T )|v(1 : T )) is deterministic. See also fig(26.6).

The adjustable parameters of the hidden and visible distributions are represented by θh and θv respectively.
For learning, the log likelihood of a single training sequence v(1 : T ) is

L = log p(v(1)|θv) +
T−1∑
t=1

log p(v(t+ 1)|v(t), h(t), θv) (26.4.3)

where the hidden unit values are calculated recursively using

h(t+ 1) = f (v(t+ 1), v(t), h(t), θh) (26.4.4)

To maximise the log likelihood using gradient techniques we need the derivatives with respect to the model
parameters. These can be calculated recursively as follows:

dL

dθv
=

∂

∂θv
log p(v(1)|θv) +

T−1∑
t=1

∂

∂θv
log p(v(t+ 1)|v(t), h(t), θv) (26.4.5)

dL

dθh
=

T−1∑
t=1

∂

∂h(t)
log p(v(t+ 1)|v(t), h(t), θv)

dh(t)

dθh
(26.4.6)

dh(t)

dθh
=
∂f(t)

∂θh
+

∂f(t)

∂h(t− 1)

dh(t− 1)

dθh
(26.4.7)

where we use the shorthand

f(t) ≡ f(v(t), v(t− 1), h(t− 1), θh) (26.4.8)

Hence the derivatives can be calculated by deterministic forward propagation. The case of training multiple
independently generated sequences is a straightforward extension obtained by summing the above over the
individual sequences.

Whilst the deterministic latent variable models are very general, in the context of this chapter it is interesting
to apply them to some simple neurobiological models, enriching the Hopfield model with more powerful
internal dynamics.
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(a)

(b)

Figure 26.7: (a): The training sequence consists of a random set of vectors (V = 3)
over T = 10 time steps. (b): The reconstruction using H = 7 hidden units. The
initial state v(t = 1) for the recalled sequence was set to the correct initial training
value albeit with one of the values flipped. Note that the method is capable of sequence
disambiguation in the sense that transitions of the form a, b, . . . , a, c can be recalled.

26.4.2 An augmented Hopfield network

To make the deterministic latent variable model more explicit, we consider the case of continuous vector
hidden variables h(t) and discrete, binary vector visible variables with components vi(t) ∈ {−1, 1}. In
particular, we restrict attention to the Hopfield model augmented with latent variables that have a simple
linear dynamics (see exercise(26.5) for a non-linear extension):

h(t+ 1) = 2σ(Ah(t) + Bv(t))− 1 deterministic latent transition (26.4.9)

p(v(t+ 1)|v(t),h(t)) =
V∏
i=1

σ (vi(t+ 1)φi(t)) , φ(t) ≡ Ch(t) + Dv(t) (26.4.10)

This model generalises a recurrent stochastic heteroassociative Hopfield network[144] to include deterministic
hidden units dependent on previous network states. The parameters of the model are A,B,C,D. For
gradient based training we require the derivatives with respect to each of these parameters. The derivative
of the log likelihood for a generic parameter θ is

d

dθ
L =

∑
i

νi(t)
d

dθ
φi(t), νi(t) ≡ (1− σ(vi(t+ 1)φi(t))) vi(t+ 1) (26.4.11)

This gives:

d

dAαβ
φi(t) =

∑
j

Cij
d

dAαβ
hj(t),

d

dBαβ
φi(t) =

∑
j

Cij
d

dBαβ
hj(t) (26.4.12)

d

dCαβ
φi(t) = δiαhβ(t),

d

dDαβ
φi(t) = δiαvβ(t) (26.4.13)

d

dAαβ
hi(t+ 1) = 2σ′i(t+ 1)

∑
j

Aij
d

dAαβ
hj(t) + δiαhβ(t) (26.4.14)

d

dBαβ
hi(t+ 1) = 2σ′i(t+ 1)

∑
j

Aij
d

dBαβ
hj(t) + δiαvβ(t) (26.4.15)

σ′i(t) ≡ σ(hi(t)) (1− σ(hi(t))) (26.4.16)

If we assume that h(1) is a given fixed value (say 0), we can compute the derivatives recursively by forward
propagation. Gradient based training for this augmented Hopfield network is therefore straightforward
to implement. This model extends the power of the original Hopfield model, being capable of resolving
ambiguous transitions in sequences such as a, b, a, c, see example(26.3). In terms of a dynamic system, the
learned network is an attractor with the training sequence as a stable point and demonstrates that such
models are capable of learning attractor networks more powerful than those without hidden units.
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Example 26.3 (Sequence disambiguation). The sequence in fig(26.7a) contains repeated patterns and
therefore cannot be reliably recalled with a first order model containing visible variables alone. To deal with
this we consider a Hopfield network with 3 visible units and 7 additional hidden units with deterministic
(linear) latent dynamics. The model was trained with gradient ascent to maximise the likelihood of the
binary sequence in fig(26.7a). See demoHopfieldLatent.m. As shown in fig(26.7b), the learned network is
capable of recalling the sequence correctly, even when initialised in an incorrect state, having no difficulty
with the fact that the sequence transitions are ambiguous.

26.5 Neural Models

The tractable deterministic latent variable model introduced in section(26.4) presents an opportunity to
extend models such as the Hopfield network to include more biologically realistic processes without losing
computational tractability. First we discuss a general framework for learning in a class of neural models[14,
240], this being a special case of the deterministic latent variable models[13] and a generalisation of the
spike-response model of theoretical neurobiology[118].

26.5.1 Stochastically spiking neurons

We assume that neuron i fires depending on the membrane potential ai(t) through

p(vi(t+ 1) = 1|v(t),h(t)) = p(vi(t+ 1) = 1|ai(t)) (26.5.1)

To be specific, we take throughout

p(vi(t+ 1) = 1|ai(t)) = σ (ai(t)) (26.5.2)

Here we define the quiescent state as vi(t+ 1) = 0, so that

p(vi(t+ 1)|ai(t)) = σ ((2vi(t+ 1)− 1)ai(t)) (26.5.3)

The use of the sigmoid function σ(x) is not fundamental and is chosen merely for analytical convenience.
The log-likelihood of a sequence of visible states V = {v(1), . . . ,v(T )} is

L =
T−1∑
t=1

V∑
i=1

log σ ((2vi(t+ 1)− 1)ai(t)) (26.5.4)

for which the gradient is

dL

dwij
=

T−1∑
t=1

(vi(t+ 1)− σ(ai(t)))
dai(t)

dwij
(26.5.5)

where we used the fact that vi ∈ {0, 1}. Here wij are parameters of the membrane potential (see below).
We take equation (26.5.5) as common in the following models in which the membrane potential ai(t) is
described with increasing sophistication.

26.5.2 Hopfield membrane potential

As a first step, we show how the Hopfield maximum likelihood training rule, as described in section(26.3.1),
can be recovered as a special case of the above framework. The Hopfield membrane potential is

ai(t) ≡
V∑
j=1

wijvj(t)− bi (26.5.6)

where wij characterizes the efficacy of information transmission from neuron j to neuron i, and bi is a bias.
Applying the maximum likelihood framework to this model to learn a temporal sequence V by adjustment of
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Figure 26.8: Learning with depression : U = 0.5,
τ = 5, δt = 1, η = 0.25. Despite the apparent
complexity of the dynamics, learning appropriate neu-
ral connection weights is straightforward using max-
imum likelihood. The reconstruction using the stan-
dard Hebb rule by contrast is poor[14].

the parameters wij (the bi are fixed for simplicity), we obtain the (batch) learning rule (using dai/dwij = vj(t)
from equation (26.5.5))

wnewij = wij + η
dL

dwij
,

dL

dwij
=

T−1∑
t=1

(vi(t+ 1)− σ(ai(t))) vj(t), (26.5.7)

where the learning rate η is chosen empirically to be sufficiently small to ensure convergence. Equa-
tion(26.5.7) matches equation (26.3.19) (which uses the ±1 encoding).

26.5.3 Dynamic synapses

In more realistic synaptic models, neurotransmitter generation depends on a finite rate of cell subcomponent
production and the quantity of vesicles released is affected by the history of firing[1]. Loosely speaking, when
a neuron fires it releases a chemical substance from a local reservoir. If the neuron fires several times in
short succession, its ability to continue firing weakens since the reservoir of release chemical is depleted.
This phenomenon can be modelled by using a depression mechanism that reduces the membrane potential

ai(t) = wijxj(t)vj(t) (26.5.8)

for depression factors xj(t) ∈ [0, 1]. A simple dynamics for these depression factors is[299]

xj(t+ 1) = xj(t) + δt

(
1− xj(t)

τ
− Uxj(t)vj(t)

)
(26.5.9)

where δt, τ , and U represent time scales, recovery times and spiking effect parameters respectively. Note that
these depression factor dynamics are exactly of the form of deterministic hidden variables. It is therefore
straightforward to include these dynamic synapses in a principled way using the maximum likelihood learning
framework. For the Hopfield potential, the learning dynamics is simply given by equations (26.5.5,26.5.9),
with

dai(t)

dwij
= xj(t)vj(t) (26.5.10)

Example 26.4 (Learning with depression). In fig(26.8) we demonstrate learning a random temporal se-
quence of 20 timesteps for 50 neurons with dynamic depressive synapses. After learning wij the trained
network is initialised in the first state of the training sequence. The remaining states of the sequence were
then correctly recalled by forward sampling of the learned model. The corresponding generated factors xi(t)
are also plotted during the reconstruction; we see the characteristic drop in x after a neuron fires with grad-
ual recovery. For comparison, we plot the results of using the dynamics having set the wij using the temporal
Hebb rule, equation (26.3.1). The poor performance of the correlation based Hebb rule demonstrates the
necessity, in general, to tailor the learning rule to the dynamical system it attempts to control.
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26.5.4 Leaky integrate and fire models

Leaky integrate and fire models move a step further towards biological realism in which the membrane
potential increments if it receives an excitatory stimulus (wij > 0), and decrements if it receives an inhibitory
stimulus (wij < 0). After firing, the membrane potential is reset to a low value below the firing threshold,
and thereafter steadily increases to a resting level (see for example [65, 118]). A model that incorporates
such effects is

ai(t) =

αai(t− 1) +
∑
j

wijvj(t) + θrest (1− α)

 (1− vi(t− 1)) + vi(t− 1)θfired (26.5.11)

Since vi ∈ {0, 1}, if neuron i fires at time t − 1 the potential is reset to θfired at time t. Similarly, with no
synaptic input, the potential equilibrates to θrest with time constant −1/ logα[14].

Despite the increase in complexity of the membrane potential over the Hopfield case, deriving appropriate
learning dynamics for this new system is straightforward since, as before, the hidden variables (here the
membrane potentials) update in a deterministic fashion. The membrane potential derivatives are

dai(t)

dwij
= (1− vi(t− 1))

(
α
dai(t− 1)

dwij
+ vj(t)

)
(26.5.12)

By initialising the derivative dai(t=1)
dwij

= 0, equations (26.5.5,26.5.11,26.5.12) define a first order recursion for

the gradient which can be used to adapt wij in the usual manner wnewij = wij + ηdL/dwij . We could also
apply synaptic dynamics to this case by replacing the term vj(t) in equation (26.5.12) by xj(t)vj(t).

Although a detailed discussion of the properties of the neuronal responses for networks trained in this way
is beyond our scope here, an interesting consequence of the learning rule equation (26.5.12) is a spike-
time dependent learning window in qualitative agreement with experimental observation in real biological
systems[240, 200].

26.6 Summary

• Classical models such as the Hopfield network can be trained to learn temporal sequences using maximum
likelihood. This results in a robust storage mechanism in which the patterns have a large basin of attraction.

• We can form tractable non-linear continuous latent systems provided the latent dynamics is deterministic.
These deterministic latent variable models are powerful yet inference is straightforward.

• We demonstrated how complex models in neurobiology can be considered within the deterministic latent
variable framework, and also how learning rules can be derived in a straightforward manner. It is important
that the learning rule is derived with the particular neural dynamics in mind – otherwise undesirable effects
in pattern storage can occur.

26.7 Code

demoHopfield.m: Demo of Hopfield sequence learning
HebbML.m: Gradient ascent training of a set of sequences using maximum likelihood
HopfieldHiddenNL.m: Hopfield network with additional non-linear latent variables
demoHopfieldLatent.m: Demo of Hopfield net with deterministic latent variables
HopfieldHiddenLikNL.m: Hopfield network with hidden variables sequence likelihood
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26.8 Exercises

Exercise 26.1. Consider a very large V � 1 stochastic Hopfield network, section(26.2), used to store a
single temporal sequence v(1 : T ) of length T � V . In this case the weight matrix with elements wij may
be computationally difficult to store. Explain how to justify the assumption

wij =
T−1∑
t=1

ui(t)vi(t+ 1)vj(t) (26.8.1)

where ui(t) are the dual parameters and derive a maximum likelihood update rule for the dual parameters
ui(t).

Exercise 26.2. A Hopfield network is used to store a raw uncompressed binary video sequence. Each image
in the sequence contains 106 binary pixels. At a rate of 10 frames per second, how many hours of video can
106 neurons store?

Exercise 26.3. Derive the update equation (26.3.22).

Exercise 26.4. Show that the Hessian equation (26.3.16) is negative semidefinite. That is

∑
i,j,k,l

xijxkl
d2L

dwijdwkl
≤ 0 (26.8.2)

for any x 6= 0.

Exercise 26.5. For the augmented Hopfield network of section(26.4.2), with latent dynamics

hi(t+ 1) = 2σ

∑
j

Aijhj(t) +Bijvj(t)

− 1 (26.8.3)

derive the derivative recursions described in section(26.4.2).

Exercise 26.6. The storage of a static pattern v can be considered equivalent to the requirement that, under
temporal dynamics, the probability p(v(t + 1) = v|v(t) = v) is high. Based on this, estimate numerically
how many such static patterns a 100 neuron stochastic Hopfield network can robustly recover when 10% of
the elements of a pattern are flipped.
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Introduction to Part V

In Part I we discussed inference and showed that for certain models this is com-
putationally tractable. However, for many models of interest, one cannot perform
inference exactly and approximations are required.

In Part V we discuss approximate inference methods, beginning with sampling based
approaches. These are popular and well known in many branches of the mathematical
sciences, having their origins in chemistry and physics. We also discuss alternative
deterministic approximate inference methods which in some cases can have remarkably
accurate performance.

It is important to bear in mind that no single algorithm is going to be best on all
inference tasks. For this reason, we attempt throughout to explain the assumptions
behind the techniques so that one may select an appropriate technique for the problem
at hand.
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Approximate inference methods and their loose associations. The leaf nodes denote specific methods. Part
V discusses these methods and their application to models of interest in machine learning.
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CHAPTER 27

Sampling

In cases where exact results cannot be obtained, a general purpose approach is to draw samples from the
distribution. In this chapter we discuss classical exact sampling methods that are typically limited to a
small number of variables or models with a high degree of structure. When these can no longer be applied,
we discuss approximate sampling methods including Markov chain Monte Carlo.

27.1 Introduction

Sampling concerns drawing realisations (samples) X =
{
x1, . . . , xL

}
of a variable x from a distribution p(x).

For a discrete variable x, in the limit of a large number of samples, the fraction of samples in state x tends
to p(x = x). That is,

lim
L→∞

1

L

L∑
l=1

I
[
xl = x

]
= p(x = x) (27.1.1)

In the continuous case, one can consider a region R such that the probability that the samples occupy R
tends to the integral of p(x) over R. Given a finite set of samples, one can then approximate expectations
using

〈f(x)〉p(x) ≈
1

L

L∑
l=1

f(xl) ≡ f̂X (27.1.2)

The subscript in f̂X emphasises that the approximation is dependent on the set of samples drawn. This
sample approximation holds for both discrete and continuous variables.

A sampling procedure produces realisations of the set X and can itself be considered as generating a distri-
bution p̃(X ). Provided the marginals of the sampling distribution are equal to the marginals of the target
distribution, p̃(xl) = p(xl), then the average of the approximation f̂X with respect to draws of the sample
set X is〈

f̂X

〉
p̃(X )

=
1

L

L∑
l=1

〈
f(xl)

〉
p̃(xl)

= 〈f(x)〉p(x) (27.1.3)

Hence the mean of the sample approximation is the exact mean of f provided only that the marginals of
p̃(X ) correspond to the required marginals p(x); that is, using p̃(X ) then f̂X is an unbiased estimator for
〈f(x)〉p(x). Note that this holds, even if the individual samples x1, . . . , xL are dependent, that is p̃(X ) does

not factorise into
∏
l p̃(x

l).
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For any sampling method, an important issue is the variance of the sample estimate. If this is low then only
a small number of samples are required since the sample mean must be close to the true mean (assuming it
is unbiased). Defining

∆f̂X = f̂X −
〈
f̂X

〉
p̃(X )

, ∆f(x) = f(x)− 〈f(x)〉p(x) (27.1.4)

the variance of the approximation is (assuming p̃(xl) = p(xl), for all l)〈[
∆f̂X

]2
〉
p̃(X )

=
1

L2

∑
l,l′

〈
∆f(xl)∆f(xl

′
)
〉
p̃(xl,xl′ )

(27.1.5)

=
1

L2

L〈[∆f(x)]2
〉
p̃(x)

+
∑
l 6=l′

〈
∆f(xl)∆f(xl

′
)
〉
p̃(xl,xl′ )

 (27.1.6)

Provided the samples are independent

p̃(X ) =
L∏
l=1

p̃(xl)

and p̃(x) = p(x), then p̃(xl, xl
′
) = p(xl)p(xl

′
). The second term in equation (27.1.6) above is composed of〈

∆f(xl)
〉 〈

∆f(xl
′
)
〉

which is zero since 〈∆f(x)〉 = 0. Hence〈[
∆f̂X

]2
〉
p̃(X )

=
1

L

〈
[∆f(x)]2

〉
p(x)

(27.1.7)

and the variance of the approximation scales inversely with the number of samples. In principle, therefore,
provided the samples are independently drawn from p(x), only a small number of samples is required to
accurately estimate the expectation. Importantly, this result is independent of the dimension of x. However,
the critical difficulty is in actually generating independent samples from p(x). Drawing samples from high-
dimensional distributions is generally difficult and few guarantees exist to ensure that in a practical timeframe
the samples produced are independent. Whilst a dependent sampling scheme may be unbiased, the variance
of the resulting estimate can be high such that a large number of samples may be required for expectations to
be approximated accurately. There are many different sampling algorithms, all of which work in principle,
but each working in practice only when the distribution satisfies particular properties[123]; for example
Markov chain Monte Carlo methods do not produce independent samples and a large number of samples
may be necessary to produce a satisfactory approximation. Before we develop schemes for multivariate
distributions, we consider the univariate case.

27.1.1 Univariate sampling

In the following, we assume that a random number generator exists which is able to produce a value uniformly
at random from the unit interval [0, 1]. We will make use of this uniform sampler to draw samples from
non-uniform distributions.

Discrete case

Consider the one dimensional discrete distribution p(x) where dom(x) = {1, 2, 3}, with

p(x) =


0.6 x = 1
0.1 x = 2
0.3 x = 3

(27.1.8)

This represents a partitioning of the unit interval [0, 1] in which the interval [0, 0.6] has been labelled as
state 1, (0.6, 0.7] as state 2, and (0.7, 1.0] as state 3, fig(27.1). If we were to drop a point × anywhere
at random, uniformly in the interval [0, 1], the chance that × would land in interval 1 is 0.6, and the
chance that it would be in interval 2 is 0.1 and similarly, for interval 3, 0.3. This therefore defines a valid
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1 × 2 3

Figure 27.1: A representation of the discrete distribu-
tion equation (27.1.8). The unit interval from 0 to 1
is partitioned in parts whose lengths are equal to 0.6,
0.1 and 0.3.

sampling procedure for discrete one-dimensional distributions in which we draw from a uniform distribution
and then identify the partition of the unit interval in which it lies. This can easily be found using the
cumulant, see algorithm(27.1). Sampling from a discrete univariate distribution is straightforward since
computing the cumulant takes only O (K) steps for a K state discrete variable. In our example, we have
(c0, c1, c2, c3) = (0, 0.6, 0.7, 1). We then draw a sample uniformly from [0, 1], say u = 0.66. Then the sampled
state would be state 2, since this is in the interval (c1, c2]. Since the samples are independent, the number
of samples required to accurately represent a marginal is reasonably small, see fig(27.2).

Continuous case

Intuitively, the generalisation from the discrete to the continuous case is clear. First we calculate the
cumulant density function

C(y) =

∫ y

−∞
p(x)dx (27.1.9)

Then we sample u uniformly from [0, 1], and obtain the corresponding sample x by solving C(x) = u ⇒
x = C−1(u). Formally, therefore, sampling of a continuous univariate variable is straightforward provided
we can compute the integral of the corresponding probability density function.

For special distributions, however, one may avoid explicit use of the cumulant of p(x) by using alternative
procedures based on coordinate transformations. For the Gaussian, for example, one may avoid the use of
the cumulant, see exercise(27.1).

27.1.2 Rejection sampling

Consider that we have an efficient sampling procedure for a distribution q(x). Can we use this to help us
sample from another distribution p(x)? We assume p(x) is known only up to a normalisation constant Z,
p(x) = p∗(x)/Z. One way to sample from p(x) is to use a binary auxiliary variable y ∈ {0, 1} and define
q(x, y) = q(x)q(y|x) with

q(x, y = 1) = q(x)q(y = 1|x) (27.1.10)

We can use the term q(y = 1|x) to our advantage if we set q(y = 1|x) ∝ p(x)/q(x) since then q(x, y = 1) ∝
p(x) and sampling from q(x, y) gives us a procedure for sampling from p(x). To achieve this we assume we
can find a positive M such that

q(y = 1|x) =
p∗(x)

Mq(x)
≤ 1 ∀x (27.1.11)

Algorithm 27.1 Sampling from a univariate discrete distribution p with K states.

1: Label the K states as i = 1, . . . ,K, with associated probabilities pi.
2: Calculate the cumulant

ci =
∑
j≤i

pj

and set c0 = 0.
3: Draw a value u uniformly at random from the unit interval [0, 1].
4: Find that i for which ci−1 < u ≤ ci.
5: Return state i as a sample from p.
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Algorithm 27.2 Rejection sampling to draw L independent samples from p(x) = p∗(x)/Z.

1: Given p∗(x) and q(x), find M such that p∗(x)/q(x) ≤M for all x.
2: for l = 1 to L do
3: repeat
4: Draw a candidate sample xcand from q(x).

5: Let a = p∗(xcand)
Mq(xcand)

6: Draw a value u uniformly between 0 and 1.
7: until u ≤ a
8: xl = xcand . Accept the candidate
9: end for

To sample y given x we then draw a value u uniformly between 0 and 1. If this value is less then q(y = 1|x),
we set y = 1, otherwise we set y = 0. To draw a sample from p(x) we first draw a candidate xcand from
q(x), and then a y from q(y|xcand). If y = 1 we take xcand as an independent sample from p(x) – otherwise
no sample is made, see algorithm(27.2). Note that the samples are drawn only proportionally to p(x) –
however, since this proportionality constant is common to all x, this is equivalent to drawing from p(x).

The expected rate that we accept a sample is

q(y = 1) =

∫
x
q(y = 1|x)q(x) =

Z

M
(27.1.12)

so that, to increase the acceptance rate, we seek the minimal M subject to p∗(x) ≤Mq(x). In cases where
q(x) has free parameters q(x|β), the parameter β can be adjusted to minimise M . If we set q(x) = p(x)
and M = Z then q(y = 1|x) = 1 and sampling is efficient. In general, however, q(y = 1|x) will be less than
1 and sampling less than ideally efficient. In high dimensions for vector x, q(y = 1|x) will often be much
less than 1 so that rejection sampling can be extremely inefficient. To see this, consider a simple scenario
in which the distributions p(x) and q(x) are factorised, p(x) =

∏D
i=1 p(xi) and q(x) =

∏D
i=1 q(xi). Then

q(y = 1|x) =
D∏
i=1

p∗(xi)

Miq(xi)
=

D∏
i=1

q(y = 1|xi) = O
(
γD
)

(27.1.13)

where 0 ≤ γ ≤ 1 is the typical value of q(y = 1|xi) for each dimension. Hence the probability of accepting x
may decrease exponentially with the number of dimensions of x. Rejection sampling is therefore a potentially
useful method of drawing independent samples in very low dimensions, but is likely to be impractical in
higher dimensions.

27.1.3 Multivariate sampling

One way to generalise the one dimensional (univariate) discrete case to a higher dimensional (multivariate)
distribution p(x1, . . . , xn) is to translate this into an equivalent one-dimensional distribution. This can be
achieved by enumerating all the possible joint states (x1, . . . , xn), giving each a unique integer i from 1 to
the total number of states, and constructing a univariate distribution with probability p(i). This then trans-
forms the multivariate distribution into an equivalent univariate distribution, and sampling can be achieved
as before. In general, of course, this procedure is impractical since the number of states grows exponentially
with the number of variables x1, . . . , xn.

1 2 3
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(a)

1 2 3
0

200

400

600

(b)

Figure 27.2: Histograms of the samples from the three
state distribution p(x) = {0.6, 0.1, 0.3}. (a): 20 sam-
ples. (b): 1000 samples. As the number of samples
increases, the relative frequency of the samples tends
to the distribution p(x).
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An alternative exact approach, that holds for both discrete and continuous variables is to capitalise on the
relation

p(x1, x2) = p(x2|x1)p(x1) (27.1.14)

We can sample from the joint distribution p(x1, x2) by first sampling a state for x1 from the one-dimensional
p(x1), and then, with x1 clamped to this state, sampling a state for x2 from the one-dimensional p(x2|x1).
It is clear how to generalise this to more variables by using a cascade decomposition:

p(x1, . . . , xn) = p(xn|xn−1, . . . , x1)p(xn−1|xn−2, . . . , x1) . . . p(x2|x1)p(x1) (27.1.15)

However, in order to apply this technique, we need to know the conditionals p(xi|xi−1, . . . , x1). Unless these
are explicitly given we need to compute these from the joint distribution p(x1, . . . , xn). Computing such
conditionals will, in general, require the summation over an exponential number of states and, except for
small n, generally also be impractical. For belief networks, however, by construction the conditionals are
specified so that this technique becomes practical, as we discuss in section(27.2).

Drawing samples from a multivariate distribution is in general therefore a complex task and one seeks to
exploit any structural properties of the distribution to make this computationally more feasible. A common
approach is to seek to transform the distribution into a product of lower dimensional distributions, for
which the general change of variables method for continuous variables, definition(8.1), is required. A classic
example of this is sampling from a multivariate Gaussian, which can be reduced to sampling from a set of
univariate Gaussians by a suitable coordinate transformation, as discussed in example(27.1). For much of
the remaining chapter we discuss methods that are appropriate for drawing from multivariate distributions
when no obvious transformation exists to reduce the problem to a univariate form. Note that if there
nevertheless exist transformations that result even in approximately independent variables, this can still be
a very useful preprocessing step.

Example 27.1 (Sampling from a multivariate Gaussian). Our interest is to draw a sample from the mul-
tivariate Gaussian p(x) = N (x m,S). For a general covariance matrix S, p(x) does not factorise into a
product of univariate distributions. However, consider the transformation

y = C−1 (x−m) (27.1.16)

where C is chosen so that CCT = S. Since this is a linear transformation, y is also Gaussian distributed
with mean

〈y〉 =
〈
C−1 (x−m)

〉
p(x)

= C−1
(
〈x〉p(x) −m

)
= C−1 (m−m) = 0 (27.1.17)

Since the mean of y is zero, the covariance is given by〈
yyT

〉
p(x)

= C−1
〈

(x−m) (x−m)T
〉
p(x)

C−T = C−1SC−T = C−1CCTC−T = I (27.1.18)

Hence

p(y) = N (y 0, I) =
∏
i

N (yi 0, 1) (27.1.19)

A sample from y can then be obtained by independently drawing a sample from each of the univariate zero
mean unit variance Gaussians. Given a sample for y, a sample for x is obtained using

x = Cy + m (27.1.20)

Drawing samples from a univariate Gaussian is a well-studied topic, with a popular method being the
Box-Muller technique, exercise(27.1).
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x1 x2 x3 x4 x5 x6

Figure 27.3: An ancestral Belief Network without any
evidential variables. To sample from this distribution,
we draw a sample from variable 1, and then variables,
2,. . . ,6 in order.

27.2 Ancestral Sampling

Belief networks take the general form:

p(x) =
∏
i

p(xi|pa (xi)) (27.2.1)

where we assume that each of the conditional distributions p(xi|pa (xi)) is specified. Provided that no
variables are evidential, we can sample from this distribution in a straightforward manner. For convenience,
we first rename the variable indices so that parent variables always come before their children (ancestral
ordering), for example (see fig(27.3))

p(x1, . . . , x6) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x3)p(x6|x4, x5) (27.2.2)

One can sample first from those nodes that do not have any parents (here, x1 and x2). Given these values,
one can then sample x3, and then x4 and x5 and finally x6. Despite the presence of loops in the graph, such
a forward sampling procedure is straightforward. This procedure holds for both discrete and continuous
variables. If one attempted to carry out an exact marginal inference scheme in a complex multiply connected
graph, the moralisation and triangulation steps can result in very large cliques, so that exact inference
becomes intractable. However, regardless of the loop structure, ancestral sampling remains straightforward.
Ancestral or ‘forward’ sampling is a case of perfect sampling (also termed exact sampling) since each sample
is indeed independently drawn from the required distribution. This is in contrast to Markov Chain Monte
Carlo methods sections(27.3,27.4) for which (dependent) samples are drawn from p(x) only in the limit of
a large number of iterations.

27.2.1 Dealing with evidence

How can we sample from a distribution in which a subset of variables xE are clamped to evidential states?
Writing x = xE ∪ x\E , formally we wish to sample from

p(x\E |xE) =
p(x\E , xE)

p(xE)
(27.2.3)

If an evidential variable xi has no parents, then one can simply set the variable into this state and continue
forward sampling as before. For example, to compute a sample from p(x1, x3, x4, x5, x6|x2) defined in equa-
tion (27.2.2), one simply clamps x2 into its evidential state and continues forward sampling. The reason this
is straightforward is that conditioning on x2 merely defines a new distribution on a subset of the variables,
for which the belief network representation of the distribution is immediately known and remains ancestral.

On the other hand, consider sampling from p(x1, x2, x3, x4, x5|x6). Using Bayes’ rule, we have

p(x1, x2, x3, x4, x5|x6) =
p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x3)p(x6|x4, x5)∑

x1,x2,x3,x4,x5
p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x3)p(x6|x4, x5)

(27.2.4)

The conditioning on x6 means that the structure of the distribution on the non-evidential variables changes –
for example x4 and x5 become coupled (conditioned on x3, x4 and x5 are independent; however, conditioned
on x3 and x6, x4 and x5 are dependent). One could attempt to work out an equivalent new forward sam-
pling structure, see exercise(27.3), although generally this will be as complex as running an exact inference
approach.

An alternative is to proceed with forward sampling from the non-evidential distribution, and then discard
any samples which do not match the evidential states, see exercise(27.8) for an analogous situation that
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x1 x2

x3

x4 x5

x6

Figure 27.4: The shaded nodes are the Markov blanket of x4 for the belief
network of fig(27.3). To draw a sample from p(x4|x\4) we clamp x3, x5, x6

into their evidential states and draw a sample from p(x4|x3)p(x6|x4, x5)/Z
where Z is a normalisation constant.

justifies this procedure. However, this is generally not recommended since the probability that a sample
from p(x) will be consistent with the evidence is roughly O (1/

∏
i dimxei ) where dimxei is the number of

states of evidential variable i. In principle one can ease this effect by discarding the sample as soon as any
variable state is inconsistent with the evidence. Nevertheless, the number of re-starts required to obtain a
valid sample would, on average, be very large. For this reason, alternative non-exact procedures are more
common, as we discuss in section(27.3).

27.2.2 Perfect sampling for a Markov network

For a Markov network we can draw exact samples by forming an equivalent directed representation of the
graph, see section(6.8), and subsequently using ancestral sampling on this directed graph. This is achieved
by first choosing a root clique and then consistently orienting edges away from this clique. An exact sample
can then be drawn from the Markov network by first sampling from the root clique and then recursively
from the children of this clique. See potsample.m, JTsample.m and demoJTreeSample.m.

27.3 Gibbs Sampling

The inefficiency of methods such as ancestral sampling under evidence motivates alternative techniques. An
important and widespread technique is Gibbs sampling which is generally straightforward to implement.

No evidence

Assume we have a joint sample state x1 from the multivariate distribution p(x). We then consider a
particular variable, xi, for which we wish to draw a sample. Using conditioning we may write

p(x) = p(xi|x1, . . . , xi−1, xi+1, . . . , xn)p(x1, . . . , xi−1, xi+1, . . . , xn) (27.3.1)

Given a joint initial state x1, from which we can read off the ‘parental’ state x1
1, . . . , x

1
i−1, x

1
i+1, . . . , x

1
n, we

then draw a sample x2
i from

p(xi|x1
1, . . . , x

1
i−1, x

1
i+1, . . . , x

1
n) ≡ p(xi|x\i) (27.3.2)

We assume this distribution is easy to sample from since it is univariate. We call this new joint sample (in
which only xi has been updated) x2 =

(
x1

1, . . . , x
1
i−1, x

2
i , x

1
i+1, . . . , x

1
n

)
. One then selects another variable xj

to sample and, by continuing this procedure, generates a set x1, . . . , xL of samples in which each xl+1 differs
from xl in only a single component. Clearly, this is not an exact sampler since the resulting samples are
highly dependent. Whilst Gibbs sampling is therefore generally straightforward to implement, a drawback is
that the samples are strongly dependent. Nevertheless, as discussed in section(27.1), provided the marginal
of the sampling distribution is correct, then this is still a valid sampler. We outline in section(27.3.1) why
in the limit of a large number of samples, this holds and the sampler becomes valid.

For a general distribution, the conditional p(xi|x\i) depends only on the Markov blanket of the variable xi.
For a belief network, the Markov blanket of xi is

p(xi|x\i) =
1

Z
p(xi|pa (xi))

∏
j∈ch(i)

p(xj |pa (xj)) (27.3.3)

see for example, fig(27.4). The normalisation constant for this univariate distribution is straightforward to
work out from the requirement:

Z =
∑
xi

p(xi|pa (xi))
∏

j∈ch(i)

p(xj |pa (xj)) (27.3.4)
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1

x2

x

Figure 27.5: A two dimensional distribution for which Gibbs sampling fails.
The distribution has mass only in the shaded quadrants. Gibbs sampling
proceeds from the lth sample state (xl1, x

l
2) and then sampling from p(x2|xl1),

which we write (xl+1
1 , xl+1

2 ) where xl+1
1 = xl1. One then continues with a

sample from p(x1|x2 = xl+1
2 ), etc. If we start in the lower left quadrant and

proceed this way, the upper right region is never explored.

In the case of a continuous variable xi the summation above is replaced with integration. Due to the local
structure of a belief network, only the parental and parents-of-children states are required in forming the
sample update.

Evidence

Evidence is readily dealt with by clamping for all samples the evidential variables into their evidential states.
There is also no need to sample for these variables, since their states are known. One then proceeds as before,
selecting a non-evidential variable and determining its distribution conditioned on its Markov blanket, and
subsequently drawing a sample from this variable.

27.3.1 Gibbs sampling as a Markov chain

In Gibbs sampling we have a sample of the joint variables xl at stage l. Based on this we produce a new
joint sample xl+1. This means that we can write Gibbs sampling as a procedure that draws from

xl+1 ∼ q(xl+1|xl) (27.3.5)

for some distribution q(xl+1|xl). If we choose the variable to update, xi, at random from a distribution q(i),
then Gibbs sampling corresponds to drawing samples using the Markov transition

q(xl+1|xl) =
∑
i

q(xl+1|xl, i)q(i), q(xl+1|xl, i) = p(xl+1
i |xl\i)

∏
j 6=i

δ
(
xl+1
j , xlj

)
(27.3.6)

with q(i) > 0,
∑

i q(i) = 1. That is, we select a variable, then sample from its conditional, copying across
the states of the other variables from the previous sample. Our interest is to show that the stationary
distribution of q(x′|x) is p(x). We carry this out assuming x is continuous – the discrete case is analogous:∫

x
q(x′|x)p(x) =

∑
i

q(i)

∫
x
q(x′|x\i)p(x) (27.3.7)

=
∑
i

q(i)

∫
x

∏
j 6=i

δ
(
x′j , xj

)
p(x′i|x\i)p(xi, x\i) (27.3.8)

=
∑
i

q(i)

∫
xi

p(x′i|x′\i)p(xi, x′\i) (27.3.9)

=
∑
i

q(i)p(x′i|x′\i)p(x′\i) =
∑
i

q(i)p(x′) = p(x′) (27.3.10)

Hence, as long as we continue to draw samples according to the distribution q(x′|x), in the limit of a large
number of samples we will ultimately tend to draw (dependent) samples from p(x). Any distribution q(i)
suffices so that visiting all variables equally often is a valid choice. Technically, we also require that q(x′|x)
has p(x) as its equilibrium distribution, so that no matter in which state we start, we always converge to
p(x); see fig(27.5) and section(27.3.3) for a discussion of this issue.
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27.3.2 Structured Gibbs sampling

One can extend Gibbs sampling by using conditioning to reveal a tractable distribution on the remaining
variables. For example, consider the distribution, fig(27.6a)

p(x1, x2, x3, x4) = φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x4, x1)φ(x1, x3) (27.3.11)

In single-site Gibbs sampling we would condition on three of the four variables, and sample from the
remaining variable. For example, using x to emphasise known states,

p(x1|x2, x3, x4) ∝ φ(x1, x2)φ(x4, x1)φ(x1, x3) (27.3.12)

However, we may use more limited conditioning as long as the conditioned distribution is easy to sample
from. In the case of equation (27.3.11) we can condition on x3 alone to give

p(x1, x2, x4|x3) ∝ φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x4, x1)φ(x1, x3) (27.3.13)

This can be written as a modified distribution, fig(27.6b)

p(x1, x2, x4|x3) ∝ φ′(x1, x2)φ′(x4, x1) (27.3.14)

As a distribution on x1, x2, x4 this is a singly-connected linear chain Markov network from which samples
can be drawn exactly, as explained in section(27.2.2). A simple approach is to compute the normalisation
constant by any of the standard techniques, for example, using the factor graph method. One may then
convert this undirected linear chain to a directed graph, and use ancestral sampling. These operations are
linear in the number of variables in the conditioned distribution. Alternatively, one may form a junction
tree from a set of potentials, choose a root and then form a set chain by reabsorption on the junction tree.
Ancestral sampling can then be performed on the resulting oriented clique tree. This is the approach taken
in GibbsSample.m.

In the above example one can also reveal a tractable distribution by conditioning on x1,

p(x3, x2, x4|x1) ∝ φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x4, x1)φ(x1, x3) (27.3.15)

and then draw a sample of x2, x3, x4 from this distribution using another exact sampler. A structured Gibbs
sampling procedure is then to first draw a sample x1, x2, x4 from equation (27.3.13) and then a sample
x3, x2, x4 from equation (27.3.15). These two steps (of drawing exact conditional samples) are then iterated.
Note that x2 and x4 are not constrained to be equal to their values in the previous sample. This procedure
is generally to be preferred to the single-site Gibbs updating since the samples are less dependent from one
sample to the next.

See demoGibbsSample.m for a comparison of unstructured and structured sampling from a set of potentials.

27.3.3 Remarks

If the initial sample x1 is in a part of the state space that has very low probability, it may take some time
for the samples to become representative, as only a single component of x is updated at each iteration. This
motivates a so-called burn in stage in which the initial samples are discarded.

In single site Gibbs sampling there will be a high degree of dependence in any two successive samples, since
only one variable (in the single-site updating version) is updated at each stage. This motivates subsampling

x1 x2

x3x4

(a)

x1 x2

x4

(b)

Figure 27.6: (a): A toy ‘intractable’ distribution.
Gibbs sampling by conditioning on all variables ex-
cept one leads to a simple univariate conditional dis-
tribution. (b): Conditioning on x3 yields a new
distribution that is singly-connected, for which exact
sampling is straightforward.
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Figure 27.7: Two hundred Gibbs samples for a two dimensional Gaussian. At each stage only a single
component is updated. (a): For a Gaussian with low correlation, Gibbs sampling can move through the
likely regions effectively. (b): For a strongly correlated Gaussian, Gibbs sampling is less effective and does
not rapidly explore the likely regions, see demoGibbsGauss.m.

in which, say, every 10th, sample xK , xK+10, xK+20, . . ., is taken, and the rest discarded.

Due to its simplicity, Gibbs sampling is one of the most popular sampling methods and is particularly con-
venient when applied to belief networks due to the Markov blanket property1. Gibbs sampling is a special
case of the MCMC framework and, as with all MCMC methods, one should bear in mind that convergence
can be an issue since it is generally unknown how many samples are needed to be reasonably sure that a
sample estimate is accurate.

Gibbs sampling assumes that we can move throughout the space effectively by only single co-ordinate up-
dates. We also require that every state can be visited infinitely often. In fig(27.5), we show a two dimensional
continuous distribution that has mass only in the lower left and upper right regions. In that case, if we
start in the lower left region, we will always remain there, and never explore the upper right region. This
problem occurs when two regions are not connected by a ‘probable’ Gibbs path.

A Gibbs sampler is a perfect sampler (provided we subsample appropriately) when the distribution is
factorised – that is the variables are independent. This suggests that in general Gibbs sampling will be less
effective when variables are strongly correlated. For example, if we consider Gibbs sampling from a strongly
correlated two variable Gaussian distribution, then updates will move very slowly in space, see fig(27.7). It
is useful therefore to find variable transformations that render the new variables approximately independent,
since then one may apply Gibbs sampling more effectively.

27.4 Markov Chain Monte Carlo (MCMC)

We assume we have a multivariate distribution in the form

p(x) =
1

Z
p∗(x) (27.4.1)

where p∗(x) is the unnormalised distribution and Z =
∫
x p
∗(x) is the (computationally intractable) normal-

isation constant. We assume we are able to evaluate p∗(x = x), for any state x, but not p(x = x) since
Z is intractable. The idea in MCMC sampling is to sample, not directly from p(x), but from a different
distribution such that, in the limit of a large number of samples, effectively the samples will be from p(x).
To achieve this we forward sample from a Markov transition whose stationary distribution is equal to p(x).

1The BUGS package www.mrc-bsu.cam.ac.uk/bugs is general purpose software for sampling from belief networks.
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27.4.1 Markov chains

Consider the conditional distribution q(xl+1|xl). If we are given an initial sample x1, then we can recursively
generate samples x1, x2, . . . , xL. After a long time L � 1, (and provided the Markov chain is ‘irreducible’,
meaning that we can eventually get from any state to any other state) the samples are from the stationary
distribution q∞(x) which is defined as (for a continuous variable)

q∞(x′) =

∫
x
q(x′|x)q∞(x) (27.4.2)

The condition for a discrete variable is analogous on replacing integration with summation. The idea in
MCMC is, for a given distribution p(x), to find a transition q(x′|x) which has p(x) as its stationary distri-
bution. If we can do so, then we can draw samples from the Markov chain by forward sampling and take
these as samples from p(x) as the chain converges towards its stationary distribution.

Note that for every distribution p(x) there will be more than one transition q(x′|x) with p(x) as its sta-
tionary distribution. This is why there are many different MCMC sampling methods, each with different
characteristics and varying suitability for the particular distribution at hand. We’ve already encountered
one class of samplers from the MCMC family, namely Gibbs sampling which corresponds to a particular
transition q(x′|x). Below we discuss more general members of this family.

27.4.2 Metropolis-Hastings sampling

Consider the following transition

q(x′|x) = q̃(x′|x)f(x′, x) + δ(x′, x)

(
1−

∫
x′′
q̃(x′′|x)f(x′′, x)

)
(27.4.3)

where q̃(x′|x) is a so-called proposal distribution and 0 < f(x′, x) ≤ 1 a positive function. This defines a
valid distribution q(x′|x) since it is non-negative and∫

x′
q(x′|x) =

∫
x′
q̃(x′|x)f(x′, x) + 1−

∫
x′′
q̃(x′′|x)f(x′′, x) = 1 (27.4.4)

Our interest is to set f(x′, x) such that the stationary distribution of q(x′|x) is equal to p(x) for any proposal
q̃(x′|x). That is

p(x′) =

∫
x
q(x′|x)p(x) =

∫
x
q̃(x′|x)f(x′, x)p(x) + p(x′)

(
1−

∫
x′′
q̃(x′′|x′)f(x′′, x′)

)
(27.4.5)

In order that this holds, we require (changing the integral variable from x′′ to x)∫
x
q̃(x′|x)f(x′, x)p(x) =

∫
x
q̃(x|x′)f(x, x′)p(x′) (27.4.6)

Now consider the Metropolis-Hastings acceptance function

f(x′, x) = min

(
1,
q̃(x|x′)p(x′)
q̃(x′|x)p(x)

)
= min

(
1,
q̃(x|x′)p∗(x′)
q̃(x′|x)p∗(x)

)
(27.4.7)

which is defined for all x, x′ and has the ‘detailed balance’ property

f(x′, x)q̃(x′|x)p(x) = min
(
q̃(x′|x)p(x), q̃(x|x′)p(x′)

)
(27.4.8)

= min
(
q̃(x|x′)p(x′), q̃(x′|x)p(x)

)
= f(x, x′)q̃(x|x′)p(x′) (27.4.9)

Hence the function f(x′, x) as defined above ensures equation (27.4.6) holds and that q(x′|x) has p(x) as its
stationary distribution.

How do we sample from q(x′|x)? Equation(27.4.3) can be interpreted as a mixture of two distributions, one
proportional to q̃(x′|x)f(x′, x) and the other δ(x′, x) with mixture coefficient 1 −

∫
x′′ q̃(x

′′|x)f(x′′, x). To
draw a sample from this, we draw a sample from q̃(x′|x) and accept this with probability f(x′, x). Since
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Algorithm 27.3 Metropolis-Hastings MCMC sampling.

1: Choose a starting point x1.
2: for i = 2 to L do
3: Draw a candidate sample xcand from the proposal q̃(x′|xl−1).

4: Let a = q̃(xl−1|xcand)p(xcand)
q̃(xcand|xl−1)p(xl−1)

5: if a ≥ 1 then xl = xcand . Accept the candidate
6: else
7: draw a random value u uniformly from the unit interval [0, 1].
8: if u < a then xl = xcand . Accept the candidate
9: else

10: xl = xl−1 . Reject the candidate
11: end if
12: end if
13: end for

Figure 27.8: Metropolis-Hastings samples from a bi-variate
distribution p(x1, x2) using a proposal q̃(x′|x) = N (x′ x, I).
We also plot the iso-probability contours of p. Although
p(x) is multi-modal, the dimensionality is low enough and
the modes sufficiently close such that a simple Gaussian pro-
posal distribution is able to bridge the two modes. In higher
dimensions, such multi-modality is more problematic. See
demoMetropolis.m

drawing from q̃(x′|x) and accepting are performed independently, the probability of accepting the drawn
candidate is the product of these probabilities, namely q̃(x′|x)f(x′, x). Otherwise the candidate is rejected
and we take the sample x′ = x. Using the properties of the acceptance function, equation (27.4.7), the
following is equivalent to the above procedure: When

q̃(x|x′)p∗(x′) > q̃(x′|x)p∗(x) (27.4.10)

we accept the sample from q̃(x′|x). Otherwise we accept the sample x′ from q(x′|x) with probability
q̃(x|x′)p∗(x′)/q̃(x′|x)p∗(x). If we reject the candidate we take x′ = x. Note that if the candidate x′ is
rejected, we take the original x as the new sample. Hence each iteration of the algorithm produces a sample
– either a copy of the current sample, or the candidate sample, see algorithm(27.3). A rough rule of thumb
is to choose a proposal distribution for which the acceptance rate is between 50% and 85%[115].

Gaussian proposal distribution

A common proposal distribution for vector x is

q̃(x′|x) = N
(
x′ x, σ2I

)
∝ e−

1
2σ2

(x′−x)2 (27.4.11)

for which q̃(x′|x) = q̃(x|x′) and the acceptance criterion equation (27.4.7) becomes

f(x′,x) = min

(
1,
p∗(x′)

p∗(x)

)
(27.4.12)

If the unnormalised probability p∗(x′) of the candidate state is higher than the current state, p∗(x), we
therefore accept the candidate. Otherwise, we accept the candidate only with probability p∗(x′)/p∗(x). If
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Figure 27.9: Hybrid Monte Carlo. (a): Multi-modal distribution p(x) for which we desire samples. (b):
HMC forms the joint distribution p(x)p(y) where p(y) is Gaussian. (c): This is a plot of (b) from above.
Starting from the point x, we first draw a y from the Gaussian p(y), giving a point (x, y), given by the
green line. Then we use Hamiltonian dynamics (white line) to traverse the distribution at roughly constant
energy for a fixed number of steps, giving x′, y′. We accept this point if H(x′, y′) > H(x, y′) and make the
new sample x′ (red line). Otherwise this candidate is accepted with probability exp(H(x′, y′)−H(x, y′)). If
rejected the new sample x′ is taken as a copy of x.

the candidate is rejected, the new sample is taken to be a copy of the previous sample x. See fig(27.8) for
a demonstration.

In high dimensions it is unlikely that a random candidate sampled from a Gaussian will result in a candidate
probability higher than the current value, exercise(27.5). Because of this, only very small jumps (σ2 small)
are likely to be accepted. This limits the speed at which we explore the space x and increases the dependency
between samples. As an aside, the acceptance function (27.4.12) highlights that sampling is different from
finding the optimum. Provided x′ has a higher probability than x, we accept x′. However, we may also
accept candidates that have a lower probability than the current sample.

27.5 Auxiliary Variable Methods

A practical concern in MCMC methods is ensuring that one moves effectively through the significant proba-
bility regions of the distribution. For methods such as Metropolis-Hastings with local proposal distributions
(local in the sense they are unlikely to propose a candidate far from the current sample), if the target distri-
bution has isolated islands of high density, then the chance that we would move from one island to the other
is very small. Conversely, if we attempt to make the proposal less local by using one with a high variance
the chance then of landing at random on a high density island is remote. Auxiliary variable methods use
additional dimensions to aid exploration and in certain cases to provide a bridge between isolated high
density islands. See also [213] for the use of auxiliary variables in perfect sampling.

Consider drawing samples from p(x). For an auxiliary variable y we introduce a distribution p(y|x) to form
the joint distribution

p(x, y) = p(y|x)p(x) (27.5.1)

If we draw samples (xl, yl) from this joint distribution then a valid set of samples from p(x) is given by
taking the xl alone. If we sampled x directly from p(x) and then y from p(y|x), introducing y is pointless
since there is no effect on the x sampling procedure. In order for this to be useful, therefore, the auxiliary
variable must influence how we sample x. Below we discuss some of the common auxiliary variable schemes.

27.5.1 Hybrid Monte Carlo

Hybrid MC is a method for continuous variables that aims to make non-local jumps in the sample space
and, in so doing, to jump potentially from one mode to another. We define the distribution from which we
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Algorithm 27.4 Hybrid Monte Carlo sampling

1: Start from x1

2: for i = 1 to L do
3: Draw a new sample y from p(y).
4: Choose a random (forwards or backwards) trajectory direction.
5: Starting from xi,y, follow Hamiltonian dynamics for a fixed number of steps, giving a candidate x′,y′.
6: Accept the candidate xi+1 = x′ if H(x′,y′) > H(x,y), otherwise accept it with probability

exp(H(x′,y′)−H(x,y)).
7: If rejected, we take the sample as xi+1 = xi.
8: end for

wish to sample as

p(x) =
1

Zx
eHx(x) (27.5.2)

for some given ‘Hamiltonian’ Hx(x). We then define another, ‘easy’ auxiliary distribution from which we
can readily generate samples,

p(y) =
1

Zy
eHy(y) (27.5.3)

so that the joint distribution is given by

p(x,y) = p(x)p(y) =
1

Z
eHx(x)+Hy(y) =

1

Z
eH(x,y), H(x,y) ≡ H(x) +H(y) (27.5.4)

In the standard form of the algorithm, a multi-dimensional Gaussian is chosen for the auxiliary distribution
with dim (y) = dim (x), so that

Hy(y) = −1

2
yTy (27.5.5)

The HMC algorithm first draws from p(y) and subsequently from p(x,y). For a Gaussian p(y), sampling
from this is straightforward. In the next ‘dynamic’ step, a sample is drawn from p(x,y) using a Metropolis
MCMC sampler. The idea is to go from one point of the space x,y to a new point x′,y′ that is a non-trivial
distance from x,y and which will be accepted with a high probability. The candidate (x′,y′) will have a
good chance to be accepted if H(x′,y′) is close to H(x,y) – this can be achieved by following a contour of
equal ‘energy’ H, as described in the next section.

Hamiltonian dynamics

We wish to make an update x′ = x + ∆x, y′ = y + ∆y for small ∆x and ∆y such that the Hamiltonian
H(x,y) ≡ Hx(x) +Hy(y) is conserved,

H(x′,y′) ≈ H(x,y) (27.5.6)

We can satisfy this (up to first order) by considering the Taylor expansion

H(x′,y′) = H(x + ∆x,y + ∆y)

≈ H(x,y) + ∆xT∇xH(x,y) + ∆yT∇yH(x,y) +O
(
|∆x|2

)
+O

(
|∆y|2

)
(27.5.7)

Conservation, up to first order, therefore requires

∆xT∇xH(x,y) + ∆yT∇yH(x,y) = 0 (27.5.8)

This is a single scalar requirement, and there are therefore many different solutions for ∆x and ∆y that
satisfy this single condition. It is customary to use Hamiltonian dynamics, which corresponds to the setting:

∆x = ε∇yH(x,y), ∆y = −ε∇xH(x,y) (27.5.9)
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(a) (b) (c)

Figure 27.10: Swendson-Wang updating for p(x) ∝ ∏i∼j expβI [xi = xj ]. (a): Current sample of states
(here on a nearest neighbour lattice). (b): Like coloured neighbours are bonded together with probability
1− e−β, forming clusters of variables. (c): Each cluster is given a random colour, forming the new sample.

where ε is a small value to ensure that the Taylor expansion is accurate. Hence

x(t+ 1) = x(t) + ε∇yHy(y), y(t+ 1) = y(t)− ε∇xHx(x) (27.5.10)

For the HMC method, ∇xH(x,y) = ∇xHx(x) and ∇yH(x,y) = ∇yHy(y). For the Gaussian case,
∇yHy(y) = −y so that

x(t+ 1) = x(t)− εy, y(t+ 1) = y(t)− ε∇xH(x) (27.5.11)

There are specific ways to implement the Hamiltonian dynamics called Leapfrog discretisation that are more
accurate than the simple time-discretisation used above and we refer the reader to [220] for details.

In order to make a symmetric proposal distribution, at the start of the dynamic step, we choose ε = +ε0
or ε = −ε0 uniformly. We then follow the Hamiltonian dynamics for many time steps (usually of the order
of several hundred) to reach a candidate point x′,y′. If the Hamiltonian dynamics is numerically accurate,
H(x′,y′) will have roughly the same value as H(x,y). We then do a Metropolis step, and accept the point
x′,y′ if H(x′,y′) > H(x,y) and otherwise accept it with probability exp(H(x′,y′) −H(x,y)). If rejected,
we take the initial point x,y as the sample. Combined with the p(y) sample step, we then have the general
procedure as described in algorithm(27.4).

In HMC we use not just the potential Hx(x) to define candidate samples, but the gradient of Hx(x) as
well. An intuitive explanation for the success of the algorithm is that it is less myopic than straightforward
Metropolis since the gradient enables the algorithm to feel its way to other regions of high probability by
contouring around paths in the augmented space. One can also view the auxiliary variables as momentum
variables – it is as if the sample has now a momentum which can carry it through the low-density x-regions.
Provided this momentum is high enough, we can escape local regions of significant probability, see fig(27.9).

27.5.2 Swendson-Wang

Originally, the SW method was introduced to alleviate the problems encountered in sampling from Ising
models close to their critical temperature[284]. At this point large islands of same-state variables form so
that strong correlations appear in the distribution – the scenario under which, for example, Gibbs sampling
is not well suited. The method has since been generalised to other models[94], although here we outline the
procedure for the Ising model only, referring the reader to more specialised text for the extensions [38].

The Ising model with no external fields is defined on variables x = (x1, . . . , xn), xi ∈ {0, 1} and takes the
form

p(x) =
1

Z

∏
i∼j

eβI[xi=xj ] (27.5.12)

which means that this is a pairwise Markov network with a potential contribution eβ if neighbouring nodes
i and j on a square lattice are in the same state, and a contribution 1 otherwise. We assume that β > 0
which encourages neighbours to be in the same state. The lattice based neighbourhood structure makes
this difficult to sample from, and especially when β ≈ 0.9 which encourages large scale islands of same-state

DRAFT November 21, 2011 549



Auxiliary Variable Methods

Algorithm 27.5 Swendson-Wang sampling

1: Start from a random configuration of all x1
1, . . . , x

1
n.

2: for l = 2 to L do
3: for each i, j in the edge set do
4: If xl−1

i = xl−1
j , we bind variables xi and xj with probability 1− e−β.

5: end for
6: For each cluster formed from the above bonds, set the state of the cluster uniformly at random.
7: This gives a new joint configuration xl1, . . . , x

l
n.

8: end for

variables to form.

The aim is to remove the problematic terms eβI[xi=xj ] by the use of auxiliary real-valued ‘bond’ variables,
yij , one for each edge on the lattice, making the conditional p(x|y) easy to sample from. This is given by

p(x|y) ∝ p(y|x)p(x) ∝ p(y|x)
∏
i∼j

eβI[xi=xj ] (27.5.13)

Using p(y|x) we can cancel the terms eβI[xi=xj ] by setting

p(y|x) =
∏
i∼j

p(yij |xi, xj) =
∏
i∼j

1

zij
I
[
0 < yij < eβI[xi=xj ]

]
(27.5.14)

where I
[
0 < yij < eβI[xi=xj ]

]
denotes a uniform distribution between 0 and eβI[xi=xj ]; zij is the normalisation

constant zij = eβI[xi=xj ]. Hence

p(x|y) ∝ p(y|x)p(x) (27.5.15)

∝
∏
i∼j

1

eβI[xi=xj ]
I
[
0 < yij < eβI[xi=xj ]

]
eβI[xi=xj ] (27.5.16)

∝
∏
i∼j

I
[
0 < yij < eβI[xi=xj ]

]
(27.5.17)

We first assume we have a sample for all the bond variables {yij}. If yij > 1, then to draw a sample from
p(x|y), we must have 1 < eβI[xi=xj ], which means that xi and xj are constrained to be in the same state.
Otherwise, if yij < 1, then this introduces no constraint on xi and xj . Hence, wherever yij > 1, we bind xi
and xj to be in the same state, otherwise not.

To sample from the bond variables p(yij |xi, xj) consider first the situation that xi and xj are in the same
state. Then p(yij |xi = xj) = U

(
yij |

[
0, eβ

])
. A bond will occur if yij > 1, which occurs with probability

p(yij > 1|xi = xj) =

∫ ∞
yij=1

1

zij
I
[
0 < yij < eβ

]
=
eβ − 1

eβ
= 1− e−β (27.5.18)

Hence, if xi = xj , we bind xi and xj to be in the same state with probability 1−e−β. On the other hand if xi
and xj are in different states, p(yij |xi 6= xj) = U (yij | [0, 1]), and yij is uniformly distributed between 0 and 1.

Figure 27.11: Ten successive samples from a 25× 25 Ising model p(x) ∝ exp
(∑

i∼j βI [xi = xj ]
)

, with β =

0.88, close to the critical temperature. The Swendson-Wang procedure is used. Starting in a random initial
configuration, the samples quickly move away from this initial state. The samples display the characteristic
long-range correlations close to the critical temperature.
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Figure 27.12: The full slice for a given y. Ideally slice sampling would
draw an x sample from anywhere on the full slice (green). In general this
is intractable for a complex distribution and a local approximate slice is
formed instead, see fig(27.13).

(a) (b)

(c) (d)

Figure 27.13: (a): For the current sample x, a point y is sampled between 0 and p∗(x), giving a point
(x, y) (black circle). Then an interval of width w is placed around x, the blue bar. The ends of the bar
denote if the point is in the slice (green) or out of the slice (red). (b): The interval is increased by w
until it hits a point out of the slice. (c): Given an interval a sample x′ is taken uniformly in the interval.
If the candidate x′ is not in the slice (red), p(x′) < y, the candidate is rejected and the interval is shrunk.
(d): The sampling from the interval is repeated until a candidate is in the slice (green), and is subsequently
accepted.

After doing this for all the xi and xj pairs, we will end up with a graph in which we have clusters of like-
state bonded variables. The algorithm then simply chooses a random state for each cluster – that is, with
probability 0.5 all variables in the cluster are in state 1. This is useful since we are able to update variables,
even if they are strongly dependent. This is in contrast to say Gibbs sampling which when the variables
are strongly dependent will only very rarely change the state of a variable from its neighbours since it is
strongly encouraged to agree with them; this results in a critical slowing down effect and Gibbs sampling
essentially freezes. See algorithm(27.5), fig(27.10) and fig(27.11). This technique has found application in
spatial statistics, particularly image restoration[146].

27.5.3 Slice sampling

Slice sampling[222] is an auxiliary variable technique that aims to overcome some of the difficulties in choos-
ing an appropriate length scale in methods such as Metropolis sampling. The brief discussion here follows
that presented in [197] and [43]. We want to draw samples from p(x) = 1

Z p
∗(x) where the normalisation

constant Z is unknown. By introducing the auxiliary variable y and defining the distribution

p(x, y) =

{
1/Z for 0 ≤ y ≤ p∗(x)
0 otherwise

(27.5.19)

we have∫
p(x, y)dy =

∫ p∗(x)

0

1

Z
dy =

1

Z
p∗(x) = p(x) (27.5.20)

which shows that the marginal of p(x, y) over y is equal to the distribution we wish to draw samples from.
Hence if we draw samples from p(x, y), we can ignore the y samples and we will have a valid sampling scheme
for p(x).

To draw from p(x, y) we use Gibbs sampling, first drawing from p(y|x) and then from p(x|y). Drawing a
sample from p(y|x) means that we draw a value y from the uniform distribution U (y| [0, p∗(x)]). Given
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Algorithm 27.6 Slice Sampling (univariate).

1: Choose a starting point x1 and step size w.
2: for i = 1 to L do
3: Draw a vertical coordinate y uniformly from the interval

(
0, p∗(xi)

)
.

4: Create a horizontal interval (xleft, xright) that contains xi as follows:
5: Draw r ∼ U (r| (0, 1))
6: xleft = xi − rw, xright = xi + (1− r)w . Create an initial interval
7: while p∗(xleft) > y do
8: xleft = xleft − w . Step out left
9: end while

10: while p∗(xright) > y do
11: xright = xright + w . Step out right
12: end while
13: accept = false
14: while accept = false do
15: draw a random value x′ uniformly from the unit interval (xleft, xright).
16: if p∗(x′) > y then
17: accept = true . Found a valid sample
18: else
19: modify the interval (xleft, xright) as follows:
20: if x′ > xi then
21: xright = x′ . Shrinking
22: else
23: xleft = x′

24: end if
25: end if
26: end while
27: xi+1 = x′

28: end for

a sample y, one then draws a sample x from p(x|y). Using p(x|y) ∝ p(x, y) we see that p(x|y) is the
distribution over x such that p∗(x) > y:

p(x|y) ∝ I [p∗(x) > y] (27.5.21)

That is, x is uniformly distributed from the ‘slice’ that satisfies p∗(x) > y, fig(27.12). Computing the nor-
malisation of this distribution is in general non-trivial since we would in principle need to search over all
x to find those for which p∗(x) > y. The challenge in slice sampling is therefore to sample from the slice.
This can be addressed using MCMC techniques. Ideally we would like to get as much of the slice as feasible,
since this will improve the ‘mixing’ of the chain (the rate that we converge to the stationary distribution).
If we concentrate on the part of the slice only very local to the current x, then the samples move through
the space very slowly. If we attempt to guess at random a point a long way from x and check if it is in the
slice, this will be mostly unsuccessful.

We will not discuss how to do this in general and highlight only how this can be achieved for a univariate
slice. The happy compromise presented in algorithm(27.6)[222] and described in fig(27.13) determines an
appropriate incremental widening of an initial interval. Once the largest potential interval is determined
we attempt to sample from this. If the sample point within the interval is in fact not in the slice, this is
rejected and the interval is shrunk.

27.6 Importance Sampling

Importance sampling is a technique to approximate averages with respect to an intractable distribution
p(x). The term ‘sampling’ is arguably a misnomer since the method does not attempt to draw samples from
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p(x). Rather the method draws samples from a simpler importance distribution q(x) and then reweights
them such that averages with respect to p(x) can be approximated using the samples from q(x). Consider

p(x) = p∗(x)
Z where p∗(x) can be evaluated but Z =

∫
x p
∗(x) is an intractable normalisation constant. The

average of f(x) with respect to p(x) is given by∫
x
f(x)p(x) =

∫
x f(x)p∗(x)∫
x p
∗(x)

=

∫
x f(x)p

∗(x)
q(x) q(x)∫

x
p∗(x)
q(x) q(x)

(27.6.1)

Let x1, . . . , xL be samples from q(x). We can then approximate the aboveaverage by∫
x
f(x)p(x) ≈

∑L
l=1 f(xl)p

∗(xl)
q(xl)∑L

l=1
p∗(xl)
q(xl)

=
L∑
l=1

f(xl)wl (27.6.2)

where we define the normalised importance weights

wl =
p∗(xl)/q(xl)∑L
l=1 p

∗(xl)/q(xl)
, with

L∑
l=1

wl = 1 (27.6.3)

In principle, reweighing the samples from q will give the correct result for the average with respect to p.

The importance weight vector w can be seen as a measure of how well q fits p since for q = p, the weight
vector has uniform values, w = 1/L. Hence the more variable the components of the weight vector are,
the less well-matched q is to p. Since the weight is a measure of how well q matches p, unless q and p are
well-matched, there will typically be only a small number of dominant weights. This is particularly evident
in high dimensions. As an indication of this effect, consider a D-dimensional multivariate x. Using u as
the vector of unnormalised importance weights with ui = p(xi)/q(xi), a measure of the variability of two
components of u is given by (dropping momentarily the notational dependence on x)〈

(ui − uj)2
〉

=
〈
u2
i

〉
+
〈
u2
j

〉
− 2 〈ui〉 〈uj〉 (27.6.4)

where the averages are with respect to q. The mean unnormalised weights are

〈ui〉 = 〈uj〉 =

∫
x

p(x)

q(x)
q(x) = 1 (27.6.5)

and 〈
u2
i

〉
=
〈
u2
j

〉
=

〈
p2(x)

q2(x)

〉
q(x)

=

〈
p(x)

q(x)

〉
p(x)

(27.6.6)

For simplicity we assume that q(x) and p(x) both factorise, p(x) =
∏D
d=1 p(xd), q(x) =

∏D
d=1 q(xd) and

further that the distributions are axis-aligned, being the same for each co-ordinate d. Then〈
u2
i

〉
=

〈
p(x)

q(x)

〉D
p(x)

(27.6.7)

Since
〈
p(x)
q(x)

〉
p(x)

> 1 for q 6= p (this is the 2-divergence, exercise(8.37)), the variability of the weights is

〈
(ui − uj)2

〉
= 2

(〈
p(x)

q(x)

〉D
p(x)

− 1

)
(27.6.8)

which grows exponentially with the dimension D. This means that a single unnormalised importance weight
is likely to dominate. After normalisation, typically, therefore in high dimensions the weight vector w will
have only a single significantly non-zero component.

A method that can help address this weight dominance is resampling . Given the weight distribution
w1, . . . , wL, one draws a set of L sample indices. This new set of indices will almost certainly contain
repeats since any of the original low-weight samples will most likely not be included. The weight of each of
these new samples is set uniformly to 1/L. This procedure helps select only the ‘fittest’ of the samples and
is known as Sampling Importance Resampling [253].
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v1 v2 v3 v4

h1 h2 h3 h4
Figure 27.14: A dynamic belief network. In many ap-
plications of interest, the emission distribution p(vt|ht)
is non-Gaussian, leading to the formal intractability of
filtering/smoothing.

27.6.1 Sequential importance sampling

Our interest is to apply importance sampling to temporal distributions p(x1:t) for which the importance
samples from q(x1:t) are paths x1:t. When a new observation at time t arrives, we require a set of sample
paths xl1:t from q(x1:t). If we assume that for the previous time, we have a set of paths xl1:t−1 along with
their importance weights wlt−1, we can find the new importance weights wlt by simply sampling from the
transition q(xt|x1:t−1) and updating the weights, without needing to explicitly sample whole new paths. To
see this, consider the unnormalised importance weights for a sample path xl1:t

w̃lt =
p∗(xl1:t)

q(xl1:t)
=
p∗(xl1:t−1)

q(xl1:t−1)

p∗(xl1:t)

p∗(xl1:t−1)q(xlt|xl1:t−1)
, w̃l1 =

p∗(xl1)

q(xl1)
(27.6.9)

Using p(x1:t) = p(xt|x1:t−1)p(x1:t−1), we can ignore constants and equivalently define the unnormalised
weights recursively using

w̃lt = w̃lt−1α
l
t, t > 1 (27.6.10)

where

αlt ≡
p∗(xlt|xl1:t−1)

q(xlt|xl1:t−1)
(27.6.11)

This means that in Sequential Importance Sampling (SIS) we need only define the conditional impor-
tance distribution q(xt|x1:t−1). The ideal setting of the sequential importance distribution is q(xt|x1:t−1) =
p(xt|x1:t−1), although this choice is impractical in most cases, as we discuss below. Sequential importance
sampling is also known as particle filtering .

Dynamic belief networks

Consider distributions with a hidden Markov independence structure, see fig(27.14),

p(v1:t, h1:t) = p(v1|h1)p(h1)

t∏
t=2

p(vt|ht)︸ ︷︷ ︸
emission

p(ht|ht−1)︸ ︷︷ ︸
transition

(27.6.12)

where v1:t are observations and h1:t are the random variables. Our interest is to draw sample paths h1:t

given the observations v1:t. In some models, such as the HMM, this is straightforward. However, in other
cases, for example when the emission p(vt|ht) is intractable to normalise, we can use SIS to draw samples
instead. For dynamic belief networks, equation (27.6.11) simplifies to

αlt ≡
p(vt|hlt)p(hlt|hlt−1)

q(hlt|hl1:t−1)
(27.6.13)

The optimal importance distribution is achieved by using the importance transition

q(ht|h1:t−1) ∝ p(vt|ht)p(ht|ht−1) (27.6.14)

It is often the case, however, that drawing samples from this optimal q(ht|h1:t−1) is difficult, usually because
the normalisation constant of the emission distribution p(vt|ht) is unknown. In cases where the transition
is easy to sample from, a common sequential importance distribution is

q(ht|h1:t−1) = p(ht|ht−1) (27.6.15)
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in which case, from equation (27.6.13), αlt = p(vt|ht) and the unnormalised weights are recursively defined
by

w̃lt = w̃lt−1p(vt|hlt) (27.6.16)

A drawback of this procedure is that after a small number of iterations only very few particle weights will be
significantly non-zero due to the mismatch between the importance distribution q and the target distribution
p. This can be addressed using resampling, as described in section(27.6)[153, 87].

27.6.2 Particle filtering as an approximate forward pass

Particle filtering can be viewed as an approximation to the exact filtering recursion. Using ρ to represent
the filtered distribution,

ρ(ht) ∝ p(ht|v1:t) (27.6.17)

the exact filtering recursion is

ρ(ht) ∝ p(vt|ht)
∫
ht−1

p(ht|ht−1)ρ(ht−1) (27.6.18)

A PF can be viewed as an approximation of equation (27.6.18) in which the message ρ(ht−1) is approximated
by a sum of delta-spikes:

ρ(ht−1) ≈
L∑
l=1

wlt−1δ
(
ht−1, h

l
t−1

)
(27.6.19)

where wlt−1 are the normalised importance weights
∑L

l=1w
l
t−1 = 1, and hlt−1 are the particles. In other

words, the ρ message is represented as a weighted mixture of delta-spikes where the weight and position of
the spikes are the parameters of the distribution. Using equation (27.6.19) in equation (27.6.18), we have

ρ(ht) ≈
1

Z
p(vt|ht)

L∑
l=1

p(ht|hlt−1)wlt−1 (27.6.20)

The constant Z is used to normalise the distribution ρ(ht). Although ρ(ht−1) was a simple sum of delta-
spikes, in general ρ(ht) will not be – the delta-spikes get ‘broadened’ by the transition and emission factors.
Our task is then to approximate ρ(ht) as a new sum of delta-spikes. Below we discuss a method to achieve
this for which explicit knowledge of the normalisation Z is not required. This is useful since in many tracking
applications the normalisation of the emission p(vt|ht) is unknown.

A Monte-Carlo sampling approximation

A simple approach to forming an approximate mixture-of-delta functions representation of equation (27.6.20)
is to generate a set of points using sampling. In principle any sampling method can be used, including pow-
erful MCMC approaches.

In particle filters, importance sampling is use to generate the new particles. That is we generate a set
of samples h1

t , . . . , h
L
t from some importance distribution q(ht) which gives the unnormalised importance

weights

w̃lt =
p(vt|hlt)

∑L
l′=1 p(h

l
t|hl

′
t−1)wl

′
t−1

q(hlt)
(27.6.21)

Defining the normalised weights:

wlt =
w̃lt∑
l′ w̃

l′
t

(27.6.22)
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Figure 27.15: Tracking an object with
a particle filter containing 50 parti-
cles. The small circles are the par-
ticles, scaled by their weights. The
correct corner position of the face is
given by the ‘×’, the filtered average
by the large circle ‘o’, and the most
likely particle by ‘+’. (a): Ini-
tial position of the face without noise
and corresponding weights of the par-
ticles. (b): Face with noisy back-
ground and the tracked corner posi-
tion after 20 timesteps. The Forward-
Sampling-Resampling PF method is
used to maintain a healthy pro-
portion of non-zero weights. See
demoParticleFilter.m

we obtain an approximation

ρ(ht) ≈
L∑
l=1

wltδ
(
ht, h

l
t

)
(27.6.23)

Ideally one would use the importance distribution that makes the importance weights uniform, namely

q(ht) ∝ p(vt|ht)
L∑
l=1

p(ht|hlt−1)wlt−1 (27.6.24)

However, this is often difficult to sample from directly due to the unknown normalisation of the emission
p(vt|ht). A simpler alternative is to sample from the transition mixture:

q(ht) =
L∑
l=1

p(ht|hlt−1)wlt−1 (27.6.25)

To do so, one first samples a component l∗ from the histogram with weights w1
t−1, . . . , w

L
t−1. Given this

sample index, say l∗, one then draws a sample from p(ht|hl∗t−1). In this case the unnormalised weights
become simply

w̃lt = p(vt|hlt) (27.6.26)

This Forward-Sampling-Resampling procedure is used in demoParticleFilter.m and in the following toy
example.

Example 27.2 (A toy face-tracking example). At time t a binary face template is in a two-dimensional
location ht, which describes the upper-left corner of the template. At time t = 1 the position of the face is
known, see fig(27.15a). In subsequent times the face moves randomly according to

ht = ht−1 + σηt (27.6.27)
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where ηt ∼ N (ηt 0, I) is a two dimensional zero mean unit covariance noise vector. In addition, a fraction
of the binary pixels in the whole image are selected at random and their states flipped. The aim is to try
to track the upper-left corner of the face through time.

We need to define the emission distribution p(vt|ht) on the binary pixels with vi ∈ {0, 1}. Consider the
following compatibility function

φ(vt,ht) = vT
t ṽ(ht) (27.6.28)

where ṽ(ht) is the vector representing the whole image with a clean face placed at position ht and zeros
outside of the face template. Then φ(vt,ht) measures the overlap between the face template at a specific
location and the noisy image restricted to the template pixels. The compatibility function is maximal when
the observed image vt has the face placed at position ht. We can therefore tentatively define

p(vt|ht) ∝ φ(vt,ht) (27.6.29)

A subtlety is that ht is continuous, and in the compatibility function we first map ht to the nearest integer
pixel representation. The normalisation constant of p(vt|ht) is difficult to work out. An advantage of the
sampling approach is that this normalisation is not required if we use forward-sampling-resampling. In
fig(27.15a) 50 particles are used to track the face. The particles are plotted along with their corresponding
weights. For each t > 1, 5% of the pixels are selected at random in the image and their states flipped.
Using the forward-sampling-resampling method we can successfully track the face despite the presence of
the background clutter.

Real tracking applications involve complex issues, including tracking multiple objects, transformations of
the object (scaling, rotation, morphology changes). Nevertheless, the principles are largely the same and
many tracking applications work by seeking compatibility functions, often based on the colour histogram in
a template.

27.7 Summary

• Exact sampling can be achieved for models such as belief networks, although forward sampling in the case
of evidence can be inefficient.

• Provided independent samples are drawn from a distribution, only a small number of samples is required to
obtain a good estimate of an expectation. However, drawing independent samples from high-dimensional
non-standard distributions is computationally extremely difficult.

• Markov chain Monte Carlo methods are approximate sampling methods which converge to drawing samples
from the correct distribution in the limit of a large number of samples. Whilst powerful, assessing conver-
gence of the method can be difficult. Also, samples are often highly dependent, so that a great number of
samples may be required to obtain a reliable estimate of an expectation.

27.8 Code

potsample.m: Exact sample from a set of potentials
ancestralsample.m: Ancestral sample from a belief network
JTsample.m: Sampling from a consistent junction tree
GibbsSample.m: Gibbs sampling from a set of potentials
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demoMetropolis.m: Demo of Metropolis sampling for a bimodal distribution
metropolis.m: Metropolis sample
logp.m: Log of a bimodal distribution
demoParticleFilter.m: Demo of particle filtering (forward-sampling-resampling method)
placeobject.m: Place an object in a grid
compat.m: Compatibility function
demoSampleHMM.m: Naive Gibbs sampling for a HMM

27.9 Exercises

Exercise 27.1 (Box-Muller method). Let x1 ∼ U (x1| [0, 1]), x2 ∼ U (x2| [0, 1]) and

y1 =
√
−2 log x1 cos 2πx2, y2 =

√
−2 log x1 sin 2πx2 (27.9.1)

Show that

p(y1, y2) =

∫
p(y1|x1, x2)p(y2|x1, x2)p(x1)p(x2)dx1dx2 = N (y1 0, 1)N (y2 0, 1) (27.9.2)

and suggest an algorithm to sample from a univariate normal distribution. Hint: Use the change of variable
result, result(8.1), for vectors y = (y1, y2) and x = (x1, x2).

Exercise 27.2. Consider the distribution p(x) ∝ exp(sin(x)) for −π ≤ x ≤ π. Using rejection sampling
with q(x) = N

(
x 0, σ2

)
show that a suitable value for M such that p∗(s)/q(x) ≤M is

M = e1+ π2

2σ2
√

2πσ2 (27.9.3)

For a suitably chosen σ2 draw 10,000 samples from p(x) and plot the resulting histogram of the samples.

Exercise 27.3. Consider the distribution

p(x1, . . . , x6) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x3)p(x6|x4, x5) (27.9.4)

For x5 fixed in a given state x5, write down a distribution on the remaining variables p′(x1, x2, x3, x4, x6)
and explain how forward (ancestral) sampling can be carried out for this new distribution.

Exercise 27.4. Consider an Ising model on an M ×M square lattice with nearest neighbour interactions:

p(x) ∝ expβ
∑
i∼j

I [xi = xj ] (27.9.5)

Now consider the M ×M grid as a checkerboard, and give each white square a label wi, and each black
square a label bj, so that each square is associated with a particular variable. Show that

p(b1, b2, . . . , |w1, w2, . . .) = p(b1|w1, w2, . . .)p(b2|w1, w2, . . .) . . . (27.9.6)

That is, conditioned on the white variables, the black variables are independent. The converse is also true,
that conditioned on the black variables, the white variables are independent. Explain how this can be exploited
by a Gibbs sampling procedure. This procedure is known as checkerboard or black and white sampling.

Exercise 27.5. Consider the symmetric Gaussian proposal distribution

q̃(x′|x) = N
(
x′ x, σ2

qI
)

(27.9.7)

and the target distribution

p(x) = N
(
x 0, σ2

pI
)

(27.9.8)

where dim (x) = N . Show that〈
log

p(x′)

p(x)

〉
q̃(x′|x)

= −
Nσ2

q

2σ2
p

(27.9.9)

Discuss how this result relates to the probability of accepting a Metropolis-Hastings update under a Gaussian
proposal distribution in high-dimensions.
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Exercise 27.6. The file demoSampleHMM.m performs naive Gibbs sampling of the posterior p(h1:T |v1:T ) for
a HMM for T = 10. At each Gibbs update a single variable ht is chosen, with the remaining h variables
clamped. The procedure starts from t = 1 and sweeps forwards through time. When the end time t = T
is reached, the joint state h1:T is taken as a sample from the posterior. The parameter λ controls how
deterministic the hidden transition matrix p(ht|ht−1) will be. Adjust demoSampleHMM.m to run 100 times
for the same λ, computing a mean absolute error for the posterior marginal p(ht|v1:T ) over these 100 runs.
Then repeat this for λ = 0.1, 1, 10, 20. Finally, repeat this whole procedure 20 times for different random
draws of the transition and emission matrices, and average the errors in computing the smoothed posterior
marginal by Gibbs sampling. Discuss why the performance of this Gibbs sampling routine deteriorates with
increasing λ.

Exercise 27.7. Consider the following MATLAB code snippet:

c=p(1); i=1; r=rand;

while r>c && i<n

i=i+1; c=c+p(i);

end

sample=i;

1. Explain why this draws a sample state i from a discrete distribution with probability p(i), i = 1, . . . , n.

2. Explain how to effectively sample from the distribution p(i) = e−λλi/i!, 0 < λ < 1, i = 0, . . . ,∞ which
contains an infinite number of discrete states.

Exercise 27.8. Consider drawing samples from a posterior p(θ|D) ∝ p(D|θ)p(θ).
1. Show that for

q(D,D′, θ) = q(D|D′)p(D′|θ)p(θ), where q(D|D′) = δ
(
D −D′

)
(27.9.10)

the marginal distribution is

q(θ|D) = p(θ|D) (27.9.11)

2. Hence show that the following procedure generates a sample from p(θ|D):

(a) Sample θ from p(θ)

(b) Sample a ‘candidate’ dataset D′ from p(D′|θ)
(c) If D′ = D accept the candidate as a sample, otherwise make no sample and go to (a).

3. One may relax the delta-function constraint and use, for example, q(D|D′) = N
(
D D′, σ2I

)
for some

chosen σ2. Then

q(θ|D) =
∑
l

wlδ
(
θ − θl

)
where wl ≡

q(D|Dl)∑L
l=1 q(D|Dl)

(27.9.12)

Explain how this approximate sampling procedure is related to the Parzen estimator.

4. By considering a single D-dimensional datapoint x and sampled datapoint xi, both generated from the
same underlying distribution N

(
x 0, ν2ID×D

)
show that for the unnormalised weight

ui = exp

(
− 1

2σ2

(
x− xi

)2)
(27.9.13)

the typical ratio of the weights can be assessed using〈(
log

ui
uj

)2
〉
N (x 0,ν2I)N (xi 0,ν2I)N (xj 0,ν2I)

= 12D
ν4

σ4
(27.9.14)

Explain why the normalised weights will typically be dominated by a single component, rendering the
sampling method described in part (3) above generally impractical.
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CHAPTER 28

Deterministic Approximate Inference

Sampling methods are popular and well known for approximate inference. In this chapter we give an
introduction to the less well known class of deterministic approximation techniques. These have been
spectacularly successful in branches of the information sciences and many have their origins in the study of
large-scale physical systems.

28.1 Introduction

Deterministic approximate inference methods are an alternative to the sampling techniques discussed in
chapter(27). Drawing exact independent samples is typically computationally intractable and assessing the
quality of the sample estimates is difficult. In this chapter we discuss some alternatives. The first, Laplace’s
method, is a simple perturbation technique. The second class of methods are those that produce rigorous
bounds on quantities of interest. Such methods are interesting since they provide certain knowledge – it
may be sufficient, for example, to show that a marginal probability is greater than 0.1 in order to make an
informed decision. A further class of methods are the consistency methods, such as loopy belief propagation.
Such methods have revolutionised certain fields, including error correction[197]. It is important to bear in
mind that no single approximation technique, deterministic or stochastic, is going to beat all others on all
problems, given the same computational resources. In this sense, insight as to the properties of the various
approximations is useful in matching an approximation method to the problem at hand.

28.2 The Laplace approximation

Consider a distribution on a continuous variable of the form

p(x) =
1

Z
e−E(x) (28.2.1)

The Laplace method makes a Gaussian approximation of p(x) based on a local perturbation expansion
around a mode x∗. First we find the mode numerically, giving

x∗ = argmin
x

E(x) (28.2.2)

Then a Taylor expansion up to second order around this mode gives

E(x) ≈ E(x∗) + (x− x∗)T∇E|x∗ +
1

2
(x− x∗)T H (x− x∗) (28.2.3)

where H ≡ ∇∇E(x)|x∗ is the Hessian evaluated at the mode. At the mode, ∇E|x∗ = 0, and an approxima-
tion of the distribution is given by the Gaussian

q(x) =
1

Zq
e−

1
2

(x−x∗)TH(x−x∗) = N
(
x x∗,H−1

)
(28.2.4)
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which has mean x∗ and covariance H−1, with Zq =
√

det (2πH−1). We can use the above expansion to
estimate the integral∫

x
e−E(x) ≈

∫
x
e−E(x∗)− 1

2
(x−x∗)TH(x−x∗) = e−E(x∗)

√
det (2πH−1) (28.2.5)

The Laplace Gaussian fit to a distribution is not necessarily the ‘best’ Gaussian approximation. As we’ll see
below, other criteria, such as based on minimal KL divergence between p(x) and a Gaussian approximation
may be more appropriate, depending on the context. A benefit of Laplace’s method is its relative simplicity
compared with other approximate inference techniques.

28.3 Properties of Kullback-Leibler Variational Inference

Variational methods can be used to approximate a complex distribution p(x) by a simpler distribution q(x).
Given a definition of discrepancy between an approximation q(x) to p(x), any free parameters of q(x) are
then set by minimising the discrepancy. This class of techniques are also called ‘mean field’ methods in the
physics literature.

A particularly popular measure of the discrepancy between an approximation q(x) and the intractable
distribution p(x) is the Kullback-Leibler divergence

KL(q|p) = 〈log q〉q − 〈log p〉q (28.3.1)

It is straightforward to show that KL(q|p) ≥ 0 and is zero if and only if the distributions p and q are identical,
see section(8.2.1). Note that whilst the KL divergence cannot be negative, there is no upper bound on the
value it can potentially take so that the discrepancy can be ‘infinitely’ large.

28.3.1 Bounding the normalisation constant

For a distribution of the form

p(x) =
1

Z
eφ(x) (28.3.2)

we have

KL(q|p) = 〈log q(x)〉q(x) − 〈log p(x)〉q(x) = 〈log q(x)〉q(x) − 〈φ(x)〉q(x) + logZ (28.3.3)

Since KL(q|p) ≥ 0 this immediately gives the bound

logZ ≥ −〈log q(x)〉q(x)︸ ︷︷ ︸
entropy

+ 〈φ(x)〉q(x)︸ ︷︷ ︸
energy

(28.3.4)

which is called the ‘free energy’ bound in the physics community [254]. The KL(q|p) method provides
therefore a lower bound on the normalisation constant. The art is then to choose a class of approximating
distributions q such that both its entropy and the energy term are tractably computable.

28.3.2 Bounding the marginal likelihood

In Bayesian modelling the likelihood of the model M with parameters θ generating data D is given by

p(D|M) =

∫
θ
p(D|θ,M)︸ ︷︷ ︸

likelihood

p(θ|M)︸ ︷︷ ︸
prior

(28.3.5)

This quantity is fundamental to model comparison. However, in cases where θ is high-dimensional, the
integral over θ is often difficult to perform. Using Bayes’ rule,

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
(28.3.6)
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Figure 28.1: Fitting a mixture of Gaussians p(x) (blue) with a single Gaus-
sian. The green curve minimises KL(q|p) corresponding to fitting a local
model. The red curve minimises KL(p|q) corresponding to moment match-
ing.

and considering

KL(q(θ)|p(θ|D,M)) = 〈log q(θ)〉q(θ) − 〈log p(θ|D,M)〉q(θ) (28.3.7)

= 〈log q(θ)〉q(θ) − 〈log p(D|θ,M)p(θ|M)〉q(θ) + log p(D|M) (28.3.8)

the non-negativity of the Kullback-Leibler divergence gives the bound

log p(D|M) ≥ −〈log q(θ)〉q(θ) + 〈log p(D|θ,M)p(θ|M)〉q(θ) (28.3.9)

= 〈log p(D|θ,M)〉q(θ) −KL(q(θ)|p(θ|M)) (28.3.10)

This bound holds for any distribution q(θ) and becomes equality when q(θ) = p(θ|D,M). Since using
the optimal setting is assumed computationally intractable, the idea in variational bounding is to choose a
distribution family for q(θ) for which the bound is computationally tractable, and then maximise the bound
with respect to any free parameters of q(θ). The resulting bound then can be used as a surrogate for the
exact marginal likelihood in model comparison.

28.3.3 Bounding marginal quantities

The Kullback-Leibler approach provides a lower bound on normalisation constants. Combined with an upper
bound, obtained using alternative methods, see for example [307] and exercise(28.6), we are able to bracket
marginals l ≤ p(xi) ≤ u, see exercise(28.9). The tightness of the resulting bracket gives an indication as to
how tight the bounding procedures are. Even in cases where the resulting bracket is weak – for example it
might be that the result is that 0.1 < p(cancer = true) < 0.99, this may be sufficient for decision making
purposes since the probability of cancer is sufficiently large to merit action.

28.3.4 Gaussian approximations using KL divergence

Minimising KL(q|p)
Using a simple approximation q(x) of a more complex distribution p(x) by minimising KL(q|p) tends to give
a solution for q(x) that focuses on a local mode of p(x), thereby underestimating the variance of p(x). To
show this, consider approximating a mixture of two Gaussians with equal variance σ2,

p(x) =
1

2

(
N
(
x − µ, σ2

)
+N

(
x µ, σ2

))
(28.3.11)

see fig(28.1), with a single Gaussian

q(x) = N
(
x m, s2

)
(28.3.12)

We wish to find the optimal m, s2 that minimise

KL(q|p) = 〈log q(x)〉q(x) − 〈log p(x)〉q(x) (28.3.13)

If we consider the case that the two Gaussian components of p(x) are well separated, µ� σ, then by setting
q(x) to be centred on the left mode at −µ the Gaussian q(x) only has appreciable mass close to −µ, so that
the second mode at µ has negligible contribution to the Kullback-Leibler divergence. In this sense one can
approximate p(x) ≈ 1

2q(x), so that

KL(q|p) ≈ 〈log q(x)〉q(x) − 〈log p(x)〉q(x) = log 2 (28.3.14)
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Figure 28.2: A planar pairwise Markov random field on a set of variables x1, . . . , x25,
representing a distribution of the form

∏
i∼j φ(xi, xj). In statistical physics such lat-

tice models include the Ising model on binary ‘spin’ variables xi ∈ {+1,−1} with
φ(xi, xj) = ewijxixj .

On the other hand, setting m = 0, which is the correct mean of the distribution p(x), very little of the mass
of the mixture is captured unless s2 is large, giving a poor fit and large KL divergence. Another way to view
this is to consider KL(q|p) = 〈log q(x)/p(x)〉q(x); provided q is close to p around where q has significant mass,
the ratio q(x)/p(x) will be order 1 and the KL divergence small. Setting m = 0 means that q(x)/p(x) is
large where q has significant mass, and is therefore a poor fit. The optimal solution in this case is therefore
to place the Gaussian close to a single mode. However, for two modes that are less well-separated, the
optimal solution will not necessarily be to place the Gaussian around a local mode. In general, the optimal
Gaussian fit needs to be determined numerically – that is, there is no closed form solution to finding the
optimal mean and (co)variance parameters.

Minimising KL(p|q)

Bearing in mind that in general KL(q|p) 6= KL(p|q), it is also useful to understand the properties of KL(p|q).
For fitting a Gaussian q(x) = N

(
x ,s2

)
to p based on KL(p|q), we have

KL(p|q) = 〈log p(x)〉p(x) − 〈log q(x)〉p(x) = − 1

2s2

〈
(x−m)2

〉
p(x)
− 1

2
log s2 + const. (28.3.15)

Minimising this with respect to m and σ2 we obtain:

m = 〈x〉p(x) , s2 =
〈
(x−m)2

〉
p(x)

(28.3.16)

so that the optimal Gaussian fit matches the first and second moments of p(x).

In the case of fig(28.1), the mean of p(x) is a zero, and the variance of p(x) is large. This solution is
therefore dramatically different from that produced by fitting the Gaussian using KL(q|p). The fit found
using KL(q|p) focusses on making q fit p well locally, see also exercise(28.17), whereas KL(p|q) focusses on
making q fit p well to the global statistics of the distribution (possibly at the expense of a good local match).

28.3.5 Marginal and moment matching properties of minimising KL(p|q)
For simplicity, consider a factorised approximation q(x) =

∏
i q(xi). Then

KL(p|q) = 〈log p(x)〉p(x) −
∑
i

〈log q(xi)〉p(xi) (28.3.17)

The first entropic term is independent of q(x) so that up to a constant independent of q(x), the above is∑
i

KL(p(xi)|q(xi)) (28.3.18)

so that optimally q(xi) = p(xi). That is, the optimal factorised approximation is to set the factors of q(xi)
to the marginals of p(xi), exercise(28.13).

Another approximating distribution class that yields a known form for the approximation is the exponential
family. In this case minimising KL(p|q) corresponds to moment matching, see exercise(28.13). In practice,
one generally cannot compute the moments of p(x) (since the distribution p(x) is considered ‘intractable’),
so that fitting q to p based only on KL(p|q) does not itself lead to a practical algorithm for approximate
inference. Nevertheless, as we will see, it is a useful subroutine for local approximations, in particular
Expectation Propagation.
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Figure 28.3: A distribution on pixels. The filled nodes indicate observed noisy pixels,
the unshaded nodes a Markov Random Field on latent clean pixels. The task is to infer
the clean pixels given the noisy pixels. The MRF encourages the posterior distribution
on the clean pixels to contain neighbouring pixels in the same state.

28.4 Variational Bounding Using KL(q|p)
In this section we discuss how to fit a distribution q(x) from some assumed family to an ‘intractable’
distribution p(x). As we saw above for the case of fitting Gaussians, the optimal q needs to be found
numerically. This itself can be a complex task (indeed, formally this can be just as difficult as performing
inference directly with the intractable p) and the reader may wonder why we trade a difficult inference
task for a potentially difficult optimisation problem. The general idea is that the optimisation problem has
some local smoothness properties that enable one to rapidly find a reasonable optimum based on generic
optimisation methods. To make these ideas more concrete, we discuss a particular case of fitting q to a
formally intractable p in section(28.4.1) below.

28.4.1 Pairwise Markov random field

A canonical intractable distribution is the pairwise Markov Random Field1 defined on binary variables
xi ∈ {+1,−1}, i = 1, . . . , D,

p(x) =
1

Z(w, b)
e
∑
i,j wijxixj+

∑
i bixi (28.4.1)

Here the partition function Z(w, b) ensures normalisation,

Z(w, b) =
∑
x

e
∑
i,j wijxixj+

∑
i bixi (28.4.2)

Since x2
i = 1, the terms wiix

2
i are constant and without loss of generality we may set wii to zero. A

motivational example for this model is described below.

Example 28.1 (Bayesian image denoising). Consider a binary image y generated by corrupting a clean
image x; our interest it to recover the clean image given the corrupted image. We assume a noisy pixel
generating process that takes each clean pixel xi ∈ ±1 and flips its binary state:

p(y|x) =
∏
i

p(yi|xi), p(yi|xi) ∝ eγyixi (28.4.3)

The probability that yi and xi are in the same state is eγ/(eγ+e−γ). Our interest is the posterior distribution
on clean pixels p(x|y). We assume that clean images are reasonably smooth and can be described using a
MRF prior defined on a lattice, fig(28.2),

p(x) ∝ e
∑
ij wijxixj (28.4.4)

where wij > 0, for neighbouring i and j, and wij = 0 otherwise. This encodes the assumption that clean
images tend to have neighbouring pixels in the same state. An isolated pixel in a different state to its
neighbours is unlikely under this prior. We now have the joint distribution

p(x, y) = p(x)
∏
i

p(yi|xi) =
1

Z
e
∑
ij wijxixj+

∑
i γyixi (28.4.5)

1Whilst inference with a general MRF is formally computationally intractable (no exact polynomial time methods are
known), two celebrated results that we mention in passing are that for the planar MRF model with pure interactions (b = 0),
the partition function is computable in polynomial time[170, 102, 191, 127, 260], as is the MAP state for attractive planar Ising
models w > 0 [133], see section(28.9).
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see fig(28.3), from which the posterior is given by

p(x|y) =
p(y|x)p(x)∑
x p(y|x)p(x)

∝ e
∑
ij wijxixj+

∑
i γyixi (28.4.6)

Quantities such as the MAP state (most a posteriori probable image), marginals p(xi|y) and the normali-
sation constant are of interest. This example is equivalent to the Markov network in example(4.2). On the
left below is the clean image, the middle is the noisy image, and on the right is the most likely posterior
clean image arg maxx p(x|y) found using iterated conditional modes, section(28.9.1).

We discuss how to compute the MAP state for example(28.1) in section(28.9) and concentrate first on a
technique that can bound the normalisation constant Z, a quantity that is useful in model comparison.

Kullback-Leibler based methods

For the MRF we have

KL(q|p) = 〈log q〉q −
∑
ij

wij 〈xixj〉q −
∑
i

bi 〈xi〉q + logZ ≥ 0 (28.4.7)

Rewriting, this gives a bound on the log-partition function

logZ ≥ −〈log q〉q︸ ︷︷ ︸
entropy

+
∑
ij

wij 〈xixj〉q +
∑
i

bi 〈xi〉q︸ ︷︷ ︸
energy

(28.4.8)

The bound saturates when q = p. This is of little help, however, since we cannot compute the averages
〈xixj〉p , 〈xi〉p with respect to this intractable distribution p. The idea of a variational method is to assume
a simpler tractable distribution q for which these averages can be computed, along with the entropy of q.
Minimising the KL divergence with respect to any free parameters of q(x) is then equivalent to maximising
the lower bound on the log partition function.

Factorised approximation

A ‘naive’ assumption is the fully factorised distribution

q(x) =
∏
i

qi(xi) (28.4.9)

The graphical model of this approximation is given in fig(28.4a). In this case

logZ ≥ −
∑
i

〈log qi〉qi +
∑
ij

wij 〈xixj〉q(xi,xj) +
∑
i

bi 〈xi〉q(xi) (28.4.10)

(a) (b) (c)

Figure 28.4: (a): Naive Mean Field approximation
q(x) =

∏
i qi(xi). (b): A spanning tree approxima-

tion. (c): A decomposable (hypertree) approxima-
tion.
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For a factorised distribution q(x) =
∏
i q(xi), and 〈xixj〉 = 〈xi〉 〈xj〉, i 6= j. For a binary variable, one may

use the convenient parametrization

qi(xi = 1) =
eαi

eαi + e−αi
(28.4.11)

so that for xi ∈ {−1,+1}

〈xi〉qi = +1× q(xi = 1)− 1× q(xi = −1) = tanh(αi) (28.4.12)

This gives the following lower bound on the log partition function:

logZ ≥ B(α) ≡
∑
i

H(αi) +
∑
i 6=j

wij tanh(αi) tanh(αj) +
∑
i

bi tanh(αi) (28.4.13)

where H(αi) is the binary entropy of a distribution parameterised according to equation (28.4.11):

H(αi) = log
(
eαi + e−αi

)
− αi tanh(αi) (28.4.14)

Finding the best factorised approximation in the minimal Kullback-Leibler divergence sense then corre-
sponds to maximising the bound B(α) with respect to the variational parameters α. The bound B, equation
(28.4.13), is generally non-convex in α and riddled with local optima. Finding the globally optimal α is
therefore typically a computationally hard problem. It seems that we have simply replaced the computa-
tionally hard problem of computing logZ by an equally hard computational problem of maximising B(α).
Indeed, written as a factor graph in α, the structure of this optimisation problem matches exactly that of
the original MRF. However, the hope is that by approximating a difficult discrete summation by a contin-
uous optimisation problem, we will be able to bring to the table effective continuous variable optimisation
techniques. A particularly simple optimisation technique is to solve for the zero derivative of the bound
equation (28.4.13). Differentiating and equating to zero, a little algebra leads to the requirement that the
optimal solution satisfies the equations

αi = bi +
∑
i,j

wij tanh(αj), ∀i (28.4.15)

One may show that sequentially updating any αi according to equation (28.4.15) increases B(α). This is
called asynchronous updating and is guaranteed to lead to a (local) minimum of the KL divergence, see
section(28.4.3). Once a converged solution α has been identified, in addition to a bound on logZ, we can
approximate

〈xi〉p ≈ 〈xi〉q = tanh(αi) (28.4.16)

Validity of the factorised approximation

When might one expect such a naive factorised approximation to work well? Clearly, for equation (28.4.1),
if wij is very small, the distribution p will be effectively factorised and the approximation will be accurate.
A more interesting case is when each variable xi has many neighbours. In this case it is useful to write the
MRF as (ignoring the bias terms bi for simplicity)

p(x) =
1

Z
e
∑
ij wijxixj =

1

Z
eD

∑
i xi

1
D

∑
j wijxj =

1

Z
eD

∑
i xizi (28.4.17)

where the local ‘fields’ are defined as

zi ≡
1

D

∑
j

wijxj (28.4.18)

An interesting question is how zi is distributed. We now invoke a circular (but self-consistent) argument:
Let’s assume that p(x) is factorised. Assuming that each wij is O (1), the mean of zi is

〈zi〉 =
1

D

∑
j

wij 〈xj〉 = O (1) (28.4.19)
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The variance is

〈
z2
i

〉
− 〈zi〉2 =

1

D2

D∑
k=1

w2
ik

(
1− 〈xk〉2

)
= O (1/D) (28.4.20)

Hence for large D the variance of the field zi is much smaller than its mean value. Since each of the terms
xj in the summation

∑
j wijxj is independent, provided the wij are not extreme, the conditions of validity

of the central limit theorem hold[134], and zi will be Gaussian distributed. In particular, as D increases the
fluctuations around the mean diminish, and we may write

p(x) ≈ 1

Z
eD

∑
i xi〈zi〉 ≈

∏
i

p(xi) (28.4.21)

The assumption that p is approximately factorised is therefore self-consistent in the limit of MRFs with
a large number of neighbours. Hence the factorised approximation would appear to be reasonable in the
extreme limits of (i) a very weakly connected system wij ≈ 0, or (ii) a large densely connected system with
random weights. The fully factorised approximation is also called the naive mean field theory since for the
MRF case it assumes that we can replace the effect of the neighbours by a mean of the field at each site.

28.4.2 General mean field equations

For a general intractable distribution p(x) on discrete or continuous x, the KL divergence between a factorised
approximation q(x) =

∏
i q(xi) and p(x) is

KL(q(x)|p(x)) =
∑
i

〈log q(xi)〉q(xi) − 〈log p(x)〉∏
i q(xi)

(28.4.22)

Isolating the dependency of the above on a single factor q(xi) we have

〈log q(xi)〉q(xi) −
〈
〈log p(x)〉∏

j 6=i q(xj)

〉
q(xi)

(28.4.23)

Up to a normalisation constant, this is therefore the KL divergence between q(xi) and a distribution pro-

portional to exp
(
〈log p(x)〉∏

j 6=i q(xj)

)
so that the optimal setting for q(xi) satisfies

q(xi) ∝ exp
(
〈log p(x)〉∏

j 6=i q(xj)

)
(28.4.24)

These are known as the mean-field equations and define a new approximation factor in terms of the previous
approximation factors. Note that if the normalisation constant of p(x) is unknown, this presents no problem
since this constant is simply absorbed into the normalisation of the factors q(xi). In other words one may
replace p(x) with the unnormalised p∗(x) in equation (28.4.24). Beginning with an initial randomly chosen
set of distributions q(xi), the mean-field equations are iterated until convergence. Asynchronous updating
is guaranteed to decrease the KL divergence at each stage, as we show below.

28.4.3 Asynchronous updating guarantees approximation improvement

For a factorised variational approximation equation (28.4.22), we claim that each update equation (28.4.24)
reduces the Kullback-Leibler approximation error. To show this we write a single updated distribution as

qnewi =
1

Zi
exp 〈log p(x)〉∏

j 6=i q
old
j

(28.4.25)

The joint distribution under this single update is

qnew = qnewi

∏
j 6=i

qoldj (28.4.26)

Our interest is the change in the approximation error under this single mean-field update:

∆ ≡ KL(qnew|p)−KL
(
qold|p

)
(28.4.27)
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x1 x2

x3x4

(a)

x1 x2

x3x4

(b)

Figure 28.5: (a): A toy ‘intractable’ distribution.
(b): A structured singly-connected approximation.

Using

KL(qnew|p) = 〈log qnewi 〉qnewi
+
∑
j 6=i

〈
log qoldj

〉
qoldj

−
〈
〈log p(x)〉∏

j 6=i q
old
j

〉
qnewi

(28.4.28)

and defining the un-normalised distribution

q∗i (xi) = exp 〈log p(x)〉∏
j 6=i q

old
j

= Ziq
new
i (28.4.29)

then

∆ = 〈log qnewi 〉qnewi
−
〈

log qoldi

〉
qoldi

−
〈
〈log p〉∏

j 6=i q
old
j

〉
qnewi

+
〈
〈log p〉∏

j 6=i q
old
j

〉
qoldi

(28.4.30)

= 〈log q∗i 〉qnewi
− logZi −

〈
log qoldi

〉
qoldi

− 〈log q∗i 〉qnewi
+ 〈log q∗i 〉qoldi (28.4.31)

= − logZi −
〈

log qoldi

〉
qoldi

+ 〈log q∗i 〉qoldi (28.4.32)

= −KL
(
qoldi |qnewi

)
≤ 0 (28.4.33)

Hence

KL
(
qnew|p

)
≤ KL

(
qold|p

)
(28.4.34)

so that updating a single component of q at a time is guaranteed to improve the approximation. Note that
this result is quite general, holding for any distribution p(x). In the case of a Markov network the guaranteed
approximation improvement is equivalent to a guaranteed increase (strictly speaking a non-decrease) in the
lower bound on the partition function.

Remark 28.1 (Intractable energy). Even for a fully factorised approximation the mean-field equations
may not be tractably implementable. For this we need to be able to compute 〈log p∗(x)〉∏

j 6=i q(xj)
. For some

models of interest this is still not possible and additional approximations are required.

28.4.4 Structured variational approximation

One can extend the factorised KL variational approximation by using non-factorised q(x)[256, 24]. Those
for which averages of the variables can be computed in linear time include spanning trees, fig(28.4b) and
decomposable graphs fig(28.4c). For example, for the distribution, fig(28.5a),

p(x1, x2, x3, x4) =
1

Z
φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x4, x1)φ(x1, x3) (28.4.35)

a tractable q distribution would be, fig(28.5b),

q(x1, x2, x3, x4) =
1

Z̃
φ̃(x1, x2)φ̃(x1, x3)φ̃(x1, x4) (28.4.36)

In this case we have

KL(q|p) = Hq(x1, x2) +Hq(x1, x3) +Hq(x1, x4)− 3Hq(x1) +
∑
i∼j
〈log φ(xi, xj)〉q(xi,xj) (28.4.37)
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where Hq(X ) is the entropy of q(X ). Since q is singly-connected, computing the marginals and entropy
is straightforward (since the entropy requires only pairwise marginals on graph neighbours). In this case,
however, we cannot apply directly the standard mean field update equations since there are constraints∑

xj
q(xi, xj) = q(xj). We can either deal with these using Lagrange multipliers, or ensure that in perform-

ing an mean-field style update, we are including the contributions from coupled terms.

More generally one can exploit any structural approximation by use of, for example, the junction tree
algorithm to compute the required moments. However, the computational expense typically increases expo-
nentially with the hypertree width[315].

Example 28.2 (Robot arm: control via inference). Control problems can also be cast as inference problems,
see for example [165]. Consider the position vt = (xt, yt)

T of an n-link robot arm in a two-dimensional place,
where each link i ∈ {1, . . . , n} in the arm is of unit length and angle hi,t:

xt =
n∑
i=1

coshi,t, yt =
n∑
i=1

sinhi,t (28.4.38)

Our interest is to use the robot arm to track a given sequence v1:T such that the joint angles ht do not
change much from one time to the next. This is a classical control problem that we can formulate as an
inference problem using a model

p(v1:T ,h1:T ) = p(v1|h1)p(h1)

T∏
t=2

p(vt|ht)p(ht|ht−1) (28.4.39)

where the terms are

p(vt|ht) = N

vt

(
n∑
i=1

coshi,t,
n∑
i=1

sinhi,t

)T

, σ2I

 , p(ht|ht−1) = N
(
ht ht−1, ν

2I
)

(28.4.40)

One solution to the control problem is then given by the most likely posterior sequence
arg maxh1:T

p(h1:T |v1:T ). Here we consider an alternative, the maximum posterior marginal solution at each
time arg maxht p(ht|v1:T ). Due to the non-linear observation, this posterior marginal cannot be computed
exactly. A simple approximation is to use a fully factorised variational distribution p(h1:T |v1:T ) ≈ q(h1:T )
where

q(h1:T ) =
T∏
t=1

n∏
i=1

q(hi,t) (28.4.41)

From the general form of the mean-field equations, the update for q(hi,t) is given by (for 1 < t < T )

−2 log q(hi,t) =
1

ν2

(
hi,t − h̄i,t−1

)2
+

1

ν2

(
hi,t − h̄i,t+1

)2
+

1

σ2
(coshi,t − αi,t)2 +

1

σ2
(sinhi,t − βi,t)2 + const. (28.4.42)

where

h̄i,t+1 ≡ 〈hi,t+1〉 , αi,t ≡ xt −
∑
j 6=i
〈coshj,t〉 , βi,t ≡ yt −

∑
j 6=i
〈sinhj,t〉 (28.4.43)

and the above averages are with respect to the q marginal distribution. Due to the non-linearities, the above
marginal distributions are non-Gaussian. However, since they are only one-dimensional, the required aver-
ages can readily be computed using quadrature. The above mean-field equations are iterated to convergence.
See demoRobotArm.m for further details and fig(28.6) for a demonstration. Note that the planning problem
of starting from a point (x1, y1) to smoothly move the arm to a desired end point (xT , yT ) is a special case
of this framework. One can achieve this either by removing the observation terms for the intermediate times
or, equivalently, making the observation variances for those intermediate times extremely large.
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Figure 28.6: (a): The desired trajectory of the end point of a three link robot arm. Green denotes time 1
and red time 100. (b): The learned trajectory based on a fully factorised KL variational approximation.
(c): The robot arm sections every 2nd timestep, from time 1 (top left) to time 100 (bottom right). The
control problem of matching the trajectory using a smoothly changing angle set is solved using this simple
approximation.

28.5 Local and KL Variational Approximations

In fitting a model parameterised by w to data D, one often encounters parameter posteriors of the form

p(w|D) =
1

Z
N (w µ,Σ) f(w) (28.5.1)

where

Z =

∫
N (w µ,Σ) f(w)dw (28.5.2)

A classical example is Bayesian logistic regression, section(18.2) in which N (w µ,Σ) represents a prior on
the weight w, f(w) represents the likelihood p(D|w) and Z = p(D). In all but limited special cases, the
function f(w) is not a simple squared exponential, resulting in a posterior distribution of a non-standard
form. Inevitably, therefore, approximations are required. When the dimension of the parameter vector
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dim (w) = W is large, finding an accurate posterior approximation is in general non-trivial. Our particular
interest here is to form an approximation of p(w|D) that also gives a principled lower bound on the marginal
likelihood p(D).

28.5.1 Local approximation

In a local method [225, 154, 124, 234], one replaces f by a suitable function for which the integral can be
computed. Since in our case the integrand is composed of a Gaussian in w, it is most convenient to bound
f(w) by an exponential quadratic function

f(w) ≥ c(ξ)e− 1
2
wTF(ξ)w+wTf(ξ) (28.5.3)

where the matrix F(ξ), vector f(ξ) and scalar c(ξ) depend on the specific function f ; ξ is a variational
parameter that enables one to find the tightest bound. We will discuss explicit c, F and f functions later,
but for the moment leave them unspecified. Then from equation (28.5.2)

Z ≥ c(ξ)√
det (2πΣ)

∫
exp

(
−1

2
(w − µ)T Σ−1 (w − µ)

)
exp

(
−1

2
wTF(ξ)w + wTf(ξ)

)
dw

Which can be expressed as

Z ≥ c(ξ) e
− 1

2
µTΣ−1µ√

det (2πΣ)

∫
exp

(
−1

2
wTAw + wTb

)
dw (28.5.4)

where

A = Σ−1 + F(ξ), b = Σ−1µ+ f(ξ) (28.5.5)

Whilst both A and b are functions of ξ, we notationally drop this dependency to keep the description more
compact. Completing the square and integrating, we have logZ ≥ B(ξ), with

B(ξ) ≡ log c(ξ)− 1

2
µTΣ−1µ+

1

2
bTAb− 1

2
log det (ΣA) (28.5.6)

To obtain the tightest bound on logZ, one maximises B(ξ) with respect to ξ. In many practical problems
of interest, f(w) =

∏M
s=1 fs(w) for local site functions fs. By bounding each site individually, we obtain a

bound B(ξ1, . . . , ξM ). The bound may be then optimised numerically with respect to the vector ξ.

28.5.2 KL variational approximation

An alternative to the above local bounding method is to consider a KL approach based on fitting a Gaussian
to the distribution. Defining

p̃(w) ≡ N (w µ,Σ) f(w)

Z
(28.5.7)

By fitting a Gaussian q(w) = N (w m,S) based on minimising the KL(q(w)|p̃(w)), we obtain the bound
logZ ≥ BKL(m,S) with

BKL(m,S) ≡ −〈log q(w)〉 − 1

2
log det (2πΣ)− 1

2

〈
(w − µ)T Σ−1 (w − µ)

〉
+ 〈log f(w)〉

where 〈·〉 denotes expectation with respect to q(w). One then numerically finds the best parameters m,S
that maximise the bound. Since the entropy of a Gaussian is trivial, the only potentially problematic term
in evaluating this bound is 〈log f(w)〉. A class of functions for which 〈log f(w)〉N (w m,S) is computationally

tractable is when f(w) = f(wTh) for some fixed vector h. In this case, the projection wTh is also Gaussian
distributed and〈

log f(wTh)
〉
N (w m,S)

= 〈log f(a)〉N(a mTh,hTSh) (28.5.8)
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which can be readily computed using any one-dimensional integration routine. Explicitly, as a function of
m,S, we have

2BKL(m,S) ≡ − log det (S) +W + log det (Σ)

− trace
(
Σ−1

(
S + (m− µ) (m− µ)T

))
+ 2 〈log f(a)〉N(a mTh,hTSh) (28.5.9)

Whilst, in general, the variational bounds are non-concave in their variational parameters, provided f is
log-concave then BKL(m,S) is jointly concave in m and S. By using structured covariances S the method
is scalable to very high dimensional problems [60].

Relation between the KL and local bounds

The KL and local variational methods both provide a lower bound on the normalisation term Z in equation
(28.5.2). It is interesting therefore to understand what relation there is between these bounds. Using the
bound on f(w), we obtain a new bound

BKL(m,S) ≥ B̃KL(m,S, ξ) (28.5.10)

where

B̃KL ≡ −〈log q(w)〉− 1

2
log det (2πΣ)− 1

2

〈
(w − µ)T Σ−1 (w − µ)

〉
+log c(ξ)− 1

2

〈
wTF(ξ)w

〉
+
〈
wTf(ξ)

〉
which, using equation (28.5.5), can be written as

B̃KL = −〈log q(w)〉 − 1

2
log det (2πΣ) + log c(ξ)− 1

2
µTΣ−1µ− 1

2

〈
wTAw

〉
+
〈
wTb

〉
(28.5.11)

By defining

q̃(w) = N
(
w A−1b,A−1

)
(28.5.12)

then

B̃KL = −KL(q(w)|q̃(w))− 1

2
log det (2πΣ) + log c(ξ) − 1

2
µTΣ−1µ+

1

2
bTA−1b +

1

2
log det

(
2πA−1

)
Since m,S only appear via q(w) in the KL term, the tightest bound is given when m,S are set such that
q(w) = q̃(w). At this setting the KL term in B̃KL disappears and m and S are given by

Sξ =
(
Σ−1 + F(ξ)

)−1
, mξ = Sξ

(
Σ−1µ+ f(ξ)

)
. (28.5.13)

For this setting of the variational parameters the bound matches the local bound (28.5.6). Since BKL(m,S) ≥
B̃KL(m,S, ξ) we therefore have that,

BKL(mξ,Sξ) ≥ B̃KL(mξ,Sξ, ξ) = B(ξ). (28.5.14)

Importantly, the VG bound can be tightened beyond this setting:

max
m,S
BKL(m,S) ≥ BKL(mξ,Sξ) (28.5.15)

Thus the optimal KL bound is provably tighter than both the local variational bound (28.5.6) and the KL
bound calculated using the optimal local moments mξ and Sξ.

28.6 Mutual Information Maximisation : A KL Variational Approach

Here we take a short interlude to discuss an application of the Kullback-Leibler variational approach in
information theory. A common goal is to maximise information transfer, measured by the mutual information
(see also definition(8.13))

I(X,Y ) ≡ H(X)−H(X|Y ) (28.6.1)
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x

y1 y2 y3 y4

Figure 28.7: An information transfer problem. For a fixed distribution
p(x) and parameterised distributions p(yj |x) = σ

(
wT
i x
)
, find the op-

timal parameters wi that maximise the mutual information between
the variables x and y. Such considerations are popular in theoretical
neuroscience and aim to understand how the receptive fields wi of a
neuron relate to the statistics of the environment p(x).

Algorithm 28.1 IM algorithm for maximising mutual information I(X,Y ) for fixed p(x) and adjustable
parameters are p(y|x, θ).

1: Choose a class of approximating distributions Q (for example factorised)
2: Initialise the parameters θ
3: repeat
4: θnew = argmax

θ
〈log q(x|y)〉p(x)p(y|x,θ)

5: qnew(x|y) = argmax
q(x|y)∈Q

〈log q(x|y)〉p(x)p(y|x,θnew)

6: until converged

where the entropy and conditional entropy are defined

H(X) ≡ −〈log p(x)〉p(x) , H(X|Y ) ≡ −〈log p(x|y)〉p(x,y) (28.6.2)

Here we are interested in the situation in which p(x) is fixed, but p(y|x, θ) has adjustable parameters θ that
we wish to set in order to maximise I(X,Y ). In this case H(X) is constant and the optimisation problem is
equivalent to minimising the conditional entropy H(X|Y ). Unfortunately, in many cases of practical interest
H(X|Y ) is computationally intractable. We discuss in section(28.6.1) a general procedure based on the
Kullback-Leibler divergence to approximately maximise the mutual information.

Example 28.3. Consider a neural transmission system in which xi ∈ {0, 1} denotes an emitting neuron in
a non-firing state (0) or firing state (1), and yj ∈ {0, 1} a receiving neuron. If each receiving neuron fires
independently, depending only on the emitting neurons, we have

p(y|x) =
∏
i

p(yi|x) (28.6.3)

where for example we could use

p(yi = 1|x) = σ
(
wT
i x
)

(28.6.4)

Given an empirical distribution on neural firings p(x), our interest is to set the weights {wi} to maximise
information transfer, see fig(28.7). Since p(x) is fixed, this requires maximising

〈log p(x|y)〉p(y|x)p(x) (28.6.5)

The quantity p(x|y) = p(y|x)p(x)/p(y) is a non-factorised function of y (due to the term p(y). This means
that the conditional entropy is typically intractable to compute and we require an approximation.

28.6.1 The information maximisation algorithm

Consider

KL(p(x|y)|q(x|y)) ≥ 0 (28.6.6)
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d

a b

c

e f

Figure 28.8: Belief propagation can be derived by considering
how to compute the marginal of a variable on a MRF. In this
case the marginal p(d) depends on messages transmitted via the
neighbours of d. By defining local messages on the links of the
graph, a recursive algorithm for computing all marginals can be
derived, see text.

This immediately gives a bound∑
x

p(x|y) log p(x|y)−
∑
x

p(x|y) log q(x|y) ≥ 0 (28.6.7)

Multiplying both sides by p(y), we obtain∑
x,y

p(y)p(x|y) log p(x|y) ≥
∑
x,y

p(x, y) log q(x|y) (28.6.8)

From the definition, the left side of the above bound is −H(X|Y ). Hence

I(X,Y ) ≥ H(X) + 〈log q(x|y)〉p(x,y) ≡ Ĩ(X,Y ) (28.6.9)

From this lower bound on the mutual information we arrive at the information maximisation (IM) algorithm[20].
Given a distribution p(x) and a parameterised distribution p(y|x, θ), we seek to maximise Ĩ(X,Y ) with re-
spect to θ. A co-ordinate wise optimisation procedure is presented in algorithm(28.1). The Blahut-Arimoto
algorithm in information theory (see for example [198]) is a special case in which the optimal decoder

q(x|y) ∝ p(y|x, θ)p(x) (28.6.10)

is used. In applications where the Blahut-Arimoto algorithm is intractable to implement, the IM algorithm
can provide an alternative by restricting q to a tractable family of distributions (tractable in the sense that
the lower bound can be computed). The Blahut-Arimoto algorithm is analogous to the EM algorithm for
maximum likelihood and guarantees a non-decrease of the mutual information at each stage of the update,
see section(11.2.2). Similarly, the IM procedure is analogous to a variational EM procedure and each step
of the procedure cannot decrease the lower bound on the mutual information.

28.6.2 Linear Gaussian decoder

A special case of the IM framework is to use a linear Gaussian decoder

q(x|y) = N (x Uy,Σ)⇒ log q(x|y) = −1

2
(x−Uy)T Σ−1 (x−Uy)− 1

2
log det (2πΣ) (28.6.11)

Plugging this into the bound, equation (28.6.9), and optimising with respect to Σ, and U, we obtain

Σ =
〈

(x−Uy) (x−Uy)T
〉
, U =

〈
xyT

〉〈
yyT

〉−1
(28.6.12)

where 〈·〉 ≡ 〈·〉p(x,y). Using this setting in the bound we obtain

I(X,Y ) ≥ H(X)− 1

2
log det

(〈
xxT

〉
−
〈
xyT

〉〈
yyT

〉−1 〈
yxT

〉)
− N

2
(1 + log 2π) (28.6.13)

where N = dim (x). This is equivalent to Linsker’s as-if-Gaussian approximation to the mutual information
[190]. One can therefore view Linsker’s approach as a special case of the IM algorithm restricted to linear-
Gaussian decoders. In principle, one can therefore improve on Linsker’s method by considering more powerful
non-linear-Gaussian decoders. Applications of this technique to neural systems are discussed in [20].
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Figure 28.9: Loopy Belief Propagation. Once a node has received
incoming messages from all neighbours (excluding the one it wants to
send a message to), it may send an outgoing message to a neighbour:

λxi→xj (xj) =
∑
xi

φ (xi, xj)λx1→xi (xi)λx2→xi (xi)λx3→xi (xi)

28.7 Loopy Belief Propagation

Belief Propagation is a technique for exact inference of marginals p(xi) for singly-connected distributions
p(x). There are different formulations of BP, the most modern treatment being the sum-product algorithm
on the corresponding factor graph, as described in section(5.1.2). An important observation is that the
algorithm is purely local – the updates are unaware of the global structure of the graph. This means that
even if the graph is multiply-connected (it is loopy) one can still apply the algorithm and ‘see what happens’.
Provided the loops in the graph are relatively long, one may hope that ‘loopy’ BP will converge to a good
approximation of the true marginals. When the method converges the results can be surprisingly accurate.
In the following we will show how loopy BP can also be motivated by a variational objective. To do so, we
make a connection to the classical BP algorithm (rather than the factor graph sum-product algorithm). For
this reason we briefly describe below the classical BP approach.

28.7.1 Classical BP on an undirected graph

BP can be derived by considering how to calculate a marginal in terms of messages on an undirected
graph. Consider calculating the marginal p(d) =

∑
a,b,c,e,f p(a, b, c, d, e, f) for the pairwise Markov network

in fig(28.8). We denote both a node and its state by the same symbol, so that
∑

b φ (d, b) denotes summation
over the states of the variable b. To compute the summation efficiently we may distribute the summations
as follows:

p(d) =
1

Z

∑
b

φ (b, d)︸ ︷︷ ︸
λb→d(d)

∑
a

φ (a, d)︸ ︷︷ ︸
λa→d(d)

∑
f

φ (d, f)︸ ︷︷ ︸
λf→d(d)

∑
e

φ (d, e)
∑
c

φ (c, e)︸ ︷︷ ︸
λc→e(e)︸ ︷︷ ︸

λe→d(d)

(28.7.1)

where we define messages λn1→n2 (n2) sending information from node n1 to node n2 as a function of the
state of node n2. In general, a node xi passes a message to node xj via

λxi→xj (xj) =
∑
xi

φ (xi, xj)
∏

k∈ne(i),k 6=j

λxk→xi (xi) (28.7.2)

See also fig(28.9). At convergence the marginal p(xi) is then given by

q(xi) ∝
∏

i∈ne(j)

λxj→xi (xi) (28.7.3)

the prefactor being determined by normalisation. The pairwise marginals are approximated by

q(xi, xj) ∝

 ∏
k∈ne(i)\j

λxk→xi (xi)

φ(xi, xj)

 ∏
k∈ne(j)\i

λxk→xj (xj)

 (28.7.4)

For a singly-connected distribution p, this message passing scheme converges and the marginal corresponds
to the exact result. For multiply-connected (loopy) structures, belief propagation will generally result in an
approximation.
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28.7.2 Loopy BP as a variational procedure

A variational procedure that corresponds to loopy BP can be derived by considering the terms of a standard
variational approximation based on the Kullback-Leibler divergence KL(q|p)[320]. We take as our example
a pairwise Markov network defined on potentials φ(xi, xj),

p(x) =
1

Z

∏
i∼j

φ(xi, xj) (28.7.5)

where i ∼ j denotes the unique neighbouring edges on the graph (each edge is counted only once). Using
an approximating distribution q(x), the Kullback-Leibler bound is

logZ ≥ −〈log q(x)〉q(x)︸ ︷︷ ︸
entropy

+
∑
i∼j
〈log φ(xi, xj)〉q(x)︸ ︷︷ ︸

energy

(28.7.6)

Since

〈log φ(xi, xj)〉q(x) = 〈log φ(xi, xj)〉q(xi,xj) (28.7.7)

each contribution to the energy depends on q(x) only via the pairwise marginals q(xi, xj). This suggests that
these marginals should form the natural parameters of any approximation. Can we then find an expression
for the entropy −〈log q(x)〉q(x) in terms of these pairwise marginals? Consider a case in which the required
marginals are

q(x1, x2), q(x2, x3), q(x3, x4) (28.7.8)

Either by appealing to the junction tree representation, or by straightforward algebra, one can show that
we can uniquely express q in terms of these marginals using

q(x) =
q(x1, x2)q(x2, x3)q(x3, x4)

q(x2)q(x3)
(28.7.9)

An intuitive way to arrive at this result is by examining the numerator of equation (28.7.9). The variable x2

appears twice, as does the variable x3 and, since any joint distribution cannot have such replicated variables,
we must compensate for ‘overcounting’ x2 and x3 by dividing by these marginals. In this case, the entropy
of q(x) can be written as

Hq(x) = −〈log q(x)〉q(x) = Hq(x1, x2) +Hq(x2, x3) +Hq(x3, x4)−Hq(x2)−Hq(x3) (28.7.10)

More generally, from chapter(6), any decomposable graph can be represented as

q(x) =

∏
c q(Xc)∏
s q(Xs)

(28.7.11)

where the q(Xc) are the marginals defined on cliques of the graph, with Xc being the variables of the clique,
and the q(Xs) are defined on the separators (intersections of neighbouring cliques). The expression for the
entropy of the distribution is then given by a sum of marginal entropies minus the separator entropies.

Bethe Free energy

Consider now a Markov network corresponding to a non-decomposable graph, for example the 4-cycle

p(x) =
1

Z
φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x4, x1) (28.7.12)

The energy requires therefore that our approximating distribution defines the pairwise marginals

q(x1, x2), q(x2, x3), q(x3, x4), q(x4, x1) (28.7.13)

Assuming that these marginals are given, can we find an expression for the entropy of the joint distribution
q(x) in terms of its pairwise marginals q(xi, xj)? In general this is not possible since the graph contains loops
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(so that the junction tree representation would result in cliques greater than size 2). However, a simple ‘no
overcounting’ approximation is to write

q(x) ≈ q(x1, x2)q(x2, x3)q(x3, x4)q(x4, x1)

q(x1)q(x2)q(x3)q(x4)
. (28.7.14)

Using this we can approximate the entropy as

Hq(x) ≈ Hq(x1, x2) +Hq(x2, x3) +Hq(x3, x4) +Hq(x1, x4)−
4∑
i=1

Hq(xi) (28.7.15)

In general, to make the distribution ‘dimensionally consistent’ we need to compensate by a factor q(xi)
ci

where ci is the number of neighbours of variable xi minus 1. With this approximation the (negative) log
partition function is known as the Bethe free energy . Our interest is then to maximise this expression with
respect to the parameters q(xi, xj) subject to marginal consistency constraints,

∑
xj
q(xi, xj) = q(xi). These

constraints may be enforced using Lagrange multipliers γij(xi). One can write the Bethe free energy (the
approximated Kullback-Leibler divergence up to a constant) as

F(q, λ) ≡ −
∑
i∼j

Hq(xi, xj)+
∑
i

ciHq(xi)−
∑
i∼j
〈log φ(xi, xj)〉q(xi,xj)+

∑
i∼j

∑
xi

γij(xi)

q(xi)−∑
xj

q(xi, xj)


(28.7.16)

We neglect including Lagrange terms to enforce normalisation of the q since these only add constant terms
which can be later absorbed by explicitly normalising q. Expression (28.7.16) is no longer a bound on the
log partition function since the entropy approximation is not a lower bound on the true entropy. The task
is now to minimize equation (28.7.16) with respect to the parameters, namely all the pairwise marginals
q(xi, xj) and the Lagrange multipliers γ. A simple scheme to optimise equation (28.7.16) is to use a fixed
point iteration by equating the derivatives of the Bethe free energy with respect to the parameters q(xi, xj)
to zero, and likewise for the Lagrange multipliers. Differentiating with respect to q(xi, xj) and equating to
zero, we obtain

log q(xi, xj)− log φ(xi, xj)− γij(xi)− γji(xj) + const. = 0 (28.7.17)

so that

q(xi, xj) ∝ φ(xi, xj)γ̃ij(xi)γ̃ji(xj) (28.7.18)

where γ̃ij(xi) ≡ exp γij(xi). Similarly, differentiating with respect to q(xi) and equating to zero, we obtain

−ci log q(xi) +
∑

j∈ne(i)

γij(xi) + const. = 0 (28.7.19)

so that

q(xi) ∝
∏

j∈ne(i)

γ̃
1/ci
ij (xi) (28.7.20)

From equation (28.7.18) we can match equation (28.7.4) by mapping

γ̃ij(xi) =
∏

k∈ne(i)\j

λxk→xi (xi) (28.7.21)

We can verify that this assignment satisfies the single marginal requirements equation (28.7.20) and equation
(28.7.3) since∏

j∈ne(i)

γ̃
1/ci
ij (xi) =

∏
j∈ne(i)

∏
k∈ne(i)\j

λxk→xi (xi)
1/ci =

∏
j∈ne(i)

λxj→xi (xi) (28.7.22)

Hence the fixed point equations for minimising the Bethe free energy are equivalent to belief propagation
[320]. The convergence of loopy belief propagation can be heavily dependent on the topology of the graph
and also the message updating schedule[312, 216]. The potential benefit of the Bethe free energy viewpoint is
that it opens up the possibility of using more general optimisation techniques than BP. The so-called double-
loop techniques iteratively isolate convex contributions to the Bethe Free energy, interleaved with concave
contributions. At each stage, the resulting optimisiations can be carried out efficiently[322, 145, 320].
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Figure 28.10: (a): The Markov network (left) that we wish to approximate the marginals
p(w), p(x), p(y), p(z) for. All tables are drawn first from a uniform distribution and then raised to a power
α and renormalised. On the right is shown the naive mean field approximation factorised structure. (b):
There are 64 = 1296 states of the distribution. Shown is a randomly sampled distribution for α = 5 which
has many isolated peaks, suggesting the distribution is far from factorised. In this case the MF and Gibbs
sampling approximations may perform poorly. (c): As α is increased to 25, typically only one state of
the distribution dominates. Whilst the distribution is then simple and essentially factorised, finding this
maximal single state is numerically challenging. See demoMFBPGibbs.m and fig(28.11).

Validity of loopy belief propagation

For a Markov network which has a loop, a change in a variable on the loop eventually reverberates back
to the same variable. However, if there are a large number of variables in the loop, and the individual
neighbouring links are not all extremely strong, the numerical effect of the loop is small in the sense that
the influence of the variable on itself will be small. In such cases one would expect the belief propagation
approximation to be accurate. An area of particular success for loopy belief propagation inference is in error
correction based on low density parity check codes; these are usually explicitly designed to have this long-
loop property[197] so that loopy belief propagation produces good results. In many examples of practical
interest, however, loops can be very short (for example a Markov network on a lattice). In such cases
a naive implementation of loopy BP will most likely fail. A natural extension is to cluster variables to
alleviate strong local dependencies; this technique is called the Kikuchi or Cluster Variation method [167].
More elaborate ways of clustering variables can be considered using region graphs[320, 313].

Example 28.4. The file demoMFBPGibbs.m compares the performance of naive Mean Field (MF) theory,
belief propagation and unstructured Gibbs sampling on marginal inference in a pairwise Markov network

p(w, x, y, z) = φwx(w, x)φwy(w, y)φwz(w, z)φxy(x, y)φxz(x, z)φyz(y, z) (28.7.23)

in which all variables take 6 states. In the experiment the tables are selected from a uniform distribution
raised to a power α. For α close to zero, all the tables are essentially flat and therefore the variables become
independent, a situation for which MF, BP and Gibbs sampling are ideally suited. As α is increased to 5, the
dependencies amongst the variables increase and the methods perform worse, especially MF and Gibbs. As
α is increased to 25, the distribution becomes sharply peaked around a single state, such that the posterior
is effectively factorised, see fig(28.10). This suggests that a MF approximation (and also Gibbs sampling)
should work well. However, finding this state is computationally difficult and the methods often get stuck
in local minima, see fig(28.11). Belief propagation seems less susceptible to being trapped in local minima
in this regime and tends to outperform both MF and Gibbs sampling.

28.8 Expectation Propagation

The messages in schemes such as belief propagation are not always representable in a compact form. The
switching linear dynamical system, as described in chapter(25) is such an instance, with the messages requir-
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ing an exponential amount of storage. This limits BP to cases such as discrete networks, or more generally
exponential family messages. Expectation Propagation extends the applicability of BP by projecting the
messages back to a chosen distribution family at each stage. This projection is obtained by using a Kullback-
Leibler measure[210, 263, 212].

Consider a distribution defined on subsets of variables Xi of the form

p(x) =
1

Z

∏
i

φi(Xi) (28.8.1)

In EP one identifies those factors φi(Xi) which, if replaced by simpler factors φ̃i(Xi), would render the
distribution p̃(x) tractable. One then sets any free parameters of φ̃i(Xi) by minimising the Kullback-Leibler
divergence KL(p|p̃). The general approach is outlined in algorithm(28.2). To gain some intuition into the
steps of the algorithm, we consider the specific example a pairwise Markov network

p(x) =
1

Z
φ1,2(x1, x2)φ2,3(x2, x3)φ3,4(x3, x4)φ4,1(x4, x1) (28.8.2)

with factor graph as depicted in fig(28.12a). If we replace all terms φi,j(xi, xj) by approximate factors
φ̃i,j(xi)φ̃i,j(xj) then the resulting joint distribution p̃ is factorised and hence tractable. Since the variable
xi appears in more than one term from p, we need to index the approximation factors appropriately. A
convenient way to do this is

p̃(x) =
1

Z̃
φ̃2→1 (x1) φ̃1→2 (x2)︸ ︷︷ ︸

≈φ1,2(x1,x2)

φ̃3→2 (x2) φ̃2→3 (x3)︸ ︷︷ ︸
≈φ2,3(x2,x3)

φ̃4→3 (x3) φ̃3→4 (x4)︸ ︷︷ ︸
≈φ3,4(x3,x4)

φ̃1→4 (x4) φ̃4→1 (x1)︸ ︷︷ ︸
≈φ4,1(x4,x1)

(28.8.3)

which is represented in fig(28.12b). The idea in EP is now to determine the optimal approximation factors
φ̃ by the self-consistent requirement that, on replacing approximation factors by their exact counterparts,
there is no difference to the marginals of p̃. Consider the approximation parameters φ̃3→2 (x2) and φ̃2→3 (x3).
To set these we first replace the contribution φ̃3→2 (x2) φ̃2→3 (x3) by the exact factor φ2,3(x2, x3). This gives
a modified approximation

p̃∗ =
1

Z̃∗
φ̃2→1 (x1) φ̃1→2 (x2)φ(x2, x3)φ̃4→3 (x3) φ̃3→4 (x4) φ̃1→4 (x4) φ̃4→1 (x1) =

φ2,3(x2, x3)Z̃p̃

φ̃3→2 (x2) φ̃2→3 (x3) Z̃∗
(28.8.4)

The intuition is that if all approximation parameters are set correctly, then replacing the approximation
factors by the exact counterpart should not change the computation of the marginals. To measure how
much using the modified p̃∗ changes from p̃ we use the Kullback-Leibler divergence between this distribution
and our approximation,

KL(p̃∗|p̃) = 〈log p̃∗〉p̃∗ − 〈log p̃〉p̃∗ (28.8.5)
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Figure 28.11: The absolute error in computing the marginal p(xi)
for the graph in fig(28.10), averaged over all four marginals, for
loopy belief propagation (BP), Gibbs sampling (Gibbs) and naive
mean field using a factorised approximation (MF). Plotted along
the horizontal axis is the parameter α that controls the ‘complex-
ity’ of the true distribution, see fig(28.10). The vertical axis is the
error averaged over 100 random realisations for the true distribu-
tion. For small α, the distribution is essentially factorised and all
methods work reasonably well. As α increases the distribution
becomes more peaked around a limited number of states, and
finding these states becomes increasingly difficult. All methods
use a similar amount of computation with 50 updates for each of
the four variables.
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Figure 28.12: (a): Multiply-connected fac-
tor graph representing p(x). (b): Expecta-
tion propagation approximates (a) in terms of a
tractable factor graph. The open squares indi-
cate that the factors are parameters of the ap-
proximation. The basic EP approximation is to
replace all factors in p(x) by product factors.
(c): Tree structured EP.

We would like to set the parameters such that this Kullback-Leibler divergence is minimal. Since our
interest is in updating φ̃3→2 (x2) and φ̃2→3 (x3), we isolate the contribution from these parameters to the
Kullback-Leibler divergence which is

KL(p̃∗|p̃) = log Z̃ −
〈

log φ̃3→2 (x2) φ̃2→3 (x3)
〉
p̃∗(x2,x3)

+ const. (28.8.6)

Also, since p̃ is factorised, up to a constant proportionality factor, the dependence of Z̃ on φ̃3→2 (x2) and
φ̃2→3 (x3) is

Z̃ ∝
∑
x2

φ̃1→2 (x2) φ̃3→2 (x2)
∑
x3

φ̃2→3 (x3) φ̃4→3 (x3) (28.8.7)

Differentiating the Kullback-Leibler divergence equation (28.8.6) with respect to φ̃3→2 (x2) and equating to
zero, we obtain

φ̃1→2 (x2) φ̃3→2 (x2)∑
x2
φ̃1→2 (x2) φ̃3→2 (x2)

= p̃∗(x2) (28.8.8)

Similarly, optimising w.r.t. φ̃2→3 (x3) gives

φ̃2→3 (x3) φ̃4→3 (x3)∑
x3
φ̃2→3 (x3) φ̃4→3 (x3)

= p̃∗(x3) (28.8.9)

Approximating Z

The above updates only determine the approximation factors up to a proportionality constant. This is fine
if we only wish to find approximations for the marginals since any missing proportionality constants can be
determined by the requirement that each marginal is normalised. However if we wish to also approximate
Z, we care about such factors. To address this we write the optimal updates as

φ̃3→2 (x2) = z3→2
p̃∗(x2)

φ̃1→2 (x2)
(28.8.10)

and

φ̃2→3 (x3) = z2→3
p̃∗(x3)

φ̃4→3 (x3)
(28.8.11)

where z3→2 and z2→3 are proportionality terms. We can determine these proportionalities by the requirement
that the term approximation φ̃3→2 (x2) φ̃2→3 (x3) has the same effect on the normalisation of p̃ as it has on
p̃∗. That is∑

x1,x2,x3,x4

φ̃2→1 (x1) φ̃1→2 (x2) φ̃3→2 (x2) φ̃2→3 (x3) φ̃4→3 (x3) φ̃3→4 (x4) φ̃1→4 (x4) φ̃4→1 (x1)

=
∑

x1,x2,x3,x4

φ̃2→1 (x1) φ̃1→2 (x2)φ(x2, x3)φ̃4→3 (x3) φ̃3→4 (x4) φ̃1→4 (x4) φ̃4→1 (x1) (28.8.12)
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which, on substituting in the updates equation (28.8.10) and equation (28.8.11), reduces to

z2→3z3→2 =
z∗2,3
z̃2,3

(28.8.13)

where

z̃2,3 =
∑
x2,x3

φ̃1→2 (x2)
p̃∗(x2)

φ̃1→2 (x2)

p̃∗(x3)

φ̃4→3 (x3)
φ̃4→3 (x3) (28.8.14)

and

z∗2,3 =
∑
x2,x3

φ̃1→2 (x2)φ(x2, x3)φ̃4→3 (x3) (28.8.15)

Any choice of local normalisations z2→3, z3→2 that satisfies equation (28.8.13) suffices to ensure that the
scale of the term approximation matches. For example, one may set

z2→3 = z3→2 =

√
z∗2,3
z̃2,3

(28.8.16)

Once set, an approximation for the global normalisation constant of p is

Z ≈ Z̃ (28.8.17)

The above gives a procedure for updating the terms φ̃3→2 (x2) and φ̃2→3 (x3). One then chooses another term
and updates the corresponding approximation factors. We repeat this until all approximation parameters
have converged (or a suitable termination criterion is reached in the case of non-convergence). The generic
procedure is outlined in algorithm(28.2).

Comments on EP

• For the Markov network example above, EP corresponds to belief propagation (the sum-product form
on the factor graph). This is intuitively clear since in both EP and BP the product of messages
incoming to a variable is proportional to the approximation of the marginal of that variable. A
difference, however, is the schedule: in EP all messages corresponding to a term approximation are
updated simultaneously (in the above φ̃3→2 (x2) and φ̃2→3 (x3)), whereas in BP they are updated
sequentially.

• EP is a useful extension of BP to cases in which the BP messages cannot be easily represented;
introducing the exact factors φ in the approximation p̃ increases the complexity of the approximation
to p̃∗ which is resolved by projecting the approximation back to p̃. In the case that the approximating
distribution p̃ is in the exponential family, the minimal Kullback-Leibler projection step equates to
matching moments of the approximating distribution to p∗. See [263] for a more detailed discussion.

• In general there is no need to replace all terms in the joint distribution with factorised approximations.
One only needs that the resulting approximating distribution is tractable; this results in a structured
Expectation Propagation algorithm, see fig(28.12c).

• EP and its extensions are closely related to procedures such as tree-reweighting[307] and fractional
EP[316] designed to compensate for message overcounting effects.

28.9 MAP for Markov networks

Consider a Markov network

p(x) =
1

Z
eE(x) (28.9.1)

Then the most likely state is given by

x∗ = argmax
x

p(x) = argmax
x

E(x) (28.9.2)

For a general Markov network we cannot naively exploit dynamic programming intuitions to find an exact
solution since the graph will generally be loopy. Below we consider some general techniques that can be
used to approximate x∗.
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Algorithm 28.2 Expectation Propagation: approximation of p(x) = 1
Z

∏
i φi(Xi).

1: Choose terms φ̃i(Xi) to give a tractable distribution:

p̃(x) =
1

Z̃

∏
i

φ̃i(Xi) (28.8.18)

2: Initialise all parameters φ̃i(Xi).
3: repeat
4: Select a term φ̃i(Xi) from p̃ to update.
5: Replace the term φ̃i(Xi) by the exact term φi(Xi) to form

p̃∗ ∝ φi(Xi)
∏
j 6=i

φ̃j(Xj) (28.8.19)

6: Find the parameters of φ̃i(Xi) by

φ̃i(Xi) ∝ argmin
φ̃i(Xi)

KL(p̃∗|p̃) (28.8.20)

7: Set any proportionality terms of φ̃i(Xi) by requiring∑
x

φi(Xi)
∏
j 6=i

φ̃j(Xj) =
∑
x

∏
j

φ̃j(Xj) (28.8.21)

8: until converged
9: return

p̃(x) =
1

Z̃

∏
i

φ̃i(Xi), Z̃ =
∑
x

∏
i

φ̃i(Xi) (28.8.22)

as an approximation to p(x), where Z̃ approximates the normalisation constant Z.

Iterated Conditional Modes

A simple general approximate solution can be found as follows: first initialise all x at random. Then select
a variable xi and find the state of xi that maximally improves E(x), keeping all other variables fixed.
One then repeats this selection and local maximal state computation until convergence. This axis aligned
optimisation procedure is called Iterated Conditional Modes[37]. Due to the Markov properties it’s clear
that we can improve on this ICM method by simultaneously optimising all variables conditioned on their
respective Markov blankets (similar to the approach used in black-white sampling). Another improvement
is to clamp a subset of the variables to reveal a singly-connected structure on the un-clamped variables, and
subsequently to find the exact MAP state on the un-clamped variables by a max-sum algorithm. One then
chooses a new subset of variables to clamp, thus finding an approximate solution by solving a sequence of
tractable problems.

Dual Decomposition

A general approach is to decompose a difficult optimisation problem into a set of easier problems. In this
approach we first identify tractable ‘slave’ objectives Es(x), s = 1, . . . , S such that the ‘master’ objective
E(x) decomposes as

E(x) =
∑
s

Es(x) (28.9.3)

Then the x that optimises the master problem is equivalent to optimising each slave problem Es(xs) under
the constraint that the slaves agree xs = x, s = 1, . . . , S [34]. This constraint can be be imposed by a
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Figure 28.13: (a): A directed graph with edge
weights wij from node i to j with wij = 0 if no edge ex-
ists from i to j. (b): A graph cut partitions the nodes
into two groups S (blue) and T (red). The weight of
the cut is the sum of the weights of edges that leave S
(blue) and land in T (red). Intuitively, it is clear that
after assigning nodes to state 1 (for blue) and 0 (red)
that the weight of the cut corresponds to the summed
weights of neighbours in different states. Here we high-
light those weight contributions. The non-highlighted
edges do not contribute to the cut weight. Note that
only one of the edge directions contributes to the cut.

Lagrangian

L(x, {xs} , λ) =
∑
s

Es(xs) +
∑
s

λs (xs − x) (28.9.4)

Finding the stationary point w.r.t. x, gives the constraint
∑

s λs = 0, so that we may then consider

L({xs} , λ) =
∑
s

Es(xs) + λsxs (28.9.5)

Given λ, we then optimise each slave problem

x∗s = argmax
xs

(Es(xs) + λsxs) (28.9.6)

The Lagrange dual, section(29.6.1), is given by (noting here we have a maximisation problem)

Ls(λs) = max
xs

(Es(xs) + λsxs) (28.9.7)

In this case the dual bound on the primal is∑
s

Ls(λs) ≥ E(x∗) (28.9.8)

where x∗ is the solution of the primal problem x∗ = argmax
x

E(x). To update λ one may use a ‘projected

subgradient’ method to minimise each Ls(λs)

λ′s = λ− αx∗s (28.9.9)

where α is a chosen positive constant. Then we project,

λ̄ =
1

S

∑
s

λ′s, λnews = λ′s − λ̄ (28.9.10)

which ensures that
∑

s λ
new
s = 0.

28.9.1 Pairwise Markov networks

Consider a pairwise Markov network p(x) ∝ eE(x) with

E(x) ≡
∑
i∼j

fij (xi, xj) +
∑
i

gi(xi, x
0
i ) (28.9.11)

where i ∼ j denotes the set of neighbouring variables and f(xi, xj) = f(xj , xi). This means that an
undirected edge i − j in the graph corresponding to the Markov network contributes a term f(xi, xj),
not 2f(xi, xj). Here the terms f (xi, xj) represent pairwise interactions. The terms g(xi, x

0
i ) represent

unary interactions, written for convenience in terms of a pairwise interaction with a fixed (non-variable) x0.
Typically the term f(xi, xj) is used to ensure that neighbouring variables xi and xj are in similar states;
the term gi(xi, x

0
i ) is used to bias xi to be close to a desired state x0

i .
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Iterated conditional modes

Such models have application in image restoration in which an observed noisy image x0 is to be cleaned, see
example(28.1) and fig(28.3). To do so we seek a clean image x for which each clean pixel value xi is close to
the observed noisy pixel value x0

i , whilst being in a similar state to its clean neighbours. In example(28.1)
we used ICM to find the approximate most likely state by simply updating randomly chosen variables, one
at a time.

Dual decomposition

For a binary Markov network

E(x) =
1

2

∑
ij

xixjwij +
∑
i

cixi =
1

2
xTWx + xTc (28.9.12)

we may define tractable slave problems

Es(x) =
1

2
xTWsx + xTcs (28.9.13)

by identifying a set of tree structured matrices Ws such that W =
∑

s Ws and unary terms cs such that
c =

∑
s cs. The dual decomposition technique then proceeds to solve each slave tree exactly, and subse-

quently updates λ to push the tree solutions towards agreement [176]. Similar general methods of solving
trees under the constraint of agreement are discussed in [307].

28.9.2 Attractive binary Markov networks

Whilst, in general, no efficient exact solution exists for the general MAP Markov network problem, an
important tractable special case is discussed below. Consider finding the MAP of a Markov network with
binary variables dom(xi) = {0, 1} and positive connections wij = wji ≥ 0. In this case our task is to find
the assignment x that maximises

E(x) ≡
∑
i∼j

wijI [xi = xj ] +
∑
i

cixi (28.9.14)

where i ∼ j denotes neighbouring variables. For this particular case an efficient exact MAP algorithm
exists for arbitrary topology of the interactions wij [133]. The algorithm first translates the MAP assignment
problem into an equivalent min s-t-cut problem[40], for which efficient algorithms exist. In min s-t-cut, we
need a graph with positive weights on the edges. This is clearly satisfied if wij > 0, although the bias term∑

i cixi needs to be addressed.

Dealing with the bias terms

To translate the MAP assignment problem to a min-cut problem we need to deal with the additional term∑
i cixi. First consider the effect of including a new node x∗ and connecting this to each existing node i

with weight ci. Using that for binary variables xi ∈ {0, 1},

I [xi = xj ] = xixj + (1− xi)(1− xj) = 2xixj − xi − xj + 1 (28.9.15)

this then adds a term∑
i

ciI [xi = x∗] =
∑
i

ci (xix∗ + (1− xi) (1− x∗)) (28.9.16)

If we set x∗ in state 1, this contributes∑
i

cixi (28.9.17)
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Figure 28.14: (a): A Graph with bidirectional
weights wij = wji augmented with a source node s
and sink node t. Each node has a corresponding bias
whose sign is indicated. The source node is linked
to the nodes corresponding to positive bias, and the
nodes with negative bias to the sink. (b): A graph
cut partitions the nodes into two groups S (blue) and
T (red), where S is the union of the source node s
and nodes in state 1, T is the union of the sink node
t and nodes in state 0. The weight of the cut is the
sum of the edge weights from S (blue) to T (red). The
red lines indicate contributions to the cut, and can be
considered penalties since we wish to find the minimal
cut.

Otherwise, if we set x∗ in state 0 we obtain∑
i

ci (1− xi) = −
∑
i

cixi + const. (28.9.18)

Our requirement that the weights need to be positive can therefore be achieved by defining not a single
additional node x∗, but rather two. We define a source node xs, set to state 1 and connect it to those xi
which have positive ci, defining wsi = wis = ci. In addition we define a sink node xt set to state 0 and
connect all nodes with negative ci, to xt, using weight wit = wti = −ci, (which is therefore positive). For
the source node clamped to xs = 1 and the sink node to xt = 0, then including the source and sink, we have

E(x) =
∑
i∼j

wijI [xi = xj ] + const. (28.9.19)

which is equal to the energy function, equation (28.9.14), with positive weights.

Definition 28.1 (Graph Cut). For a graph G with nodes v1, . . . , vD, and weights wij > 0 a cut is a partition
of the nodes into two disjoint groups, called S and T . The weight of a cut is defined as the sum of the
weights that leave S and land in T , see fig(28.13).

For symmetric w, the weight of a cut corresponds to the sum of weights between mismatched neighbours,
see fig(28.13b). That is,

cut(x) =
∑
i∼j

wijI [xi 6= xj ] (28.9.20)

Since I [xi 6= xj ] = 1− I [xi = xj ], we can define the weight of the cut equivalently as

cut(x) =
∑
i∼j

wij (1− I [xi = xj ]) = −
∑
i∼j

wijI [xi = xj ] + const. = −E(x) + const. (28.9.21)

so that the minimal cut assignment will correspond to maximising E(x). In the Markov network case, our
translation into a weighted graph with positive interactions then requires that we identify the source and
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(a) (b)

Figure 28.15: (a): Noisy
greyscale image defined using
244 intensity labels for each
pixel. (b): Restored im-
age. The α-expansion method
was used, with suitable interac-
tions w and bias c to ensure rea-
sonable results. From [49].

all other variables assigned to state 1 with S, and the sink and all variables in state 0 with T , see fig(28.14).
Our task is then to find the minimal cut from S to T . A fundamental result in discrete mathematics is that
the min s-t-cut solution corresponds to the max-flow solution from the source s to the sink t [40]. There are
efficient algorithms for max-flow, see for example [49], which take O

(
D3
)

operations or less, for a graph with
D nodes. This means that one can find the exact MAP assignment of an attractive binary Markov network
efficiently in O

(
D3
)

operations. In MaxFlow.m we implement the Ford-Fulkerson (Edmonds-Karp-Dinic
breadth first search variant)[93].

28.9.3 Potts model

A Markov network defined on variables with more than two states, xi ∈ {0, 1, 2, . . . , S} is called a Potts
model :

E(x) =
∑
i∼j

wijI [xi = xj ] +
∑
i

ciI
[
xi = x0

i

]
(28.9.22)

where we assume wij > 0 and the x0
i are known. This model has immediate application in non-binary image

restoration, and also in clustering based on a similarity score. This problem cannot be translated directly
into a graph-cut problem and no efficient exact algorithm is known. A useful approach is to approximate
the problem as a sequence of binary problems, as we describe below.

Potts to binary Markov network translation

Consider the α-expansion representation

xi = siα+ (1− si)xoldi (28.9.23)

where si ∈ {0, 1} and α ∈ {0, 1, 2, . . . , S}. This restricts xi to be either the state xoldi or α, depending on
the binary variable si. Using a new binary vector variable s we can therefore restrict x to a subpart of the
full space and write a new objective function in terms of s alone (see below):

E(s) =
∑
i∼j

w′ijI [si = sj ] +
∑
i

c′isi + const. (28.9.24)

for w′ij > 0. This new problem is of the form of an attractive binary Markov network which can be solved
exactly using the graph cuts procedure. This translation imposes a constraint since the x cannot access all
the space, but enables us to solve the constrained problem efficiently. We then choose another α value (at
random) and find the optimal s for the new α. In this way we are guaranteed to iteratively increase E.
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For a given α and xold, the transformation of the Potts model objective is given by using si ∈ {0, 1} and
considering

I [xi = xj ] = I
[
siα+ (1− si)xoldi = sjα+ (1− sj)xoldj

]
= (1− si)(1− sj)I

[
xoldi = xoldj

]
+ (1− si)sjI

[
xoldi = α

]
+ si(1− sj)I

[
xoldj = α

]
+ sisj

= sisjuij + aisi + bjsj + const. (28.9.25)

with

uij ≡ 1− I
[
xoldi = α

]
− I
[
xoldj = α

]
+ I
[
xoldi = xoldj

]
(28.9.26)

with ai and bi defined in the obvious manner. By enumeration it is straightforward to show that uij is either
0, 1 or 2. Using the mathematical identity, for si ∈ {0, 1},

sisj =
1

2
(I [si = sj ] + si + sj − 1) (28.9.27)

we can write,

I [xi = xj ] =
uij
2

(I [si = sj ] + si + sj) + aisi + bjsj + const. (28.9.28)

Hence terms wijI [xi = xj ] translate to positive interaction terms I [si = sj ]wijuij/2. All the unary terms
are easily exactly mapped into corresponding unary terms c′isi for c′i defined as the sum of all unary terms
in si. This shows that the positive interaction wij in terms of the original variables x maps to a positive
interaction in the new variables s. Hence we can find the maximal state of s using a graph cut algorithm.
A related procedure is described in [50].

Example 28.5 (Potts model for image reconstruction). An example image restoration problem for nearest
neighbour interactions on a pixel lattice and suitably chosen w, c is given in fig(28.15). The images are
non-binary so that the optimal MAP assignment cannot be computed exactly in an efficient way. The
alpha-expansion technique was used here combined with an efficient min-cut approach to approximate the
MAP assignment, see [49] for details.

28.10 Further Reading

Approximate inference is a highly active research area and increasingly links to convex optimisation[48] are
being developed. See [307] for a general overview.

28.11 Summary

• Deterministic methods offer an alternative to sampling techniques.

• For continuous distributions, perturbation approaches such as Laplace’s method provide a simple approxi-
mation.

• Variational bounding approaches, such as minimal KL divergence, can provide bounds on quantities of
interest, for example the normalisation constant of a distribution and the marginal likelihood. These are
part of a larger class of methods derived from convex analysis.

• The deterministic bounding approaches can be applied to other areas such as bounding the mutual infor-
mation.

• Consistency methods such as loopy belief propagation can work extremely well when the structure of the
distribution is close to a tree. These methods have been very successful in information theory and error
correction.
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• Loopy belief propagation can also be motivated via the optimisation of the Bethe free energy objective
function, although the method does not produce a bound on quantities of interest.

• For binary attractive Markov networks we can find the MAP state exactly in polynomial time. This method
can be used as a subroutine in more complex multistate problems in which the MAP search problem is
broken into a sequence of binary MAP problems.

28.12 Code

LoopyBP.m: Loopy belief propagation (Factor Graph formalism)
demoLoopyBP.m: Demo of loopy belief propagation
demoMFBPGibbs.m: Comparison of Mean Field, belief propagation and Gibbs sampling
demoMRFclean.m: Demo of analysing a dirty picture
MaxFlow.m: Max-Flow Min-Cut algorithm (Ford-Fulkerson)
binaryMRFmap.m: Optimising a binary Markov network

28.13 Exercises

Exercise 28.1. The file p.mat contains a distribution p(x, y, z) on ternary state variables. Using BRML-

toolbox, find the best approximation q(x, y)q(z) that minimises the Kullback-Leibler divergence KL(q|p)
and state the value of the minimal Kullback-Leibler divergence for the optimal q.

Exercise 28.2. Consider the pairwise Markov network defined on a 2 × 2 lattice, as given in pMRF.mat.
Using BRMLtoolbox,

1. Find the optimal fully factorised approximation
∏4
i=1 q

BP
i by loopy belief propagation, based on the

factor graph formalism.

2. Find the optimal fully factorised approximation
∏4
i=1 q

MF
i by solving the variational mean field equa-

tions.

3. By pure enumeration, compute the exact marginals pi.

4. Averaged over all 4 variables, compute the mean expected deviation in the marginals

1

4

4∑
i=1

1

2

2∑
j=1

|qi(x = j)− pi(x = j)|

for both the BP and MF approximations, and comment on your results.

Exercise 28.3. In LoopyBP.m the message schedule is chosen at random. Modify the routine to choose a
schedule using a forward-reverse elimination sequence on a random spanning tree.

Exercise 28.4 (Double Integration Bounds). Consider a bound

f(x) ≥ g(x) (28.13.1)

Then for

f̃(x) ≡
∫ x

a
f(x)dx, g̃(x) ≡

∫ x

a
g(x)dx (28.13.2)

show that:
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1. f̃(x) ≥ g̃(x), for x ≥ a

2. f̂(x) ≥ ĝ(x) for all x, where

f̂(x) ≡
∫ x

a
f̃(x)dx ĝ(x) ≡

∫ x

a
g̃(x)dx (28.13.3)

The significance is that this double integration (or summation in the case of discrete variables) is a general
procedure for generating a new bound from an existing bound [186].

Exercise 28.5. This question concerns deriving both the standard mean field bound and more powerful lower
bounds for the Boltzmann machine.

1. Starting from

ex ≥ 0 (28.13.4)

and using the double integration procedure, show that

ex ≥ ea(1 + x− a)

2. By replacing x→ sTWs for s ∈ {0, 1}D, and a→ hTs+θ derive a bound on the partition function of
a Boltzmann machine

Z =
∑

s

es
TWs (28.13.5)

3. Show that this bound is equivalent to a naive mean field bound on the partition function. Hint: optimise
with respect to θ first.

4. Discuss how one can generate tighter bounds on the partition function of a Boltzmann distribution by
further application of the double integration procedure.

Exercise 28.6. Consider a pairwise Markov network

p(x) =
1

Z
ex

TWx+bTx (28.13.6)

for symmetric W. Consider the decomposition

W =
∑
i

qiWi, i = 1, . . . , I (28.13.7)

where 0 ≤ qi ≤ 1 and
∑

i qi = 1, and the graph corresponding to each matrix Wi is a tree. Explain how to
form an upper bound on the normalisation Z and discuss a naive method to find the tightest upper bound.
Hint: Consider 〈ex〉 ≥ e〈x〉. See also [307].

Exercise 28.7. Derive Linkser’s bound on the Mutual Information, equation (28.6.13).

Exercise 28.8. Consider the average of a positive function f(x) with respect to a distribution p(x)

J = log

∫
x
p(x)f(x) (28.13.8)

where f(x) ≥ 0. The simplest version of Jensen’s inequality states that

J ≥
∫
x
p(x) log f(x) (28.13.9)

1. By considering a distribution r(x) ∝ p(x)f(x), and KL(q|r), for some variational distribution q(x),
show that

J ≥ −KL(q(x)|p(x)) + 〈log f(x)〉q(x) (28.13.10)

The bound saturates when q(x) ∝ p(x)f(x). This shows that if we wish to approximate the average J ,
the optimal choice for the approximating distribution q(x) depends on both the distribution p(x) and
integrand f(x).
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2. Furthermore, show that

J ≥ −KL(q(x)|p(x))−KL(q(x)|f(x))−H(q(x)) (28.13.11)

where H(q(x)) is the entropy of q(x). The first term encourages q to be close to p. The second
encourages q to be close to f , and the third encourages q to be sharply peaked.

Exercise 28.9. For a Markov network defined over D binary variables xi ∈ {0, 1}, i = 1, . . . , D, we define

p(x) =
1

Z
ex

TWx (28.13.12)

show that

p(xi) =
Z\i

Z
(28.13.13)

where

Z\i ≡
∑

x1,...,xi−1,xi+1,...,xD

ex
TWx (28.13.14)

and explain why a bound on the marginal p(xi) requires both upper and lower bounds on partition functions
Z.

Exercise 28.10. Consider the model in example(28.2). Implement a structured EP approximation based
on replacing the observation factors p(vt|ht) by terms of the form ct exp

(
−1

2hT
t Atht + hT

t bt
)
.

Exercise 28.11. Consider a directed graph such that the capacity of an edge x→ y is c(x, y) ≥ 0. The flow
on an edge f(x, y) ≥ 0 must not exceed the capacity of the edge. The aim is to maximise the flow from a
defined source node s to a defined sink node t. In addition flow must be conserved such that for any node
other than the source or sink (y 6= s, y 6= t),∑

x

f(x, y) =
∑
x

f(y, x) (28.13.15)

A cut is defined as a partition of the nodes into two non-overlapping sets S and T such that s is in S and
t in T . Show that:

1. The net flow from s to t, val(f) is the same as the net flow from S to T :

val(f) =
∑

x∈S,y∈T
f(x, y)−

∑
y∈T ,x∈S

f(y, x) (28.13.16)

2. val(f) ≤∑x∈S,y∈T f(x, y) namely that the flow is upper bounded by the capacity of the cut.

The max-flow-min-cut theorem further states that the maximal flow is actually equal to the capacity of the
cut.

Exercise 28.12 (Potts to Ising translation). Consider the function E(x) defined on a set of multistate
variables dom(xi) = {0, 1, 2, . . . , S},

E(x) =
∑
i∼j

wijI [xi = xj ] +
∑
i

ciI
[
xi = x0

i

]
(28.13.17)

where wij > 0 and both the pixel states x0
i and ci are known. Our interest is to find an approximate

maximisation of E(x). Using the restricted parameterisation

xi = siα+ (1− si)xoldi (28.13.18)

where si ∈ {0, 1} and for a given α ∈ {0, 1, 2, . . . , N}, show how the maximisation of E(x) is equivalent to
maximising Ẽ(s) over the binary variables s, where

Ẽ(s) =
∑
i∼j

w′ijI [si = sj ] +
∑
i

c′isi + const. (28.13.19)

for w′ij > 0. This new problem is of the form of an attractive binary Markov network which can be solved
exactly using the graph cuts procedure.
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Exercise 28.13. Consider an approximating distribution in the exponential family,

q(x) =
1

Z(φ)
eφ

Tg(x) (28.13.20)

We wish to use q(x) to approximate a distribution p(x) using the KL divergence KL(p|q).

1. Show that optimally

〈g(x)〉p(x) = 〈g(x)〉q(x) (28.13.21)

2. Show that a Gaussian can be written in the exponential form

N
(
x µ, σ2

)
=

1

Z(φ)
eφ

Tg(x) (28.13.22)

where g1(x) = x, g2(x) = x2 for suitably chosen φ.

3. Hence show that the optimal Gaussian fit N
(
x µ, σ2

)
to any distribution, in the minimal KL(p|q)

sense, matches the moments:

µ = 〈x〉p(x) , σ2 =
〈
x2
〉
p(x)
− 〈x〉2p(x) (28.13.23)

Exercise 28.14. For a pairwise binary Markov network, p, with partition function

Z(w, b) =
∑
x

e
∑
i,j wijxixj+

∑
i bixi (28.13.24)

show that the mean 〈xi〉p can be computed using a generating function approach

d

dbi
logZ(w, b) =

1

Z(w, b)

∑
x

xie
∑
i∼j wijxixj+

∑
i bixi = 〈xi〉p (28.13.25)

and that similarly the covariance is given by

〈xixj〉p − 〈xi〉p 〈xj〉p =
d2

dbidbj
logZ(w, b) (28.13.26)

By replacing logZ(w, b) by the mean field bound B(α) in equation (28.4.13), show that the approximate
mean and variance given by the naive mean field theory is equivalent to those obtained on replacing logZ
by the lower bound in the above generating function.

Exercise 28.15. The naive mean field theory applied to a pairwise Markov network

p(x) ∝ e
∑
i,j wijxixj+

∑
i bixi (28.13.27)

dom(xi) = {0, 1}, gives a factorised approximation q(x) =
∏
i q(xi), based on minimising KL(q|p). Using

this we can approximate

〈xixj〉p ≈ 〈xi〉q 〈xj〉q , i 6= j (28.13.28)

To produce a better, non-factorised approximation to 〈xixj〉p we could fit a non-factorised q. The linear-
response method[166] may also be used, based on a perturbation expansion of the free energy. Alternatively,
show that

〈xixj〉p = p(xi = 1, xj = 1) = p(xi = 1|xj = 1)p(xj = 1) (28.13.29)

Explain how this can be used to form an improved non-factorised approximation to 〈xixj〉p.

Exercise 28.16. Derive the EP updates equation (28.8.8) and equation (28.8.9).
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Exercise 28.17. Consider fitting a univariate Gaussian q(x) = N
(
x µ, σ2

)
to a distribution p(x) by min-

imising KL(q|p) with respect to µ, σ2.

1. Show that, provided all quantities are well defined, the optimal variance and mean of the approximating
Gaussian satisfy the implicit equations

σ2 = − 1〈
d2

dx2
log p(x)

〉
q(x)

,

〈
d

dx
log p(x)

〉
q(x)

= 0 (28.13.30)

2. Hence relate the optimal variance to the maximal and minimal ‘local curvature’ of p(x):

− 1

maxx
d2

dx2
log p(x)

≤ σ2 ≤ − 1

minx
d2

dx2
log p(x)

(28.13.31)

3. Consider a distribution p(x) that is a mixture of well-separated Gaussians, p(x) =
∑

i piN
(
x µi, σ

2
i

)
.

Show that, to a good approximation, the optimal choice is to set the mean of the approximating distri-
bution to one of the components, µ = µi. Show furthermore that

σ2
min . σ

2 . σ2
max (28.13.32)

where σ2
min, σ2

max are the minimal and maximal variances of the Gaussian components of p(x), and
explain therefore why the optimal variance σ2 will be smaller than the variance of p(x).
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CHAPTER 29

Background Mathematics

29.1 Linear Algebra

29.1.1 Vector algebra

Let x denote the n-dimensional column vector with components
x1

x2
...
xn


The vector with all elements equal to 1 is written 1, and similarly the vector with all zero values is written
0.

Definition 29.1 (scalar product). The scalar product w · x is defined as:

w · x =
n∑
i=1

wixi = wTx (29.1.1)

The length of a vector is denoted |x|, the squared length is given by

|x|2 = xTx = x2 = x2
1 + x2

2 + · · ·+ x2
n (29.1.2)

A unit vector x has |x| = 1. The scalar product has a natural geometric interpretation as:

w · x = |w| |x| cos(θ) (29.1.3)

where θ is the angle between the two vectors. Thus if the lengths of two vectors are fixed their inner product
is largest when θ = 0, whereupon one vector is a constant multiple of the other. If the scalar product
xTy = 0, then x and y are orthogonal (they are at right angles to each other). A set of vectors orthonormal
if they are mutually orthogonal and have unit length.

Definition 29.2 (Linear dependence). A set of vectors x1, . . . ,xn is linearly dependent if there exists a
vector xj that can be expressed as a linear combination of the other vectors. If the only solution to

n∑
i=1

αix
i = 0 (29.1.4)

is for all αi = 0, i = 1, . . . , n, the vectors x1, . . . ,xn are linearly independent.
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e*

e

β

αa

e

e*

a Figure 29.1: Resolving a vector a into components along the orthogonal
directions e and e∗. The projection of a onto these two directions are
lengths α and β along the directions e and e∗.

29.1.2 The scalar product as a projection

Suppose that we wish to resolve the vector a into its components along the orthogonal directions specified
by the unit vectors e and e∗, see fig(29.1). That is |e| = |e|∗ = 1 and e · e∗ = 0. We are required to find the
scalar values α and β such that

a = αe + βe∗ (29.1.5)

From this we obtain

a · e = αe · e + βe∗ · e, a · e∗ = αe · e∗ + βe∗ · e∗ (29.1.6)

From the orthogonality and unit lengths of the vectors e and e∗, this becomes simply

a · e = α, a · e∗ = β (29.1.7)

This means that we can write the vector a in terms of the orthonormal components e and e∗ as

a = (a · e) e + (a · e∗) e∗ (29.1.8)

The scalar product between a and e projects the vector a onto the (unit) direction e. The projection of a
vector a onto a direction specified by general f is a·f

|f |2 f .

29.1.3 Lines in space

A line in 2 (or more) dimensions can be specified as follows. The vector of any point along the line is given,
for some s, by the equation

p = a + su, s ∈ R. (29.1.9)

where u is parallel to the line, and the line passes through the point a, see fig(29.2). An alternative
specification can be given by realising that all vectors along the line are orthogonal to the normal of the
line, n (u and n are orthonormal). That is

(p− a) · n = 0⇔ p · n = a · n (29.1.10)

If the vector n is of unit length, the right hand side of the above represents the shortest distance from the
origin to the line, drawn by the dashed line in fig(29.2) (since this is the projection of a onto the normal
direction).

29.1.4 Planes and hyperplanes

To define a two-dimensional plane (in arbitrary dimensional space) one may specify two vectors u and v that
lie in the plane (they need not be mutually orthogonal), and a position vector a in the plane, see fig(29.3).
Any vector p in the plane can then be written as

p = a + su + tv, (s, t) ∈ R. (29.1.11)

a p

n u Figure 29.2: A line can be specified by some position vector on
the line, a, and a unit vector along the direction of the line, u.
In 2 dimensions, there is a unique direction, n, perpendicular to
the line. In three dimensions, the vectors perpendicular to the
direction of the line lie in a plane, whose normal vector is in the
direction of the line, u.
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a

nu

vp
Figure 29.3: A plane can be specified by a point in the
plane, a and two, non-parallel directions in the plane,
u and v. The normal to the plane is unique, and in
the same direction as the directed line from the origin
to the nearest point on the plane.

An alternative definition is given by considering that any vector within the plane must be orthogonal to the
normal of the plane n.

(p− a) · n = 0⇔ p · n = a · n (29.1.12)

The right hand side of the above represents the shortest distance from the origin to the plane, drawn by
the dashed line in fig(29.3). The advantage of this representation is that it has the same form as a line.
Indeed, this representation of (hyper)planes is independent of the dimension of the space. In addition, only
two quantities need to be defined – the normal to the plane and the distance from the origin to the plane.

29.1.5 Matrices

An m × n matrix A is a collection of scalar values arranged in a rectangle of m rows and n columns. A
vector can be considered as an n × 1 matrix. The i, j element of matrix A can be written Aij or more
conventionally aij . Where more clarity is required, one may write [A]ij .

Definition 29.3 (Matrix addition). For two matrices A and B of the same size,

[A + B]ij = [A]ij + [B]ij (29.1.13)

Definition 29.4 (Matrix multiplication). For an l by n matrix A and an n by m matrix B, the product
AB is the l by m matrix with elements

[AB]ik =
n∑
j=1

[A]ij [B]jk ; i = 1, . . . , l k = 1, . . . ,m . (29.1.14)

Note that in general BA 6= AB. When BA = AB we say that they A and B commute. The matrix I is
the identity matrix , necessarily square, with 1’s on the diagonal and 0’s everywhere else. For clarity we may
also write Im for a square m ×m identity matrix. Then for an m × n matrix A, ImA = AIn = A. The
identity matrix has elements [I]ij = δij given by the Kronecker delta:

δij ≡
{

1 i = j
0 i 6= j

(29.1.15)

Definition 29.5 (Transpose). The transpose BT of the n by m matrix B is the m by n matrix with
components[

BT
]
kj

= Bjk ; k = 1, . . . ,m j = 1, . . . , n . (29.1.16)

(
BT
)T

= B and (AB)T = BTAT. If the shapes of the matrices A,B and C are such that it makes sense to
calculate the product ABC, then

(ABC)T = CTBTAT (29.1.17)
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A square matrix A is symmetric if AT = A. A square matrix is called Hermitian if A = AT∗ where ∗

denotes the complex conjugate operator. For Hermitian matrices, the eigenvectors form an orthogonal set
with real eigenvalues.

Definition 29.6 (Trace).

trace (A) =
∑
i

Aii =
∑
i

λi (29.1.18)

where λi are the eigenvalues of A.

29.1.6 Linear transformations

If we define ui to be the vector with zeros everywhere expect for the ith entry, then a vector can be expressed
as x =

∑
i xiui. Then a linear transformation of x is given by

Ax =
∑
i

xiAui =
∑
i

xiai (29.1.19)

where ai is the ith column of A.

Rotations

The unit vectors (1, 0)T and (0, 1)T under rotation by θ radians transform to the vectors(
cos θ
sin θ

)
,

(
− sin θ
cos θ

)
(29.1.20)

which thus form the columns of the rotation matrix:

R =

(
cos θ − sin θ
sin θ cos θ

)
(29.1.21)

Multiplying a vector by R, Rx, rotates the vector through θ radians.

29.1.7 Determinants

Definition 29.7 (Determinant). For a square matrix A, the determinant is the volume of the transformation
of the matrix A (up to a sign change). That is, we take a hypercube of unit volume and map each vertex
under the transformation. The volume of the resulting object is defined as the determinant. Writing
[A]ij = aij ,

det

(
a11 a12

a21 a22

)
= a11a22 − a21a12 (29.1.22)

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11 (a22a33 − a23a32)− a12 (a21a33 − a31a23) + a13 (a21a32 − a31a22) (29.1.23)

The determinant in the (3× 3) case has the form

a11det

(
a22 a23

a32 a33

)
− a12det

(
a21 a23

a31 a33

)
+ a13det

(
a21 a22

a31 a32

)
(29.1.24)

The determinant of the (3× 3) matrix A is given by the sum of terms (−1)i+1a1idet (Ai) where Ai is
the (2× 2) matrix formed from A by removing the ith row and column. This form of the determinant

598 DRAFT November 21, 2011



Linear Algebra

generalises to any dimension. That is, we can define the determinant recursively as an expansion along the
top row of determinants of reduced matrices. The absolute value of the determinant is the volume of the
transformation.

det
(
AT
)

= det (A) (29.1.25)

For square matrices A and B of equal dimensions,

det (AB) = det (A) det (B) , det (I) = 1⇒ det
(
A−1

)
= 1/det (A) (29.1.26)

Definition 29.8 (Orthogonal matrix). A square matrix A is orthogonal if AAT = I = ATA. From the
properties of the determinant, we see therefore that an orthogonal matrix has determinant ±1 and hence
corresponds to a volume preserving transformation.

Definition 29.9 (Matrix rank). For an m× n matrix X the rank of X is the maximum number of linearly
independent columns (or equivalently rows). The matrix is full rank if it has rank equal to min(m,n) –
otherwise the matrix is rank deficient. A square matrix that is rank deficient is singular.

29.1.8 Matrix inversion

Definition 29.10 (Matrix inversion). For a square matrix A, its inverse satisfies

A−1A = I = AA−1 (29.1.27)

It is not always possible to find a matrix A−1 such that A−1A = I, in which case A is singular . Geo-
metrically, singular matrices correspond to projections: if we transform each of the vertices v of a binary
hypercube using Av, the volume of the transformed hypercube is zero. Hence if det (A) = 0, the matrix A is
a form of projection or ‘collapse’ which means A is singular. Given a vector y and a singular transformation,
A, one cannot uniquely identify a vector x for which y = Ax. Provided the inverses exist

(AB)−1 = B−1A−1 (29.1.28)

For a non-square matrix A such that AAT is invertible, then the right pseudo inverse, defined as

A† = AT
(
AAT

)−1
(29.1.29)

satisfies AA† = I. The left pseudo inverse is given by

A† =
(
ATA

)−1
AT (29.1.30)

and satisfies A†A = I.

Definition 29.11 (Matrix inversion lemma (Woodbury formula)). Provided the appropriate inverses exist:

(
A + UVT

)−1
= A−1 −A−1U

(
I + VTA−1U

)−1
VTA−1 (29.1.31)

det
(
A + UVT

)
= det (A) det

(
I + VTA−1U

)
(29.1.32)
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Definition 29.12 (Block matrix inversion). For matrices A,B,C,D, provided the appropriate inverses
exist: [

A B
C D

]−1

=

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1C

(
A−BD−1C

)−1
BD−1

]
(29.1.33)

29.1.9 Computing the matrix inverse

For a 2× 2 matrix, A =

(
a b
c d

)
, the inverse matrix has elements

1

ad− bc

(
d −b
−c a

)
= A−1 (29.1.34)

The quantity ad − bc is the determinant of A. There are many ways to compute the inverse of a general
matrix, and we refer the reader to more specialised texts, such as [279, 129].

If one wants to solve only a linear system, Ax = b, algebraically, the solution is given by x = A−1b. This
would suggest that one needs to compute the n×n matrix A−1. However, in practice, A−1 is not explicitly
required – only x is needed. This can be obtained more rapidly and with greater numerical precision using
Gaussian elimination[279, 129].

29.1.10 Eigenvalues and eigenvectors

The eigenvectors of a matrix correspond to a natural coordinate system in which the geometric transforma-
tion represented by A can be most easily understood.

Definition 29.13 (Eigenvalues and Eigenvectors). For an n× n square matrix A, e is an eigenvector of A
with eigenvalue λ if

Ae = λe (29.1.35)

Geometrically, the eigenvectors are special directions such that the effect of the transformation A along a
direction e is simply to scale the vector e. For a rotation matrix R in general there will be no direction
preserved under the rotation so that the eigenvalues and eigenvectors are complex valued (which is why the
Fourier representation, which corresponds to representation in a rotated basis, is necessarily complex).

For an (n× n) dimensional matrix, there are (including repetitions) n eigenvalues, each with a corresponding
eigenvector. We can reform equation (29.1.35) as

(A− λI) e = 0 (29.1.36)

We can write equation (29.1.36) as Be = 0, where B ≡ A − λI. If B has an inverse, then a solution is
e = B−10 = 0, which trivially satisfies the eigen-equation. For any non-trivial solution to the problem
Be = 0, we therefore need B to be non-invertible. This is equivalent to the condition that B has zero
determinant. Hence λ is an eigenvalue of A if

det (A− λI) = 0 (29.1.37)

This is known as the characteristic equation. This determinant equation will be a polynomial in λ of degree
n and the resulting equation is known as the characteristic polynomial. Once we have found an eigenvalue,
the corresponding eigenvector can be found by substituting this value for λ in equation (29.1.35) and solving
the linear equations for e. It may be that for an eigenvalue λ the eigenvector is not unique and there is a
space of corresponding vectors. An important relation between the determinant and the eigenvalues of a
matrix is

det (A) =

n∏
i=1

λi (29.1.38)
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Hence a matrix is singular if it has a zero eigenvalue. The trace of a matrix can be expressed as

trace (A) =
∑
i

λi (29.1.39)

For a real symmetric matrix A = AT, and eigenvectors ei, ej , then (ei)Tej = 0 if the eigenvalues λi and λj
are different. This can be shown by considering:

Aei = λie
i ⇒ (ej)TAei = λi(e

j)Tei (29.1.40)

Since A is symmetric, then

((ej)TA)ei = (Aej)Tei = λj(e
j)Tei ⇒ λi(e

j)Tei = λj(e
j)Tei (29.1.41)

If λi 6= λj , this condition can be satisfied only if (ej)Tei = 0, namely that the eigenvectors are orthogonal.

Definition 29.14 (Trace-Log formula). For a positive definite matrix A,

trace (log A) ≡ log det (A) (29.1.42)

Note that the above logarithm of a matrix is not the element-wise logarithm. In MATLAB the required
function is logm. In general for an analytic function f(x), f(M) is defined via the power-series expansion
of the function. On the right, since det (A) is a scalar, the logarithm is the standard logarithm of a scalar.

29.1.11 Matrix decompositions

Definition 29.15 (Spectral decomposition). A real n×n symmetric matrix A has an eigen-decomposition

A =
n∑
i=1

λieie
T
i (29.1.43)

where λi is the eigenvalue of eigenvector ei and the eigenvectors form an orthogonal set,(
ei
)T

ej = δij
(
ei
)T

ei (29.1.44)

In matrix notation

A = EΛET (29.1.45)

where E =
[
e1, . . . , en

]
is the matrix of eigenvectors and Λ the corresponding diagonal eigenvalue matrix.

More generally, for a square non-symmetric diagonalisable A we can write

A = EΛE−1 (29.1.46)

Definition 29.16 (Singular Value Decomposition). The SVD decomposition of a n× p matrix X is

X = USVT (29.1.47)

where dim U = n× n with UTU = In. Also dim V = p× p with VTV = Ip.

The matrix S has dim S = n× p with zeros everywhere except on the diagonal entries. The singular values
are the diagonal entries [S]ii and are non-negative. The singular values are ordered so that the upper The left
diagonal element of S contains the largest singular value and Sii ≥ Sjj for i < j. Assuming n < p (otherwise
transpose X), the computational complexity of computing the SVD is O

(
4n2p+ 8np2 + 9n3

)
[129]. For the

‘thin’ SVD with n > p only the first p columns of U and S are computed giving a decomposition

X = UpSpV
T (29.1.48)

where Up has dimension n× p, and Sp is the p× p diagonal matrix of singular values.
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Definition 29.17 (Quadratic form).

xTAx + xTb (29.1.49)

Definition 29.18 (Positive definite matrix). A symmetric matrix A with the property that xTAx ≥ 0 for
any vector x is called positive semidefinite. A symmetric matrix A, with the property that xTAx > 0 for
any vector x 6= 0 is called positive definite. A positive definite matrix has full rank and is thus invertible.
Using the eigen-decomposition of A,

xTAx =
∑
i

λix
Tei(ei)Tx =

∑
i

λi

(
xTei

)2
(29.1.50)

which is greater than zero if and only if all the eigenvalues are positive. Hence A is positive definite if and
only if all its eigenvalues are positive.

Eigenfunctions∫
x
K(x′, x)φa(x) = λaφa(x

′) (29.1.51)

The eigenfunctions of a real symmetric kernel, K(x′, x) = K(x, x′) are orthogonal:∫
x
φa(x)φ∗b(x) = δab (29.1.52)

where φ∗(x) is the complex conjugate of φ(x). A kernel has a decomposition (provided the eigenvalues are
countable)

K(xi, xj) =
∑
µ

λµφµ(xi)φ∗µ(xj) (29.1.53)

Then∑
i,j

yiK(xi, xj)yj =
∑
i,j,µ

λµyiφµ(xi)φ∗µ(xj)yj =
∑
µ

λµ

(∑
i

yiφµ(xi)

)
︸ ︷︷ ︸

zi

(∑
i

yiφ
∗
µ(xi)

)
︸ ︷︷ ︸

z∗i

(29.1.54)

which is greater than zero if the eigenvalues are all positive (since for complex z, zz∗ ≥ 0). If the eigenvalues
are uncountable the appropriate decomposition is

K(xi, xj) =

∫
λ(s)φ(xi, s)φ∗(xj , s)ds (29.1.55)

29.2 Multivariate Calculus

Definition 29.19 (Partial derivative). Consider a function of n variables, f(x1, x2, . . . , xn) ≡ f(x). The
partial derivative of f w.r.t. xi is defined as the following limit (when it exists)

∂f

∂xi
= lim

h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x)

h
(29.2.1)

The gradient vector of f is denoted ∇f or g:

∇f(x) ≡ g(x) ≡


∂f
∂x1
...
∂f
∂xn

 (29.2.2)
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x1

x2

f(x)

Figure 29.4: Interpreting the gradient. The ellipses are contours
of constant function value, f = const. At any point x, the gradi-
ent vector ∇f(x) points along the direction of maximal increase
of the function.

29.2.1 Interpreting the gradient vector

Consider a function f(x) that depends on a vector x. We are interested in how the function changes when
the vector x changes by a small amount : x → x + δ, where δ is a vector whose length is very small.
According to a Taylor expansion, the function f will change to

f (x + δ) = f(x) +
∑
i

δi
∂f

∂xi
+O

(
δ2
)

(29.2.3)

We can interpret the summation above as the scalar product between the vector ∇f with components
[∇f ]i = ∂f

∂xi
and δ.

f (x + δ) = f(x) + (∇f) · δ +O
(
δ2
)

(29.2.4)

The gradient points along the direction in which the function increases most rapidly. To see this, consider
a direction p̂ (a unit length vector). Then a displacement, δ units along this direction changes the function
value to

f(x + δp̂) ≈ f(x) + δ∇f(x) · p̂ (29.2.5)

The direction p̂ for which the function has the largest change is that which maximises the overlap

∇f(x) · p̂ = |∇f(x)||p̂| cos θ = |∇f(x)| cos θ (29.2.6)

where θ is the angle between p̂ and∇f(x). The overlap is maximised when θ = 0, giving p̂ = ∇f(x)/|∇f(x)|.
Hence, the direction along which the function changes the most rapidly is along ∇f(x).

29.2.2 Higher derivatives

The second derivative of an n-variable function is defined by

∂

∂xi

(
∂f

∂xj

)
i = 1, . . . , n; j = 1, . . . , n (29.2.7)

which is usually written

∂2f

∂xi∂xj
, i 6= j

∂2f

∂xi2
, i = j (29.2.8)

If the partial derivatives ∂2f/∂xi∂xj and ∂2f/∂xj∂xi exist then

∂2f/∂xi∂xj = ∂2f/∂xj∂xi . (29.2.9)

This is also denoted by ∇∇f . These n2 second partial derivatives are represented by a square, symmetric
matrix called the Hessian matrix of f(x).

Hf (x) =


∂2f
∂x12

. . . ∂2f
∂x1∂xn

...
...

∂2f
∂x1∂xn

. . . ∂2f
∂xn2

 (29.2.10)
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Definition 29.20 (Chain rule). Let each xj be parameterized by u1, . . . , um, i.e. xj = xj(u1, . . . , um).

∂f

∂uα
=

n∑
j=1

∂f

∂xj

∂xj
∂uα

(29.2.11)

or in vector notation

∂

∂uα
f(x(u)) = ∇fT(x(u))

∂x(u)

∂uα
(29.2.12)

Definition 29.21 (Directional derivative). Assume f is differentiable. We define the scalar directional
derivative (Dvf)(x∗) of f in a direction v at a point x∗. Let x = x∗ + hv, Then

(Dvf)(x∗) =
d

dh
f(x∗ + hv)

∣∣∣∣
h=0

=
∑
j

vj
∂f

∂xj

∣∣∣∣∣∣
x=x∗

= ∇fTv (29.2.13)

29.2.3 Matrix calculus

Definition 29.22 (Derivative of a matrix trace). For matrices A and B

∂

∂A
trace (AB) ≡ BT (29.2.14)

Definition 29.23 (Derivative of log det (A)).

∂ log det (A) = ∂trace (log A) = trace
(
A−1∂A

)
(29.2.15)

So that

∂

∂A
log det (A) = A−T (29.2.16)

Definition 29.24 (Derivative of a matrix inverse). For an invertible matrix A,

∂A−1 ≡ −A−T∂AA−1 (29.2.17)

29.3 Inequalities

29.3.1 Convexity

Definition 29.25 (Convex function). A function f(x) is defined as convex if for any x, y and 0 ≤ λ ≤ 1

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (29.3.1)

If −f(x) is convex, f(x) is called concave.

An intuitive picture is given by considering the quantity λx+ (1−λ)y. As we vary λ from 0 to 1, this traces
points between x (λ = 0) and y (λ = 1). Hence for λ = 0 we start at the point x, f(x) and as λ increase
trace a straight line towards the point y, f(y) at λ = 1. Convexity states that the function f always lies
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below this straight line. Geometrically this means that the function f(x) is always always non-decreasing.
Hence if d2f(x)/dx2 ≥ 0 the function is convex. As an example, the function log x is concave since its second
derivative is negative:

d

dx
log x =

1

x
,

d2

dx2
log x = − 1

x2
(29.3.2)

29.3.2 Jensen’s inequality

For a convex function, f(x), it follows directly from the definition of convexity that

f(〈x〉p(x)) ≤ 〈f(x)〉p(x) (29.3.3)

for any distribution p(x).

29.4 Optimisation

Definition 29.26 (Critical point). When all first-order partial derivatives at a point are zero (i.e. ∇f = 0)
then the point is said to be a stationary or critical point. A critical point can correspond to a minimum,
maximum or saddle point of the function.

There is a minimum of f at x∗ if f(x∗) ≤ f(x) for all x sufficiently close to x∗. This requires x∗ to be a
stationary point, ∇f(x∗) = 0. The Taylor expansion of f at the optimum is given by

f(x∗ + hv) = f(x∗) + h2vTHfv +O(h3) (29.4.1)

Thus the minimum condition requires that vTHfv ≥ 0, i.e. the Hessian is non-negative definite.

Definition 29.27 (Conditions for a minimum). Sufficient conditions for a minimum at x∗ are (i)∇f(x∗) = 0
and (ii) Hf (x∗) is positive definite.

For a quadratic function f(x) = 1
2xTAx− bTx + c, with symmetric A the condition ∇f(x∗) = 0 reads:

Ax∗ − b = 0 (29.4.2)

If A is invertible this equation has the unique solution x∗ = A−1b. If A is positive definite then x∗

corresponds to the minimum point.

29.5 Multivariate Optimisation

In most cases the optima of functions cannot be found by algebraic means alone and numerical techniques are
required. The search techniques that we consider here are iterative, i.e. we proceed towards the minimum x∗

by a sequence of steps. Perhaps the simplest approach to minimising a multivariate function f(x) is to break
the problem into a sequence of one-dimensional problems. By initialising the elements of x at random, one
then selects a component of x to update, keeping all others fixed. This coordinatewise optimisation decreases
the function via a sequence of one-dimensional minimisations. Whilst such a procedure is simple, it can be
inefficient in high-dimensions, particularly when there are strong dependencies between the components in
x. For this reason, it is useful to use gradient-based procedures that take the local geometry of the objective
into account. We will consider a general class of iterative gradient-based method for which, on the kth step,
we take a step of length αk in the direction pk,

xk+1 = xk + αkpk (29.5.1)
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Figure 29.5: Optimisation using line search along
steepest descent directions. Following the steepest
way downhill from a point (and continuing for a fi-
nite time in that direction) doesn’t always result in
the fastest way to get to the bottom.

29.5.1 Gradient descent with fixed stepsize

Locally, if we are at point xk, we can decrease f(x) by taking a step in the direction −g(x). To see why
gradient descent works, consider the general update

xk+1 = xk − α∇xf (29.5.2)

For small α we can expand f around xk using Taylor’s theorem:

f(xk + αkpk) ≈ f(xk)− α||∇xf || (29.5.3)

so that the change in f is ∆f = −α||∇xf ||2. If α is non-infinitesimal, it is always possible that we will
step over the true minimum. Making η very small guards against this, but means that the optimization
process will take a very long time to reach a minimum. A simple idea that can improve convergence of
gradient descent is to include at each iteration a proportion of the change from the previous iteration,
pk = −gk − βgk−1, where β is the momentum coefficient .

An unfortunate aspect of gradient descent is that the change in the function value depends on the coordinate
system. Consider a new coordinate system y = Mx for an invertible square matrix M. Define f̂(y) ≡
f(Mx). Then the change in the function f̂ under a gradient update is

∆f̂ ≡ f̂(y − α∇yf̂)− f̂(y) ≈ −α||∇yf̂ ||2 (29.5.4)

Since ∇yf̂ = M∇xf(x)

∆f̂ = −α∇xf(x)TMTM∇xf(x) (29.5.5)

which, except for an orthogonal M, is not equal to ∆f = −α||∇xf ||2.

29.5.2 Gradient descent with line searches

An extension to the idea of gradient descent is to choose the direction of steepest descent, as indicated
by the gradient g, but to calculate the value of the step to take which most reduces the value of f when
moving in that direction. This involves solving the one-dimensional problem of minimizing f(xk + αkgk)
with respect to αk, and is known as a line search. To find the optimal step size at the k-th step, we choose
αk to minimize f(xk + αkpk). So setting F (λ) = f(xk + λpk), at this step we solve the one-dimensional
minimization problem for F (λ). Thus our choice of αk = λ∗ will satisfy F ′(αk) = 0. Now

F ′(αk) =
d

dh
F (αk + h)|h=0 =

d

dh
f(xk + αkpk + hpk)|h=0

=
d

dh
f(xk+1 + hpk)|h=0 = (Dpkf)(xk+1) = ∇fT(xk+1)pk (29.5.6)

So F ′(αk) = 0 means the directional derivative in the search direction must vanish at the new point and
this gives condition 0 = gT

k+1pk. If the step size is chosen to reduce f as much as it can in that direction,
then no further decrease in E can be made by moving in that direction for the moment. Thus the next step
will have no component in that direction and will be at right angles to the previous just taken. This can
lead to zig-zag type behaviour in the optimisation.
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29.5.3 Minimising quadratic functions using line search

Consider minimising the quadratic function

f(x) =
1

2
xTAx− bTx + c (29.5.7)

where A is positive definite and symmetric. Although we know where the minimum of this simple function,
based on using linear algebra, we wish to use this function as a toy model for more complex functions. As we
‘zoom in’ to the minimum of a smooth function, it will increasingly appear quadratic. Hence at such small
scales, methods that work for the quadratic case should work in general smooth functions. If the general
function looks roughly quadratic on the larger scale, then these methods will also work well in that case.
One approach is to search along a particular direction p, and find a minimum along this direction. We can
then search for a deeper minimum by looking in different directions. That is, we can search firstly along a
line x + λp such that the function attains a minimum. This has solution,

λ =
(b−Ax) · p

pTAp
=
−∇f(x) · p

pTAp
(29.5.8)

How should we now choose the next line search direction pnew? It would seem sensible to choose successive
line search directions p according to pnew = −∇f(x), so that each time we minimise the function along
the line of steepest descent. However, this is generally not the optimal choice, see fig(29.5). If the matrix
A were diagonal, then the minimisation is straightforward and can be carried out independently for each
dimension. If we could therefore find an invertible matrix P with the property that PTAP is diagonal then
the solution is easy since for

f̂(x̂) =
1

2
x̂TPTAPx̂− bTPx̂ + c (29.5.9)

with x = Px̂, we can compute the minimum for each dimension of x̂ separately and then retransform to
find x∗ = Px̂∗. The columns of such a matrix P are called conjugate vectors.

Definition 29.28 (Conjugate vectors). The vectors pi, i = 1, . . . , k are called conjugate to the matrix A,
if and only if for i, j = 1, . . . , k and i 6= j:

pT
i Apj = 0 and pT

i Api > 0 . (29.5.10)

The two conditions guarantee that conjugate vectors are linearly independent: Assume that

0 =

k∑
j=1

αjpj =

i−1∑
j=1

αjpj + αipi +

k∑
j=i+1

αjpj (29.5.11)

Now multiplying from the left with pT
i A yields 0 = αip

T
i Api. So αi is zero since we know that pT

i Api > 0.
As we can make this argument for any i = 1, . . . , k, all of the αi must be zero.

29.5.4 Gram-Schmidt construction of conjugate vectors

Assume we already have k conjugate vectors p1, . . . ,pk and let v be a vector which is linearly independent
of p1, . . . ,pk. We then use a Gram-Schmidt procedure:

pk+1 = v −
k∑
j=1

pT
j Av

pT
j Apj

pj (29.5.12)

for which it is clear that the vectors p1, . . . ,pk+1 are conjugate if A is positive definite. We can construct n
conjugate vectors for a positive definite matrix in the following way: We start with n linearly independent
vectors u1, . . . ,un. We then set p1 = u1 and use (29.5.12) to compute p2 from p1 and v = u2. Next we set
v = u3 and compute p3 from p1,p2 and v. Continuing in this manner we obtain n conjugate vectors. Note
that at each stage of the procedure the vectors u1, . . . ,uk span the same subspace as the vectors p1, . . . ,pk.
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29.5.5 The conjugate vectors algorithm

Let us assume that when minimising f(x) = 1
2xTAx − bTx + c we first construct n vectors p1, . . . ,pn

conjugate to A which we use as our search directions. Using this our iterative solution takes the form

xk+1 = xk + αkpk . (29.5.13)

where at each step we choose αk by an exact line search with

αk = − pT
kgk

pT
kApk

. (29.5.14)

This conjugate vectors algorithm has the geometrical interpretation that not only is the directional derivative
zero at the new point along the direction pk, it is zero along all the previous search directions p1, . . . ,pk,
known as the Luenberger expanding subspace theorem. In particular ∇fT(xn+1)pi = 0, for i = 1, . . . , n;
that is

∇fT(xn+1)(p1,p2, . . . ,pn) = 0 . (29.5.15)

The square matrix P = (p1,p2, . . .pn) is invertible since the pi are conjugate, so ∇f(xn+1) = 0 and the
point xn+1 is therefore the minimum x∗ of the quadratic function f . So in contrast to gradient descent, for
a quadratic function the conjugate vectors algorithm converges in a finite number of steps.

29.5.6 The conjugate gradients algorithm

The conjugate gradients algorithm is a special case of the conjugate vectors algorithm in which we construct
the conjugate vectors on-the-fly. After k-steps of the conjugate vectors algorithm we need to construct a
vector pk+1 which is conjugate to p1, . . . ,pk. In the conjugate gradients algorithm one makes the special
choice v = −∇f(xk+1). The gradient at the new point xk+1 is orthogonal to pi, i = 1, . . . , k, so ∇f(xk+1)
is linearly independent of p1, . . . ,pk and a valid choice for v, unless ∇f(xk+1) = 0. In the latter case xk+1

is our minimum and the algorithm terminates. Using the notation gk = ∇f(xk), the equation for the new
search direction given by the Gram-Schmidt procedure equation (29.5.12) is:

pk+1 = −gk+1 +

k∑
i=1

pT
i Agk+1

pT
i Api

pi . (29.5.16)

Since gk+1 is orthogonal to pi, i = 1, . . . , k, we have pT
k+1gk+1 = −gT

k+1gk+1. So αk+1 can be written as

αk+1 =
gT
k+1gk+1

pT
k+1Apk+1

, (29.5.17)

and in particular αk+1 6= 0. We now want to show that because we have been using the conjugate gradients
algorithm at the previous steps as well, in equation (29.5.16) all terms but the last in the sum over i vanish.
We shall assume that k > 0 since in the first step (k = 0) we just set p1 = −g1. First note that

gi+1 − gi = Axi+1 − b− (Axi − b) = A(xi+1 − xi) = αiApi (29.5.18)

and since αi 6= 0, then Api = (gi+1 − gi)/αi. So in equation (29.5.16):

pT
i Agk+1 = gT

k+1Api = gT
k+1(gi+1 − gi)/αi = (gT

k+1gi+1 − gT
k+1gi)/αi (29.5.19)

Since the pi were obtained by applying the Gram-Schmidt procedure to the gradients gi, we have gT
k+1pi = 0

and gT
k+1gi = 0 for i = 1, . . . , k. This shows that

pT
i Agk+1 = (gT

k+1gi+1 − gT
k+1gi)/αi =

{
0 if 1 ≤ i < k
gT
k+1gk+1/αk if i = k

(29.5.20)

Hence equation (29.5.16) simplifies to

pk+1 = −gk+1 +
gT
k+1gk+1/αk

pT
kApk

pk . (29.5.21)
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Algorithm 29.1 Conjugate Gradients for minimising a function f(x)

1: k = 1
2: Choose x1.
3: p1 = −g1

4: while gk 6= 0 do
5: αk = argmin

αk

f(xk + αkpk) . Line Search

6: xk+1 := xk + αkpk
7: βk := gT

k+1gk+1/(g
T
k gk)

8: pk+1 := −gk+1 + βkpk
9: k = k + 1

10: end while

This can be brought into an even simpler form by applying equation (29.5.17) to αk:

pk+1 = −gk+1 +
gT
k+1gk+1

pT
kApk

pT
kApk

gT
k gk

pk = −gk+1 +
gT
k+1gk+1

gT
k gk

pk (29.5.22)

We shall write this in the form

pk+1 = −gk+1 + βkpk where βk =
gT
k+1gk+1

gT
k gk

. (29.5.23)

The formula (29.5.23) for βk is due to Fletcher and Reeves[244]. Since the gradients are orthogonal, βk can
also be written as

βk =
gT
k+1(gk+1 − gk)

gT
k gk

, (29.5.24)

this is the Polak-Ribière formula. The choice between the two expressions for βk can be of some importance
if f is not quadratic with the Polak-Ribière formula the most commonly used. The important point here
is that we derived the above algorithm for the particular case of minimising a quadratic function f . By
writing the algorithm however only in terms of f and its gradients, we make no explicit reference to the
fact that f is quadratic. This means that we can therefore apply this algorithm to non-quadratic functions
as well. The more similar the function f is to a quadratic function, the more confident we can be that the
algorithm will find the minimum.

29.5.7 Newton’s method

Consider a function f(x) that we wish to find the minimum of. A Taylor expansion up to second order gives

f(x + ∆) = f(x) + ∆T∇f +
1

2
∆THf∆ +O(|∆|3) (29.5.25)

The matrix Hf is the Hessian. Differentiating the right hand side with respect to ∆ (or, equivalently,
completing the square), we find that the right hand side (ignoring the O(|∆|3) term) has its lowest value
when

∇f = −Hf∆⇒∆ = −H−1
f ∇f (29.5.26)

Hence, an optimisation routine to minimise f is given by the Newton update

xk+1 = xk −H−1
f ∇f (29.5.27)

A benefit of Newton method over gradient descent is that the decrease in the objective function is invariant
under a linear change of co-ordinates, y = Mx. Defining f̂(y) ≡ f(Mx), the change in the function f̂ under
a Newton update is

∇yf̂
TH−1

f̂
∇yf̂ (29.5.28)
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Algorithm 29.2 Quasi-Newton for minimising a function f(x)

1: k = 1
2: Choose x1

3: H̃1 = I
4: while gk 6= 0 do
5: pk = −H̃kgk
6: αk = argmin

αk

f(xk + αkpk) . Line Search

7: xk+1 := xk + αkpk
8: sk = xk+1 − xk, yk = gk+1 − gk, and update H̃k+1

9: k = k + 1
10: end while

Since Hf̂ = MHfM
T, and ∇yf̂ = MT∇xf this change is equal to

∇xf
TH−1

f ∇xf (29.5.29)

so that the change in the function is independent (up to second order) of a linear coordinate transformation.

Quasi-Newton methods

For large-scale problems both storing the Hessian and solving the resulting linear system is computationally
demanding, especially if the matrix is close to singular. An alternative is to set up the iteration

xk+1 = xk − αkSkgk. (29.5.30)

For Sk = A−1 we have Newton’s method, while if Sk = I we have steepest descent. In general it would
seem to be a good idea to choose Sk to be an approximation to the inverse Hessian. Also note that it is
important that Sk be positive definite so that for small αk we obtain a descent method. The idea behind
most quasi-Newton methods is to try to construct an approximate inverse Hessian H̃k using information
gathered as the descent progresses, and to set Sk = H̃k. As we have seen, for a quadratic optimization
problem we have the relationship

gk+1 − gk = A(xk+1 − xk) (29.5.31)

Defining

sk = xk+1 − xk and yk = gk+1 − gk (29.5.32)

we see that equation 29.5.31 becomes

yk = Ask (29.5.33)

It is therefore reasonable to demand that

H̃k+1yi = si 1 ≤ i ≤ k (29.5.34)

After n linearly independent steps we would then have H̃n+1 = A−1. For k < n there are an infinity of
solutions for H̃k+1 satisfying equation 29.5.34. A popular choice is the Broyden-Fletcher-Goldfarb-Shanno
(or BFGS) update, given by

H̃k+1 = H̃k +

(
1 +

yT
k H̃kyk

yT
k sk

)
sks

T
k

sT
kyk
− sky

T
k H̃k + H̃kyks

T
k

sT
kyk

(29.5.35)

This is a rank-2 correction to H̃k constructed from the vectors sk and H̃kyk. The direction vectors, pk =
−H̃kgk, produced by the algorithm obey

pT
i Apj = 0 1 ≤ i < j ≤ k, H̃k+1Api = pi 1 ≤ i ≤ k (29.5.36)
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The storage requirements for Quasi Newton methods scale quadratically with the number of variables,
and hence these methods tend to be used only for smaller problems. Limited memory BFGS reduces the
storage by only using the l latest updates in computing the approximate Hessian inverse, equation (29.5.35).
In contrast, the memory requirements for pure Conjugate Gradient methods scale only linearly with the
dimension of x. As before, although the algorithm was derived with a quadratic function in mind, the final
form of the algorithm depends only on f and its gradients and may therefore be applied to non-quadratic
functions f .

29.6 Constrained Optimisation using Lagrange Multipliers

Consider first the problem of minimising f(x) subject to a single constraint c(x) = 0. A formal treatment
of this problem is beyond the scope of these notes and requires understanding the conditions under which
the optimum can be found[48]. As an informal argument, however, imagine that we have already identified
an x that satisfies the constraint, that is c(x) = 0. How can we tell if this x minimises the function f? We
are only allowed to search for lower function values around this x in directions which are consistent with
the constraint. For a small change δ, the change in the constraint is,

c(x + δ) ≈ c(x) + δ · ∇c(x) (29.6.1)

Let us also explore the change in f along a direction δ where δ · ∇c(x) = 0,

f(x + δ) ≈ f(x) +∇f(x) · δ. (29.6.2)

We are looking for a point x and direction δ such that the change in f and c is minimal. This dual
requirement can be represented as to find x and δ that minimise

|δ · ∇f(x)|2 + γ |δ · ∇c(x)|2 (29.6.3)

where γ > 0. This is a simple quadratic form and optimising for δ gives that

∇f(x) = −γ δ · ∇c(x)

δ · ∇f(x)
∇c(x) (29.6.4)

Hence at the constrained optimum

∇f(x) = λ∇c(x) (29.6.5)

for some scalar λ. We can formulate this requirement as to look for x and λ that constitute a stationary
point of the Lagrangian

L(x, λ) = f(x)− λc(x) (29.6.6)

Differentiating with respect to x, we obtain the requirement ∇f(x) = λ∇c(x), and differentiating with
respect to λ, we get that c(x) = 0.

In the multiple constraint case {ci(x) = 0} we find the stationary point of the Lagrangian

L(x,λ) = f(x)−
∑
i

λici(x). (29.6.7)

29.6.1 Lagrange Dual

Consider the ‘primal’ problem

minimise f(x) subject to c(x) = 0 (29.6.8)

The Lagrange dual is defined as

L(λ) = min
x

[f(x) + λc(x)] (29.6.9)
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By construction, for any x,

L(λ) ≤ f(x) + λc(x) (29.6.10)

Now consider the optimal x∗ that solves the primal problem equation (29.6.8). Then

L(λ) ≤ f(x∗) + λc(x∗) = f(x∗) (29.6.11)

where the last step follows since x∗ solves the primal problem, meaning that c(x∗) = 0. Since L(λ) ≤ f(x∗),
the optimal λ is given by solving the unconstrained ‘dual’ problem

max
λ
L(λ) (29.6.12)

In addition to providing a bound that enables one to bracket the optimal primal value,

L(λ) ≤ f(x∗) ≤ f(x), for c(x) = 0 (29.6.13)

the dual possesses the interesting property that it is concave, irrespective of whether f is convex. This
follows since by construction the function f(x) + λc(x) is concave in λ for any point x. More explicitly,
consider

L(λ+ δ) = min
x

[f(x) + (λ+ δ)c(x)] ≤ f(x) + λc(x) + δc(x) (29.6.14)

Similarly,

L(λ− δ) ≤ f(x) + λc(x)− δc(x) (29.6.15)

Averaging equation (29.6.14) and equation (29.6.15), and taking the minimum over x of both sides, we have

1

2
(L(λ− δ) + L(λ+ δ)) ≤ L(λ) (29.6.16)

which shows that L is concave.
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1− of −M coding, 231
N -max-product, 86
α-expansion, 587
α-recursion, 455
β-recursion, 456
γ-recursion, 457
maximum likelihood

Hopfield network, 520
naive mean field, 568

absorbing state, 87
absorption, 99

influence diagram, 131
acceptance function, 545
active learning, 287
acyclic, 26
adjacency matrix, 28, 418
algebraic Riccati equation, 488
ancestor, 26
ancestral ordering, 540
ancestral sampling, 540
antifreeze, 254
approximate inference, 115, 413, 561

belief propagation, 578, 579
Bethe free energy, 577
double integration bound, 589
expectation propagation, 579
graph cut, 586
Laplace approximation, 561
switching linear dynamical system, 500
variational approach, 562
variational inference, 565

AR model, see auto-regressive model
ARCH model, 480
Artificial Life, 524
asymmetry, 127
asynchronous updating, 567
auto-regressive model, 477

ARCH, 480
GARCH, 480
switching, 492
time-varying, 479

auxiliary variable sampling, 547

average, 158

backtracking, 83
bag of words, 232, 313
batch update, 350
Baum-Welch, 462
Bayes Information Criterion, 271
Bayes’

factor, 206, 265
model selection, 265
theorem, 9

Bayes’ rule, see Bayes’ theorem
Bayesian

decision theory, 293
hypothesis testing, 265, 272
image denoising, 565
linear model, 361
mixture model, 406
model selection, 265

Occam’s razor, 268
outcome analysis, 272

Bayesian Dirichlet score, 207
Bayesian linear model, 380
BD score, 207

BDeu score, 207
BDeu score, 207
belief network

chest clinic, 52
belief network

asbestos-smoking-cancer, 200
cascade, 38
divorcing parents, 35
dynamic, 468
noisy AND gate, 35
noisy logic gate, 35
noisy OR gate, 35
sigmoid, 262
structure learning, 203
training

Bayesian, 197
belief propagation, 78, 578

loopy, 576
belief revision, see max-product, 85
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Bellman’s equation, 135
Bessel function, 386
beta

distribution, 165
function, 165, 191

Bethe free energy, 578
bias, 174

unbiased estimator, 174
bigram, 462
binary entropy, 567
binomial coefficient, 163
binomial options pricing model, 141
bioinformatics, 469
black and white sampling, 558
black-box, 294
Black-Scholes option pricing, 142
Blahut-Arimoto algorithm, 575
Boltzmann machine, 59, 71, 212, 590

restricted, 71
bond propagation, 93
Bonferroni inequality, 22
Boolean network, 524
Bradley-Terry-Luce model, 441
bucket elimination, 90
burn in, 543

calculus, 602
canonical correlation analysis, 326

constrained factor analysis, 433
canonical variates, 333
causal consistency, 127
causality, 47, 127

do calculus, 49
influence diagrams, 49
post intervention distribution, 49

CCA
see canonical correlation analysis, 326

centering, 171
chain graph, 65

chain component, 65
chain rule, 604
chain structure, 84
changepoint model, 510
checkerboard, 558
chest clinic, 52

missing data, 260
with decisions, 147

children, see directed acyclic graph
Cholesky, 334
chord, 26
chordal, 107
Chow-Liu tree, 209
classification, 286, 351, 390

Bayesian, 369
boundary, 229
error analysis, 272

linear parameter model, 346

multiple classes, 352

performance, 272

random guessing, 279

softmax, 352

clique, 26

decomposition, 417

graph, 98

matrix, 28, 417

cliquo, 28

Cluster Variation method, 579

clustering, 287

collaborative filtering, 318

collider, see directed acyclic graph

commute, 597

compatibility function, 557

competition model

Bradley-Terry-Luce, 441

Elo, 442

TrueSkill, 442

competition models, 441

concave function, 604

conditional entropy, 574

conditional likelihood, 225

conditional mutual information, 235

conditional probability, 8

conditional random field, 219, 467

conditioning, 170

loop cut set, 92

conjugate distribution, 173

exponential family, 172

Gaussian, 178, 179

prior, 172

conjugate gradient, 351

conjugate gradients algorithm, 608

conjugate vector, 607

conjugate vectors algorithm, 608

connected components, 27

connected graph, 27

consistent, 103

consistent estimator, 174

control, 570

convex function, 604

correction smoother, 457, 486

correlation

matrix, 160

cosine similarity, 315

coupled HMM, 468

covariance, 160

matrix, 160

covariance function, 381, 384

γ-exponential, 386

construction, 385

Gibbs, 387

isotropic, 386
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Matérn, 386
Mercer kernel, 388
neural network, 387
non-stationary, 387
Ornstein-Uhlenbeck, 386, 388
periodic, 386
rational quadratic, 386
smoothness, 388
squared exponential, 386
stationary, 385

CPT, see conditional probability table
CRF, see conditional random field
critical point, 605
cross-validation, 291
cumulant, 537
curse of dimensionality, 137, 344
cut set conditioning, 91
cycle, 26

D-map, see dependence map
DAG, see directed acyclic graph
data

anomaly detection, 287
catagorical, 157
dyadic, 415
handwritten digits, 351
labelled, 285
monadic, 416
numerical, 157
ordinal, 157
unlabelled, 286

data compression, 409
vector quantisation, 409

decision boundary, 347
decision function, 288
decision theory, 121, 192, 293
decision tree, 122
decomposable, 107
degree, 29
degree of belief, 9
delta function, see Dirac delta function

Kronecker, 160
density estimation, 397

Parzen estimator, 408
dependence

map, 68
descendant, 26
design matrix, 367, 380
determinant, 598
deterministic latent variable model, 524
differentiation, 603
digamma function, 183
digit data, 309
Dijkstra’s algorithm, 88
dimension reduction

linear, 305, 309

supervised, 331

dimensionality reduction

linear, 310

non-linear, 311

Dirac delta function, 160, 161

directed acyclic graph, 38

ancestor, 26

ancestral order, 28

cascade, 38

children, 26

collider, 41

descendant, 26

family, 26

immorality, 46

Markov Blanket, 26

moralisation, 63

parents, 26

direction bias, 467

directional derivative, 604

Dirichlet

distribution, 167

Dirichlet process mixture models, 412

discount factor, 135

discriminative

approach, 294

training, 294

discriminative approach, 293

discriminative training, 465

dissimilarity function, 299

distributed computation, 517

distribution, 7

Bernoulli, 163, 401

beta, 165, 167, 182, 198, 267

binomial, 163

Categorical, 163

change of variables, 158, 181

conjugate, 178

continuous, 9

density, 9

Dirichlet, 167, 183, 200, 206, 412, 413

discrete, 7

divergence, 161

double exponential, 166

empirical, 161, 289

average, 158

expectation, 158

exponential, 164

exponential family, 171

canonical, 171

gamma, 406

mode, 183

Gauss-gamma, 179, 184

Gauss-inverse-gamma, 178

Gaussian

canonical exponential form, 172
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conditioning, 170
conjugate, 178, 179
entropy, 171
mixture, 186
multivariate, 168
normalisation, 180, 181
partitioned, 170
propagation, 170
system reversal, 170
univariate, 166

inverse gamma, 165
inverse Wishart, 179
isotropic, 169
joint, 8
kurtosis, 160
Laplace, 166
marginal, 8
mode, 159
moment, 159
multinomial, 163
normal, 166
Poisson, 164, 185
Polya, 412
scaled mixture, 167
skewness, 160
Student’s t, 166
uniform, 162, 164
Wishart, 406

domain, 7
double integration bound, 589
dual parameters, 345
dual representation, 345
dyadic data, 415
dynamic Bayesian network, 468
dynamic synapses, 528
dynamical system

linear, 475
non-linear, 524

dynamics reversal, 486

early stopping, 351
edge list, 27
efficient IPF, 216
eigen

decomposition, 169, 308, 601
equation, 307
function, 602
problem, 327
spectrum, 388
value, 308, 600

Elo model, 441
emission distribution, 454
emission matrix, 481
empirical

independence, 205
empirical distribution, 161, 176, 289

empirical risk, 289
penalised, 290

empirical risk minimisation, 290
energy, 243
entropy, 110, 162, 186, 243, 574

differential, 162, 186
Gaussian, 171

EP, see expectation propagation
error function, 347
estimator

consistent, 174
evidence, see marginal likelihood

hard, 35
likelihood, 37
soft, 35
uncertain, 35
virtual, 37

Evidence Procedure, 363
exact sampling, 540
expectation, see average
expectation correction, 504, 505
expectation maximisation, 150, 242, 319, 364, 462,

490
algorithm, 242, 243
antifreeze, 254
belief networks, 246
E-step, 243
energy, 243
entropy, 243
failure case, 253
intractable energy, 252
M-step, 243
mixture model, 399
partial E-step, 251
partial M-step, 251
variational Bayes, 256
Viterbi training, 252

expectation propagation, 579
exponential family, 171

canonical form, 171
conjugate, 172

extended observability matrix, 491

face model, 430
factor analysis, 425

factor rotation, 424
probabilistic PCA, 432
training

EM, 428
SVD, 426

factor graph, 67
factor loading, 423
family, see directed acyclic graph
feature map, 325
filtering, 455
finance, 139
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optimal investment, 142
option pricing, 139

finite dimensional Gaussian Process, 381
Fisher information, 184
Fisher’s linear discriminant, 331
Floyd-Warshall-Roy algorithm, 89
forward sampling, 540
Forward-Backward, 456
forward-filtering-backward-sampling, 458
Forward-Sampling-Resampling, 556

gamma
digamma, 183
distribution, 164
function, 165, 183

GARCH model, 480
Gaussian

canonical representation, 168
distribution, 166
moment representation, 168, 484
sub, 160
super, 160

Gaussian mixture model, 403
Bayesian, 406
collapsing the mixture, 503
EM algorithm, 403
infinite problems, 406
k-means, 409
Parzen estimator, 408
symmetry breaking, 406

Gaussian process, 379
classification, 390
Laplace approximation, 391
multiple classes, 394
regression, 382
smoothness, 388
weight space view, 380

Gaussian sum filtering, 500
Gaussian sum smoothing, 504
generalisation, 285, 289
generalised pseudo Bayes, 508
generative

approach, 293
model, 293
training, 293

generative approach, 293
Gibbs sampling, 541
Glicko, 442
GMM, see Gaussian mixture model
Google, 451
gradient, 603

descent, 605
Gram matrix, 345, 381
Gram-Schmidt procedure, 607
graph, 25

acyclic, 26

adjacency matrix, 28
chain, 65
chain structured, 84
chord, 26
chordal, 107
clique, 26, 28, 98
clique matrix, 28
cliquo, 28
connected, 27
cut, 586
cycle, 26
decomposable, 107
descendant, 28
directed, 25
disconnected, 111
edge list, 27
factor, 67
loop, 26
loopy, 27
multiply connected, 27, 105
neighbour, 26
path, 25
separation, 63
set chain, 115
singly connected, 27
skeleton, 46
spanning tree, 27
tree, 27
triangulated, 107
undirected, 25
vertex

degree, 29
graph cut algorithm, 586
graph partitioning, 415
Gull-MacKay iteration, 366

Hamilton-Jacobi equation, 135
Hamiltonian dynamics, 548
Hammersley-Clifford theorem, 61
handwritten digits, 351
Hankel matrix, 491
harmonium, see restricted Boltzmann machine
Heaviside step function, 417
Hebb, 518
Hebb rule, 518
hedge fund, 278
Hermitian, 598
Hessian, 351, 603
hidden Markov model, 110, 252, 454

α recursion, 455
β recursion, 456
coupled, 468
direction bias, 467
discriminative training, 465
duration model, 465
entropy, 110
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filtering, 455
input-output, 466
likelihood, 457
most likely state (MAP), 458
pairwise marginal, 457
Rauch Tung Striebel smoother, 457
smoothing

parallel, 456
sequential, 456

viterbi, 86
Viterbi algorithm, 458

hidden variables, 239
HMM, see hidden Markov model
Hopfield network, 517

augmented, 526
capacity, 521
Hebb rule, 519
heteroassociative, 526
maximum likelihood, 520
perceptron, 521
pseudo inverse rule, 519
sequence learning, 518

hybrid Monte Carlo, 547
hyper Markov, 222
hyper tree, 109
hyperparameter, 172, 199, 363
hyperplane, 596
hypothesis testing, 265

Bayesian error analysis, 272

I-map, see independence map
ICA, 434
identifiability, 489
identity matrix, 597
IID, see independent and identically distributed
IM algorithm, see information-maximisation algorithm
immorality, 46
importance

distribution, 553
sampling, 552

particle filter, 555
resampling, 554
sequential, 554

weight, 553
incidence matrix, 28
independence

Bayesian, 206
conditional, 11, 32
empirical, 205
map, 68
Markov equivalent, 46
mutual information, 163
naive Bayes, 227
parameter, 197
perfect map, 69

independent and identically distributed, 173, 189

independent components analysis, 437
indicator function, 19
indicator model, 411
induced representation, 106
inference, 75

bond propagation, 93
bucket elimination, 90
causal, 47
cut set conditioning, 91
HMM, 455
linear dynamical system, 482
MAP, 93
marginal, 75
Markov decision process, 137
max-product, 83
message passing, 75
mixed, 89
MPM, 93
sum-product algorithm, 80
transfer matrix, 77
variable elimination, 75

influence diagram, 125
absorption, 131
asymmetry, 127
causal consistency, 127
chest clinic, 146
decision potential, 130
fundamental link, 126
information link, 125
junction tree, 130
no forgetting assumption, 126
partial order, 126
probability potential, 130
solving, 129
utility, 125
utility potential, 130

information link, 125
information maximisation, 575
information retrieval, 314, 451
information-maximisation algorithm, 574
innovation noise, 477
input-output HMM, 466
inverse modus ponens, 15
IPF, see iterative proportional fitting, 213

efficient, 216
Ising model, see Markov network, 64, 93

approximate inference, 565
isotropic, 169, 405
isotropic covariance functions, 386
item response theory, 440
Iterated Conditional Modes, 583
iterative proportional fitting, 213
iterative scaling, 218

Jeffrey’s rule, 36
Jensen’s inequality, 590, 605
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Joseph’s symmetrized update, 485
jump Markov model, see switching linear dynamical

system
junction tree, 101, 104

absorption, 99
algorithm, 97, 108
clique graph, 98
computational complexity, 110
conditional marginal, 112
consistent, 103
hyper tree, 109
influence diagram, 130
marginal likelihood, 111
most likely state, 113
normalisation constant, 110
potential, 98
running intersection property, 102
separator, 98
strong, 130
strong triangulation, 130
tree width, 109
triangulation, 106

k-means, 409
Kalman filter, 481
Kalman gain, 485
KD-tree, 300
kernel, 345, see covariance function

classifier, 352
kidnapped robot, 460
Kikuchi, 579
KL divergence, see Kullback-Leibler divergence
KNN, see nearest neighbour
Kronecker delta, 160, 597
Kullback-Leibler divergence, 161, 243, 563
kurtosis, 160

labelled data, 285
Lagrange

dual, 611
multiplier, 611

Lagrangian, 611
Laplace approximation, 370, 391, 561
latent ability model, 439
latent Dirichlet allocation, 413
latent linear model, 423
latent semantic analysis, 313
latent topic, 313
latent variable, 239

deterministic, 524
model, 239

lattice model, 63
LDA regularised, 337
LDS, see linear dynamical system
leaky integrate and fire model, 529
Leapfrog discretisation, 549

learning

active, 287

anomaly detection, 287

Bayesian, 190

belief network, 194

belief networks

EM, 246

Dirichlet prior, 200

inference, 189

nearest neighbour, 299

online, 287

query, 287

reinforcement, 287

semi-supervised, 288, 410

sequences, 462, 489, 518

sequential, 287

structure, 203

supervised, 285

unsupervised, 286, 423

learning rate, 349

likelihood, 111, 173, 457, 487, 503

bound, 242

marginal, 81, 173

model, 173, 203

approximate, 270

pseudo, 222

likelihood decomposable, 203

line search, 606, 607

linear algebra, 595

linear dimension reduction, 305, 309

canonical correlation analysis, 326

latent semantic analysis, 313

non-negative matrix factorisation, 323

probabilistic latent semantic analysis, 319

supervised, 331

unsupervised, 305

Linear Discriminant Analysis, 331

linear discriminant analysis, 331

as regression, 336

penalised, 336

regularised, 336

linear dynamical system, 170, 481

cross moment, 487

dynamics reversal, 486

filtering, 484

identifiability, 489

inference, 482

learning, 489

likelihood, 487

most likely state, 488

numerical stability, 483

Riccati equations, 488

smoothing, 486

subspace method, 491

switching, 499
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symmetrising updates, 485
linear Gaussian state space model, 481
linear model, 339

Bayesian, 361
classification, 346
factor analysis, 425
latent, 423
regression, 340

linear parameter model, 340
Bayesian, 362

linear perceptron, 348
linear separability, 348
linear transformation, 598
linearly independent, 595
linearly separable, 348
Linsker’s as-if-Gaussian approximation, 575
localisation, 459
logic

Aristotle, 15
logistic regression, 347
logistic sigmoid, 347
logit, 347
loop, 26
loop cut set, 92
loopy, 27
loss function, 288, 289

squared, 289
zero-one, 288

loss matrix, 289
Luenberger expanding subspace theorem, 608

Mahalanobis distance, 299, 329
manifold

linear, 305
low dimensional, 305

MAP, see most probable a posteriori, see most prob-
able a posteriori

MAR, see missing at random
margin, 353

soft, 354
marginal, 8

generalised, 131
marginal likelihood, 81, 111, 173, 241, 363, 383

approximate, 365, 370, 371, 393
marginalisation, 8
Markov

chain, 261, 449
first order, 476
stationary distribution, 450

equivalent, 46
global, 60
hyper, 222
local, 60
model, 449
pairwise, 60
random field, 218

approximation, 565

Markov blanket, see directed acyclic graph, 541

Markov chain, 75, 139, 545

absorbing state, 87

PageRank, 451

Markov chain Monte Carlo, 544

auxiliary variable, 547

hybrid Monte Carlo, 547

slice sampling, 551

Swendson-Wang, 549

Gibbs sampling, 542

Metropolis-Hastings, 545

proposal distribution, 545

structured Gibbs sampling, 543

Markov decision process, 133, 148

Bellman’s equation, 135

discount factor, 135

partially observable, 144

planning, 137

policy iteration, 136

reinforcement learning, 144

stationary deterministic policy, 137

temporally unbounded, 135

value iteration, 136

Markov equivalence, 46

Markov network, 58

Boltzmann machine, 59

continuous-state temporal, 475

discrete-state temporal, 449

Gibbs distribution, 58

Hammersley Clifford theorem, 61

pairwise, 58

potential, 58

Markov random field, 60, 591, 592

alpha-expansion, 587

attractive binary, 585

graph cut, 586

map, 582

Potts model, 587

matrix, 597

adjacency, 28, 418

block inverse, 600

Cholesky, 334

clique, 28

Gram, 326

Hankel, 491

incidence, 28

inversion, 599

inversion lemma, 599

orthogonal, 599

positive definite, 602

pseudo inverse, 599

rank, 599

stochastic, 77

matrix factorisation, 323
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max-product, 83

N most probable states, 86

max-sum, 87

maximum cardinality checking, 108

maximum likelihood, 18, 173, 174, 176, 194, 349

belief network, 194

Chow-Liu tree, 210

counting, 194

empirical distribution, 176

factor analysis, 425

Gaussian, 176

gradient optimisation, 259

Markov network, 211

ML-II, 193

naive Bayes, 228

properties, 174

MCMC, see Markov chain Monte Carlo

mean field theory, 568

asynchronous updating, 568

Mercer kernel, 388

message

passing, 100

schedule, 80, 101

message passing, 75

Metropolis-Hastings acceptance function, 545

Metropolis-Hastings sampling, 545

minimum clique cover, 418

missing at random, 240

completely, 241

missing data, 239

mixed inference, 89

mixed membership model, 413

mixing matrix, 434

mixture

Gaussian, 186

mixture model, 397

Bernoulli product, 401

Dirichlet process mixture, 412

expectation maximisation, 399

factor analysis, 429

Gaussian, 403

indicator approach, 411

Markov chain, 452

PCA, 429

mixture of experts, 410

MN, see Markov network

mode, 159

model

auto-regressive, 477

changepoint, 510

deterministic latent variable, 524

faces, 430

leaky integrate and fire, 529

linear, 339

mixed membership, 413

mixture, 397
Rasch, 439

model selection, 265
approximate, 270

moment, 159
moment representation, 484
momentum, 606
monadic data, 416
money

financial prediction, 278
loadsa, 278

moralisation, 63, 104
most probable a posteriori, 18, 173
most probable path

multiple-source multiple-sink, 89
most probable state

N most probable, 85
MRF, see Markov random field
multiply connected, 27
multiply connected-distributions, 105
mutual information, 163, 210, 573

approximation, 573
conditional, 162
maximisation, 574

naive Bayes, 227, 401
Bayesian, 232
tree augmented, 234

naive mean field theory, 566
nearest neighbour, 299

probabilistic, 302
network flow, 591
network modelling, 324
neural computation, 517
neural network, 359, 527

depression, 528
dynamic synapses, 528
leaky integrate and fire, 529

Newton update, 351
Newton’s method, 609
no forgetting assumption, 126
node

extremal, 85
simplical, 85

non-negative matrix factorisation, 323
normal distribution, 166
normal equations, 341
normalised importance weights, 553

observed linear dynamical system, 475
Occam’s razor, 268
One of m encoding, 157
online learning, 287
optimisation, 196, 605

Broyden-Fletcher-Goldfarb-Shanno, 610
conjugate gradients algorithm, 608
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conjugate vectors algorithm, 608
constrained optimisation, 611
critical point, 605
gradient descent, 605
Luenberger expanding subspace theorem, 608
Newton’s method, 609
quasi Newton method, 610

option pricing, 139
ordinary least squares, 339
orthogonal, 595
orthogonal least squares, 340
orthonormal, 595
outlier, 356
over-complete representation, 319
over-complete representations, 319
overcounting, 98
overfitting, 220, 269, 382

PageRank, 451
pairwise comparison models, 441
pairwise Markov network, 58
parents, see directed acyclic graph
part-of-speech tagging, 469
Partial Least Squares, 434
partial order, 126
partially observable MDP, 144
particle filter, 554
partition function, 58, 590
partitioned matrix

inversion, 181
Parzen estimator, 302, 408
path

blocked, 43
PC algorithm, 204
PCA, see Principal Components Analysis
perceptron, 348

logistic regression, 349
perfect elimination order, 107
perfect map, see independence
perfect sampling, 540
planning, 137
plant monitoring, 287
plate, 190
Poisson distribution, 164, 185
policy, 136

iteration, 136
stationary deterministic, 137

Polya distribution, 412
POMDP, see partially observable MDP
positive definite

matrix, 381
parameterisation, 419

posterior, 173
Dirichlet, 201

potential, 58
Potts model, 587

precision, 168, 179, 362
prediction

auto-regression, 477
financial, 278
non-parametric, 379
parameteric, 379

predictive variance, 362
predictor-corrector, 455
Principal Components Analysis, 305, 310

algorithm, 309
high dimensional data, 311
kernel, 325
latent semantic analysis, 313
missing data, 316
probabilistic, 432

principal directions, 308
printer nightmare, 224

missing data, 260
prior, 173
probabilistic latent semantic analysis, 319

conditional, 321
EM algorithm, 319

probabilistic PCA, 432
probability

conditional, 8
function, 196

density, 9, 158
frequentist, 9
posterior, 173
potential, 130
prior, 173
subjective, 9

probit, 347
probit regression, 347
projection, 596
proposal distribution, 545
Pseudo Inverse, 518
pseudo inverse

Hopfield network, 519
pseudo likelihood, 222

quadratic form, 602
quadratic programming, 353
query learning, 287
questionnaire analysis, 439

radial basis functions, 344
Raleigh quotient, 334
Random Boolean networks, 524
Rasch model, 439

Bayesian, 440
Rauch-Tung-Striebel, 457
reabsorption, 114
region graphs, 579
regresion

linear parameter model, 340
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regression, 286, 380
logisitic, 347

regularisation, 269, 290, 342, 351
reinforcement learning, 144, 287
rejection sampling, 537
relevance vector machine, 368, 375
reparameterisation, 97
representation

dual, 345
over-complete, 319
sparse, 319
under-complete, 318

resampling, 553
reset model, 510
residuals, 340
resolution, 15
responsibility, 405
restricted Boltzmann machine, 71
Riccati equation, 488
ridge regression, 343
risk, 288
robot arm, 570
robust classification, 356
Rose-Tarjan-Lueker elimination, 107
running intersection property, 102, 103

sample
mean, 161
variance, 161

sampling, 413
ancestral, 540
forward-filtering-backward-sampling, 458, 487
Gibbs, 541
importance, 552
multi-variate, 538
particle filter, 555
rejection, 537
univariate, 536

Sampling Importance Resampling, 553
scalar product, 595
scaled mixture, 167
search engine, 451
self localisation and mapping, 461
semi-supervised learning, 288

lower dimensional representations, 295
separator, 98
sequential importance sampling, 554
sequential minimal optimisation, 356
set chain, 115
Shafer-Shenoy propagation, 113
shortest path, 87
shortest weighted path, 88
sigmoid

logistic, 347
sigmoid belief network, 262
sigmoid function

approximate average, 372

simple path, 88

simplical nodes, 107

Simpson’s Paradox, 47

singly connected, 27

singular, 599

Singular Value Decomposition, 312, 601

thin, 335, 601

skeleton, 46, 204

skewness, 160

slice sampling, 551

smoothing, 456

softmax function, 352, 410

spam filtering, 232

spanning tree, 27

sparse representation, 319

spectrogram, 479

speech recognition, 468

spike response model, 527

squared Euclidean distance, 299

squared loss, 289

standard deviation, 159

standard normal distribution, 166

stationary, 545

distribution, 78

stationary Markov chain, 450

stochastic matrix, 77

stop words, 414

strong Junction Tree, 130

strong triangulation, 130

structure learning, 203

Bayesian, 207

network scoring, 207

PC algorithm, 204

undirected, 222

structured Expectation Propagation, 582

subsampling, 543

subspace method, 491

sum-product, 576

sum-product algorithm, 80

supervised learning, 285

-semi, 288

classification, 286

regression, 286

support vector machine, 353

chunking, 356

training, 356

support vectors, 354

SVD, see Singular Value Decomposition

SVM, see support vector machine

Swendson-Wang sampling, 549

switching AR model, 492

switching Kalman filter, see switching linear dynam-
ical system

switching linear dynamical system, 499

DRAFT November 21, 2011 639



INDEX INDEX

changepoint model, 510
collapsing Gaussians, 503
expectation correction, 504
filtering, 500
Gaussian sum smoothing, 504
generalised Pseudo Bayes, 508
inference

computational complexity, 500
likelihood, 503
smoothing, 506

symmetry breaking, 406
system reversal, 170

tagging, 469
tall matrix, 318
term-document matrix, 313
test set, 285
text analysis, 323, 413

latent semantic analysis, 313
latent topic, 313
probabilistic latent semantic analysis, 319

TF-IDF, 313
time-invariant LDS, 488
Tower of Hanoi, 137
trace-log formula, 601
train set, 285
training

batch, 350
discriminative, 294
generative, 293
generative-discriminative, 294
HMM, 462
linear dynamical system, 489
online, 350

transfer matrix, 77
transition distribution, 454
transition matrix, 475, 481
tree, 27, 76

Chow-Liu, 209
tree augmented network, 234
tree width, 109
triangulation, 106, 107

check, 109
greedy elimination, 107
maximum cardinality, 108
strong, 130
variable elimination, 107

TrueSkill, 442

uncertainty, 162
under-complete representation, 318
undirected graph, 25
undirected model

learning
hidden variable, 259
latent variable, 259

uniform distribution, 164
unit vector, 595
unlabelled data, 287
unsupervised learning, 286, 423
utility, 121, 288

matrix, 289
money, 121
potential, 130
zero-one loss, 288

validation, 291
cross, 291

value, 134
value iteration, 136
variable

hidden, 242
missing, 242
visible, 242

variable elimination, 75
variance, 159
variational approximation

factorised, 566
structured, 568, 569

variational Bayes, 254
expectation maximisation, 256

varimax, 424
vector algebra, 595
vector quantisation, 409
visualisation, 328
Viterbi, 86, 252
Viterbi algorithm, 458
Viterbi alignment, 454
Viterbi training, 252
volatility, 480
Voronoi tessellation, 299

web
modelling, 324

website, 324
analysis, 451

whitening, 171, 186
Woodbury formula, 599

XOR function, 348

zero-one loss, 288, 356
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