
Mean Field Theory based on BeliefNetworks for Approximate InferenceWim Wiegerinck�yand David BarberzStichting Neurale Netwerken, University of NijmegenNijmegen, The NetherlandsAbstractExact inference in large, densely connected belief networks is compu-tationally intractable, and approximate schemes are therefore of greatimportance. In the context of approximate inference in sigmoid beliefnetworks, mean �eld theory has received much interest. In this methodthe exact log-likelihood is bounded from below using a mean �eld ap-proximating distribution. In the standard mean �eld theory, the approx-imating distribution is assumed to be factorial. In this paper we proposeto use a (tractable) belief network as an approximating distribution. Weshow that belief networks �t very well into mean �eld theory, and noadditional bounds are required. We derive mean �eld equations whichprovide an e�cient iterative algorithm to optimize the parameters of theapproximating distribution. Simulation results on an inference problemindicates a considerable improvement over existing mean �eld methods.1 IntroductionBelief networks provide a rich framework for probabilistic modeling and reason-ing [1]. Due to the directed graphical structure in these models, exact inferencerequires only local computations, in contrast to undirected approximations. Inpractice, this means that networks of reasonable size are tractable, as long asthe `neighborhoods' are small. However, the complexity of inference scales ex-ponentially with the size of the neighborhoods and, as a result, large denselyconnected networks can only be handled with approximate methods. As thesize of conditional probability tables also scales with the size of the neighbor-hoods, it is convenient to parametrize large models in a compact way, e.g. asnoisy-OR networks[1] or sigmoid belief networks[2].In mean �eld approximations of large networks this compact parametriza-tion is exploited[3]. However, we will show that the graphical structure ofthe model can be pushed much further to provide a more accurate, boundedapproximation for inference, without incurring much more computational over-head.The paper is organized as follows. In section 2 we review the standard mean�eld theory using factorized models to approximate sigmoid belief networks, as�http://www.mbfys.kun.nl/�wimwyThis research is supported by the Technology Foundation STW, applied science divisionof NWO and the technology programme of the Ministry of Economic A�airszhttp://www.mbfys.kun.nl/�davidb Supported by the Real World Computing Project.



proposed by [3]. In section 3 we show how this theory can be extended in anatural way using belief networks. In section 4 we apply the method on a toyproblem from [3, 4].2 Mean Field TheoryGiven a probability model P (S), we wish to compute the likelihood P (SV )that the set of visible variables V � v1; : : : ; vN is in state SV � Sv1 ; : : :SVN .This involves the summation over exponentially many states of the remaining(hidden) variables H, P (SV ) =PfSHg P (SV ; SH). In a sigmoid belief network[2] with binary units (Si = 0=1) the probability that the variable Si = 1 isP (Si = 1jpa(Si)) = �0@Xj JijSj + hi1A (1)where �(z) � (1+ e�z)�1. The parents of Si are denoted pa(Si); the biases arehj and the weights are Jij such that Jij = 0 for Sj 62 pa(Si). Mean �eld theoryfor such networks is based on the following lower bound1 on the log likelihood[3] for any approximating distribution Q(SH ) and parameters, �i 2 IR,lnP (SV ) � FV [Q; �] =Xij Jij hSiSjiQ +Xi (hi �Xj �jJji) hSiiQ �Xi hi�i�Xi lnDe��izi + e(1��i)ziEQ � XfSHgQ(SH ) lnQ(SH ) (2)where zi =Pj JijSj+hi and h�iQ is the average with respect to the mean �elddistribution Q(SH ). Since this inequality holds for any Q and �, one can makethe bound as tight as possible by optimizing FV [Q; �] with respect to Q and �.2.1 Factorized modelsTo make the bound FV [Q; �] tractable, standard mean �eld theory restrictsitself to factorized models Q(SH ) = Yi2HQ(Si) (3)Using the parametrization, qi � Q(Si = 1), all terms of (2) are easy to compute,e.g. hSiiQ = qi, hSiSjiQ = qiqj, and 
e��izi�Q = e��ihi Qj(1 � qj + qje��iJij ).The entropy factorizes nicely into a tractable sum of entropies per site,XfSHgQ(SH ) lnQ(SH) =Xi qi ln qi + (1� qi) ln(1� qi) (4)1This bound results from the Kullback-Leibler divergence between the true distributionand an approximating distribution on the hidden units.
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������(b) Message propagationFigure 1: Graphical tree structure of the approximating distributions Q.A fast, two step iterative procedure to optimize FV [Q; �] with respect to Q and�, is the following [3]. First the gradient with respect to the qi's is set equal tozero, which yields the mean �eld equationsqi = �0@hi +Xj [Jijqj + Jji (qj � �j) +Kji]1A (5)where Jsij = Jij + Jji, andKij = � @@qj lnDe��izi + e(1��i)ziEQ : (6)The qi's are optimized by iteration of the mean �eld equations (5) while the�i's remain �xed. In the second step, the �i's are optimized using (2) while theqi's remain �xed. Note that the optimization of each �i can be performed byone-dimensional optimizations.Recently [5, 4] have proposed to improve the bound (2) using a mixturemodel. Unfortunately, the entropy termPfSHgQ(SH ) lnQ(SH ) is not tractablefor mixtures, and an additional bound is needed. In the following section wepropose an alternative class of models which generalize the standard mean �eldtheory straightforwardly, without requiring any additional bound.3 Mean Field Theory Using Belief NetworksWe show here how mean �eld theory can be extended in a natural way by usingtractable belief networks for the approximating distributionQ. For conveniencewe restrict ourselves to trees of clusters of nodes2,Q(SH ) =Y
 Q(S
 jSpa
) (7)2This does not preclude disconnected branches - see �g. 1(a).



where disjoint clusters 
 � H form a partition of H. The clusters f
g areordered 
1 < 
2 < : : : 
k and pa
 is either empty, or contained in one of thepredecessors of 
(see �g. 1(a)). The tractability of these models is determinedby the size of the 
's, which we assume to be small. For each cluster 
, theconditional distributions in (7) contain (2j
j � 1)� 2jpa
j parameters.3.1 Computing the mean �eld boundWe now show that FV [Q; �] in (2) is tractable and computable by local com-putations and simple message propagations (we refer the reader to standardtexts, such as [1]). First of all, the marginal probability distributions on 
, canbe computed using the recursionQ(S
 ) = XSpa
 Q(S
 jSpa
)Q(Spa
) (8)The terms hSiiQ with i 2 
, and hSiSjiQ with i; j 2 
 can be computedby summation of Q(S
) over all states S
 with Sj = 1 and Si = 1; Sj = 1respectively. To compute terms of the form hSiSjiQ for which i 2 
i andj 2 
j , with 
i 6= 
j having a common ancestor 
0, standard message passingalgorithms can be used[1], see �g. 1(b).We write the terms 
e��izi�Q = e��ihiPfSHgR(SH ), where R(SH ) =Q
 R(S
 jSpa
 ) andR(S
 jSpa
) � Q(S
 jSpa
) exp(Pj2
 ��iJijSj). Note thatR and Q have similar graphical structures, and we can therefore use messagepropagation techniques again to compute 
e��izi�Q. The last term to consideris the entropy term, which decouples into a sum of averaged entropies per 
,XfSHgQ(SH ) lnQ(SH ) =X
 XSpa
 Q(Spa
)XS
 Q(S
 jSpa
 ) lnQ(S
 jSpa
) (9)We conclude that all terms in FV [Q; �] are tractable without the need of addi-tional approximations.3.2 Mean �eld equationsTo derive mean �eld equations, we di�erentiate (2) with respect to the param-eters Q(Si
 jSpa
), i.e., the i-th state of the conditional probability distributionfor cluster 
 (of which there are n
 = 2j
j� 1 states), analogous to section 2.1,�Q(S1
 jSpa
 ) : : :Q(Sn

 jSpa
 )�= ~� Pij Jsijr
 hSiSjiQ +Pi(hi �Pj �jJji)r
 hSiiQ +K + LQ(Spa
) ! (10)where the gradient r
 is with respect to Q(S1
 jSpa
) : : :Q(Sn

 jSpa
). Fur-thermore, K = �r
Xi lnDe��izi + e(1��i)ziEQ (11)



Figure 2: Graphical structure of the 2-4-6 nodes sigmoid belief network. Open circles:visible units V . Filled circles: hidden units H.and L = �X
0 XSpa
0 [r
Q(Spa
0 )]XS
0 Q(S
0 jSpa
0 ) lnQ(S
0 jSpa
0) (12)~�(x1; : : : ; xn
) � (1+Pj exj )�1(ex1 ; : : : ; exn
 ) is the generalized sigmoid func-tion. Finally, Q(Spa
) � 1 if pa
 = �. The explicit evaluation of the gradientscan be performed e�ciently, again using standard message propagation.To optimize the bound, we again use a two step iterative procedure asdescribed in section 2.1. Note that the optimization with respect to the �i's inthe second step remains decoupled.4 SimulationsTo compare the method with existing mean �eld approximations [3, 4], we ex-amined a toy benchmark problem in a three layer (2-4-6 nodes) sigmoid beliefnetwork in which the last 6 nodes are visible, �g. 2. We generated 500 networkswith parameters fJij; hjg drawn randomly from the uniform distribution over[�1; 1]. The lower bound values FV for several approximating structures (in-cluding `standard mean �eld') are compared with the true log likelihood, usingthe relative error E = FV = lnP (SV ) � 1, �g. 3. These show that considerableimprovements can be obtained when belief networks are used. Note that a 5component mixture model (� 80 variational parameters) yields E = 0:01139 onthis problem [4]. The results also suggest that one should exploit knowledgeabout the graphical structure of the model. For instance, the chain (�g. 3(b))with no graphical overlap with the original graph shows hardly any improve-ment over the standard mean �eld approximation. On the other hand, the treesmodel (�g. 3(c)), which has about the same number of parameters, but a largeroverlap with the original graph, does improve considerably over the mean �eldapproximation (and even over the 5 component mixture model). By increasingthe overlap, as in �g. 3(d), the improvement gained is even greater.5 DiscussionThe use of tractable belief networks �ts well in mean �eld theory. Their abilityto exploit the graphical structure of the model seems very powerful. Note thatour approach (see also [6]) is very di�erent from suggested methods [7] of usingmean �eld theory to strip away intractable parts of the graph and compute



0 0.02 0.04(a) disconnected (`standard mean�eld') - 16 parameters, mean:0.01571(5) 0 0.02 0.04(b) chain - 19 parameters, mean:0.01529(5)
0 0.02 0.04(c) trees - 20 parameters, mean:0.0089(1) 0 0.02 0.04(d) network - 28 parameters, mean:0.00183(1)Figure 3: Graphical structures of the approximating distributions on H (cf. �g. 2 ).For each structure, histograms of the relative error between true log likelihood andthe lower bound is plotted. Horizontal scale have been �xed to [0,0.05] in all plots.with the remaining �xed tractable substructure. In contrast, we use variationaltractable structures together with mean �eld theory which leads, in general, toa more powerful approximation. We believe that such approaches will provebene�cial for learning large belief networks.We have also developed a similar approach based on undirected graphicalapproximations, which have roughly the same accuracy, although the optimiza-tion procedure is implemented in a di�erent way [6].[1] J. Pearl. Probabilistic Reasoning in Intelligent systems: Networks of PlausibleInference. Morgan Kaufmann Publishers, Inc., 1988.[2] R. Neal. Connectionist learning of belief networks. Arti�cial Intelligence, 56:71{113, 1992.[3] L.K. Saul, T. Jaakkola, and M.I. Jordan. Mean �eld theory for sigmoid beliefnetworks. Journal of Arti�cial Intelligence Research, 4:61{76, 1996.[4] C.M. Bishop, N. Lawrence, T. Jaakkola, and M. I. Jordan. Approximating Pos-terior Distributions in Belief Networks using Mixtures. In Advances in NeuralInformation Processing Systems, volume 10. MIT Press, 1998. In press.[5] T.S. Jaakkola and M.I. Jordan. Approximating posteriors via mixture models.In M.I. Jordan, editor, Proceedings NATO ASI Learning in Graphical Models.Kluwer, 1997.[6] D. Barber and W. Wiegerinck. Tractable undirected approximations for graphicalmodels. In ICANN'98: International Conference on Arti�cial Neural Networks,Sk�ovde, 1998.[7] L. K. Saul and M. I. Jordan. Exploiting Tractable Substructures in IntractableNetworks. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advancesin Neural Information Processing Systems, volume 8. MIT Press, 1996.


