Generative Vector Quantisation

Machiel Westerdijk; David Barber and Wim Wiegerinck*

Department of Medical Physics and Biophysics, University of Nijmegent

The Netherlands

Abstract — Based on the assumption that
a pattern is constructed out of features
which are either fully present or absent,
we propose a vector quantisation method
which constructs patterns using binary
combinations of features. For this model
there exists an efficient EM-like learn-
ing algorithm which learns a set of rep-
resentative codebook vectors. In terms
of a generative model, the collection of
allowed binary states ‘generates’ the set
of codebook vectors. The method, there-
fore, provides not only a compact descrip-
tion of the data in terms of clusters, but
also an explanation of the individual clus-
ters in terms of common elementary fea-
tures. Preliminary results on image com-
pression and handwritten digit analysis
indicate that our approach is an interest-
ing and computationally inexpensive al-
ternative to more complex probabilistic
generative graphical models.

1 Introduction

In recent years, a number of methods have
been proposed which seek for a description
of data in terms of elementary features. It
is expected that these methods give rise to
more natural and (therefore) more compact
models which may lead to better generali-
sation. Furthermore, because the descrip-
tion is in terms of features these models are
easy to interpret, which may be helpful in

*Supported by the Technology Foundation STW,
applied science division of NWO

thttp://www.mbfys.kun.nl/~{machiel, davidb,
wimw}

understanding the hidden data generating
process.

Advanced non-linear probability models
have recently been promoted by several au-
thors in this context [1, 2, 7]. However, to
our knowledge all these models scale badly
on larger real world problems, and most ap-
plications have been rather limited. Non-
probabilistic methods such as vector quan-
tisation (VQ) [5] are able to capture, in prin-
ciple, any structure, linear or non-linear,
using considerably less computational re-
sources. The drawback of VQ however is
that it does not have a feature representa-
tion. We propose a method, Generative Vec-
tor Quantisation (GVQ), which combines
the advantages of a description in terms of
elementary features with the ability to learn
complicated non-linear structures at modest
computational expense.

We present an efficient EM-like learning
algorithm in section 2. In section 3 we show
that Generative Vector Quantisation gives a
good performance in large scale real world
tasks like image compression and handwrit-
ten digit analysis, including problems with
up to 400 data dimensions.

2 Generative Vector
Quantisation (GVQ)

The aim of vector quantisation is to repre-
sent a dataset by a smaller set of codebook
vectors. In GVQ, we consider a set of basic
feature vectors {f',...,f"/} which exist in
the same N-dimensional space as the data.
Codebook vectors are then formed by binary
combinations of these feature vectors,

ny
E Sifl = FS,
i=1

10)

(001) 0(011)

Figure 1: Codebook vectors (circles) are gen-
erated by a small set of basic features f',f?
and f3, which correspond to the states (100)7,
(010)” and (001)7, respectively.

where the feature matrix F =
[f'f2 ... fv7], and the state vector
s € {0,1}". There are therefore 27
possible codebook vectors Fs!, ..., Fs? /.

An example of a set of codebook vectors
generated by 3 features in a 2-dimensional
space is shown in figure 1. The circles repre-
sent the generated codebook vectors which
correspond to the 8 states (000)%, (100)7,
<, (1T,

Note that the number of features ny is
not related to the dimensionality of the data
space. Hence, considered as a basis, the fea-
ture set may be under or over complete.

2.1 GVQ Learning

In GVQ, as in standard VQ, each data point
x* is associated with a particular codebook
vector indexed by c¢,. The squared Eu-
clidian distance between the data set D =
{x#|u=1,...,P} and its codebook repre-
sentation, {F's®*|u=1,... ,P}, is

P
E=Y|x*—Fs™|]. (1)

p=1

Since the associations between data points
and codebook vectors will change if the fea-
ture matrix F' is changed, minimising (1)
directly with respect to F' and the associ-
ations is not practical. For this reason we
describe a two-step iteration procedure.
After initialisation of the features F' the
GVQ learning algorithm iterates between an
association step (1) which finds, for each
data-point, the closest codebook vector and

a minimisation step (2) which finds the op-
timal feature configuration for the given as-
sociation:

1. Forp=1,--- P

cu + argminl|x* — Fs7|)?, (2)
j

F + argminz ||x* — F's®||?
L (3)

The quadratic form in (3) can be minimised
efficiently by use of Singular Value Decom-
position.

Although the GVQ algorithm is conver-
gent, care needs to be taken to avoid local
minima. As in standard VQ, the quality
of the solution is highly dependent on the
choice of the initial codebook vectors, or in
this case an initial choice for the features F'.
Random initialisation of all the features typ-
ically results in acceptable but sub-optimal
solutions. Superior results on the problems
tested so far were obtained by sequentially
increasing the number of features. At the
nth stage, the procedure starts with the so-
lution obtained for n — 1 features and in-
cludes an extra (small randomly oriented)

nt™h feature. This gradual increase of com-
plexity leads to a more uniform distribution
of codebook vectors over the data, resulting
in smaller errors.

2.2 TIllustration on a
2-D problem

In figure 2 we apply the GVQ learning al-
gorithm to 200 random uniformly gener-
ated data points (small circles) on the unit
square. The bold arrows are the found fea-
tures whose binary combinations generate
the eight codebook vectors, represented by
large circles. Which codebook vector each
data point is associated with is indicated
by a thin line. We remind the reader that
the GVQ learning algorithm begins with one
feature and iterates until convergence. Ad-
ditional features are included one at a time
and at each stage the optimal solution is
found in less than 10 iterations.

In the example all of the possible feature
combinations have data points associated to
them. In general, however, it is possible that

Figure 2: GVQ solution with 3 features for
data distributed at random uniformally on the
unit square. The bold arrows are the features
and the large circles are end points of the code-
book vectors. The small dots represent the data
and the lines between the data points and code-
book vectors represent the associations.

Figure 3: a) Two sets of 3 features and b)
Codebook vectors generated by two 3-valued
features.

a number of states will move too far out of
the data cloud to be associated with any
data point. Hence the final codebook may
contain far fewer than 2™/ vectors. In the
practical problems that we considered, the
fraction € of discarded codebook vectors typ-
ically remains small if the number of states
is smaller than the number of patterns, i.e.
2"f < P. Furthermore, if this condition ap-
plies then e scales roughly linear with 2"/,
Hence, the frame which is spanned by the bi-
nary feature combinations is in general flex-
ible enough to stay close to the data.

2.3 Multiple feature sets and
multi-valued features

In many real world problems we can expect
that there are different groups of patterns
which each are built up of a different unre-

lated set of features. It is easy to adjust the
GVQ learning algorithm for learning multi-
ple feature sets by simply constraining the
set of allowable states. An example of this
situation is given in figure 3-a. This extra
freedom makes it possible to work with a
much larger number of features without suf-
fering from high computational costs. In the
extreme case of using one feature per set,
GVQ is equivalent to standard vector quan-
tisation.

Another extension is to use multi-valued,
rather than just binary, feature combina-
tions. This extension can also be incorpo-
rated directly into the GVQ algorithm by
using s; € {0,1,...,K}. An example using
two three valued features is shown in figure
3-b.

3 Results

3.1 Handwritten digits

We randomly selected 400 training images
of handwritten threes and fives from the
CEDAR CDROM 1 database [6]. Since the
original images contain different numbers of
pixels, we rescaled all images to 20 x 20 pix-
els. In contrast to [1] and [7] there was no
need to reduce the image size further since
the algorithm convergences quickly scaling
only linearly with the number of input di-
mensions. We applied our GVQ algorithm
to this training set using a single set of
ny = 8 features. At each stage of feature
inclusion the algorithm reached a local min-
imum typically after only n; = 20 iterations.
On a Pentium 166 MHz computer the CPU-
time of our algorithm implemented in Mat-
lab codeis 51078 x P x N x 2™/ x n; sec-
onds. Learning a codebook with ny = 8
features on a training set with P = 400 pat-
terns, each having N = 400 dimensions, as
in the example, takes 1.1 hours.

A typical sample of training set images
together with their closest codebook vectors
obtained after training is shown in figure 4.
The reproduced data are seen to be faith-
ful representations of the original data. The
features which were obtained are shown in
figure 5-b1 and -b2. The origin of the fea-
ture basis (an extra feature which is learned
but which is always switched on) is shown
in figure 5-a. The image in the left of figure
5-c is a combination of features 4, 6 and 8

Figure 4: Original handwritten digits (the
eight digits shown in the lower half of the fig-
ure) and their corresponding nearest codebook
vectors (upper half).

a

, zw3a)4

GRS,

EEEE.,
38,

Figure 5: a) The origin of the feature set. b)
The complete feature set consisting of eight fea-
tures. c¢) The codebook vectors representing a
3 and a 5 are combinations of features 4, 6, 8
and 3,5,7,8, respectively.

and the image in the right is a combination
of features 3, 5, 7 and 8.

Using the same preprocessed 8 x 8 pixel
images as used in [7] and [1], we tested a
naive classification method. For each digit
0,---,9 we used GVQ to learn a separate
codebook from 400 examples using 10 fea-
tures. After learning, the codebooks were
joined in one big set and the test patterns
(700 for each digit) were classified with the
class label of their closest codebook vector.
The classification error was 6.0%, slightly
worse than the result reported by [7] and
[1], 4.6% and 4.8%, respectively, but better
than the result of nearest neighbour classi-
fication, 6.7% . Our results, using a modest
amount of CPU time, are encouraging. We

are currently looking into ways of improving
the classification accuracy of the method.

3.2 Image Compression

A well known application of vector quantisa-
tion is image compression. We used GVQ to
compress the image! in figure 6-a and com-
pared the result with standard vector quan-
tisation.

If a codebook vector in GV(Q is con-
structed out of a set of ny features then we
need maximally n ¢ bits to determine a code-
book vector. In general the number of bits
will be less since some feature combinations
are never used. Therefore, if the number of
used feature combinations is Ng,, we need
log Ngug < ny to determine a codebook vec-
tor in GVQ. Similarly, in standard VQ we
need log N,. bits to determine a codebook
vector if N, is the number of learned code-
book vectors.

Consider the case that the image to be
compressed is particular in the sense that
we can not use features (or codebook vec-
tors) which were used to encode previously
encountered images. In that situation we
need to consider the information to describe
the features (codebook vectors) themselves.
This information is proportional to the num-
ber of pixels n, used in a feature and the in-
formation to determine the gray value of a
pixel I,. Hence, if the original image is split
into P segments, each made up of n, pix-
els, then the information in the image after
compression with standard VQ is

[VQ = Ignpqu + Plog qu
and with GVQ it is
Iavg = Iynpng + Plog Nyy,.

The original image consists of 768 x 704
pixels with 256 possible gray levels for each
pixel which corresponds to 865 kbits of infor-
mation. The image was split into segments
of 16 x 16 pixels. For the standard VQ algo-
rithm we used N, = 16 codebooks to com-
press the image into a Iyyg = 74 kbit image,
figure 6-b. We then applied our GVQ al-
gorithm using Ny = 8 features to compress

I'The Girl with a Pearl Earring (1665) by Jo-
hannes Vermeer, Mauritshuis, The Hague (The
Netherlands)

Figure 6: a) The Vermeer image prior to com-
pression consists of 865 kbits. After compres-
sion: b) With standard VQ I, = 74 kbits, c)
with GVQ using 1 set of 8 features Igvg = 56
kbits.

the image in a string of Igvg = 56 kbits,
figure 6-c. While containing 8 kbits of infor-
mation less, the GVQ compressed image is
without doubt a superior representation of
the original image.

4 Relation to other work

There is a close similarity between the GVQ
learning algorithm and the EM-algorithm
which is used for learning probabilistic mod-
els. The E-step which makes a probabilis-
tic association between a data point and a
hidden state s is replaced with a hard 0-1
association step (step 2 in the algorithm).
The M-step, in which the likelihood is max-

imised, is replaced with the distance min-
imisation step (step 3 in the algorithm). In
fact, in the limit o — 0, the GVQ algorithm
is equivalent to the EM-algorithm applied to
the following mixture model

p(xt) oc 3 p(s)e ™z TR (g

where the state probabilities p(s) are either
0 (corresponding to codebook vectors which
moved out of the data cloud) or equal to
a constant value. In the limit ¢ — 0 the
data point x* will be associated with a sin-
gle state s, namely the one for which F's has
the smallest Euclidian distance to x*. The
M-step then corresponds to minimising the
sum of these distances with respect to F.

Viewed as the limiting case of the prob-
ability model (4), some interesting connec-
tions can be made to the work of [4] and
also [3] which has recently come to our at-
tention. The main difference between the
models these authors propose and Eq. (4)
is in the assumption for the hidden state
distribution p(s). Both consider continuous
hidden state variables. Attias [3] considers
a product of Gaussian mixture distributions
(independent factors) for the hidden states
s. If, in that model, the number of mix-
tures for each hidden state variable s; is set
to 2 (bi-modal distribution), the generated
patterns are essentially binary feature com-
binations as in GVQ. Olshausen and Field
[4], on the other hand, consider a sharply
peaked unimodal distribution for continuous
hidden variables s. This choice encourages
a sparse representation of the data patterns
since the hidden variables s; will be in the
‘off” state most, of the time. In this case an
individual pattern will be constructed as a
combination of only a small number of fea-
tures out of a large, typically over-complete,
set of features. A similar property can be in-
corporated in our method by extending the
basic constant GVQ prior p(s) in Eq. (4)
with a soft prior p(s) o exp(—As”s). Note,
however, that when this penalty term be-
comes too large, only a single feature will be
used to represent a pattern. In other words
GVQ will tend to standard vector quantisa-
tion as the solution is strongly encouraged
to be sparse.

5 Discussion

Generative vector quantisation is a method
which performs salient feature extraction at
modest computational expense. The sim-
plicity of GVQ, which searches for descrip-
tions in terms of binary feature combina-
tions, may lead to a lucid data representa-
tion which is important in many data explo-
ration tasks. A central thesis of the GVQ
model is that data points are explained by a
single generating process. In terms of Vector
Quantisation, this means that data points
are associated with only the nearest code-
book vector. Unlike a probabilistic model,
GVQ constructs a competition between al-
ternative explanations for a data point, in
which there can be only one winning ex-
planation. We saw that in handwritten
character recognition, the features learned
were able to generate good representations
of the data. Similarly, image compression
was markedly improved by using GVQ over
standard VQ.

GVQ is potentially a powerful tool for ex-
ploring and representing data in a determin-
istic manner. Ultimately, the strength of
GVQ lies in its transparent simplicity, being
based on the intuitive notion that, although
data may appear complex, its construction
may be well understood in terms of a small
number of elementary building blocks.

References

[1] B. Sallans, G.E. Hinton, and Z. Ghahra-
mani. A hierchical community of experts.
In C. M. Bishop, editor, Neural Networks
and Machine Learning, 269-284. Springer-
Verlag, 1998.

[2] Z. Ghahramani and G. E. Hinton. Hier-
archical non-linear factor analysis and to-
pographic maps. In NIPS, 10. MIT Press,
1998.

[3] H. Attias Independent Factor Analysis Neu-
ral Computation, 11(4):803-851, 1999.

[4] B.A. Olshausen and D. J. Field. Emergence
of simple-cell receptive field properties by
learning a sparse code for natural images.
Nature, 381:607-609, 1996.

[65] R.M. Gray. Vector quantisation. IEEFE
ASSP Magazine, pages 4-29, 1984.

[6] J. J. Hull. A database for handwritten text
recognition research. IEEE Transactions on

Pattern Analysis and Machine Intelligence,
16(5):550-554, 1997.

[7] L. K. Saul, T. Jaakkola, and M. I. Jordan.
Mean Field Theory for Sigmoid Belief Net-
works. Journal of Artificial Intelligence Re-
search, 4:61-76, 1996.

