
Variational Belief Networks for Approximate InferenceWim Wiegerinck David BarberStichting Neurale Netwerken, University of NijmegenNijmegen, The Netherlandse-mail: fwimw,davidbg@mbfys.kun.nlAbstractExact inference in large, densely connected probabilistic networks is computa-tionally intractable, and approximate schemes are therefore of great importance.One approach is to use mean �eld theory, in which the exact log-likelihood isbounded from below using a simpler approximating distribution. In the standardmean �eld theory, the approximating distribution is factorial. We propose insteadto use a (tractable) belief network as an approximating distribution. The resultingcompact framework is analogous to standard mean �eld theory and no additionalbounds are required, in contrast to other recently proposed extensions. We de-rive mean �eld equations which provide an e�cient iterative algorithm to optimizethe parameters of the approximating belief network. Simulation results indicate aconsiderable improvement on previously reported methods.1 IntroductionBelief networks provide a rich framework for probabilistic modeling and reasoning [1, 2].Their graphical structure provides an intuitively appealing modularity and is well suited tothe incorporation of prior knowledge. Belief networks often used in a domain with causalstructures, such as speech recognition and medical diagnosis. Thanks to the directedgraphical structure in these models, exact inference requires only local computations, incontrast to undirected models, such as Boltzmann machines. However, the complexityof exact inference scales exponentially with the clique size and, as a result, large denselyconnected networks are intractable for exact computations. Finding good approximatetechniques for dealing with such models is therefore crucial if their power is to be realised.Whilst techniques do exist to handle large complex networks, most are based on uncon-trolled approximations (such as Monte Carlo methods - see, e.g. [3]) and we seek insteada more rigorous approach.One such method is to use mean �eld theory [3] which provides a rigorous lower boundon the likelihood through the use of a simpler variational approximating distribution. Alower bound is particularly useful since maximization of the lower bound can be used as alearning procedure when the true loglikelihood is intractable. Standard mean �eld theoryresorts to using completely factorized models as approximating distributions. We willshow that this restriction is unnecessary and that mean �eld techniques can be pushedmuch further without incurring much more computational overhead.The paper is organized as follows. In section 2 we review the standard mean �eldtheory using factorized models, as proposed by [4]. In section 3 we show how this theory



generalizes in a natural way when belief networks are used and discuss the relation toother extensions proposed in the literature [5, 6, 3]. In section 4 we apply the method ona toy benchmark problem [4, 5].2 Mean Field TheoryConsider a probability model P (S) on T binary valued units, S = fS1; S2; : : : ; STg withSi 2 0=1. (The following exposition is readily generalisable to many-valued discrete units).We wish to compute the likelihood P (SV ) that the set of visible variables is in stateSV � Sv1 ; : : : SvNV . This involves the summation over exponentially many states of the Hremaining (hidden) variables, P (SV ) = PfSHg P (SV ; SH). When this summation cannotbe computed e�ciently, approximate methods must be introduced. We present herethe mean �eld theory approximation in some generality before specialising to particularmodels in later sections.Consider the Kullback-Leibler divergence between the conditional hidden unit distri-bution, P (SH jSV ) and an approximating distribution Q(SH),KL = XfSHgQ(SH) lnQ(SH)� XfSHgQ(SH) lnP (SHjSV ) � 0 (1)Using Bayes rule, P (SHjSV ) = P (SH ; SV )=P (SV ), we obtain the following bound,lnP (SV ) � � XfSHgQ(SH) lnQ(SH) + XfSHgQ(SH) lnP (SH ; SV ) (2)The �rst term in this bound, H(Q) � PfSHgQ(SH) lnQ(SH) is the entropy of the ap-proximating distribution Q. For general probability distributions on the hidden vari-ables, H(Q) is not tractable, and we therefore restrict Q(SH) to be in a class of sim-pler, tractable models M. Unfortunately, the second term PfSHgQ(SH) lnP (SH ; SV )may not be tractable, even if the entropy term is. In this case we assume, however,that the term is also boundable, perhaps with recourse to other variational parameters,PfSHgQ(SH) log P (SV ; SH) � EV (Q; �). We then write the bound in the general form,lnP (SV ) � EV (Q; �)�H(Q) � FV (Q; �) (3)in which � is a free parameter vector in a domain �. The bound (3) is then made as tightas possible by maximizing FV (Q; �) with respect to Q 2 M and � 2 �.2.1 Factorized modelsThe simplest mean �eld theory restricts the class M to factorized distributionsQ(SH) = Yi2HQ(Si) (4)The entropy H(Q) decomposes nicely into a tractable sum of entropies per site,XfSHgQ(SH) lnQ(SH) = Xi2H XfSigQ(Si) lnQ(Si) (5)



Similarly, it would be nice if the energy would decouple in a corresponding way.Clearly, if the energy factorizes over the sites, Qi2H e�i(Si; �) � e�(SH ; �) then this ispossible, so that a general form of \nice" energy functions is given byEV (Q; �) = MX�=1 f�(he�(SH; �)iQ) (6)where f�(x) is a scalar function. The computing time needed for the energy is then linearin M , which we assume to be at most polynomial in the number of hidden units, H. Wewill encounter just such an energy form in relation to the approximation of sigmoid beliefnetworks, section 4.In order to optimize FV (Q; �), we introduce parameters qi � Q(Si = 1). The requirednormalization of Q �xes the remaining probabilityQ(Si = 0) = 1�qi. Setting the gradientof FV , (3) with respect to the qi's equal to zero yields the mean �eld equationsqi = � (riEV (Q; �)) (7)where the gradient ri is with respect to qi. The sigmoid function �(x) � 1=(1 + e�x)is the inverse of the gradient of the entropy. Since he�(SH ; �)iQ is linear in each of theparameters qi, computation of the gradient riEV (Q; �) is straightforward. A fast, twostep iterative procedure to optimize FV (Q; �) with respect to the qi's and �, is proposedin [4]. In the �rst step, the qi's are optimized by iteration of the mean �eld equations (7)while the � remain �xed. In the second step, � is optimized directly using FV (Q; �) whilethe qi's remain �xed. The two steps are iterated until convergence is reached.3 Mean Field Theory using Belief NetworksWe now consider the much richer class of belief networks as approximating models, whileusing the same general energy EV (Q; �) as in the previous section. A belief network isde�ned by a factorization over conditional probability distributions,Q(SH) = Yi2HQ(SijS�i) (8)in which �i denotes the sets of parent nodes of i, see �g(1).The e�ciency of computation in a belief network depends on the underlying graphicalstructure of the model and is exponential in the maximal clique size (see, for example [2]).We now assume that our model class M consists of belief networks with a �xed,tractable graphical structure. The entropy can then be computed e�ciently since itdecouples into a sum of averaged entropies per site i (with the convention that Q(S�i) � 1if �i = �), XfSHgQ(SH) lnQ(SH) = Xi2H XfS�igQ(S�i)XfSigQ(SijS�i) lnQ(SijS�i) (9)For tractable networks, the energy EV (Q; �) (6) is composed of termshe�(SH ; �)iQ = XfSHg e�(SH ; �)Q(SH) =Yi XfSig e�i(Si; �)Q(SijS�i)



(a) Belief network C 1

C 2 C 4C 3 (b) Clique GraphFigure 1: (a) A Belief Network. The parent set of each node i is that set of nodes which pointinto node i. (b) Clique graph, containing cliques of size 2 and 3.which has exactly the same graphical structure as the belief network Q itself, (8). There-fore, computing the energy is of the same complexity as that for computing with theapproximating belief network Q.In order to optimize the bound, analogous to the factorized case, we parametrizeQ via its conditional probabilities, qi(S�i) � Q(Si = 1jS�i). The remainingprobability Q(Si = 0jS�i) follows from normalization. We therefore have a setfqi(S�i)jS�i = (0 : : : 0); : : : ; (1 : : : 1)g of variational parameters for each node in the graph.Setting the gradient of FV with respect to the qi(S�i)'s equal to zero, yields the mean�eld equations qi(S�i) = �i0@�riS�iEV (Q; �)�+ LiS�iQ(S�i) 1A (10)with LiS�i = �Xj XS�j [riS�iQ(S�j)]XSj Q(SjjS�j ) lnQ(SjjS�j) (11)The gradient riS�i is with respect to qi(S�i). The explicit evaluation of the gradientscan be performed e�ciently, since all that need to be di�erentiated are at most scalarfunctions of quantities that depend again only linearly on the parameters qi(S�i). Tooptimize the bound, we again use a two step iterative procedure as described in section2.1. We see therefore, that the application of mean �eld theory using belief networksis analogous to that of using factorized models. However, the more powerful class ofapproximating distributions described by belief networks should enable a much tighterbound on the likelihood of the visible units.3.1 Other methodsIn the previous section, we described an approach in which a tractable belief network canbe used, with the whole network of conditional probabilities being available as variationalparameters. We brie
y mention a related approach, which can be seen as a subclass of themore general algorithm previously described, and for which only a subset of the variablesof a tractable distribution are varied. This modi�ed mean �eld method was developed in[6].



Figure 2: Graphical structure of the 2-4-6 nodes sigmoid belief network. Open circles: visibleunits SV . Filled circles: hidden units SH . Maximum clique size: 6.Here the class of approximating distributions is given byQ(SH) = 1ZQ Yi2H exp(�i(Si)) ~P (SH) (12)in which ~P (SH) is a tractable belief network which is preset by hand and remains �xedduring optimization. ZQ is a normalization factor. The idea is that ~P (SH) mimics theoriginal intractable probability distribution P as much as possible. For example, deletingcertain connections in the original model P may render the graph tractable. In order tocompensate for this simpli�cation, the functions �i(Si) can be varied. Since the freedom�i(Si) does not a�ect the graphical structure, the distributions Q are tractable beliefnetworks as well. However, in contrast to our approach, only a small subset of tractablebelief networks is explored during the optimization since only the �i's are varied while~P (SH) remains �xed. In [3] the method is applied in factorial hidden Markov models, inwhich ~P (SH) is a product of Markov Chains.Recently [5, 3] have proposed to use mixtures of factorized models. Unfortunately,the entropy term PfSHgQ(SH) lnQ(SH) is not tractable for mixtures, and an additionalbound is needed. This leads to a rather large number of variational parameters, arguablybecause the approximating distribution is not faithful to the structure of the originalmodel.4 Application to Sigmoid Belief NetworksWe applied mean �eld theory using belief networks on a toy benchmark problem to com-pare its performance with previously reported methods. Following [4, 5] we consider aproblem in a three layer (2-4-6 nodes) sigmoid belief network in which the last 6 nodes arevisible, �g. 2. In a sigmoid belief network [7] with binary units (Si = 0=1) the conditionalprobability that the variable Si = 1 given its parents S�i isP (Si = 1jS�i) = �(zi) (13)with zi � Pj JijSj + hi. The weights Jij (with Jij = 0 for j 62 �i) and biases hj are theparameters of the network. In attempting to compute the lower bound, (2), unfortunately,the average of P (SH; SV ) is not tractable, since hln [1 + ez]i does not decouple into apolynomial number of single site averages. We make use instead of the further boundproposed by [4] hln [1 + ez]i � � hzi + ln De��z + e(1��)zE (14)We can then de�ne the energy function



0 0.02 0.04(a) disconnected (`standard mean �eld')- 16 parameters, mean: 0.01571(5). Max.clique size: 1 0 0.02 0.04(b) chain - 19 parameters, mean:0.01529(5). Max. clique size: 2
0 0.02 0.04(c) trees - 20 parameters, mean:0.0089(1). Max. clique size: 2 0 0.02 0.04(d) network - 28 parameters, mean:0.00183(1). Max. clique size: 3Figure 3: Graphical structures of the approximating distributions on SH (cf. �g. 2 ). For eachstructure, histograms of the relative error between the true log likelihood and the lower boundis plotted. The horizontal scale has been �xed to [0,0.05] in all plots. The maximum clique sizerefers to the complexity of computation for each approximation, which is exponential in thisquantity.EV (Q; �) =Xij Jij hSiSjiQ +Xi (hi �Xj �jJji) hSiiQ�Xi hi�i �Xi ln De��izi + e(1��i)ziEQ (15)where the variational parameters � 2 [0; 1]. Note that this is of the class of energyfunctions de�ned by (6).In order to test our method numerically, we generated 500 networks with parametersfJij; hjg drawn randomly from the uniform distribution over [�1; 1]. The lower boundsFV for several approximating structures (including `standard mean �eld', section 2.1) arecompared with the true log likelihood, using the relative error E = FV = lnP (SV ) � 1,�g. 3. These show that considerable improvements can be obtained when belief networksare used. Note that a 5 component mixture model (� 80 variational parameters) yieldsE = 0:01139 on this problem [5]. These results suggest therefore that exploiting knowledgeof the graphical structure of the model is useful in practice. For instance, the chain(�g. 3(b)) with no graphical overlap with the original graph shows hardly any improvementover the standard mean �eld approximation. On the other hand, the tree model (�g. 3(c)),which has about the same number of parameters, but a larger overlap with the originalgraph, does improve considerably over the mean �eld approximation (and even over the5 component mixture model). By increasing the overlap, as in �g. 3(d), the improvementgained is even greater.5 DiscussionThe use of tractable belief networks �ts well in mean �eld theory. In contrast to aprevious mean �eld theory using constrained substructures [6], we search in the whole,unconstrained space de�ned by the graphical structure of the approximating model. Since
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