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Abstract

Exact inference in large, densely connected belief networks is compu-
tationally intractable, and approximate schemes are therefore of great
importance. In the context of approximate inference in sigmoid belief
networks, mean field theory has received much interest. In this method
the exact log-likelihood is bounded from below using a mean field ap-
proximating distribution. In the standard mean field theory, the approx-
imating distribution is assumed to be factorial. In this paper we propose
to use a (tractable) belief network as an approximating distribution. We
show that belief networks fit very well into mean field theory, and no
additional bounds are required. We derive mean field equations which
provide an efficient iterative algorithm to optimize the parameters of the
approximating distribution. Simulation results on an inference problem
indicates a considerable improvement over existing mean field methods.

1 Introduction

Belief networks provide a rich framework for probabilistic modeling and reason-
ing [1]. Due to the directed graphical structure in these models, exact inference
requires only local computations, in contrast to undirected approximations. In
practice, this means that networks of reasonable size are tractable, as long as
the ‘neighborhoods’ are small. However, the complexity of inference scales ex-
ponentially with the size of the neighborhoods and, as a result, large densely
connected networks can only be handled with approximate methods. As the
size of conditional probability tables also scales with the size of the neighbor-
hoods, it is convenient to parametrize large models in a compact way, e.g. as
noisy-OR networks[1] or sigmoid belief networks|[2].

In mean field approximations of large networks this compact parametriza-
tion is exploited[3]. However, we will show that the graphical structure of
the model can be pushed much further to provide a more accurate, bounded
approximation for inference, without incurring much more computational over-
head.

The paper is organized as follows. In section 2 we review the standard mean
field theory using factorized models to approximate sigmoid belief networks, as
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proposed by [3]. In section 3 we show how this theory can be extended in a
natural way using belief networks. In section 4 we apply the method on a toy
problem from [3, 4].

2 Mean Field Theory

Given a probability model P(S), we wish to compute the likelihood P(Sy)
that the set of visible variables V' = vy, ... vy is in state Sy = Sy, ... Svy-
This involves the summation over exponentially many states of the remaining
(hidden) variables H, P(Sy) = Z{SH} P(Sv,Sm). In a sigmoid belief network
[2] with binary units (S; = 0/1) the probability that the variable S; = 1 is

P(S; =1|pa(S;))=¢ Z JijS; + h; (1)

J

where o(z) = (1+e7?)~1. The parents of S; are denoted pa(S;); the biases are
h; and the weights are J;; such that J;; = 0 for S; ¢ pa(S;). Mean field theory
for such networks is based on the following lower bound' on the log likelihood
[3] for any approximating distribution Q(Sg) and parameters, & € IR,

InP(Sy) > Fv[Q.€& = ZJZ] (5:S5) +Z(hz' —Z€jJﬂ) {(Sidg — th&
—Zln< 6y (1= > 3" Q(Su) InQ(Sk)

{5} (2)

where z; = Zj Ji; S5+ hi and <>Q is the average with respect to the mean field
distribution Q(Sg). Since this inequality holds for any @ and &, one can make
the bound as tight as possible by optimizing Fy [@, £] with respect to ¢ and €.

2.1 Factorized models

To make the bound Fy[@Q,£] tractable, standard mean field theory restricts
itself to factorized models

) = H Q(S:) (3)

Using the parametrization, ¢; = Q(S; = 1), all terms of (2) are easy to compute,
e.g. (Si)q = i, (SiSj)q = @igj, and (e74%) o = e &M [ (1 — g + gje™ 7).

The entropy factorizes nicely into a tractable sum of entropies per site,

Y QSH)InQ(SH) = Zqzlnqz (1= i) In(1 - q:) (4)
{Sm}

IThis bound results from the Kullback-Leibler divergence between the true distribution
and an approximating distribution on the hidden units.



(a) Tree of node clusters (b) Message propagation

Figure 1: Graphical tree structure of the approximating distributions Q.

A fast, two step iterative procedure to optimize Fy [@), £] with respect to @) and
&, is the following [3]. First the gradient with respect to the ¢;’s is set equal to
zero, which yields the mean field equations

gi =0 | hi+ Y [ijg; + Jii (45 — &) + Kji] (5)
j

where J;} = Ji; + Jj;, and

[{” = —% hl <6_§lzl + 6(1_51)21>Q . (6)
J

The ¢;’s are optimized by iteration of the mean field equations (5) while the
&;’s remain fixed. In the second step, the &;’s are optimized using (2) while the
¢;’s remain fixed. Note that the optimization of each & can be performed by
one-dimensional optimizations.

Recently [5, 4] have proposed to improve the bound (2) using a mixture
model. Unfortunately, the entropy term E{SH} Q(Sm) In Q(Sm) is not tractable
for mixtures, and an additional bound 1s needed. In the following section we
propose an alternative class of models which generalize the standard mean field
theory straightforwardly, without requiring any additional bound.

3 Mean Field Theory Using Belief Networks

We show here how mean field theory can be extended in a natural way by using
tractable belief networks for the approximating distribution ). For convenience
we restrict ourselves to trees of clusters of nodes?,

Q(Sw) =[] Q(SyISpar) (7)

2This does not preclude disconnected branches - see fig. 1(a).



where disjoint clusters v C H form a partition of H. The clusters {y} are
ordered v; < vz < ...7v, and pavy is either empty, or contained in one of the
predecessors of y(see fig. 1(a)). The tractability of these models is determined
by the size of the +’s, which we assume to be small. For each cluster v, the
conditional distributions in (7) contain (2171 — 1) x 2/P® parameters.

3.1 Computing the mean field bound

We now show that Fy[@,£] in (2) is tractable and computable by local com-
putations and simple message propagations (we refer the reader to standard
texts, such as [1]). First of all, the marginal probability distributions on =, can
be computed using the recursion

Q(5) = Y Q(Sy15pas)Q(Span) (8)

Spay
The terms <SZ'>Q with ¢ € %, and <SiSj>Q with 4,j € 5 can be computed
by summation of Q(S,) over all states Sy, with §; = 1 and S; = 1,5; =1
respectively. To compute terms of the form <SiSj>Q for which ¢ € 5; and
J € 74, with v; # v; having a common ancestor vy, standard message passing

algorithms can be used[1], see fig. 1(b).
We write the terms <e‘5’Z’>Q = e~ Z{SH} R(Sw), where R(Syg) =

Hv R(S,|Spay) and R(Sy|Spay) = Q(Sy|Spay) exp(zj@ —&;Ji;5;). Note that
R and @ have similar graphical structures, and we can therefore use message
propagation techniques again to compute <e‘5’Z’>Q. The last term to consider

is the entropy term, which decouples into a sum of averaged entropies per ~,
> QUSHInQSH) =Y > QSpaq) Y Q(Sy1Spay) InQ(S5]5pary)
{Su} 7 Spay Sy (9)

We conclude that all terms in Fy [@, £] are tractable without the need of addi-
tional approximations.

3.2 Mean field equations

To derive mean field equations, we differentiate (2) with respect to the param-
eters Q(S,[Spay), i.¢., the i-th state of the conditional probability distribution

for cluster v (of which there are n, = 2l -1 states), analogous to section 2.1,
(Q(S;1Spay) - - - Q(S5 [ Spay))
_ (Z” IV <Si5j>Q + > (hi — Zj &J55)Vy <Sz'>Q + K+ L) (10)

Q(Spa~)
where the gradient V. is with respect to Q(SHSPEW) .. .Q(S§”|Spav). Fur-

thermore,

K=-v,)n (emes +e<1—fl>zl>Q (11)



Figure 2: Graphical structure of the 2-4-6 nodes sigmoid belief network. Open circles:
visible units V. Filled circles: hidden units H.

and
L=- Z Z [VQ(Spay)] Z Q(Sy|Spay) In Q(Sy:[Spay) (12)
’Y’ Spa,yl S‘YI
Fey,... xn,) = (1+Zj e®i)~H(e®1, ... e""v) is the generalized sigmoid func-

tion. Finally, Q(Spa~) =1 if pay = ¢. The explicit evaluation of the gradients
can be performed efficiently, again using standard message propagation.

To optimize the bound, we again use a two step iterative procedure as
described in section 2.1. Note that the optimization with respect to the &;’s in
the second step remains decoupled.

4 Simulations

To compare the method with existing mean field approximations [3, 4], we ex-
amined a toy benchmark problem in a three layer (2-4-6 nodes) sigmoid belief
network in which the last 6 nodes are visible, fig. 2. We generated 500 networks
with parameters {J;;, h;} drawn randomly from the uniform distribution over
[—1,1]. The lower bound values Fy for several approximating structures (in-
cluding ‘standard mean field’) are compared with the true log likelihood, using
the relative error £ = Fy/In P(Sy) — 1, fig. 3. These show that considerable
improvements can be obtained when belief networks are used. Note that a b5
component mixture model (~ 80 variational parameters) yields £ = 0.01139 on
this problem [4]. The results also suggest that one should exploit knowledge
about the graphical structure of the model. For instance, the chain (fig. 3(b))
with no graphical overlap with the original graph shows hardly any improve-
ment over the standard mean field approximation. On the other hand, the trees
model (fig. 3(c)), which has about the same number of parameters, but a larger
overlap with the original graph, does improve considerably over the mean field
approximation (and even over the 5 component mixture model). By increasing
the overlap, as in fig. 3(d), the improvement gained is even greater.

5 Discussion

The use of tractable belief networks fits well in mean field theory. Their ability
to exploit the graphical structure of the model seems very powerful. Note that
our approach (see also [6]) is very different from suggested methods [7] of using
mean field theory to strip away intractable parts of the graph and compute
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Figure 3: Graphical structures of the approximating distributions on H (cf. fig. 2 ).
For each structure, histograms of the relative error between true log likelihood and
the lower bound is plotted. Horizontal scale have been fixed to [0,0.05] in all plots.

with the remaining fized tractable substructure. In contrast, we use variational
tractable structures together with mean field theory which leads, in general, to
a more powerful approximation. We believe that such approaches will prove
beneficial for learning large belief networks.

We have also developed a similar approach based on undirected graphical
approximations, which have roughly the same accuracy, although the optimiza-
tion procedure is implemented in a different way [6].
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