
Generative Vector QuantisationMachiel Westerdijk�, David Barber and Wim Wiegerinck�Department of Medical Physics and Biophysics, University of NijmegenyThe NetherlandsAbstract { Based on the assumption thata pattern is constructed out of featureswhich are either fully present or absent,we propose a vector quantisation methodwhich constructs patterns using binarycombinations of features. For this modelthere exists an e�cient EM-like learn-ing algorithm which learns a set of rep-resentative codebook vectors. In termsof a generative model, the collection ofallowed binary states `generates' the setof codebook vectors. The method, there-fore, provides not only a compact descrip-tion of the data in terms of clusters, butalso an explanation of the individual clus-ters in terms of common elementary fea-tures. Preliminary results on image com-pression and handwritten digit analysisindicate that our approach is an interest-ing and computationally inexpensive al-ternative to more complex probabilisticgenerative graphical models.1 IntroductionIn recent years, a number of methods havebeen proposed which seek for a descriptionof data in terms of elementary features. Itis expected that these methods give rise tomore natural and (therefore) more compactmodels which may lead to better generali-sation. Furthermore, because the descrip-tion is in terms of features these models areeasy to interpret, which may be helpful in�Supported by the Technology Foundation STW,applied science division of NWOyhttp://www.mbfys.kun.nl/�fmachiel, davidb,wimwg

understanding the hidden data generatingprocess.Advanced non-linear probability modelshave recently been promoted by several au-thors in this context [1, 2, 7]. However, toour knowledge all these models scale badlyon larger real world problems, and most ap-plications have been rather limited. Non-probabilistic methods such as vector quan-tisation (VQ) [5] are able to capture, in prin-ciple, any structure, linear or non-linear,using considerably less computational re-sources. The drawback of VQ however isthat it does not have a feature representa-tion. We propose a method, Generative Vec-tor Quantisation (GVQ), which combinesthe advantages of a description in terms ofelementary features with the ability to learncomplicated non-linear structures at modestcomputational expense.We present an e�cient EM-like learningalgorithm in section 2. In section 3 we showthat Generative Vector Quantisation gives agood performance in large scale real worldtasks like image compression and handwrit-ten digit analysis, including problems withup to 400 data dimensions.2 Generative VectorQuantisation (GVQ)The aim of vector quantisation is to repre-sent a dataset by a smaller set of codebookvectors. In GVQ, we consider a set of basicfeature vectors ff1; : : : ; fnf g which exist inthe same N -dimensional space as the data.Codebook vectors are then formed by binarycombinations of these feature vectors,nfXi=1 sif i � F s;1
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(001) (011)Figure 1: Codebook vectors (circles) are gen-erated by a small set of basic features f1; f2and f3, which correspond to the states (100)T ;(010)T and (001)T , respectively.where the feature matrix F =�f1f2 : : : fnf �, and the state vectors 2 f0; 1gnf . There are therefore 2nfpossible codebook vectors F s1; : : : ; F s2nf .An example of a set of codebook vectorsgenerated by 3 features in a 2-dimensionalspace is shown in �gure 1. The circles repre-sent the generated codebook vectors whichcorrespond to the 8 states (000)T ; (100)T ;� � � ; (111)T .Note that the number of features nf isnot related to the dimensionality of the dataspace. Hence, considered as a basis, the fea-ture set may be under or over complete.2.1 GVQ LearningIn GVQ, as in standard VQ, each data pointx� is associated with a particular codebookvector indexed by c�. The squared Eu-clidian distance between the data set D =fx�j� = 1; : : : ; Pg and its codebook repre-sentation, fF sc� j� = 1; : : : ; Pg, isE = PX�=1 kx� � F sc�k2: (1)Since the associations between data pointsand codebook vectors will change if the fea-ture matrix F is changed, minimising (1)directly with respect to F and the associ-ations is not practical. For this reason wedescribe a two-step iteration procedure.After initialisation of the features F theGVQ learning algorithm iterates between anassociation step (1) which �nds, for eachdata-point, the closest codebook vector and

a minimisation step (2) which �nds the op-timal feature con�guration for the given as-sociation:1. For � = 1; � � � ; Pc�  argminj kx� � F sjk2; (2)2. F  argmin~F X� kx� � ~F sc�k2 (3)The quadratic form in (3) can be minimisede�ciently by use of Singular Value Decom-position.Although the GVQ algorithm is conver-gent, care needs to be taken to avoid localminima. As in standard VQ, the qualityof the solution is highly dependent on thechoice of the initial codebook vectors, or inthis case an initial choice for the features F .Random initialisation of all the features typ-ically results in acceptable but sub-optimalsolutions. Superior results on the problemstested so far were obtained by sequentiallyincreasing the number of features. At thenth stage, the procedure starts with the so-lution obtained for n � 1 features and in-cludes an extra (small randomly oriented)nth feature. This gradual increase of com-plexity leads to a more uniform distributionof codebook vectors over the data, resultingin smaller errors.2.2 Illustration on a2-D problemIn �gure 2 we apply the GVQ learning al-gorithm to 200 random uniformly gener-ated data points (small circles) on the unitsquare. The bold arrows are the found fea-tures whose binary combinations generatethe eight codebook vectors, represented bylarge circles. Which codebook vector eachdata point is associated with is indicatedby a thin line. We remind the reader thatthe GVQ learning algorithm begins with onefeature and iterates until convergence. Ad-ditional features are included one at a timeand at each stage the optimal solution isfound in less than 10 iterations.In the example all of the possible featurecombinations have data points associated tothem. In general, however, it is possible that2



Figure 2: GVQ solution with 3 features fordata distributed at random uniformally on theunit square. The bold arrows are the featuresand the large circles are end points of the code-book vectors. The small dots represent the dataand the lines between the data points and code-book vectors represent the associations.
a) b)Figure 3: a) Two sets of 3 features and b)Codebook vectors generated by two 3-valuedfeatures.a number of states will move too far out ofthe data cloud to be associated with anydata point. Hence the �nal codebook maycontain far fewer than 2nf vectors. In thepractical problems that we considered, thefraction � of discarded codebook vectors typ-ically remains small if the number of statesis smaller than the number of patterns, i.e.2nf < P . Furthermore, if this condition ap-plies then � scales roughly linear with 2nf .Hence, the frame which is spanned by the bi-nary feature combinations is in general ex-ible enough to stay close to the data.2.3 Multiple feature sets andmulti-valued featuresIn many real world problems we can expectthat there are di�erent groups of patternswhich each are built up of a di�erent unre-

lated set of features. It is easy to adjust theGVQ learning algorithm for learning multi-ple feature sets by simply constraining theset of allowable states. An example of thissituation is given in �gure 3-a. This extrafreedom makes it possible to work with amuch larger number of features without suf-fering from high computational costs. In theextreme case of using one feature per set,GVQ is equivalent to standard vector quan-tisation.Another extension is to use multi-valued,rather than just binary, feature combina-tions. This extension can also be incorpo-rated directly into the GVQ algorithm byusing si 2 f0; 1; : : : ;Kg. An example usingtwo three valued features is shown in �gure3-b.3 Results3.1 Handwritten digitsWe randomly selected 400 training imagesof handwritten threes and �ves from theCEDAR CDROM 1 database [6]. Since theoriginal images contain di�erent numbers ofpixels, we rescaled all images to 20�20 pix-els. In contrast to [1] and [7] there was noneed to reduce the image size further sincethe algorithm convergences quickly scalingonly linearly with the number of input di-mensions. We applied our GVQ algorithmto this training set using a single set ofnf = 8 features. At each stage of featureinclusion the algorithm reached a local min-imum typically after only ni = 20 iterations.On a Pentium 166 MHz computer the CPU-time of our algorithm implemented in Mat-lab code is 5 � 10�6 � P �N � 2nf � ni sec-onds. Learning a codebook with nf = 8features on a training set with P = 400 pat-terns, each having N = 400 dimensions, asin the example, takes 1:1 hours.A typical sample of training set imagestogether with their closest codebook vectorsobtained after training is shown in �gure 4.The reproduced data are seen to be faith-ful representations of the original data. Thefeatures which were obtained are shown in�gure 5-b1 and -b2. The origin of the fea-ture basis (an extra feature which is learnedbut which is always switched on) is shownin �gure 5-a. The image in the left of �gure5-c is a combination of features 4, 6 and 83



Figure 4: Original handwritten digits (theeight digits shown in the lower half of the �g-ure) and their corresponding nearest codebookvectors (upper half).
a)

1 2 3 4 b1)
5 6 7 8 b2)c)Figure 5: a) The origin of the feature set. b)The complete feature set consisting of eight fea-tures. c) The codebook vectors representing a3 and a 5 are combinations of features 4, 6, 8and 3,5,7,8, respectively.and the image in the right is a combinationof features 3, 5, 7 and 8.Using the same preprocessed 8 � 8 pixelimages as used in [7] and [1], we tested anaive classi�cation method. For each digit0; � � � ; 9 we used GVQ to learn a separatecodebook from 400 examples using 10 fea-tures. After learning, the codebooks werejoined in one big set and the test patterns(700 for each digit) were classi�ed with theclass label of their closest codebook vector.The classi�cation error was 6:0%, slightlyworse than the result reported by [7] and[1], 4:6% and 4:8%, respectively, but betterthan the result of nearest neighbour classi-�cation, 6:7% . Our results, using a modestamount of CPU time, are encouraging. We

are currently looking into ways of improvingthe classi�cation accuracy of the method.3.2 Image CompressionA well known application of vector quantisa-tion is image compression. We used GVQ tocompress the image1 in �gure 6-a and com-pared the result with standard vector quan-tisation.If a codebook vector in GVQ is con-structed out of a set of nf features then weneed maximally nf bits to determine a code-book vector. In general the number of bitswill be less since some feature combinationsare never used. Therefore, if the number ofused feature combinations is Ngvq we needlogNgvq < nf to determine a codebook vec-tor in GVQ. Similarly, in standard VQ weneed logNvc bits to determine a codebookvector if Nvc is the number of learned code-book vectors.Consider the case that the image to becompressed is particular in the sense thatwe can not use features (or codebook vec-tors) which were used to encode previouslyencountered images. In that situation weneed to consider the information to describethe features (codebook vectors) themselves.This information is proportional to the num-ber of pixels np used in a feature and the in-formation to determine the gray value of apixel Ig . Hence, if the original image is splitinto P segments, each made up of np pix-els, then the information in the image aftercompression with standard VQ isIV Q = IgnpNvq + P logNvqand with GVQ it isIGV Q = Ignpnf + P logNgvq :The original image consists of 768 � 704pixels with 256 possible gray levels for eachpixel which corresponds to 865 kbits of infor-mation. The image was split into segmentsof 16�16 pixels. For the standard VQ algo-rithm we used Nv = 16 codebooks to com-press the image into a IV Q = 74 kbit image,�gure 6-b. We then applied our GVQ al-gorithm using Nf = 8 features to compress1The Girl with a Pearl Earring (1665) by Jo-hannes Vermeer, Mauritshuis, The Hague (TheNetherlands)4



a)
b)
c)Figure 6: a) The Vermeer image prior to com-pression consists of 865 kbits. After compres-sion: b) With standard VQ Iv = 74 kbits, c)with GVQ using 1 set of 8 features IGVQ = 56kbits.the image in a string of IGV Q = 56 kbits,�gure 6-c. While containing 8 kbits of infor-mation less, the GVQ compressed image iswithout doubt a superior representation ofthe original image.4 Relation to other workThere is a close similarity between the GVQlearning algorithm and the EM-algorithmwhich is used for learning probabilistic mod-els. The E-step which makes a probabilis-tic association between a data point and ahidden state s is replaced with a hard 0-1association step (step 2 in the algorithm).The M-step, in which the likelihood is max-

imised, is replaced with the distance min-imisation step (step 3 in the algorithm). Infact, in the limit � ! 0, the GVQ algorithmis equivalent to the EM-algorithm applied tothe following mixture modelp(x�) /Xs p(s)e� 12�2 kx��Fsk2 ; (4)where the state probabilities p(s) are either0 (corresponding to codebook vectors whichmoved out of the data cloud) or equal toa constant value. In the limit � ! 0 thedata point x� will be associated with a sin-gle state s, namely the one for which F s hasthe smallest Euclidian distance to x�. TheM-step then corresponds to minimising thesum of these distances with respect to F .Viewed as the limiting case of the prob-ability model (4), some interesting connec-tions can be made to the work of [4] andalso [3] which has recently come to our at-tention. The main di�erence between themodels these authors propose and Eq. (4)is in the assumption for the hidden statedistribution p(s). Both consider continuoushidden state variables. Attias [3] considersa product of Gaussian mixture distributions(independent factors) for the hidden statess. If, in that model, the number of mix-tures for each hidden state variable si is setto 2 (bi-modal distribution), the generatedpatterns are essentially binary feature com-binations as in GVQ. Olshausen and Field[4], on the other hand, consider a sharplypeaked unimodal distribution for continuoushidden variables s. This choice encouragesa sparse representation of the data patternssince the hidden variables si will be in the`o�' state most of the time. In this case anindividual pattern will be constructed as acombination of only a small number of fea-tures out of a large, typically over-complete,set of features. A similar property can be in-corporated in our method by extending thebasic constant GVQ prior p(s) in Eq. (4)with a soft prior p(s) / exp(��sT s). Note,however, that when this penalty term be-comes too large, only a single feature will beused to represent a pattern. In other wordsGVQ will tend to standard vector quantisa-tion as the solution is strongly encouragedto be sparse.5



5 DiscussionGenerative vector quantisation is a methodwhich performs salient feature extraction atmodest computational expense. The sim-plicity of GVQ, which searches for descrip-tions in terms of binary feature combina-tions, may lead to a lucid data representa-tion which is important in many data explo-ration tasks. A central thesis of the GVQmodel is that data points are explained by asingle generating process. In terms of VectorQuantisation, this means that data pointsare associated with only the nearest code-book vector. Unlike a probabilistic model,GVQ constructs a competition between al-ternative explanations for a data point, inwhich there can be only one winning ex-planation. We saw that in handwrittencharacter recognition, the features learnedwere able to generate good representationsof the data. Similarly, image compressionwas markedly improved by using GVQ overstandard VQ.GVQ is potentially a powerful tool for ex-ploring and representing data in a determin-istic manner. Ultimately, the strength ofGVQ lies in its transparent simplicity, beingbased on the intuitive notion that, althoughdata may appear complex, its constructionmay be well understood in terms of a smallnumber of elementary building blocks.References[1] B. Sallans, G.E. Hinton, and Z. Ghahra-mani. A hierchical community of experts.In C. M. Bishop, editor, Neural Networksand Machine Learning, 269{284. Springer-Verlag, 1998.[2] Z. Ghahramani and G. E. Hinton. Hier-archical non-linear factor analysis and to-pographic maps. In NIPS, 10. MIT Press,1998.[3] H. Attias Independent Factor Analysis Neu-ral Computation, 11(4):803{851, 1999.[4] B.A. Olshausen and D. J. Field. Emergenceof simple-cell receptive �eld properties bylearning a sparse code for natural images.Nature, 381:607{609, 1996.[5] R.M. Gray. Vector quantisation. IEEEASSP Magazine, pages 4{29, 1984.[6] J. J. Hull. A database for handwritten textrecognition research. IEEE Transactions onPattern Analysis and Machine Intelligence,16(5):550{554, 1997.
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