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We provide a Bayesian treatment, integrating over uncertainty in y and inthe parameters that control the Gaussian process prior; the necessary in-tegration over y is carried out using Laplace's approximation. The methodis generalized to multi-class problems (m > 2) using the softmax function.We demonstrate the e�ectiveness of the method on a number of datasets.Index terms: Gaussian processes, Classi�cation problems, Parameter Un-certainty, Markov Chain Monte Carlo, Hybrid Monte Carlo, Bayesianclassi�cation.1 IntroductionWe consider the problem of assigning an input vector x to one out of m classesby predicting P (cjx) for c = 1; : : : ;m. A classic example of this method islogistic regression. For a two-class problem, the probability of class 1 given xis estimated by �(wTx+ b), where �(y) = 1=(1 + e�y). However, this methodis not at all \
exible", i.e. the discriminant surface is simply a hyperplane inx-space. This problem can be overcome, to some extent, by expanding theinput x into a set of basis functions f�(x)g, for example quadratic functionsof the components of x. For a high-dimensional input space there will be alarge number of basis functions, each one with an associated parameter, andone risks \over�tting" the training data. This motivates a Bayesian treatmentof the problem, where the priors on the parameters encourage smoothness inthe model.Putting priors on the parameters of the basis functions indirectly inducespriors over the functions that can be produced by the model. However, it is2



possible (and we would argue, perhaps more natural) to put priors directly overthe functions themselves. One advantage of function-space priors is that theycan impose a general smoothness constraint without being tied to a limitednumber of basis functions. In the regression case where the task is to predict areal-valued output, it is possible to carry out non-parametric regression usingGaussian Processes (GPs); see, e.g. [25], [28]. The solution for the regressionproblem under a GP prior (and Gaussian noise model) is to place a kernelfunction on each training data point, with coe�cients determined by solvinga linear system. If the parameters � that describe the Gaussian process areunknown, Bayesian inference can be carried out for them, as described in [28].The Gaussian Process method can be extended to classi�cation problems byde�ning a GP over y, the input to the sigmoid function. This idea has been usedby a number of authors, although previous treatments typically do not take afully Bayesian approach, ignoring uncertainty in both the posterior distributionof y given the data, and uncertainty in the parameters �. This paper attemptsa fully Bayesian treatment of the problem, and also introduces a particular formof covariance function for the Gaussian process prior which, we believe, is usefulfrom a modelling point of view.The structure of the remainder of the paper is as follows: Section 2 dis-cusses the use of Gaussian processes for regression problems, as this is essentialbackground for the classi�cation case. In Section 3 we describe the applica-tion of Gaussian processes to two-class classi�cation problems, and extend thisto multiple-class problems in section 4. Experimental results are presented insection 5, followed by a discussion in section 6. This paper is a revised andexpanded version of [1]. 3



2 Gaussian Processes for regressionIt will be useful to �rst consider the regression problem, i.e. the prediction of areal valued output y� = y(x�) for a new input value x�, given a set of trainingdata D = f(xi; ti); i = 1 : : : ng. This is of relevance because our strategy willbe to transform the classi�cation problem into a regression problem by dealingwith the input values to the logistic transfer function.A stochastic process prior over functions allows us to specify, given a set ofinputs, x1; : : :xn, the distribution over their corresponding outputsydef= (y(x1); y(x2); : : : ; y(xn)). We denote this prior over functions as P (y),and similarly, P (y�;y) for the joint distribution including y�. If we also specifyP (tjy), the probability of observing the particular values t = (t1; : : : tn)T givenactual values y (i.e. a noise model) then we have thatP (y�jt) = Z P (y�;yjt)dy (1)= 1P (t) Z P (y�jy)P (y)P (tjy)dy (2)= Z P (y�jy)P (yjt)dy (3)Hence the predictive distribution for y� is found from the marginalization of theproduct of the prior and the noise model. Note that in order to make predictionsit is not necessary to deal directly with priors over function space, only n- orn+1-dimensional joint densities. However, it is still not easy to carry out thesecalculations unless the densities involved have a special form.If P (tjy) and P (y�;y) are Gaussian then P (y�jt) is a Gaussian whose meanand variance can be calculated using matrix computations involving matricesof size n � n. Specifying P (y�;y) to be a multidimensional Gaussian (for allvalues of n and placements of the points x�;x1; : : :xn) means that the prior4



over functions is a Gaussian process. More formally, a stochastic process is acollection of random variables fY (x)jx 2 Xg indexed by a set X . In our caseX will be the input space with dimension d, the number of inputs. A GP isa stochastic process which can be fully speci�ed by its mean function �(x) =E[Y (x)] and its covariance function C(x;x0) = E[(Y (x)��(x))(Y (x0)��(x0))];any �nite set of Y -variables will have a joint multivariate Gaussian distribution.Below we consider GPs which have �(x) � 0.If we further assume that the noise model P (tjy) is Gaussian with mean zeroand variance �2I , then the predicted mean and variance at x� are given byŷ(x�) = kT (x�)(K + �2I)�1t�2̂y(x�) = C(x�;x�)� kT (x�)(K + �2I)�1k(x�);where [K]ij = C(xi;xj) and k(x�) = (C(x�;x1); : : : ; C(x�;xn))T (see, e.g.[25]).2.1 Parameterizing the covariance functionThere are many reasonable choices for the covariance function. Formally, weare required to specify functions which will generate a non-negative de�nitecovariance matrix for any set of points (x1; : : : ;xk). From a modelling point ofview we wish to specify covariances so that points with nearby inputs will giverise to similar predictions. We �nd that the following covariance function workswell: C(x;x0) = v0 expf�12 dXl=1 wl(xl � x0l)2g+ v1 (4)where xl is the lth component of x and � = (log v0; log v1; logw1; : : : ; logwd) isthe vector of parameters that are needed to de�ne the covariance function. Note5



that � is analogous to the hyperparameters in a neural network. We de�ne theparameters to be the log of the variables in equation (4) since these are positivescale-parameters. This covariance function can be obtained from a network ofGaussian radial basis functions in the limit of an in�nite number of hidden units[27].The wl parameters in equation 4 allow a di�erent length scale on each inputdimension. For irrelevant inputs, the corresponding wl will become small, andthe model will ignore that input. This is closely related to the AutomaticRelevance Determination (ARD) idea of MacKay [10] and Neal [15]. The v0variable speci�es the overall scale of the prior. v1 speci�es the variance of azero-mean o�set which has a Gaussian distribution.The Gaussian process framework allows quite a wide variety of priors overfunctions. For example, the Ornstein-Uhlenbeck process (with covariance func-tion C(x; x0) = e�jx�x0j) has very rough sample paths which are not mean-square di�erentiable. On the other hand the squared exponential covariancefunction of equation 4 gives rise to an in�nitely m.s. di�erentiable process. Ingeneral we believe that the GP method is a quite general-purpose route for im-posing prior beliefs about the desired amount of smoothness. For reasonablyhigh-dimensional problems, this needs to be combined with other modelling as-sumptions such as ARD. Another modelling assumption that may be used isto build up the covariance function as a sum of covariance functions, each oneof which may depend on only some of the input variables (see section 3.3 forfurther details).
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2.2 Dealing with parametersGiven a covariance function it is straightforward to make predictions for newtest points. However, in practical situations we are unlikely to know whichcovariance function to use. One option is to choose a parametric family ofcovariance functions (with a parameter vector �) and then either to estimatethe parameters (for example, using the method of maximum likelihood) or touse a Bayesian approach where a posterior distribution over the parameters isobtained.These calculations are facilitated by the fact that the log likelihood l =logP (Dj�) can be calculated analytically asl = �12 log j ~Kj � 12tT ~K�1t� n2 log 2�; (5)where ~K = K + �2I and j ~Kj denotes the determinant of ~K. It is also possibleto express analytically the partial derivatives of the log likelihood with respectto the parameters@l@�i = �12tr ~K�1 @ ~K@�i!+ 12tT ~K�1@ ~K@�i ~K�1t; (6)(see, e.g. [11]).Given l and its derivatives with respect to � it is straightforward to feed thisinformation to an optimization package in order to obtain a local maximum ofthe likelihood.In general one may be concerned about making point estimates when thenumber of parameters is large relative to the number of data points, or if some ofthe parameters may be poorly determined, or if there may be local maxima in thelikelihood surface. For these reasons the Bayesian approach of de�ning a priordistribution over the parameters and then obtaining a posterior distribution7



once the data D has been seen is attractive. To make a prediction for a newtest point x� one simply averages over the posterior distribution P (�jD), i.e.P (y�jD) = Z P (y�j�;D)P (�jD)d�: (7)For GPs it is not possible to do this integration analytically in general, butnumerical methods may be used. If � is of su�ciently low dimension, thentechniques involving grids in �-space can be used.If � is high-dimensional it is very di�cult to locate the regions of parameter-space which have high posterior density by gridding techniques or importancesampling. In this case Markov chain Monte Carlo (MCMC) methods may beused. These work by constructing a Markov chain whose equilibrium distri-bution is the desired distribution P (�jD); the integral in equation 7 is thenapproximated using samples from the Markov chain.Two standard methods for constructing MCMC methods are the Gibbssampler and Metropolis-Hastings algorithms (see, e.g., [5]). However, the con-ditional parameter distributions are not amenable to Gibbs sampling if the cov-ariance function has the form given by equation 4, and the Metropolis-Hastingsalgorithm does not utilize the derivative information that is available, whichmeans that it tends to have an ine�cient random-walk behaviour in parameter-space. Following the work of Neal [15] on Bayesian treatment of neural networks,Williams and Rasmussen [28] and Rasmussen [17] have used the Hybrid MonteCarlo (HMC) method of Duane et al [4] to obtain samples from P (�jD). TheHMC algorithm is described in more detail in Appendix D.
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Figure 1: �(x) is obtained from y(x) by \squashing" it through the sigmoidfunction �.3 Gaussian Processes for two-class classi�cationFor simplicity of exposition we will �rst present our method as applied to two-class problems; the extension to multiple classes is covered in section 4.By using the logistic transfer function to produce an output which can beinterpreted as �(x), the probability of the input x belonging to class 1, the jobof specifying a prior over functions � can be transformed into that of specifying aprior over the input to the transfer function, which we shall call the activation,and denote by y (see Figure 1). For the two-class problem we can use thelogistic function �(x) = �(y(x)) where �(y) = 1=(1 + e�y). We will denote theprobability and activation corresponding to input xi by �i and yi respectively.Fundamentally, the GP approaches to classi�cation and regression problems aresimilar, except that the error model which is t � N(y; �2) in the regression caseis replaced by t � Bern(�(y)). The choice of v0 in equation 4 will a�ect how\hard" the classi�cation is; i.e. if �(x) hovers around 0:5 or takes on the extremevalues of 0 and 1.Previous and related work to this approach is discussed in section 3.3.As in the regression case there are now two problems to address (a) making9



predictions with �xed parameters and (b) dealing with parameters. We shalldiscuss these issues in turn.3.1 Making predictions with �xed parametersTo make predictions when using �xed parameters we would like to compute�̂� = R ��P (��jt) d��, which requires us to �nd P (��jt) = P (�(x�)jt) for anew input x�. This can be done by �nding the distribution P (y�jt) (y� isthe activation of ��) and then using the appropriate Jacobian to transformthe distribution. Formally the equations for obtaining P (y�jt) are identical toequations 1, 2, and 3. However, even if we use a GP prior so that P (y�;y) isGaussian, the usual expression for P (tjy) =Qi �tii (1� �i)1�ti for classi�cationdata (where the t's take on values of 0 or 1), means that the marginalization toobtain P (y�jt) is no longer analytically tractable.Faced with this problem there are two routes that we can follow: (i) touse an analytic approximation to the integral in equations 1-3 or (ii) to useMonte Carlo methods, speci�cally MCMC methods, to approximate it. Belowwe consider an analytic approximation based on Laplace's approximation; someother approximations are discussed in section 3.3.In Laplace's approximation, the integrand P (y�;yjt;�) is approximated bya Gaussian distribution centered at a maximum of this function with respect toy�;y with an inverse covariance matrix given by �rr logP (y�;yjt;�). Findinga maximum can be carried out using the Newton-Raphson iterative methodon y, which then allows the approximate distribution of y� to be calculated.Details of the maximization procedure can be found in Appendix A.
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3.2 Integration over the parametersTo make predictions we integrate the predicted probabilities over the posteriorP (�jt) / P (tj�)P (�), as we saw in 2.2. For the regression problem P (tj�) canbe calculated exactly using P (tj�) = R P (tjy)P (yj�)dy, but this integral isnot analytically tractable for the classi�cation problem. Let 	 = logP (tjy) +logP (y). Using logP (tijyi) = tiyi � log(1 + eyi), we obtain	 = tTy � nXi=1 log(1 + eyi)� 12yTK�1y � 12 log jKj � n2 log 2�: (8)By using Laplace's approximation about the maximum ~y we �nd thatlogP (tj�) ' 	(~y)� 12 log jK�1 +W j+ n2 log 2�: (9)We denote the right-hand side of this equation by logPa(tj�) (where a standsfor approximate).The integration over �-space also cannot be done analytically, and we employa Markov Chain Monte Carlo method. Following Neal [15] and Williams andRasmussen [28] we have used the Hybrid Monte Carlo (HMC) method of Duaneet al [4] as described in Appendix D. We use logPa(tj�) as an approximationfor logP (tj�), and use broad Gaussian priors on the parameters.3.3 Previous and related workOur work on Gaussian processes for regression and classi�cation developed fromthe observation in [15] that a large class of neural network models converge toGPs in the limit of an in�nite number of hidden units. The computationalBayesian treatment of GPs can be easier than for neural networks. In theregression case an in�nite number of weights are e�ectively integrated out, andone ends up dealing only with the (hyper)parameters. Results from [17] show11



that Gaussian processes for regression are comparable in performance to otherstate-of-the-art methods.Non-parametric methods for classi�cation problems can be seen to arise fromthe combination of two di�erent strands of work. Starting from linear regression,McCullagh and Nelder [12] developed generalized linear models (GLMs). In thetwo-class classi�cation context, this gives rise to logistic regression. The otherstrand of work was the the development of non-parametric smoothing for theregression problem. Viewed as a Gaussian process prior over functions this canbe traced back at least as far as the work of Kolmogorov and Wiener in the1940s. Gaussian process prediction is well known in the geostatistics �eld (see,e.g. [3]) where it is known as \kriging". Alternatively, by considering \roughnesspenalties" on functions, one can obtain spline methods; for recent overviews, see[25] and [8]. There is a close connection between the GP and roughness penaltyviews, as explored in [9]. By combining GLMs with non-parametric regressionone obtains what we shall call a non-parametric GLM method for classi�cation.Early references to this method include [21] and [16], and discussions can alsobe found in texts such as [8] and [25].There are two di�erences between the non-parametric GLM method as it isusually described and a Bayesian treatment. Firstly, for �xed parameters thenon-parametric GLM method ignores the uncertainty in y� and hence the needto integrate over this (as described in section 3.1).The second di�erence relates to the treatment of the parameters �. Asdiscussed in section 2.2, given parameters �, one can either attempt to obtaina point estimate for the parameters or to carry out an integration over theposterior. Point estimates may be obtained by maximum likelihood estimation12



of �, or by cross-validation or generalized cross-validation (GCV) methods, seee.g. [25, 8]. One problem with CV-type methods is that if the dimension of �is large, then it can be computationally intensive to search over a region/gridin parameter-space looking for the parameters that maximize the criterion. Ina sense the HMC method described above are doing a similar search, but usinggradient information1, and carrying out averaging over the posterior distributionof parameters. In defence of (G)CV methods, we note Wahba's comments (e.g.in [26], referring back to [24]) that these methods may be more robust againstan unrealistic prior.One other di�erence between the kinds of non-parametric GLM models usu-ally considered and our method is the exact nature of the prior that is used.Often the roughness penalties used are expressed in terms of a penalty on thekth derivative of y(x), which gives rise to a power law power spectrum for theprior on y(x). There can also be di�erences over parameterization of the co-variance function; for example it is unusual to �nd parameters like those forARD introduced in equation 4 in non-parametric GLM models. On the otherhand, Wahba et al [26] have considered a smoothing spline analysis of variance(SS-ANOVA) decomposition. In Gaussian process terms, this builds up a prioron y as a sum of priors on each of the functions in the decompositiony(x) = �+X� y�(x�) +X�;� y��(x�; x�) + : : : : (10)The important point is that functions involving all orders of interaction (fromunivariate functions, which on their own give rise to an additive model) areincluded in this sum, up to the full interaction term which is the only one that1It would be possible to obtain derivatives of the CV-score with respect to �, but this hasnot, to our knowledge, been used in practice.13



we are using. From a Bayesian point of view questions as to the kinds of priorsthat are appropriate is an interesting modelling issue.There has also been some recent work which is related to the method presen-ted in this paper. In section 3.1 we mentioned that it is necessary to approximatethe integral in equations 1-3 and described the use of Laplace's approximation.Following the preliminary version of this paper presented in [1], Gibbs andMacKay [7] developed an alternative analytic approximation, by using vari-ational methods to �nd approximating Gaussian distributions that bound themarginal likelihood P (tj�) above and below. These approximate distributionsare then used to predict P (y�jt;�) and thus �̂(x�). For the parameters, Gibbsand MacKay estimated � by maximizing their lower bound on P (tj�).It is also possible to use a fully MCMC treatment of the classi�cation prob-lem, as discussed in the recent paper of Neal [14]. His method carries outthe integrations over the posterior distributions of y and � simultaneously. Itworks by generating samples from P (y;�jD) in a two stage process. Firstly,for �xed �, each of the n individual yi's are updated sequentially using Gibbssampling. This \sweep" takes time O(n2) once the matrix K�1 has been com-puted (in time O(n3)), so it actually makes sense to perform quite a few Gibbssampling scans between each update of the parameters, as this probably makesthe Markov chain mix faster. Secondly, the parameters are updated using theHybrid Monte Carlo method. To make predictions, one averages over the pre-dictions made by each y;� sample.
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4 GPs for multiple-class classi�cationThe extension of the preceding framework to multiple classes is essentiallystraightforward, although notationally more complex.Throughout we employ a one-of-m class coding scheme2, and use the multi-class analogue of the logistic function|the softmax function|to describe theclass probabilities. The probability that an instance labelled by i is in classc is denoted by �ic, so that an upper index to denotes the example number,and a lower index the class label. Similarly, the activations associated with theprobabilities are denoted by yic. Formally, the softmax link function relates theactivations and probabilities through�ic = exp yic�c0 exp yic0which automatically enforces the constraintPc �ic = 1. The targets are similarlyrepresented by tic, and are speci�ed using a one-of-m coding.The log likelihood takes the form L = Pi;c tic ln�ic, which for the softmaxlink function gives L =Xi;c tic yic � lnXc0 exp�ic0! : (11)As for the two class case, we shall assume that the GP prior operates in activ-ation space; that is we specify the correlations between the activations yic.One important assumption we make is that our prior knowledge is restrictedto correlations between the activations of a particular class. Whilst there is nodi�culty in extending the framework to include inter-class correlations, we havenot yet encountered a situation where we felt able to specify such correlations.2That is, the class is represented by a vector of length m with zero entries everywhereexcept for the correct component which contains 1.15



Formally, the activation correlations take the form,hyicyi0c0i = �c;c0Ki;i0c (12)where Ki;i0c is the i; i0 element of the covariance matrix for the cth class. Eachindividual correlation matrix Kc has the form given by equation 4 for the two-class case. We shall use a separate set of parameters for each class. The use ofm independent processes to perform the classi�cation is redundant, but forcingthe activations of one process to be (say) zero would introduce an arbitraryasymmetry into the prior.For simplicity, we introduce the augmented vector notation,y+ = �y11 ; ::::; yn1 ; y�1 ; y12; ::::; yn2 ; y�2 ; ::::; y1m; ::::; yic; ::::; y�m�where, as in the two-class case, y�c denotes the activation corresponding to inputx� for class c; this notation is also used to de�ne t+ and �+. In a similar manner,we de�ne y, t and � by excluding the values corresponding to the test pointx�. Let y� = (y�1 ; y�2 ; : : : ; y�m).With this de�nition of the augmented vectors, the GP prior takes the form,P (y+) / exp��12yT+(K+)�1y+� (13)where, from equation 12, the covariance matrix K+ is block diagonal in thematrices, K+1 ; :::;K+m. Each individual matrix K+c expresses the correlations ofactivations within class c.As in the two-class case, to use Laplace's approximation we need to �nd themode of P (y+jt). The procedure is described in Appendix C. As for the two-class case, we make predictions for �(x�) by averaging the softmax function overthe Gaussian approximation to the posterior distribution of y�. At present, we16



simply estimate this integral using 1000 draws from a Gaussian random vectorgenerator.5 Experimental resultsWhen using the Newton-Raphson algorithm, � was initialized each time withentries 1=m, and iterated until the mean relative di�erence of the elements ofW between consecutive iterations was less than 10�4.For the HMC algorithm, the same step size " is used for all parameters,and should be as large as possible while keeping the rejection rate low. Wehave used a trajectory made up of L = 20 leapfrog steps, which gave a lowcorrelation between successive states. The priors over parameters were set tobe Gaussian with a mean of �3 and a standard deviation of 3. In all oursimulations a step size " = 0:1 produced a low rejection rate (< 5%). Theparameters corresponding to the wl's were initialized to �2 and that for v0 to 0.The sampling procedure was run for 200 iterations, and the �rst third of the runwas discarded; this \burn-in" is intended to give the parameters time to comeclose to their equilibrium distribution. Tests carried out using the R-CODApackage3 on the examples in section 5.1 suggested that this was indeed e�ectivein removing the transients, although we note that it is widely recognized (see,e.g. [2]) that determining when the equilibrium distribution has been reachedis a di�cult problem. Although the number of iterations used is much lessthan typically used for MCMC methods it should be remembered that (i) eachiteration involves L = 20 leapfrog steps and (ii) that by using HMC we aim toreduce the \random walk" behaviour seen in methods such as the Metropolis3Available from the Comprehensive R Archive Network at http://www.ci.tuwien.ac.at.17



algorithm. Autocorrelation analysis for each parameter indicated, in general,that low correlation was obtained after a lag of a few iterations.The MATLAB code which we used to run our experiments is available fromftp://cs.aston.ac.uk/neural/willicki/gpclass/.5.1 Two classesWe have tried out our method on two well known two class classi�cation prob-lems, the Leptograpsus crabs and Pima Indian diabetes datasets4. We �rstrescale the inputs so that they have mean of zero and unit variance on thetraining set. Our Matlab implementations for the HMC simulations for bothtasks each take several hours on a SGI Challenge machine (200MHz R10000), al-though good results can be obtained in much less time. We also tried a standardMetropolis MCMC algorithm for the Crabs problem, and found similar results,although the sampling by this method is somewhat slower than that for HMC.The results for the Crabs and Pima tasks, together with comparisons withother methods (from [20] and [18]) are given in Tables 1 and 2 respectively. Thetables also include results obtained for Gaussian processes using (a) estimation ofthe parameters by maximizing the penalised likelihood (found using 20 iterationsof a scaled conjugate gradient optimiser) and (b) Neal's MCMC method. Detailsof the set-up used for Neal's method are given in Appendix E.In the Leptograpsus crabs problem we attempt to classify the sex of crabson the basis of �ve anatomical attributes, with an optional additional colourattribute. There are 50 examples available for crabs of each sex and colour,making a total of 200 labelled examples. These are split into a training set of4Available from http://markov.stats.ox.ac.uk/pub/PRNN.18



20 crabs of each sex and colour, making 80 training examples, with the other120 examples used as the test set. The performance of our GP method is equalto the best of the other methods reported in [20], namely a 2 hidden unit neuralnetwork with direct input to output connections, a logistic output unit andtrained with maximum likelihood (Network(1) in Table 1). Neal's method gave avery similar level of performance. We also found that estimating the parametersusing maximum penalised likelihood (MPL) gave similar performance with lessthan a minute of computing time.For the Pima Indians diabetes problem we have used the data as madeavailable by Prof. Ripley, with his training/test split of 200 and 332 examplesrespectively [18]. The baseline error obtained by simply classifying each recordas coming from a diabetic gives rise to an error of 33%. Again, ours and Neal'sGP methods are comparable with the best alternative performance, with anerror of around 20%. It is encouraging that the results obtained using Laplace'sapproximation and Neal's method are similar5. We also estimated the paramet-ers using maximum penalised likelihood, rather than Monte Carlo integration.The performance in this case was a little worse, with 21.7% error, but for only2 minutes computing time.Analysis of the posterior distribution of the w parameters in the covariancefunction (equation 4) can be informative. Figure 5.1 plots the posterior marginalmean and 1 standard deviation error bars for each of the seven input dimensions.Recalling that the variables are scaled to have zero mean and unit variance, itwould appear that variables 1 and 3 have the shortest lengthscales (and therefore5The performance obtained by Gibbs and MacKay in [7] was similar. Their method made4 errors in the crab task (with colour given), and 70 errors on the Pima dataset.19



Method Colour given Colour not givenNeural Network(1) 3 3Neural Network(2) 5 3Linear Discriminant 8 8Logistic regression 4 4MARS (degree = 1) 8 4PP regression (4 ridge functions) 3 6Gaussian Process (Laplace 3 3Approximation, HMC)Gaussian Process (Laplace 4 3Approximation, MPL)Gaussian Process (Neal's method) 4 3Table 1: Number of test errors for the Leptograpsus crabs task. Comparisonsare taken from from Ripley (1996) and Ripley (1994) respectively. Network(2) usedtwo hidden units and the predictive approach (Ripley, 1993) which uses Laplace'sapproximation to weight each network local minimum.the most variability) associated with them.5.2 Multiple classesDue to the rather long time taken to run our code, we were only able to test iton relatively small problems, by which we mean only a few hundred data pointsand several classes. Furthermore, we found that a full Bayesian integrationover possible parameter settings was beyond our computational means, and wetherefore had to be satis�ed with a maximum penalised likelihood approach.20



Method Pima Indian diabetesNeural Network 75+Linear Discriminant 67Logistic Regression 66MARS (degree = 1) 75PP regression (4 ridge functions) 75Gaussian Mixture 64Gaussian Process (Laplace 68Approximation, HMC)Gaussian Process (Laplace 69Approximation, MPL)Gaussian Process (Neal's method) 68Table 2: Number of test errors on the Pima Indian diabetes task. Comparisonsare taken from from Ripley (1996) and Ripley (1994) respectively. The neuralnetwork had one hidden unit and was trained with maximum likelihood; theresults were worse for nets with two or more hidden units (Ripley, 1996).
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Figure 2: Plot of the logw parameters for the Pima dataset. The circle indic-ates the posterior marginal mean obtained from the HMC run (after burn-in),with one standard deviation error bars. The square symbol shows the logw-parameter values found by maximizing the penalized likelihood. The variablesare 1. the number of pregnancies, 2. plasma glucose concentration, 3. diastolicblood pressure, 4. triceps skin fold thickness, 5. body mass index, 6. diabetespedigree function, 7. age. For comparison, Wahba et al (1995) using generalizedlinear regression, found that variables 1, 2 5 and 6 were the most important.
22



Rather than using the potential and its gradient in a HMC routine, we nowsimply used them as inputs to a scaled conjugate gradient optimiser (based on[13]) instead, attempting to �nd a mode of the class posterior, rather than toaverage over the posterior distribution.We tested the multiple class method on the Forensic Glass dataset describedin [18]. This is a dataset of 214 examples with 9 inputs and 6 output classes.Because the dataset is so small, the performance is estimated from using 10-fold cross validation. Computing the penalised maximum likelihood estimateof our multiple GP method took approximately 24 hours on our SGI Challengeand gave a classi�cation error rate of 23.3%. As we see from Table 3, thisis comparable to the best of the other methods. The performance of Neal'smethod is surprisingly poor; this may be due to the fact that we allow separateparameters for each of the y processes, while these are constrained to be equalin Neal's code. There are also small but perhaps signi�cant di�erences in thespeci�cation of the prior (see Appendix E for details).6 DiscussionIn this paper we have extended the work of Williams and Rasmussen [28] toclassi�cation problems, and have demonstrated that it performs well on thedatasets we have tried. We believe that the kinds of Gaussian process prior wehave used are more easily interpretable than models (such as neural networks) inwhich the priors are on the parameterization of the function space. For example,the posterior distribution of the ARD parameters (as illustrated in Figure 5.1for the Pima Indians diabetes problem) indicates the relative importance of23



Method Forensic GlassNeural Network (4HU) 23.8%Linear Discriminant 36%MARS (degree = 1) 32.2%PP regression (5 ridge functions) 35%Gaussian Mixture 30.8%Decision Tree 32.2%Gaussian Process (LA, MPL) 23.3%Gaussian Process (Neal's method) 31.8%Table 3: Percentage of test error for the Forensic Glass problem. See Ripley (1996)for details of the methods.various inputs. This interpretability should also facilitate the incorporation ofprior knowledge into new problems.There are quite strong similarities between GP classi�ers and support-vectormachines (SVMs) [23]. The SVM uses a covariance kernel, but di�ers from theGP approach by using a di�erent data �t term (the maximum margin), so thatthe optimal y is found using quadratic programming. The comparison of thesetwo algorithms is an interesting direction for future research.A problem with methods based on GPs is that they require computations(trace, determinants and linear solutions) involving n� n matrices, where n isthe number of training examples, and hence run into problems on large datasets.We have looked into methods using Bayesian numerical techniques to calculatethe trace and determinant [22, 6], although we found that these techniques didnot work well for the (relatively) small size problems on which we tested our24



methods. Computational methods used to speed up the quadratic programmingproblem for SVMs may also be useful for the GP classi�er problem. We are alsoinvestigating the use of di�erent covariance functions and improvements on theapproximations employed.AcknowledgementsWe thank Prof. B. Ripley for making available the Leptograpsus crabs, PimaIndian diabetes and Forensic Glass datasets. This work was partially suppor-ted by EPSRC grant GR/J75425, Novel Developments in Learning Theory forNeural Networks, and much of the work was carried out at Aston University.The authors gratefully acknowledge the hospitality provided by the Isaac New-ton Institute for Mathematical Sciences (Cambridge, UK) where this paper waswritten up. We thank Mark Gibbs, David MacKay and Radford Neal for help-ful discussions, and the anonymous referees for their comments which helpedimprove the paper.Appendix A: Maximizing P (y+jt): Two-class caseWe describe how to �nd iteratively the vector y+ so that P (y+jt) is maximized.This material is also covered in [8] x5.3.3 and [25] x9.2. We provide it here forcompleteness and so that the terms in equation 9 are well-de�ned.Let y+ denote (y�;y), the complete set of activations. By Bayes' theoremlogP (y+jt) = logP (tjy) + logP (y+) � logP (t), and let 	+ = logP (tjy) +logP (y+). As P (t) does not depend on y+ (it is just a normalizing factor), themaximum of P (y+jt) is found by maximizing 	+ with respect to y+. Using25



logP (tijyi) = tiyi � log(1 + eyi), we obtain	+ = tTy � nXi=1 log(1 + eyi)� 12yT+K�1+ y+ � 12 log jK+j � n+ 12 log 2� (14)where K+ is the covariance matrix of the GP evaluated at x1; : : :xn;x�. 	 isde�ned similarly in equation 8. K+ can be partitioned in terms of an n � nmatrix K, a n� 1 vector k and a scalar k�, viz.K+ = 0BB@ K kkT k� 1CCA : (15)As y� only enters into equation 14 in the quadratic prior term and has nodata point associated with it, maximizing 	+ with respect to y+ can be achievedby �rst maximizing 	 with respect to y and then doing the further quadraticoptimization to determine y�. To �nd a maximum of 	 we use the Newton-Raphson iteration ynew = y � (rr	)�1r	. Di�erentiating equation 8 withrespect to y we �nd r	 = (t� �)�K�1y (16)rr	 = �K�1 �W (17)where the `noise' matrix is given by W = diag(�1(1� �1); ::; �n(1� �n)). Thisresults in the iterative equation,ynew = (K�1 +W )�1W (y +W�1(t� �)): (18)To avoid unnecessary inversions, it is usually more convenient to rewrite this inthe form ynew = K(I +WK)�1(Wy + (t� �)): (19)Note that �rr	 is always positive de�nite, so that the optimization problemis convex. 26



Given a converged solution ~y for y, y� can easily be found using y� =kTK�1~y = kT (t � ~�), as K�1~y = (t � �) from equation 16. var(y�) is givenby (K�1+ +W+)�1(n+1)(n+1), where W+ is the W with a zero appended in the(n+ 1)th diagonal position. Given the mean and variance of y� it is then easyto �nd �̂� = R ��P (��jt)d��, the mean of the distribution of P (��jt). In orderto calculate the Gaussian integral over the logistic sigmoid function, we employan approximation based on the expansion of the sigmoid function in terms of theerror function. As the Gaussian integral of an error function is another errorfunction, this approximation is fast to compute. Speci�cally, we use a basisset of �ve scaled error functions to interpolate the logistic sigmoid at chosenpoints6. This gives an accurate approximation (to 10�4) to the desired integralwith a small computational cost.The justi�cation of Laplace's approximation in our case is somewhat di�erentfrom the argument usually put forward, e.g. for asymptotic normality of themaximum likelihood estimator for a model with a �nite number of parameters.This is because the dimension of the problem grows with the number of datapoints. However, if we consider the \in�ll asymptotics" (see, e.g. [3]), wherethe number of data points in a bounded region increases, then a local averageof the training data at any point x will provide a tightly localized estimate for�(x) and hence y(x) (this reasoning parallels more formal arguments found in[29]). Thus we would expect the distribution P (y) to become more Gaussianwith increasing data.6In detail, we used the basis functions erf(�x)) for � = [0:41; 0:4; 0:37; 0:44; 0:39]. Thesewere used to interpolate �(x) at x = [0; 0:6; 2; 3:5; 4:5; 1].
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Appendix B: Derivatives of logPa(tj�) wrt �.For both the HMC andMPLmethods we require the derivative of la = logPa(tj�)with respect to components of �, for example �k. This derivative will involve twoterms, one due to explicit dependencies of la = 	(~y)� 12 log jK�1+W j+ n2 log 2�on �k, and also because a change in � will cause a change in ~y. However, as ~yis chosen so that r	(y)jy=~y = 0, we obtain@la@�k = @la@�k ����explicit � 12 nXi=1 @ log jK�1 +W j@~yi @~yi@�k : (20)The dependence of jK�1 +W j on ~y arises through the dependence of W on ~�,and hence ~y. By di�erentiating ~y = K(t� ~�), one obtains@~y@�k = (I +KW )�1 @K@�k (t� ~�); (21)and hence the required derivative can be calculated.Appendix C: Maximizing P (y+jt) : Multiple-classcaseThe GP prior and likelihood, de�ned by equations 13 and 11, de�ne the posteriordistribution of activations, P (y+jt). As in Appendix A we are interested in aLaplace approximation to this posterior, and therefore need to �nd the modewith respect to y+. Dropping unnecessary constants, the multi-class analogueof equation 14 is	+ = �12yT+K�1+ y+ � 12 log jK+j+ tTy �Xi lnXc exp yic:By the same principle as in Appendix A, we de�ne 	 by analogy with equation8, and �rst optimize 	 with respect to y, afterwards performing the quadratic28



optimization of 	+ with respect to y�.In order to optimize 	 with respect to y, we make use of the Hessian givenby rr	 = �K�1 �W; (22)where K is the mn�mn block-diagonal matrix with blocks Kc, c = 1; : : : ;m.Although this is in the same form as for the two class case, equation 17, thereis a slight change in the de�nition of the `noise' matrix, W . A convenient wayto de�ne W is by introducing the matrix � which is a mn � n matrix of theform � = (diag(�11 ::�n1 ); ::; diag(�1m::�nm). Using this notation, we can write thenoise matrix in the form of a diagonal matrix and an outer product,W = �diag(�11 ::�n1 ; ::; �1m::�nm) + ��T : (23)As in the two-class case, we note that �rr	 is again positive de�nite, so thatthe optimization problem is convex.The update equation for iterative optimization of 	 with respect to theactivations y then follows the same form as that given by equation 18. Theadvantage of the representation of the noise matrix in equation 23 is that wecan then invert matrices and �nd their determinants using the identities,(A+��T )�1 = A�1 �A�1�(In +�TA�1�)�1�TA�1 (24)and det(A+��T ) = det(A) det(In +�TA�1�) (25)where A = K�1 + diag(�11 ::�nm). As A is block-diagonal, it can be invertedblockwise. Thus, rather than requiring determinants and inverses of a mn�mn29



matrix, we only need to carry out expensive matrix computations on n � nmatrices. The resulting update equations for y are then of the same form asgiven in equation 18, where the noise matrix and covariance matrices are nowin their multiple class form.Essentially, these are all the results needed to generalize the method to themultiple-class problem. Although, as we mentioned above, the time complexityof the problem does not scale with the m3, but rather m (due to the identitiesin equations 24, 25), calculating the function and its gradient is still ratherexpensive. We have experimented with several methods of mode �nding forthe Laplace approximation. The advantage of the Newton iteration methodis its fast quadratic convergence. An integral part of each Newton step is thecalculation of the inverse of a matrix M acting upon a vector, i.e. M�1b .In order to speed up this particular step, we used a conjugate gradient (CG)method to solve iteratively the corresponding linear system Mz = b. As werepeatedly need to solve the system (because W changes as y is updated), itsaves time not to run the CG method to convergence each time it is called. Inour experiments the CG algorithm was terminated when 1=nPni=1 jrij < 10�9,where r =Mz � b.The calculation of the derivative of logPa(tj�) wrt � in the multiple-classcase is analogous to the two-class case described in Appendix B.Appendix D: Hybrid Monte CarloHMC works by creating a �ctitious dynamical system in which the parametersare regarded as position variables, and augmenting these with momentum vari-ables p. The purpose of the dynamical system is to give the parameters \inertia"30



so that random-walk behaviour in �-space can be avoided. The total energy,H , of the system is the sum of the kinetic energy, K = pTp=2 and the potentialenergy, E. The potential energy is de�ned such that p(�jD) / exp(�E), i.e.E = � logP (tj�)� logP (�). We sample from the joint distribution for � andp given by P (�;p) / exp(�E �K); the marginal of this distribution for � isthe required posterior. A sample of parameters from the posterior can thereforebe obtained by simply ignoring the momenta.Sampling from the joint distribution is achieved by two steps: (i) �ndingnew points in phase space with near-identical energies H by simulating thedynamical system using a discretised approximation to Hamiltonian dynamics,and (ii) changing the energy H by Gibbs sampling the momentum variables.Hamilton's �rst order di�erential equations forH are approximated using theleapfrog method which requires the derivatives of E with respect to �. Given aGaussian prior on �, logP (�) is straightforward to di�erentiate. The derivativeof logPa(tj�) is also straightforward, although implicit dependencies of ~y (andhence ~�) on � must be taken into account as described in Appendix B. Thecalculation of the energy can be quite expensive as for each new �, we needto perform the maximization required for Laplace's approximation, equation9. This proposed state is then accepted or rejected using the Metropolis ruledepending on the �nal energy H� (which is not necessarily equal to the initialenergy H because of the discretization).
31



Appendix E: Simulation set-up for Neal's codeWe used the fbm software available fromhttp://www.cs.utoronto.ca/~radford/fbm.software.html. For example,the commands used to run the Pima example aregp-spec pima1.log 7 1 - - 0.1 / 0.05:0.5 x0.2:0.5:1model-spec pima1.log binarypima1.log 7 1 2 / pima1.tr@1:200 . mypima.te@1:332 .gp-gen pima1.log fix 0.5 1mc-spec pima1.log repeat 4 scan-values 200 heatbath hybrid 6 0.5gp-mc pima1.log 500which follow closely the example given in Neal's documentation.The gp-spec command speci�es the form of the Gaussian process, and inparticular the priors on the parameters v0 and the w's (see equation 4). The ex-pression 0.05:0.5 speci�es a Gamma-distribution prior on v0, and x0.2:0.5:1speci�es a hierarchical Gamma prior on the w's. Note that a \jitter" of 0:1 isalso speci�ed on the prior covariance function; this improves conditioning of thecovariance matrix.The mc-spec command gives details of the MCMC updating procedure. Itspeci�es 4 repetitions of 200 scans of the y values followed by 6 HMC updatesof the parameters (using a step-size adjustment factor of 0.5). gp-mc speci�esthat this is sequence is carried out 500 times.We aimed for a rejection rate of around 5%. If this was exceeded, the stepsizereduction factor was reduced and the simulation run again.
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