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Abstract

Exact inference in large and complex graphical models (e.g. Bayesian networks) is computationally

intractable. Approximate schemes are therefore of great importance for real world computation. In this

paper we consider a general scheme in which the original intractable graphical model is approximated

by a model with a tractable structure. The approximating model is optimised by an iterative procedure,

which minimises the Kullback-Leibler divergence between the two models. The procedure is guaranteed

to converge to a local minimum of the Kullback-Leibler divergence. The scheme provides a bridge

between naive mean-field theory and exact computation. Simulation results are provided to illustrate

the method.

1. INTRODUCTION

Graphical models, such as Bayesian networks,
Markov fields and Boltzmann machines provide
a rich framework for probabilistic modelling and
reasoning [1, 2, 3, 4]. Their graphical structure
provides an intuitively appealing modularity and
is well suited to the incorporation of prior knowl-
edge. Bayesian networks are often used in a do-
main with causal structures, such as speech recog-
nition and medical diagnosis. Undirected models,
such as Markov fields and Boltzmann machines
are useful for domains with correlated structures
in which the causal direction is less obvious. The
invention of algorithms for exact inference dur-
ing the last decades has lead to the rapid increase
in popularity of graphical models in modern Al.
However, exact inference is NP-hard [5]. In prac-
tice, this is reflected in the fact that large densely
connected networks, which can be expected to ap-
pear in real-world applications, are intractable for
exact computations [6].

In this paper, we address the problem of ap-
proximate inference in intractable graphical mod-
els. In this context, the variational methods gain
increasingly interest [7, 8, 9, 10, 11, 12]. An ad-
vantage of these methods is that they provide
bounds on the approximation error. This is in
contrast to stochastic sampling methods [4, 9]
which may yield unreliable results due to finite
sampling times. Until now, variational approxi-
mations have been less widely applied than Monte

Carlo methods, arguably since their use is not so
straightforward.

The paper is organised as follows. In section
2. we present a variational framework for approxi-
mate inference in an intractable model using (sim-
pler) approximating model that factorises accord-
ing to a given structure. An iterative algorithm
is presented to optimise the parameters of the ap-
proximating model such that the Kullback-Leibler
(KL) divergence is minimised. In section 3. we ad-
dress the problem how to choose the structure of
the approximating model. In section 4., we con-
sider the approximation of extremely dense con-
nected networks. For these networks, the optimi-
sation of the approximating model by KL min-
imisation is intractable. A way out is to minimise
an approximation of KL instead. In section 5.,
we present simulation results on Lauritzen’s chest
clinic (ASIA) model and a random intractable net-
work to illustrate the method. We conclude with
a discussion and future plans in section 6.

2. VARIATIONAL
APPROXIMATION

2.1 Target models

Our starting point is a probabilistic model P(z)
on a set of discrete variables z = zq,...,2, in
a finite domain, z; € {1,...,n;}. Our goal is
to find its marginals P(z;) on single variables or
small subsets of variables P(z;,...,z;). We as-



sume that P can be written in the form
1 1
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in which ¥, are potential functions that depend
on a small number of variables, denoted by the
clusters d,. Sometimes, we use the logarithmic
form of the potentials, ¥, = log ¥,. Z, is a nor-
malisation factor that might be unknown. An ex-
ample is a Boltzmann machine with binary units,

1
P(z) = 7 eXp(Z Wi + Z hizy)
P

i<y k (2)
that fits in our form with d;; = (z;,2;), i< j,
dp = z; and potentials ;;(z;,2;) = wz2;,

¥ (2) = hgzy. Note that the potential represen-
tation is not unique. Another example of a model
that fits in our framework is a Bayesian network
given evidence e,
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which can be expressed in terms of the poten-
tials W;(d;) = P(xj|r;), with d; = (2;,7;) and
the normalisation Z, = P(e). This example
shows that our inference problem includes the
problem of computation of conditionals given ev-
idence, since conditioning can be included by ab-
sorbing the evidence into the model definition via
P.(z) = P(z,e)/P(e).

The computational complexity of computing
marginals in P depends on the underlying graph-
ical structure of the model, and is exponential
in the maximal clique size of the triangulated
moralised graph [2, 3, 4]. This may lead to in-
tractable models, even if the clusters d, are small.
An example is a fully connected Boltzmann ma-
chine: the clusters contain at most two variables,
while the model has one clique that contains all
the variables in the model.

2.2 Approximating models

In the variational method [7, 9, 10, 11, 12], the in-
tractable probability distribution P(xz) is approx-
imated by a tractable distribution @(z). This dis-
tribution can be is used to compute the node prob-
abilities @Q(z;). In the standard (mean field) ap-
proach, () is assumed to be completely factorised
Q(z) =TI; Q(z;). We take the more general ap-
proach [10, 11], with @) being a tractable model
that factorises according a given structure. By

tractable we mean that marginals over small sub-
sets of variables are computationally feasible.

To construct ) we first define its structure.
In this paper, we consider two classes of factori-
sations for the approximating models. The first
class are the ‘undirected’ factorisations,

Qz) = H P, (cy) (4)

in which ¢, are predefined clusters whose union
contains all variables. ®.(c,) are nonnegative po-
tentials of the variables in the clusters. The only
restriction on the potentials is the global normal-
isation

S0 = 1. (5)

{=} 7

The second class are the ‘directed’ factorisa-
tions. These can be written in the same form
(4), but the clusters need to have an ordering
€1,¢g,3,.... We define separator sets s, = ¢, N
{1 U...Ucy_1} and residual sets r, = ¢,\s,. We
restrict the potentials ®,(cy) = ®,(r,,s,) to sat-
isfy the local normalisation

Z Dy(ry,8y) =1, (6)
{rv}
We can identify ®. (7, sy) = Q(r4|sy) and (4) can
be written in the familiar directed notation

Qz) =TI, Q(rylsy) - (7)

2.3 Variational optimisation

In the variational approach, the approximation @
is optimised such that the Kullback-Leibler (KL)
divergence between () and P,

Q) _ Q(z)
D(@Q,P) =) Q(z)log 5 — = (log

(8)

is minimised. In this paper, {...) denotes the av-
erage with respect to ). The KL-divergence is
related to the difference of the probabilities of )
and P,

1
max [P(A4) = Q(A)| < /5 D@, P)  (9)

for any event A in the sample space (see [13]).
The KL-divergence satisfies D(Q,P) > 0, and



D(Q,P) = 0 < @Q = P. Using the logarith-
mic potential representations of P and (), with
@y = log ®.,, we can rewrite D,

D@, P) = <Z Pyley) = Z'¢a(da)>
+ constant (10)

which shows that D(Q, P) is tractable when @ is
tractable and the clusters in PP and () are small.

To optimise () under the normalisation con-
straints ((5) for undirected factorisations resp. (6)
for directed factorisations), we do a constrained
optimisation of the KL-divergence with respect to
¢~ using Lagrangian multipliers. In this optimisa-
tion, the other potentials ¢g, 8 # v remain fixed.
This leads to the general solution ¢*(c,),

@5 (cy) =< Y Yalda) = %(Cﬁ)> —z

a€D, BeC, . (11)
The average (...). is taken with respect to the
conditional distribution Q(z|c,). For undirected
(resp. directed) approximations, D. is the set of
clusters o in P that depend on ¢, (resp. r,). So
for undirected approximations, o ¢ D, implies
Q(daley) = Q(dy), ete. Similarly, for undirected
(resp. directed) approximations, C. is the set of
clusters 3 # ~ that depend on ¢, (resp. r,). For
undirected approximations, z is a constant that
can be inferred from the normalisation (5), i.e.

z=log) exp {Z wolep) +
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For directed approximations, z is a function of the

separator s, and can be inferred from (6), i.e.

z(sy) = log Z exp< Z Pa(dy)

{(n}  \aeD,

-2 ¢@<cﬁ>> . (13)
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Since (Q(z|cy) is independent of the potential
¢, both expressions for z [(12) and (13)], are in-
dependent of ¢,. Consequently, the right hand
side of (11) is independent of ¢, as well. So (11)
provides a unique solution ¢7 to the optimisation

of the potential of cluster . This solutions corre-
sponds to the global minimum of D(Q, P) given
that the potentials of other clusters 3 # v are
fixed. This means that in a sequence where at
each step different potentials are selected and up-
dated, the KL-divergence decreases at each step.
Since D(Q, P) > 0, we conclude that this itera-
tion over all clusters leads to a local minimum of

D(Q, P).

3. APPROXIMATING
STRUCTURES

The quality of the approximation depends
strongly on the structure of (). T'he simplest ap-
proach is the so called mean-field approach, in
which the graph of () is completely disconnected,
ie. Q(z) =exp);¢(z;). Then (11) reduces to
the standard mean field equations [12]

i) = < > ¢’(da)> -z (14)

a€lD; z;
The other extreme is to factorise ) according to
a triangulated (moral) graph of P [2, 3, 4]. In
this case, the approximating distribution ¢} con-
verges to the target distribution P in finite time.
Of course, this solution is only theoretically of in-
terest, since the computational complexity of this
approximation is equal to the complexity of the
target distribution. However, it indicates that the
variational approach using structure interpolates
between the standard mean field approach and the
exact solution.

In general one must choose a structure for @
that is a good compromise between approxima-
tion error and complexity. An important question
is how to do this to get the best out of the ap-
proximation. In principle, the number of possible
structures grows exponentially with the number of
nodes. A heuristic is to try making the graphical
overlap between () and P as large as computa-
tionally feasible [10, 11]. One way to do this is to
copy the target model P to (), and subsequently,
to split clusters in ) that cause too large cliques.
On the other hand, some clusters in @) are already
computationally harmless, and one could ask the
question whether it is helpful to join these clus-
ters into larger ones, assumed that this is com-
putationally still efficient. The motivation is that
these joint clusters may indirectly model relations
in P that are not modelled in @ otherwise.

In some cases, one can infer from the structure
of P and @ that it is useless to join two clusters



Figure 1: Example of redundant structure. (a):
Graph of exact model P(A)P(B|A)P(C|A). (b):
Optimisation of an approximating model with
structure Q(A)Q (B, C) leads to a model with sim-
pler structure Q(A)Q(B)Q(C). The variables B
and C' become independent in , although they
are marginally dependent in P (via A).

¢x, and ¢y into one joint cluster cquy = ¢k U ca.
This is important information since the approxi-
mation with the joint cluster has more parameters
to estimate and is more complex in computation.
For example, in undirected approximations, join-
ing clusters ¢, and c, is useless if for any of the
remaining clusters ¢ € {d,,cg,8# k,8# A} at
least one of the following independency relations

Q(tlcn U C/\) = Q(t|cn) (15)
Q(t|ex U ern) = Q(t|en) (16)

holds. In such a case one can show that an up-
date of @,y in an approximation with the joint
cluster leads to the same approximation as sub-
sequent updates of ¢, and @) in an approxima-
tion with separate clusters. In directed approxi-
mations, similar results can be obtained. In fig. 1
a simple example is given.

In general, however, the optimal selection of
the approximate structure is still an open prob-
lem.

4. APPROXIMATED
MINIMISATION

The complexity of the variational method is at
least exponential in the parent size of the exact
model P, since it requires the computation of av-
erages of the form (log P(z;|7")}. This means that
computational advantage can only be obtained if
the parent size is much smaller than the clique size
of P [2, 3, 4]. Since the storage space of proba-
bility tables is exponential in the parent size, in
practical applications probability tables with large
number of parents will be parametrised. Pop-
ular parametrisations are noisy-OR gates [1, 3]

and weighted sigmoid functions [14]. For these
parametrisations (log P(z;|7?)) can be approxi-
mated by a tractable quantity & (Q, §) (which may
be defined using additional variational parameters
&). As an example, consider tables parametrised
as sigmoid functions,

Pz =1|{z}) = (1+exp(z))™"
(17)

where z; is the weighted input of the node,
zi =y, WirTk + h;. In this case, the averaged log
probability is intractable for large parent sets. To
proceed we can use the approximation proposed

in [7]
(log(1+ %)) <
& () +log (787 4 1760%) = £(Q,€) (19)

which is tractable if €} is tractable. Numerical
optimisation of £(Q,&) = (log Q) — £(Q,&) with
respect to Q and & leads to local minimum of an
upper bound of the Kl.-divergence. Note how-
ever, that iteration of fixed point equations de-
rived from £(Q,&) does not necessarily lead to
convergence, due to the nonlinearity of £ with re-
spect to Q).

5. NUMERICAL RESULTS

We illustrate the theory by two toy problems.
The first one is inference in Lauritzen’s chest
clinic model (ASIA), defined on 8 binary variables
{a,t,s,1,b,e,z,d} (see [2] for more details about
the model). We compared exact marginals with
approximate marginals using the approximating
models in figure 2. From the results, we can con-
clude that adding structure to the approximating
network decreases the error in the approximation.
However, we also can see from the simulation re-
sults that even the fully disconnected mean field
approximation is qualitatively correct (maximum
error between marginals P(z;) and Q(x;) is about
0.2).

In the second toy problem we simulated ap-
proximate inference in a structure that has both
tractable substructures and sigmoidal nodes with
large parent sets. We generated models with
graphical structure as in figure 3(a). The upper
node is a mixture node with m mixture compo-
nents. The next layer consists of n + 1 binary
nodes. The third layer consists of n binary nodes
x;. KEach of these nodes has two parents in the
preceding layer. Up to this layer the network is



(b) KL = 0.43

(¢) KL = 0.03

Figure 2: Chest clinic model (ASIA). (a): Exact
model P with marginal probabilities. Dashed lines
indicate its underlying cluster structure (moral
graph). The dotted line indicates an extra fill
needed to triangulate the graph. (b-c): Approxi-
mating models with approximated marginal prob-
abilities. In (b) @ is fully factorised. In (c), @ is
a tree. KL is the KL-divergence D(Q, P) between
the approximating model ¢ and the true model

P.

tractable. We refer to this part of the network
as Ni. This part of the network represents some
underlying causal structure in the model, e.g. a
causal structure of diseases and pathophysiologi-
cal mechanisms in a model for medical diagnosis,
and may have been designed using expert knowl-
edge. Finally, there is a layer of n, observables
z,. These are parametrised by sigmoid functions,
receiving weighted inputs from all the nodes of the
preceding layer. The goal is to find marginal prob-
abilities of the nodes in the third layer (from top)
given evidence on the observable nodes. Exact
computation of these probabilities is intractable
for large n.

We choose m = 10, n, = 50 and varied n =
8,...,15. Networks of this size are still tractable
for exact computation. The values in the probabil-
ity tables of NV; are drawn uniformly. The weights
in the sigmoidal functions are drawn from the
Gaussian distribution with zero mean and stan-
dard deviation 1/4/n. We computed exact and
approximated marginals for the third layer z;. As

(b) ()

Figure 3: (a): Graphical structure of artifi-
cially generated probability distribution P. Non-
evidential nodes are black. Evidential nodes are
white. (b) and (c): Graphical structure on the
non-evidential nodes of the approximating distri-
butions ().

approximating models we used a factorised model
and a model with the tractable structure 7 (fig. 3
(b-c)). In figure 4 we plotted the maximal er-
ror max; |Q(z;) — P(x;|z,)| as a function of the
network size. We also plotted the required com-
puter time for exact and approximate inference as
a function of the network size. In the optimisa-
tion of the approximating model with structure,
we used the optimised factorised model as initial-
isation. Thus, the computation of the structured
model can be seen as post-processing step after
the optimisation of the factorised model. This is
reflected in the plotted CPU-times.

We conclude that variational methods using
structure significantly improves the quality of ap-
proximation, within feasible computer time. In a
network with tractable substructures, as can be
expected in many practical applications such as
medical diagnosis, these substructures provide a
useful starting point for the approximating model.

6. Discussion and future plans

Finding accurate approximations of graphical
models such as Bayesian networks is crucial if their
application to large scale problems is to be re-
alised. We have presented a general scheme to use
a (simpler) approximating model that factorises
according to a given structure. The scheme in-
cludes approximations with undirected, directed
and chain graph models. The approximating
model is tuned via minimisation of the Kullback-
Leibler divergence. We have addressed the ques-
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Figure 4: Left: The maximal error as a function
of the network size. Right: CPU-time (arbitrary
units) for exact and approximate inference as a
function of the network size

tion of selecting the structure of the approximat-
ing model. Parametrised models with large parent
sets can be dealt with by minimising an approxi-
mation of the KL divergence.

Numerical results reported here, as well as re-
sults on the Asia problem with evidence (not re-
ported here) show that the factorised variational
approximation is qualitatively correct in the sense
that it correctly estimates whether probabilities
are high or low. However, the numerical errors
can be rather large. Approximations using struc-
ture give significant improvements. Our results
seem to indicate that these improvements are in-
dependent of the problem size.

One of the current research items is to further
investigate the optimal structure for ). In addi-
tion, we intent to build a package of C++ routines
for (automated) model selection, model optimisa-
tion and approximate inference. These routines
are to be contributed to an RWCP library. Cur-
rently we are also involved in a joint project with
Utrecht University Hospital to build a large and
detailed system for diagnosis in internal medicine.
This system will be based on a Bayesian network
with many tractable substructures. Our aim is to
use our approximate routines for this system as a
RWCP demonstration project.
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